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Abstract 

The solvation structure of several lithium and sodium based electrolytes are explored as a 

function of salt concentration over a wide range via a detailed PM7 computational study. 

The cation coordination shells are found to be well-defined and solvent rich for dilute 

electrolytes, while disordered and anion rich for the more concentrated electrolytes. The Na-

based electrolytes display larger cation coordination shells with a more pronounced 

presence of fluorine as compared to the Li-based electrolytes. The origins of the structural 

differences are discussed as well as their consequences for properties of battery electrolytes 

and battery usage – especially targeting the current large interest in highly concentrated 

electrolytes. 

Keywords: highly concentrated electrolytes, solvation structure, lithium ion batteries, 

sodium ion batteries. 

  



1. Introduction 

In a world with a growing urge for electrical energy storage, advances in battery technology 

are needed to improve the attractiveness for large-scale storage and electrical vehicles (EVs). 

The limitations with respect to stability, energy and power density needs to be addressed in 

order to better meet the safety, autonomy, and power standards and improvements 

required [1][2]. Lithium-ion batteries (LIBs) represent one of the most promising 

technologies, readily used already today, but recently also the prospect of sodium-ion 

batteries (SIBs) has re-emerged and grown into an active research topic. The cost of sodium 

is more than an order of magnitude lower than lithium and sodium is more than three 

orders of magnitude more abundant, while at the same time SIBs promise a similar level of 

performance as LIBs [3–7], rendering them future candidates for grid storage [8]. Moreover, 

the possibility to replace the Cu current collector in LIBs for Al current collectors at both 

sides in SIBs could push the energy densities further and again lower cost [6,9]. However, the 

similarities are more plentiful than the differences as for LIBs vs. SIBs. 

For both LIBs and SIBs the electrolyte is a key component; e.g. the charge carrier 

concentration and the ion mobility are both crucial for the power rates as well as overall 

functionality. The standard LIB electrolyte is today based on 1.0 M LiPF6 in mixtures of 

organic carbonates (propylene carbonate (PC), ethylene carbonate (EC) and dimethyl 

carbonate (DMC)) with similar salts and solvents being investigated for SIBs [1,10]. Future 

LIBs/SIBs, however, will require novel electrolytes displaying i) wider electrochemical 

stability windows to allow cycling of high energy capacity cathodes and especially at higher 

voltages e.g. up to 5 V vs. Li+/Li° [11], ii) compatibility with these and other new electrode 

chemistries [5], iii) better thermal stability to withstand wider operational temperatures 



[12], and iv) surface and bulk structures and dynamics that allow for faster charge/discharge, 

i.e., cation desolvation and solvation [13]. 

Another important aspect is safety, which is mostly addressed by using polymer electrolytes 

to reduce/eliminate the risk of leakage of flammable liquids. However, polymer electrolytes 

still suffer from rather poor room-temperature conductivity [14,15]. Recently another 

concept has emerged; non-aqueous electrolytes with salt concentrations significantly above 

1.0 M have been reported to exhibit remarkable properties including non-volatility, raising 

the concept of super-concentration (up to ca. 5 M or even above) as an interesting strategy 

[16]. Reversible LIB operation using both graphite and lithium metal anodes, and with 

enhanced kinetics have been demonstrated for a number of salts and solvents [17,18]. These 

improvements are attributed to a unique electrolyte structure that promotes an effective 

electrode passivation [13,18], prevents solvent co-intercalation into graphite [13,17,19], and 

facilitates (de)lithiation via a different lithium de-solvation mechanism as compared to 

“conventional” electrolytes [19–21]. The extensive ion-ion interactions are also inferred to 

be the reason for reduced volatility and hence increased thermal stability and also prevent 

polysulfide dissolution in the case of Li-S batteries [18,22]. Furthermore, a sharp increase in 

alkali cation transference number have been observed in ionic liquid based electrolytes, 

indicating that the transport mechanism is altered at elevated concentrations [23–25], and 

indeed an increase in lithium transference number was also observed in [18].  

