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1 Introduction

In a recent paper [1] we showed that the light-cone gauge Hamiltonians describing

pure Yang-Mills theory and N = 4 Yang-Mills theory could be expressed as quadratic

forms. Interestingly, this quadratic form structure occurs exclusively in the N = 0 (non-

supersymmetric) and N = 4 (maximally supersymmetric) cases. In this paper, we extend

our analysis to theories of gravity and show that the same holds true for both pure grav-

ity and the maximally supersymmetric N = 8 supergravity in four dimensions. Simple

mathematical structures are often signatures of a hidden symmetry and this makes them

interesting. There is growing evidence that pure gravity in d = 4 may have hidden symme-

tries [2] and that some of the surprising ultraviolet cancelations encountered in the N = 8

theory may originate from pure gravity itself [3] - unexpected cancelations themselves be-

ing another reliable indicator of hidden symmetries. We hope that the quadratic form

structures introduced in this paper are signatures of such a symmetry, with possible links

to the recent work of [4].

Apart from their Hamiltonians being quadratic forms, Yang-Mills theory and Gravity

share other close links including the KLT relations [5–7]. These relations seem to suggest

that the finiteness properties of N = 4 super Yang-Mills theory could possibly carry over to
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N = 8 supergravity [8]. An open question in this regard is how much of the unique quantum

behaviour of maximally supersymmetric theories is due entirely to supersymmetry (in the

N = 8 theory, the exceptional symmetry plays an equally [9] important role).

Our focus in this paper is on the Hamiltonians describing pure gravity and N = 8

supergravity in light-cone gauge. In the next section, we start by reviewing the formulation

of pure gravity, in d = 4, in light-cone gauge. This leads to a closed-form expression for

the Lagrangian based entirely on the physical fields in the theory. From the closed-form

result, we extract the kinetic term and the higher-point interaction vertices. We write down

the corresponding Hamiltonian and describe both its residual symmetry and the quadratic

form structure it possesses to order κ. In section 3, we study the Hamiltonian to order κ2

and show that it may be expressed as a quadratic form. We prove its invariance under the

residual reparametrization symmetry. Finally, we briefly review how the quadratic form

also appears in N = 8 supergravity.

2 Pure gravity in d = 4

With the metric (−,+,+,+), the light-cone coordinates are

x± =
1√
2

(x0 ± x3) , (2.1)

with the corresponding derivatives ∂±. The transverse coordinates and derivatives are

x =
1√
2

(x1 + i x2 ) ; ∂̄ =
1√
2

( ∂1 − i ∂2 ) . (2.2)

On a Minkowski background, where the cosmological constant Λ vanishes, the Einstein-

Hilbert action reads

SEH =

∫
d4x L =

1

2κ2

∫
d4x
√
−g R , (2.3)

where g = det ( gµν ) is the determinant of the dynamical variable, the metric. R is the

curvature scalar and κ2 = 8πG is the coupling constant derived from the Newton’s gravi-

tational constant. The corresponding field equation is

Rµν −
1

2
gµνR = 0 . (2.4)

We now make the following three gauge choices [10, 11]

g−− = g−i = 0 , i = 1, 2 . (2.5)

These choices are motivated by the fact that η−−= η−i= 0. The metric is parametrized as

g+− = −eφ ,
gi j = eψ γij .

(2.6)

φ, ψ are real parameters and γij is a two-by-two real, symmetric unimodular matrix. Field

equations that do not involve time derivatives (∂+) are constraint relations as opposed to

equations of motion, which explicitly contain time derivatives.
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The µ=ν=− equation from (2.4) is a constraint relation and yields

2 ∂−φ∂−ψ − 2 ∂2
−ψ − (∂−ψ)2 +

1

2
∂−γ

ij ∂−γij = 0 . (2.7)

This may be solved using our fourth gauge choice,

φ =
ψ

2
. (2.8)

From (2.7)

ψ =
1

4

1

∂2
−

(∂−γ
ij ∂−γij) . (2.9)

Other constraint relations are used to eliminate more (unphysical) metric components. For

example, µ = i, ν =− in (2.4) tells us that

g−i = e−φ 1

∂−

[
γij eφ−2ψ 1

∂−

{
eψ
(

1

2
∂− γ

kl ∂j γkl − ∂− ∂j φ− ∂− ∂j ψ + ∂jφ∂− ψ

)
+ ∂l

(
eψ γkl ∂− γjk

)}]
. (2.10)

The Einstein-Hilbert action now reads

S =
1

2κ2

∫
d4x eψ

(
2 ∂+∂−φ + ∂+∂−ψ −

1

2
∂+γ

ij∂−γij

)
−eφγij

(
∂i∂jφ+

1

2
∂iφ∂jφ− ∂iφ∂jψ −

1

4
∂iγ

kl∂jγkl +
1

2
∂iγ

kl∂kγjl

)
−1

2
eφ−2ψγij

1

∂−
Ri

1

∂−
Rj , (2.11)

where

Ri ≡ eψ
(

1

2
∂−γ

jk∂iγjk − ∂−∂iφ− ∂−∂iψ + ∂iφ∂−ψ

)
+ ∂k(e

ψ γjk∂−γij) .