As solvents, both acetonitrile (ACN) and PC have recently been shown to allow for a 

reversible lithium intercalation in graphite only at high salt concentrations [12,25].  ACN 

possesses a dielectric constant of εr =37, a high oxidation stability [21], and is a rather small 

and well-studied molecule with respect to both liquid structure and ion solvation [27–29]. As 



for PC, it remains liquid over a much larger temperature range than the often used co-

solvent EC and has a higher dielectric constant compared to ACN (εr =65), allowing for a 

larger degree of salt dissociation enabling higher concentrations. Altogether this makes PC a 

solvent of interest for highly concentrated electrolytes [9,25]. 

An understanding of how these solvents and resulting electrolytes behave at the molecular 

level is needed for any rational improvement. Locally the electrolyte structure can be 

described in terms of i) the various solvates formed upon salt dissolution, i.e., solvent 

separated ion pairs (SSIPs), contact ion pairs (CIPs), aggregates (AGG) [27], and ii) the cation 

coordination, primarily characterized by the cation-solvent and cation-anion distances and 

angles. This can either be done experimentally or computationally, and we will here advance 

the latter approach.  

Indeed, the molecular level details of highly concentrated electrolytes have been addressed 

by several computational studies. Molecular dynamics (MD) simulations have been used to 

generate a large amount of configurations, thus allowing statistics on solvates as functions of 

salt concentration and anion type and linking these to phase behaviour [27,28] and transport 

properties [30]. However, the (classical) force fields used may fail in providing a proper 

description of highly concentrated electrolytes as the interactions become very non-

standard. Density functional theory (DFT) in principle allows for an accurate description of 

the (electronic) structure, but as the computational cost scales rapidly with system size, this 

severely limits the possibilities of modelling any large ensembles and restricts the number of 

configurations. Therefore, DFT has so far been applied to optimize and validate MD force 

fields [22] and only recently to reveal the shift of the location of the electrolytes’ LUMO - 

from solvent to anion - at high salt concentrations, the latter connected to the improved 



salt-based SEI with better passivation properties [31]. While combining MD with DFT allows 

for moderate ensemble sizes, the reduced number of configurations will e.g. produce radial 

distribution functions (RDFs) with a limited spatial resolution [31], and thus the fine 

structure information of the coordination environment is lost.  

As a remedy, we here study the equilibrium configurations from a significant sampling of 

large ensembles obtained using semi-empirical quantum mechanical calculations. The 

Parametrized Method 7 (PM7) [32] is a Hartree-Fock based method with significantly 

improved descriptions of non-covalent interactions such as dispersion, hydrogen bonds and 

halogen bonds as compared to e.g. PM3 and PM6 [32,33]. By analysing descriptors such as 

radial distribution functions (RDFs), geometry, and topology, the methodological drawbacks 

of PM7 tend to vanish, giving results of similar quality as much more expensive DFT methods 

[34–36], why it also has been used for computations of Li+-solvent cluster dynamics [37,38]. 

In this study we present PM7 calculations on lithium and sodium hexafluorophosphate (LiPF6 

and NaPF6) in PC and ACN at different salt-to-solvent ratios covering dilute, concentrated, 

and highly concentrated electrolytes.  

2. Computational 

A set of systems of LiPF6/NaPF6 in ACN with different salt-to-solvent ratios; 1:20, 1:16, 1:12, 

1:6, 1:4, 2:5, and 4:7, were all built using the software Avogadro [39]. The 

ratios/concentrations were chosen to span the range from “dilute” via concentrated to 

highly concentrated electrolytes as addressed and classified by Seo et al. [18,28]. Similar 

molecular ensembles were created for LiPF6/NaPF6 in PC; 1:12, 1:11, 1:10, 1:8, 1:7, 1:6, 1:5, 

1:4, and 2:5. These ensembles were made with a racemic mixture of R-PC and S-PC. The 



explored molar ratios approximately correspond to 1.0-5.0 M for ACN [30], and for PC ca. 

1.0-3.0 M. 

The ensembles were subsequently divided into three categories; dilute, concentrated, and 

highly concentrated. For ACN, the ensembles with molar ratios 1:20, 1:16 and 1:12 where 

designated as dilute, 1:6 and 1:4 as concentrated, and 2:5 and 4:7 as highly concentrated 

systems, respectively, and for PC the molar ratios 1:12 and 1:11 as dilute, 1:10, 1:8, 1:7, 1:6 

and 1:5 as concentrated, and 1:4 and 2:5 as highly concentrated systems, respectively. These 

three concentration systems/ranges were analysed for the influence of the cation, solvent, 

and salt concentration on the electrolyte structure.  

Geometry optimizations were performed in MOPAC2012 [40,41] using PM7 with an implicit 

solvent applied via Andreas Klamt’s COSMO solvation model with εr =36.64 for ACN and 

εr=64.92 for PC, using a radius of 0.18 nm [10]. Furthermore, frequency calculations were 

performed and only configurations corresponding to local minima were kept. For the dilute 

electrolytes 30 cations (extracted from 11 stable configurations) where studied in the ACN 

based electrolytes and 16 (16 configurations) in the PC, for the concentrated 43 (15 

configurations)  in ACN and 62  (54 configurations)  in PC, and for the highly concentrated 50 

(11 configurations)  in ACN and 48 (20 configurations) in PC. For the smaller clusters (31 

atoms, excluding the hydrogen atoms) stable structures were obtained in less than a minute, 

while for the larger (272 atoms, excluding the hydrogen atoms) a few hours were needed 

using an Intel® CORE™ i7 processor with 16 GB of RAM. 

The RDFs g(r) were explored to obtain the interatomic distances between the electrolyte 

species. The RDFs are defined as the number n(r) of B atoms located at a distance r from a 

central atom A within a shell of volume 4πr2Δr: 



g(r)=n(r)/4πr2∆r. 

RDFs were calculated for all geometries and then combined to form a single RDF for each of 

the categories and choice of cation. The first peak in the RDFs was integrated to yield the 

coordination number (CN). As several ensembles were used to create the RDF the variance  

     Var(CN)=∑ (CN − 𝜇)ଶ/𝑁 , 

and the standard error 

     𝜎ത = 𝜎/√𝑁,  

were both calculated, where CNi is the coordination number of cation i, N the total number 

of cations present in all the ensembles belonging to the category, 𝜇 is the mean CN, and 𝜎 is 

the standard deviation.  

The solvation structures were further analysed by the angles; N–cation–N and O–cation–O 

for all nitrogen and oxygen atoms within a distance of 0.32 nm of a cation and their 

distributions were fractionated in six regions: I-VI, 0-30°, 30-60°, 60-90°, 90-120°, 120-150°, 

and 150-180°.   

3. Results 

In this study several structural measures of the electrolytes are explored as functions of 

concentration, cation, and choice of solvent. The RDFs and angular distributions reveal the 

overall geometry of the solvation structure, while the CN show its contents and the CN 

variance in a general way gauges the diversity of the coordination environments, i.e., high 

variance is interpreted as numerous stable coordination structures. It should be emphasised 

that the CN, not the solvation number (SN), is studied, e.g. CN = 4 does not necessarily mean 



4 different ions/molecules coordinating (as some may coordinate bidentately). The RDFs are 

described in section 3.1, followed by the CN and its variances in section 3.2, and finally the 

angular distributions in section 3.3. Each of the structural measures is described as a 

function of concentration, first for Li+ in PC and ACN and then for Na+ in PC and ACN. 