This closed form expression [11] describes gravitation, in light-cone gauge, purely in terms

of its physical degrees of freedom.

2.1 Perturbative expansion

We now perform a perturbative expansion of the closed form result in (2.11). The order κ2

result was first presented in [11] while the κ3 vertices were derived in [12]. We parameterize

the matrix γij as

γij = (eH)ij , (2.12)

where H is a traceless matrix since det ( γij) = 1. We choose

H =

(
h11 h12

h12 −h11

)
; h =

(h11 + i h12)√
2

, h̄ =
(h11 − i h12)√

2
. (2.13)
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From (2.9)

ψ = − 1

∂2
−

(∂−h ∂−h̄) +O(h4) , (2.14)

and we rescale all the fields

h → h

κ
. (2.15)

The Lagrangian (density) at lowest order now reads

L2 =
1

2
h̄�h , (2.16)

with the d’Alembertian � = 2( ∂∂̄ − ∂+∂− ). At order κ, we have

L = 2κ h̄ ∂2
−

[
−h ∂̄

2

∂2
−
h+

∂̄

∂−
h
∂̄

∂−
h

]
+ complex conjugate . (2.17)

At the next order, time derivatives need to be removed using a suitable field redefinition

and the resulting quartic Lagrangian was presented in [11, 13]. After some simplifications,

the Hamiltonian, to order κ, corresponding to the Lagrangians above, may be written as

H =

∫
d3x Dh̄ D̄h , (2.18)

where

Dh̄ = ∂h̄+ 2κ
1

∂2
−

(
∂̄

∂−
h ∂3

−h̄− h ∂2
−∂̄h̄

)
, (2.19)

and D̄h is the complex conjugate of Dh̄.

2.2 Residual reparametrization invariance: order κ0

To complete our description of gravity in light-cone gauge, we must examine the effect of

residual reparametrizations. To lowest order in κ, these take the form

x→ x+ ξ(x̄) , x̄→ x̄+ ξ̄(x) . (2.20)

By examining how the metric transforms, we find that the field transforms aa follows

δh =
1

2κ
∂ξ + ξ∂̄h+ ξ̄∂h , (2.21)

where ξ satisfies

∂−ξ = 0 , ∂̄ ξ = 0 . (2.22)

To order κ−1 we have

∂−(δh) = 0 , ∂̄(δh) = 0 . (2.23)

The variation of the Hamiltonian to order κ0 is

δH(κ0) = δ (∂h̄ ∂̄h) + 2κ δκ
−1

{
h̄ ∂−

2

(
h
∂̄2

∂−
2h−

∂̄

∂−
h
∂̄

∂−
h

)
+ c.c.

}
, (2.24)
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with the first term in (2.24) yielding

− ∂ξ h̄ ∂̄2h− ∂̄ξ̄ h ∂2h̄ . (2.25)

The variation of the second term in (2.24) and its complex conjugate exactly cancel the

terms above, proving that

δH(κ0) = 0 . (2.26)

The Hamiltonian in (2.18) is thus invariant under the following transformations

δh =
1

2κ
∂ξ + ξ∂̄h+ ξ̄∂h , (2.27)

δh̄ =
1

2κ
∂̄ξ̄ + ξ∂̄h̄+ ξ̄∂h̄ . (2.28)

We see now that the derivative introduced in (2.19) transforms ‘covariantly’. That is

δ(D̄h) = (ξ∂̄ + ξ̄∂ ) D̄ h , (2.29)

at this order, in keeping with the analysis of Yang-Mills theory [1].

3 The Hamiltonian, to order κ2

Moving to order κ2, the Hamiltonian is [13]

H = ∂h̄∂̄h− 2κh̄∂2
−

{
−h ∂̄

2

∂2
−
h+

∂̄

∂−
h
∂̄

∂−
h

}
− 2κh∂2

−

{
−h̄ ∂

2

∂2
−
h̄+

∂

∂−
h̄
∂

∂−
h̄

}

− 4κ2

{
−2

1

∂2
−

(
∂̄

∂−
h∂3

−h̄− h∂2
−∂̄h̄

)
1

∂2
−

(
∂

∂−
h̄∂3

−h− h̄∂2
−∂h

)
+

1

∂2
−

(∂̄h∂2
−h̄− ∂−h∂−∂̄h̄)

1

∂2
−

(∂h̄∂2
−h− ∂−h̄∂−∂h)− 3

1

∂−
(∂̄h∂−h̄)

1

∂−
(∂−h∂h̄)

+
1

∂−
(∂̄h∂−h̄− ∂−h∂̄h̄)

1

∂−
(∂h̄∂−h− ∂−h̄∂h) + 3

1

∂−
(∂−h∂−h̄)

1

∂−
(∂̄h∂h̄)

+

[
1

∂2
−

(∂−h∂−h̄)− hh̄
]
(∂̄h∂h̄+ ∂h∂̄h̄− ∂−h

∂∂̄

∂−
h̄− ∂−h̄

∂∂̄

∂−
h)

}
. (3.1)

3.1 Residual reparametrization invariance: order κ

Once quartic interaction vertices are included, the resulting Hamiltonian (3.1) is no longer

invariant under the infinitesimal symmetry transformations introduced earlier. To see this,

consider the relevant contributions from the cubic and quartic vertices.

δH(κ)
c,q = δκ

0
(cubic terms) + δκ

−1
(quartic terms) . (3.2)

We present details of this calculation in appendix A. We find that the net contribution,

from the cubic and quartic vertices, at order κ is

δH(κ)
c,q =

(
+2κ ∂̄ξ̄ h ∂h ∂̄h̄− 2κh ∂̄ξ̄ ∂−h̄

∂∂̄

∂−
h

)
+ c.c. (3.3)
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It is therefore clear that the existing transformations in (2.21) do not leave the Hamiltonian

invariant. In order to render it invariant, we are forced to introduce new terms at order

κ, to the r.h.s. of (2.21). These new contributions, when substituted in the kinetic term

in (3.1), are clearly at the same order as those in (3.3). We find

δh =
1

2κ
∂ξ + ξ∂̄h+ ξ̄∂h − κ ∂̄ξ̄ hh+ 2κ ∂ξ

1

∂−
(h̄ ∂−h) , (3.4)

and

δh̄ =
1

2κ
∂̄ξ̄ + ξ∂̄h̄+ ξ̄∂h̄ − κ ∂ξ h̄h̄+ 2κ ∂̄ξ̄

1

∂−
(h ∂−h̄) . (3.5)

The variation δκ(∂h̄ ∂̄h) cancels exactly against the terms in (3.3), confirming that

δH(κ) = 0 , (3.6)

and proving invariance of the light-cone Hamiltonian, to order κ2, under the residual

reparametrizations (3.4) and (3.5).

The transformations to order κ0 were used to identify counter terms for gravity to the

appropriate order. In particular [14]

[δ1(ξ1), δ2(ξ2)]h = δ12(ξ12)h , (3.7)

where the resulting parameter is

ξ12 = ξ̄2∂ξ1 − ξ̄1∂ξ2. (3.8)

This parameter does not satisfy (2.22) because we discard a determinant of ∂− in the

functional integral when we integrate out the unphysical degrees of freedom. We have

to restore these to have a finite residual reparametrization. However, the infinitesimal

symmetries are sufficient to constrain the Hamiltonian [14].

We can now check closure of the full transformation to order κ and indeed, it still

closes to the same parameter (3.8), showing that it is indeed a residual reparametrization

symmetry. We thus see that these are the first few terms in an infinite series which

represents the entire infinitesimal residual reparametrization symmetry. The fact that it

constrains possible terms in the Hamiltonian shows that it works just like a finite symmetry

in this respect, and should be important for constraining loop expressions. The price we

pay for not being able to integrate the symmetry is that we cannot use it to classify the

invariants. We intend to return to this point, and examine this symmetry at null-like

infinity to establish connections with [4].

3.2 Quadratic form structure

In this subsection, we demonstrate that the Hamiltonian, to order κ2, is a quadratic form.