3.1 RDFs 

In the RDFs of the LiPF6 based electrolytes there are clear differences between the two 

solvents (Fig. 1). The PC based electrolytes (Left panel) show a Li–O peak at 0.21 nm for all 

concentrations, in excellent agreement with neutron diffraction data [42], while for the ACN 

based electrolytes (Right panel), the corresponding Li–N peak is found at 0.22 nm for the 

dilute 

 

Figure 1. RDF-profiles of the dilute, concentrated, and highly concentrated electrolytes. Solid lines are Li 
systems and dashed lines Na systems. Left panel shows the PC based electrolytes and right panel ACN based 
electrolytes. Red display the cation–O, dark green the cation–F, and blue the cation–N RDFs, respectively.  



systems, fairly comparable to diffraction experiments [43]. The latter peak clearly broadens, 

decreases in intensity, and splits for the highly concentrated systems. The Li–F peaks in the 

PC based systems overlaps with the Li-O peak in the dilute and concentrated systems, but it 

broadens and slightly shifts towards lower coordinating distances for the higher 

concentrations. Interestingly, the Li-F distances are clearly shorter than the Li-N distances for 

all concentrations in the ACN based electrolytes. 

Moving to Na+ the RDFs are in stark contrast to the Li+ case above – for the NaPF6-PC based 

electrolytes (Fig. 1 – Left panel) both the Na–O and Na–F peaks are on average 0.03 nm 

shifted towards longer distances in comparison with the LiPF6-PC cases. In addition, while 

the Li–O and Li–F peaks overlap, the Na–F distances are clearly shorter than the Na–O 

distances. 

Higher salt concentrations in the PC system promotes a split of the Na–O peak, in contrast to 

the unimodal profile observed for Li–O, suggesting Na+ to be less effective in keeping a 

defined solvation structure. For ACN the Li–N and Na–N profiles are fairly similar, but 

increasing the concentration highlights different cation–F distances: the Na-F peak evolves 

from almost non-existent for the dilute systems, starts to appear in the concentrated 

systems and then grows to a well-defined peak for the highly concentrated systems. The Na-

F distances are clearly longer than the Na-N distances, quite the opposite of what is 

observed for Li+.  Indeed, many different computational studies consistently show the F 

atoms to coordinate closer to Li+ than the lead atom of the solvent, for ACN [27,28] as well 

as for EC and DMC [44]. In addition, while the Na-F distances are about 0.02 nm longer than 

the Li-F distances in PC electrolytes, they are almost 0.05 nm longer in ACN electrolytes, 

highlighting even more the influence of the solvent on the cation-F distances.   



In all, increasing the salt concentration promotes a decrease in the cation-solvent peak 

intensity with a consequent increase in the cation-anion peak intensity. The most 

pronounced changes occur for the highly concentrated electrolytes, where the split of the 

Na-O, Li-N and Na-N peaks occur and slight shifts of the Li-F peaks are observed. 

3.2 CN and CN variance 

By integrating the first peak in the RDFs the CNs can be obtained. For the LiPF6-PC based 

systems this results in an averaged solvation structure of 4.3 oxygen and 0.9 fluorine atoms 

coordinating to a Li+ for the dilute systems here denoted Li(O)4.3(F)0.9. While both mono- or 

bidentate coordination of Li+ by a solvent or anion are possible, these are not separable 

using only the atomic distances in the RDFs, and there is uncertainty of the exact molecular 

composition of the solvation structure. However, assuming solely monodentate 

coordination, Li(O)4.3(F)0.9 with CN≈5 is equal to a [Li(PC)4.3(PF6)0.9] complex , whereas a 

[Li(PC)5]+-complex is reported by both Raman and NMR spectroscopy [45]. For the 

concentrated systems, the solvation structure evolves to an average of Li(O)3.4(F)0.9. For the 

highly concentrated systems the CN is lowered even further, consisting of Li(O)2.9(F)1.8 – thus 

a doubling of the fluorine contribution to the CN has occurred. For ACN, a Li(N)3.8(F)0.7 

coordination seems to be the most stable at dilute concentrations, moving to Li(N)3.1(F)1.8 for 

the concentrated systems, and progressing to a much higher anion content, Li(N)1.9(F)2.5, for 

the highly concentrated electrolytes. The total coordination number, however, remains close 

to 4.5 for all cases, larger than the 4-fold coordination reported experimentally by different 

techniques [43,46–48], suggesting the PM7 method to slightly overestimate the 

coordination number, the cut-off to be set to high, or possibly that the solvent exchange 

affects the experimental data. As noted above for both the ACN and the PC based 



electrolytes an increased salt concentration promotes a substitution of solvent molecules by 

anions in the first solvation shell, as expected [28].  The increase of fluorine in the 

coordination shell can be attributed two effects, an increase in propensity for anions to 

coordinate the cation when the concentration is increased, and a re-orientation of the anion  

allowing for higher dentate order as the concentration is increased. 