That is

H =

∫
d3x Dh̄ D̄h . (3.9)

From each line of the Hamiltonian in (3.1), we will compute contributions to Dh̄ (we already

know Dh̄ to order κ). The product of the order κ terms, Dh̄ (κ) D̄h (κ), yields one-half of

– 6 –
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the second line in (3.1). We need to show then that half of the second line in (3.1) and all

the remaining terms, of order κ2 may be rewritten in the form

Dh̄ (κ2) ∂̄h+ ∂h̄ D̄h (κ2) . (3.10)

From line 2. Contribution to Dh̄

+ 2κ2 1

∂−

{
∂2
−h̄

1

∂3
−

(
∂3
−h

∂

∂−
h̄− ∂2

−∂hh̄

)}
(3.11)

+ 2κ2 1

∂−

{
∂

∂4
−

(
h̄∂2

−h
)
∂3
−h̄

}
(3.12)

The remaining terms (that cannot immediately be written in the form X∂̄h or Y ∂h̄) are

− 2κ2 h∂2
−h̄

∂̄

∂4
−

(∂2
−∂hh̄) + c.c. (3.13)

The rest of this calculation is presented in appendix B and we simply state here, the result

for Dh̄.

At order κ2, Dh̄ reads

+ 2κ2 1

∂−

{
∂2
−h̄

1

∂3
−

(
∂3
−h

∂

∂−
h̄− ∂2

−∂hh̄

)}
+ 2κ2 1

∂−

{
∂

∂4
−

(
h̄∂2

−h
)
∂3
−h̄

}
− 2κ2 ∂2

−h̄
1

∂4
−

(
∂2
−h∂h̄− 2∂−∂h∂−h̄

)
+ 2κ2 ∂−h̄

1

∂2
−

(
∂−h∂h̄− 2∂h∂−h̄

)
+ 6κ2 1

∂2
−

(
∂−h∂−h̄

)
∂h̄− 6κ2 ∂−h̄

1

∂2
−

(
∂−h∂h̄

)
− 2κ2 1

∂2
−

(
∂−h∂−h̄

)
∂h̄

+ 4κ2 hh̄ ∂h̄+ 4κ2 ∂

∂−

{
∂−h̄

(
1

∂2
−

(
∂−h∂−h̄

)
− hh̄

)}
+ 2κ2 ∂2

−h̄
1

∂4
−

(
∂2
−∂hh̄

)
− 2κ2 ∂−

{
∂−h̄

1

∂2
−

(
h̄∂h

)}
− 2κ2 ∂

{
h̄

1

∂2
−

(
∂−h̄∂−h

)}
− 2κ2 ∂2

−h̄
1

∂3
−

(
∂−∂hh̄

)
+ 2κ2∂−∂

{
h̄

1

∂3
−

(
h∂2

−h̄
)}

+ 2κ2∂

{
∂−h̄

1

∂3
−

(
h̄∂2

−h
)}

+ 2κ2∂2
−

{
h̄

1

∂3
−

(
∂−h̄∂h

)}
, (3.14)

confirming that the light-cone Hamiltonian for pure gravity, in d = 4, may be expressed as

a quadratic form up to order κ2.

Like at order κ, one might expect Dh̄ in (3.14) to transform covariantly. Unfortunately,

at this order, this does not happen - the derivative does not transform like the field. Explicit

variation of (3.14) yields

δ (Dh̄ )κ = +κ ∂ξ ∂

{
∂−h̄

1

∂−
h̄

}
+ 2κ ∂̄ξ̄ h ∂ h̄+ κ ∂̄ ξ̄ ∂ ∂− h̄

1

∂−
h− κ ∂̄ ξ̄ 1

∂−
{ ∂− ∂ h̄ h } , (3.15)

using which it is easy to verify that

δHκ =

∫
d3x [ δ(Dh̄) D̄h+Dh̄ δ(D̄h) ]

κ
= 0 . (3.16)

In the next section we explain, on general grounds, why the transformation property

in (3.15) is not unexpected.

– 7 –
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3.3 Transformation properties of Dh̄

Based on helicity considerations, (3.4) and dimensional analysis, we start with the following

general ansatz for δ(D̄h)

δ(D̄h) = 0+ (ξ∂̄+ ξ̄∂ ) D̄h−κ ∂̄ξ̄
∑
i

αi Âi (B̂ih Ĉih)+2κ ∂ξ
∑
j

βj P̂j(Q̂j h̄ R̂jh) , (3.17)

and for its complex conjugate

δ(Dh̄) = 0 + (ξ∂̄+ ξ̄∂ )Dh̄−κ ∂ξ
∑
i

αi
¯̂
Ai (

¯̂
Bih̄

¯̂
Cih̄ ) + 2κ ∂̄ξ̄

∑
j

βj
¯̂
Pj(

¯̂
Qjh

¯̂
Rj h̄) . (3.18)

The Âi, . . . are operators to be determined later while αi and βj are constants. Note

that this ansatz transforms covariantly if we choose the following single set of operators

α = 1 , Â = ∂̄ , B̂ = Ĉ = 1 ,

β = 1 , P̂ =
1

∂−
, Q̂ = 1 , R̂ = ∂−∂̄ . (3.19)

Since the Hamiltonian is invariant under (3.4) and (3.5), we have

δH = 0 =⇒
∫
d3x [ δ(Dh̄) D̄h+Dh̄ δ(D̄h) ] = 0 . (3.20)

Let us first verify (3.20) at order κ0

δH =

∫
d3x [ (δ(Dh̄))κ

0
∂̄h + ∂h̄(δ(D̄h))κ

0
] , (3.21)

=

∫
d3x [ ξ̄∂2h̄∂̄h+ ∂h̄ξ̄∂∂̄h ] . (3.22)

Integrating a ∂ from the h̄ in the first term yields (δH)κ
0

= 0.

At order O(κ), we have

(δH)κ =

∫
d3x

[
(δ(Dh̄))κ∂̄h+ (δ(Dh̄))κ

0
(D̄h)κ + (Dh̄)κ(δ(D̄h))κ

0
+ ∂h̄(δ(D̄h))κ

]
,

= κ

∫
d3x

{[
ξ̄∂(Dh̄)κ + 2∂̄ξ̄

∑
j

βj
¯̂
Pj(

¯̂
Qjh

¯̂
Rj h̄)

]
∂̄h+ ξ̄∂2h̄(D̄h)κ (3.23)

+

[
ξ̄∂(D̄h)κ − ∂̄ξ̄

∑
i

αi Âi (B̂ih Ĉih)

]
∂h̄+ (Dh̄)κξ̄∂∂̄h

}
. (3.24)

We integrate a ∂ from h̄ in the last term of (3.23) to cancel it against the first term in (3.24).

We then cancel last term of (3.24) against the first term of (3.23) by integrating a ∂. Note

that the exact form of Dh̄, at order κ, is irrelevant to this analysis. We are left with

(δH)κ = κ

∫
d3x [ 2∂̄ξ̄

∑
j

βj
¯̂
Pj(

¯̂
Qjh

¯̂
Rj h̄)∂̄h − ∂̄ξ̄

∑
i

αi Âi (B̂ih Ĉih) ∂h̄] . (3.25)

– 8 –
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Substituting (3.19) into (3.25) , we find

(δH)κ = +2κ

∫
d3x ∂̄ξ̄

1

∂−
( ∂−h ∂h̄ ) ∂̄h+ c.c. 6= 0 (3.26)

Thus the Hamiltonian for gravity is a quadratic form but it is not the “square” of a covariant

derivative. Instead, if we choose the operators Âi . . . and constants appropriate to (3.15)

then (3.25) yields

(δH)κ = 0 . (3.27)

This is a clear point of contrast from Yang-Mills theory where both the pure and

maximally supersymmetric theories are described by quadratic form structures composed

of covariant derivatives [1]. From the MHV literature [15–20], we know that all tree-

level scattering amplitudes in Yang-Mills theory may be expressed entirely in terms of the

“square” or “angular” brackets. In gravity, the cubic amplitude does indeed have the same

property but the quartic and higher vertices involve a mixture of both brackets.The deriva-

tives we have introduced in the quadratic form for gravity do not transform covariantly

beyond order κ and this is very likely, another way of stating what the amplitude structures

have already taught us.

4 Quadratic forms in N = 8 supergravity

In this section, we review aspects of N = 8 supergravity essential to our understanding of

its light-cone Hamiltonian and the corresponding quadratic form structure. The physical

degrees of freedom in N = 8 supergravity are all described by a single superfield [21] (and

its conjugate) with Grassmann variables θm (m. . . are SU(8) indices)

φ(y) =
1

∂2
−
h(y) + iθm

1

∂2
−
ψ̄m(y)− i

2
θmθn

1

∂−
Āmn(y),

+
1

3!
θmθnθp

1

∂−
χ̄mnp(y)− 1

4!
θmθnθpθqC̄mnpq(y),

+
i

5!
θmθnθpθqθrεmnpqrstuχ

stu(y),

− i

6!
θmθnθpθqθrθsεmnpqrstu∂−A

tu(y),

− 1

7!
θmθnθpθqθrθsθtεmnpqrstu∂−ψ

u(y),

+
4

8!
θmθnθpθqθrθsθtθuεmnpqrstu∂

2
−h̄(y),

(4.1)

the fields being the graviton, the gravitinos, the gauge fields, the gauginos and the scalar

fields. All fields are local in

y =

(
x, x̄, x+, y− ≡ x− − i√

2
θm θ̄m

)
. (4.2)