For Na+ the CNs are consistently higher than for Li+ for all concentrations. Specifically, in 

NaPF6–PC the solvation structure evolves from Na(O)4.8(F)1.5 for the dilute electrolytes, to 

Na(O)4.0(F)1.7 for the concentrated, and finally Na(O)2.7(F)3.6 for the highly concentrated 

electrolytes. In contrast, for the dilute NaPF6-ACN electrolytes a Na(N)4.2(F)0.7 structure is 

preferred, a Na(N)3.2(F)2.8 for the concentrated, while Na(N)2.2(F)4.8 is the most stable 

configuration for the highly concentrated electrolytes. Thus, a rather monotonic and 

continuous substitution of solvent for anions in the coordination shell is observed moving 

from dilute to highly concentrated electrolytes. 

Table 1. Coordination numbers and their variance. 

                     Li+                                                   Na+ 

      PC      ACN     PC     ACN 
Dilute     
CNO/N 4.3±0.3 3.8±0.2 4.8±0.3 4.2±0.2 
CNF 0.9±0.2 0.7±0.2 1.5±0.4 0.7±0.2 
CNTot 5.2±0.3 4.4±0.1 6.3±0.4 4.8±0.2 
Var(CN) 1.5 0.4 2.9 0.7 
Concentrated     
CNO/N 3.4±0.2 3.1±0.1 4.0±0.2 3.2±0.1 
CNF 0.9±0.1 1.8±0.1 1.7±0.2 2.8±0.3 
CNTot 4.3±0.2 4.9±0.1 5.7±0.2 6.0±0.2 
Var(CN) 2.3 0.5 3.5 2.3 
Highly concentrated     
CNO/N 2.9±0.2 1.9±0.2 2.7±0.2 2.2±0.2 
CNF 1.8±0.2 2.5±0.2 3.6±0.4 4.8±0.3 
CNTot 4.7±0.2 4.5±0.2 6.3±0.3 7.0±0.2 
Var(CN) 2.2 1.8 5.4 2.8 



 

The variance of the CN in general increases with concentration, but in a different fashion for 

each type of electrolyte. For the Li-PC and Na-ACN electrolytes the variance has a jump from 

diluted to concentrated, while for the Li-ACN electrolyte it has a jump from concentrated to 

highly concentrated, while again for the Na-ACN electrolytes it increases progressively. The 

PC-based electrolytes possess larger variances for all concentrations as compared to the ACN 

based electrolytes. In addition, the variances of the ACN based electrolytes remain 

particularly small for the dilute systems, while the changes with concentration are the most 

pronounced; almost four times larger for the highly concentrated systems. The variances of 

the Na-based electrolytes are consistently larger than the Li-based electrolytes. Hence, 

substituting lithium for sodium and changing solvent from ACN to PC both increase the 

variance. 

 

 

 

 

 

 

 

 

 



 

 3.3 Angular distributions 

Starting with the PC-based electrolytes these have an O–cation–O binodal profile, where a 

broad feature is distributed around 90° and a sharp peak is centred close to 50°. The latter  

Figure 2.  The angle distribution for lithium (solid) and sodium (dashed) in PC and ACN. Left: O–cation–O 
distribution. Right: N–cation–N distribution. 

strongly suggests a bidentate coordination of the cation (Figs. 2-4 and Table 2) and as the 

feature increases with concentration also the bidentate coordination increases with  

Figure 3. Mono (black) and bidentate coordination (blue) of a cation M+ by a single PC molecule – with the 
concomitant distance and angle changes. 



concentration, i.e. when increasing the salt concentration it becomes increasingly common 

that the cation is coordinated both by the carbonyl oxygen atom and an ether oxygen atom 

belonging to the same PC solvent molecule, hence φm < φb (Fig. 3 and 4). 