The superfields satisfy

dm φ ( y ) = 0 ; d̄n φ̄ ( y ) = 0 , (4.3)
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where

dm = − ∂

∂ θ̄m
+

i√
2
θm ∂− ; d̄n =

∂

∂ θn
− i√

2
θ̄n ∂− , (4.4)

are chiral derivatives. The fields also satisfy the inside-out constraint

φ =
1

4

(d )8

∂−
4 φ̄ , (4.5)

where (d )8 = d1 d2 . . . d8; a unique feature of maximally supersymmetric theories. At

x+ = 0, the kinematic generators of the superPoincaré algebra are the three momenta, the

transverse space rotation and the rotations, j+, its conjugate and j+− [22]. The dynamical

generators include the light-cone Hamiltonian

p− = i
∂∂̄

∂−
, (4.6)

and the dynamical boosts [23]. Supersymmetry generators also come in two varieties, the

kinematical

qm+ = − ∂

∂ θ̄m
− i√

2
θm ∂−; q̄+n =

∂

∂ θn
+

i√
2
θ̄n ∂− , (4.7)

and the dynamical

Qm
− ≡ i [ j̄− , qm+ ] = − ∂̄

∂−
qm+ ,

Q̄−n ≡ i [ j− , q̄+n ] = − ∂

∂−
q̄+n .

(4.8)

4.1 The action to order κ

In this light-cone superspace formalism, the N = 8 supergravity action to order κ reads

β

∫
d4x

∫
d8θ d8θ̄L , (4.9)

where β = − 1
64 and

L = −φ̄ �

∂−
4 φ− 2κ

(
1

∂−
2 φ ∂̄ φ ∂̄ φ+

1

∂−
2 φ∂ φ ∂ φ

)
. (4.10)

The dynamical supersymmetry generator in (4.8) involves a new contribution at or-

der κ,

Q̄m
(κ)φ = − 1

∂−

(
∂̄q̄mφ∂−

2φ− ∂−q̄mφ∂−∂̄φ
)
. (4.11)

(where the + index on q+ is not shown). The complex conjugate yields Qm(κ)φ̄ and

the inside-out constraint determines Qm(κ)φ and Q̄m
(κ)φ̄. The anticommutator of the

dynamical supersymmetry generators is the light-cone Hamiltonian.

– 10 –
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4.2 Hamiltonian written as a quadratic form

At lowest order [13]

H =
1

4
√

2
(Wm , Wm ) , (4.12)

with

Wm = Q̄−m φ , (4.13)

and

(φ , ξ ) ≡ −2i

∫
d4x d8θ d8 θ̄ φ̄

1

∂−
3 ξ . (4.14)

Note that (4.12) is unrelated to the fact that the Hamiltonian is the anticommutator

of two supersymmetries. To see this, start with (4.12)

H0 =
1

4
√

2
(W0

m , W0
m ) ,

= − 2i

4
√

2

∫
d4x d8θ d8 θ̄ Qm

− φ̄
1

∂−
3 Q̄−m φ ,

(4.15)

and rewrite it as two terms

H0 = − i

4
√

2

∫
d4x d8θ d8 θ̄

(
Qm

− φ̄
1

∂−
3 Q̄−m φ+Qm

− φ̄
1

∂−
3 Q̄−m φ

)
. (4.16)

In maximally supersymmetric theories alone, we have constrained superfields obeying (4.5).

We use this in the second term in equation (4.16) to obtain

H0 = − i

4
√

2

∫
d4x d8θ d8 θ̄

(
Qm

− φ̄
1

∂−
3 Q̄−m φ+

1

∂−
4 Q

m
− φ∂− Q̄−m φ̄

)
. (4.17)

Using (4.8) yields

H0 = − i

4
√

2

∫
d4x d8θ d8 θ̄

(
∂̄

∂−
qm+ φ̄

∂

∂−
4 q̄+m φ+

∂̄

∂−
5 q

m
+ φ∂ q̄+m φ̄

)
, (4.18)

which we integration by parts

H0 = − i

4
√

2

∫
d4x d8θ d8 θ̄

∂ ∂̄

∂−
5 φ̄ { q

m
+ , q̄+m }φ . (4.19)