Simultaneously, the angular distribution becomes more diffuse, in agreement with the 

increase in the CN variance. The sharp peak is centred closer to 60° for the Li–PC case, which 

indeed is consistent with the RDFs (Fig. 1) where there is a split of the Na–O peak. The latter 

indicates that for a bidentate coordination of Na+, the oxygen atoms are situated at different 

distances, reducing the angle (Fig. 3), whereas for Li+ the bidentate coordination is rather of 

an equilateral triangular shape. 

Moving to the ACN based electrolytes these present a binodal N–cation–N distribution 

suggesting a different coordination geometry as compared to the PC based electrolytes. 

Figure 4. Left: Bidentate coordination by PC and tridentate coordination by a PF6 anion for Na+ with the angles 
and distances given. Right: An octahedral arrangement of the ligands. The black dashed lines are only guide to 
the eye. 

 A single broad peak distributed around 90°, and no feature at 50°, suggests the presence of 

an equatorial, square-planar alignment of solvent molecules around the cation, a 

coordination which can also be found in an overall octahedral coordination. In further 

contrast to the PC based electrolytes, there is a feature at large angles, close to 170°, which 

indicates a bi-pyramidal, and for solvation shells with a CN = 6 – octahedral coordination. 



Moreover, there are no large changes occurring when the salt concentration is increased, 

indicating that no overall structural changes occur in the ACN based electrolytes. 

From the more detailed statistics (Table 2), the PC based electrolytes show the fractions of 

angles within the regions II, IV, and V to increase with salt concentration, and at the same 

time the fractions in region III decreases, indicating that the shape of the solvation shell is 

distorted by increasing the salt concentration. The increase in region II indicates that 

bidentate coordination increases with concentration and in general the large spread from 

one of the regions into the three others is consistent with the increased CN variance. 

The angles in the ACN based electrolytes mostly fall within regions III and IV. Compared to 

the PC based electrolytes the distribution is much narrower (Fig. 2), which supports that the 

CN variance for the PC based electrolytes is larger than for the ACN based. The fraction of 

angles in region IV decreases upon increasing the salt concentration, while the angles within 

regions III and VI become more abundant. Overall the trends seem to be independent of the 

choice of cation, however, it seems that Na+ is more prone to form coordination geometries 

with O–cation–O and N–cation–N angles falling in region IV, while Li+ produces a broader 

distribution of angles. 

Table 2. Distribution of O/N-cation-O/N angles in the 6 regions corresponding to 0-30°, 30-60°, 60-90°, 

90-120°, 120-150°, and 150-180°, respectively. 

 I II III IV V VI 
LiPF6/PC       
Dilute 0.00 0.14 0.34 0.25 0.18 0.09 
Concentrated 0.00 0.18 0.29 0.29 0.17 0.07 
Highly concentrated 0.00 0.20 0.24 0.29 0.19 0.08 
NaPF6/PC       
Dilute 0.00 0.15 0.35 0.31 0.13 0.06 
Concentrated 0.00 0.18 0.29 0.28 0.17 0.07 
Highly concentrated 0.00 0.22 0.30 0.29 0.14 0.06 
LiPF6/ACN       



Dilute 0.00 0.00 0.30 0.46 0.14 0.10 
Concentrated 0.00 0.00 0.30 0.46 0.06 0.17 
Highly concentrated 0.00 0.00 0.37 0.31 0.10 0.22 
NaPF6/ACN       
Dilute 0.00 0.00 0.19 0.60 0.12 0.09 
Concentrated 0.00 0.00 0.24 0.53 0.12 0.11 
Highly concentrated 0.00 0.00 0.36 0.41 0.10 0.14 

 