Since { qm+ , q̄+m }φ = −i 8
√

2 ∂− φ, we have

H0 =

∫
d4x d8θ d8θ̄ φ̄

2 ∂∂̄

∂−
4 φ , (4.20)

which is the expected kinetic term for the Hamiltonian. We refer the reader to [24] for

details at order κ2 and simply reproduce the relevant results here. At order κ we have

Wm = − ∂

∂−
q̄+m φ− κ

1

∂−

(
∂̄ d̄m φ∂−

2 φ− ∂− d̄m φ∂− ∂̄ φ
)

+O(κ2) , (4.21)

Wm
= − ∂̄

∂−
qm+ φ̄− κ 1

∂−

(
∂ dm φ̄ ∂−

2 φ̄− ∂− dm φ̄ ∂− ∂ φ̄
)

+O(κ2) . (4.22)

With these, we may directly compute the Hamiltonian as a quadratic form

1

4
√

2
(W , W ) = − 2 i

4
√

2

∫
d4x d8θ d8 θ̄ W 1

∂−
3 W . (4.23)
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5 Conclusions

It is a somewhat surprising fact that the maximally supersymmetric and non-

supersymmetric versions of both Yang-Mills theory and gravity (and only those) are

quadratic forms. Note that this is over and above the residual reparametrization invari-

ance discussed earlier. What is puzzling is why the other supersymmetric versions (with

supersymmetry but less than maximal supersymmetry) cannot be expressed in this form.

It is possible that supersymmetric truncation [25]∫
d4x d8θ d8θ̄L =

1

16

∫
d4x d7θ d7θ̄ d̄4 d

4 L
∣∣∣∣
θ8=θ̄8 =0

, (5.1)

explains a portion of our results but it seems insufficient for a complete explanation. We

are thus confident that this unique property signals behavior special to these theories. The

place we hope to see this reflected is in loop-integrals. This is a macroscopic property

and hence difficult to relate to some infinitesimal symmetry. We hope to return to this

issue with a more refined mathematical analysis and understand its consequences for the

quantum theories.

The other loose end here is the infinitesimal residual reparametrisation invariance. For

the analysis of this paper it was sufficient to consider the infinitesimal symmetry transfor-

mations, but it will be interesting to study this symmetry as an asymptotic symmetry of

the theory and perhaps establish links with the work in [4].
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A Invariance of the Hamiltonian to order κ

We detail here, the computation relevant to subsection (3.1). We start by varying the cubic

terms.

δκ
0
(cubic terms) = 2κ(ξ̄∂h̄+ξ∂̄h̄)∂−

2

(
h
∂̄2

∂−
2h−

∂̄

∂−
h
∂̄

∂−
h

)
+2κh̄∂−

2

(
(ξ∂̄h+ξ̄∂h)

∂̄2

∂−
2h+h

∂̄2

∂−
2 (ξ∂̄h+ξ̄∂h)−2

∂̄

∂−
(ξ∂̄h+ξ̄∂h)

∂̄

∂−
h

)
,

= 2κ ξ̄ ∂h̄ ∂−
2

(
h
∂̄2

∂−
2h−

∂̄

∂−
h
∂̄

∂−
h

)
+2κh̄ ∂−

2

(
ξ̄∂h

∂̄2

∂−
2h+h

∂̄2

∂−
2 (ξ̄∂h)−2

∂̄

∂−
(ξ̄∂h)

∂̄

∂−
h

)
+W (ξ) ,

=X+Y+W (ξ) , (A.1)
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and

W = 2κ ξ∂̄h̄ ∂2
−

(
h
∂̄2

∂2
−
h− ∂̄

∂−
h
∂̄

∂−
h

)
+ 2κ h̄ ∂2

−

(
ξ∂̄h

∂̄2

∂2
−
h+ h

∂̄2

∂2
−

(ξ∂̄h) − 2
∂̄

∂−
(ξ∂̄h)

∂̄

∂−
h

)
,

= 0 ,

(A.2)

by partial integrations (similarly, from the variation of the other cubic term we will have

no ξ̄ terms). X and Y can be further simplified using partial integrations. The results are

as follows

X = −2κ ξ̄ h̄ ∂−
2∂

(
h
∂̄2

∂−
2h

)
+ 2κ ξ̄ h̄ ∂−

2∂

(
∂̄

∂−
h
∂̄

∂−
h

)
, (A.3)

and

Y = 2κh̄ ξ̄∂−
2 ∂

(
h
∂̄2

∂−
2h

)
− 2κh̄ξ̄∂−

2 ∂

(
∂̄

∂−
h
∂̄

∂−
h

)
− 4κ ∂̄ξ̄

∂

∂−
h

∂̄

∂−
h ∂2

−h̄+ 2κ ∂̄2ξ̄
∂

∂2
−
h h ∂2

−h̄+ 4κ ∂̄ξ̄
∂∂̄

∂2
−
h h ∂2

−h̄ .

(A.4)

The first two terms in (A.4) cancel against (A.3) leaving us with

δκ
0
(cubic terms) = −4κ ∂̄ξ̄

∂

∂−
h
∂̄

∂−
h ∂2

−h̄+2κ ∂̄2ξ̄
∂

∂2
−
h h ∂2

−h̄+4κ ∂̄ξ̄
∂∂̄

∂2
−
h h ∂2

−h̄ (A.5)

We now move to the quartic vertex and focus on the relevant κ−1 variation. We focus on

the ξ̄ terms since the ξ−dependent terms may be obtained by complex conjugation.

δκ
−1

(quartic terms) = A+ B + C +D , (A.6)

where

A = − 4κ ∂̄ξ̄ ∂h
1

∂−
2

(
∂̄

∂−
h ∂−

3 h̄− h ∂−2∂̄h̄

)
= 4κ ∂̄ξ̄

∂

∂−
h

∂̄

∂−
h ∂2

−h̄− 4κ ∂̄2ξ̄
∂

∂2
−
h h ∂2

−h̄− 4κ ∂̄ξ̄
∂∂̄

∂2
−
h h ∂2

−h̄ ,

(A.7)

D = − 2κ2 ∂h ∂̄2ξ̄

(
1

∂−
2 (∂−h ∂−h̄)− h h̄

)
= − 2κ ∂̄2ξ̄

∂

∂−
h ∂−h h̄+ 2κ ∂̄2ξ̄

∂

∂2
−
h h ∂2

−h̄ .

(A.8)

Notice that the terms in (A.7) along with the second term in (A.8) cancel the entire

contribution from the cubic vertex. We now move to

B = + 2κ ∂̄2ξ̄ h
1

∂−
(∂h̄ ∂−h− ∂−h̄ ∂h) , (A.9)

and find that

B − 2κ ∂̄2ξ̄
∂

∂−
h ∂−h h̄ = +κ ∂̄2ξ̄ h h ∂h̄ . (A.10)

– 13 –



J
H
E
P
0
3
(
2
0
1
7
)
1
6
9

Finally, we turn to the third term

C = + 2κh ∂̄ξ̄

(
∂̄h ∂h̄+ ∂h ∂̄h̄− ∂−h̄

∂∂̄

∂−
h− ∂−h

∂∂̄

∂−
h̄

)
= +2κ ∂̄ξ̄ h ∂h ∂̄h̄ − κ ∂̄2ξ̄ h h ∂h̄− 2κh ∂̄ξ̄ ∂−h̄

∂∂̄

∂−
h .

(A.11)

B Detailed computation of Dh̄ at order κ2

In this appendix, we present details of how (3.14) is derived in subsection (3.2), starting

from (3.1).

From line 3. Contribution to Dh̄

− 2κ2 ∂2
−h̄

1

∂4
−

(∂2
−h∂h̄− 2∂−∂h∂−h̄ ) (B.1)

Remaining terms

− 4κ2 1

∂2
−

(∂−h∂−∂̄h̄)
1

∂2
−

(∂−∂h∂−h̄) (B.2)

From line 4. Contribution to Dh̄

+ 2κ2 ∂−h̄
1

∂2
−

(∂−h∂h̄− 2∂h∂−h̄) (B.3)

Remaining terms

− 4κ2 1

∂−
(∂−h ∂̄h̄)

1

∂−
(∂h∂−h̄) (B.4)

From line 5 — I. Contribution to Dh̄

+ 6κ2 1

∂2
−

(∂−h∂−h̄) ∂h̄ (B.5)

From line 5 — II. Contribution to Dh̄

− 6κ2 ∂−h̄
1

∂2
−

(∂−h∂h̄) (B.6)

From line 6. Contribution to Dh̄

− 2κ2 1

∂2
−

(∂−h∂−h̄)∂h̄

+ 4κ2 hh̄ ∂h̄

+ 4κ2 ∂

∂−

{
∂−h̄

(
1

∂2
−

(∂−h∂−h̄)− hh̄
)}

(B.7)

Remaining terms

− 4κ2 1

∂2
−

(∂−h∂−h̄)∂h∂̄h̄ (B.8)

The “Remaining terms”, when taken together combine to yield the structures we want:

that is X∂̄h or Y ∂h̄ which simply adds factors of X or Y to Dh̄ or D̄h.
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