4. Discussion 

4.1 Solvation structure changes  

The electrolyte structure in terms of the cation first solvation shell is quite clearly influenced 

by concentration, solvent, and choice of cation. Increasing the salt concentration promotes 

the split in the RDFs (Fig. 1), with a higher proportion of fluorine atoms, i.e., anions in the 

first coordination shell and an increase in the CN variance (Table 1). At low concentrations 

and for highly dissociated salts like LiPF6 the abundance of solvent molecules is enough to 

stabilize the first solvation shell of the cations via lone-pair coordination and are 

predominant. Since these Lewis-type acid-base interactions are highly directional, the 

solvation structure is expected to be well-defined. At high salt concentrations solvent 

molecules are scarce and not enough to stabilize the cation’s positive charge. Thus, anions 

are expected to contribute more to the charge stabilization via coulombic ion-ion 

interactions, as reflected in the increased proportion of fluorine atoms in the coordination 

shell. Since the anion’s negative charge is delocalized, the coordination structure is expected 

to be less defined and more flexible at high concentrations, as reflected by the broad RDFs 

and the increased variances. 

As for the influence of the cation, the Na+ containing electrolytes in general exhibit longer 

cation-solvent and cation-anion distances (Fig. 1), higher CNs, larger CN variance, and a 



larger proportion of fluorine atoms in the first solvation shell (Table 1). Thus, compared to 

LiPF6, the NaPF6 based electrolytes have larger, more populated and disordered coordination 

shells. From a chemical perspective, Na+ and Li+ differ mainly by their ionic radii (rNa+ ≈ 0.1 

nm, rLi+ ≈ 0.06 nm) [49]. Indeed, the larger coordination distances are likely related to the 

cation size as the RDFs shows the Na-solvent and Na-F distances to be 0.02 to 0.05 nm larger 

than the corresponding distances in Li-based electrolytes, in close agreement with the 

differences in ionic radius. In addition, Pearson and Klopman’s principles based on chemical 

hardness [50] predict Na+, a bigger cation and consequently less hard than Li+, to be more 

affine to interact with a chemically soft anion such as PF6-, thus explaining the increased 

presence of fluorine atoms in the first solvation shell of Na+.  

Finally, the ACN based electrolytes display an angular distribution that resembles octahedral 

cation coordination, different from the coordination geometry observed in the PC based 

electrolytes. In addition, the PC based electrolytes show larger CN variance and longer 

cation-solvent distances. Since PC and ACN both have comparable dielectric constants and 

donor numbers, these differences likely arises from the number of possible coordination 

sites per solvent molecule, i.e., PC allows for bidentate coordination as seen in the angular 

distribution and in Figs. 3 and 4.  

4.2 Practical consequences for battery usage 

The ionic conductivity is essentially known to decrease with increased salt concentration, for 

all except very dilute systems, and this should be detrimental for the applicability of highly 

concentrated electrolytes. However, increases in the cation transference number has been 

observed in ionic liquids [23–25], and increased lithium conductivity [18], indicating that 



while the overall conductivity decreases the crucial cationic conductivity might even increase 

when the salt concentration is elevated beyond the conventional, concentrated, levels. 

For dilute systems the ionic conductivity mainly occurs via a vehicular mechanism where the 

conductivity strongly depends on the size of the charge carrier and the electrolyte viscosity 

[51]. For these systems the Li+ based electrolytes are expected to have higher conductivities 

than the Na+ based electrolytes due to a denser and likely smaller solvation shell (hence 

diffusing faster). In contrast, MD simulations show that the extensive ion-ion interactions 

present for higher salt concentrations promote electrolyte structures that resemble 

polymeric highly viscous networks, where cations have short residence times at their 

coordination sites [30,44]. Under such conditions the ionic conductivity might follow a 

Grotthuss-like transport mechanism, where cations move via a sequential series of jumps 

between neighbouring sites and the ionic conductivity is decoupled from the viscosity 

[23,24,52]. High CN variance, here interpreted as numerous stable structures, seems to 

reflect the flexible character of coordination sites for the higher salt concentrations 

predicted by the MD simulations. Moreover, for the high salt concentrations the scarcity of 

solvent molecules forces the cations to compete for the contents of their solvation shell, and 

hence the solvation shells formed are likely energetically less stable than at lower 

concentrations where the cation is able to form its energetically preferred shell. Again, this 

gives credence to that at high concentrations, a high variance and a reduction in the 

residence time results. In this context the Na+ based electrolytes, with higher CN variance, 

are expected to present more of this behaviour than the Li+ based electrolytes.  

The liquid range of the electrolyte is another key parameter for LIB and SIB performance, 

since the electrolyte should remain in the liquid state in order to keep the ionic conductivity 



practical and to wet the porous electrodes [12,51]. A fundamental description of the liquidus 

range can be obtained via an analysis of the potential energy surface (PES) as for glass-

forming liquids there is a relationship between the number of accessible PES minima at a 

given temperature and the system relaxation time, increasing significantly when 

approaching the glass transition temperature. In essence, a liquid with a reduced number of 

accessible PES minima (reduced number of configurations) tend to be viscous and easily 

evolves to a structure with solid-like properties [53]. Based on this argument, electrolytes 

with numerous stable structural configurations are expected to have an improved liquid 

range, i.e., to remain liquid for a wider range of temperatures and salt concentrations. 

Therefore, the electrolytes with higher variance at high concentrations can be anticipated to 

have a wide liquid ranges. Here this implies that the Na+–PC based electrolytes remain liquid 

for higher concentrations and lower temperatures than the Li+–ACN based electrolytes. This 

is partially supported by the liquid ranges of 1.0 M NaPF6-PC, remaining liquid down to -95 °C 

[54], and 1.0 M LiPF6-ACN, crystallizing already at room temperature [30]. In this sense, the 

analysis of the CN variance represents a tool to link the local molecular picture obtained 

from quantum mechanical computations with macro-scale battery relevant electrolyte 

properties. 

A third property of practical importance is the cation de-solvation energetics and kinetics – 

to reduce charge transfer and interfacial resistance. Xu, Ogumi and co-workers 

demonstrated that an energetically demanding cation de-solvation significantly decreased 

the charge transfer kinetics [20,21]. An increased proportion of anions in the cation solvation 

shell could facilitate cation de-solvation at the anode surface, as the negatively charged 

electrode should repel anions, creating a de-stabilized solvation structure where the solvent 

molecules are no longer sterically hindered from re-arranging. In principle, this should allow 



the cation to more easily strip out of its shell. In this context, highly concentrated 

electrolytes, observed to have cations with an increased proportion of fluorine atoms, i.e., 

anions, in their solvation shell, are expected to have improved kinetics. This could also 

explain why enhanced kinetics mainly have been reported for negative electrodes 

[13,18,19,55].  

5. Conclusions 

For Li+ and Na+ – PC and ACN based electrolytes the RDFs obtained from our PM7 

computations are able to in detail reveal the solvation structures and these can be linked to 

several properties of practical importance for LIB and SiB electrolytes. In general, the RDFs 

become more disordered for the higher salt concentrations as compared to the dilute 

systems and the sodium cations have longer solvent and anion coordination distances as 

compared to the lithium cations. The cation CNs and CN variance show salt concentration to 

increase the population and the proportion of fluorine atoms in the first solvation shell, both 

these trends are particularly pronounced for the Na+ based electrolytes, and the latter 

suggesting numerous stable structures i.e. flexible first solvation shells. The angular 

distributions have less of a concentration dependence, but differ substantially between ACN 

and PC electrolytes, suggesting the choice of solvent to be decisive for the cation 

coordination geometry. The scarcity of solvent molecules and the extensive ion-ion 

interactions that occur at high salt concentrations affect the concentration dependent 

trends, while the differences observed between the Li+ and Na+ based electrolytes are 

primarily attributed to the different cation ionic radii and their chemical hardness. In 

addition, the Na+ – PC based electrolytes should have improved liquid ranges at high 

concentrations due to highly flexible coordination structures. Moreover, the highly 



concentrated electrolytes should also display relatively faster charge transfer kinetics, as 

indeed observed experimentally at negative electrodes, a feature linked to a cation 

coordination structure with a pronounced presence of anions. 
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