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Abstract

Soft biomaterials are widely used in many application areas, spanning from
packaging materials to pharmaceuticals. To enhance their functionalities, un-
derstanding the interplay between microstructure and mass transport proper-
ties in these materials is fundamental. Consequently, there is a growing need
to introduce new and improve existing methods for estimating mass transport
heterogeneity in materials with high spatial resolution. In this work, statisti-
cal methods are developed for mapping mass transport locally based on raster
images collected using a confocal laser scanning microscope. The methods intro-
duced resemble single particle tracking methods, where molecules are identified
using image analysis techniques and followed in successive frames of a video to
measure their diffusive mobility. Both a maximum likelihood and a centroid-
based method have been applied to locate particles and hence to estimate the
diffusion coefficient. The method has been generalized to analyse mixtures of
particles having different diffusion coefficients. The single particle approach al-
lows to reveal and study the entire distribution of diffusion coefficients, enabling
to examine heterogeneous systems. Further, for the case of particle mixtures, a
simple criterion for model selection, i.e. the number of components, is proposed.

Keywords: confocal laser scanning microscopy, diffusion, image correlation
spectroscopy, raster scan, single particle tracking.
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1 Introduction

For many applications, ranging from packaging materials to pharmaceuticals,
creating biomaterials with tuned mass transport functionalities is a critical ef-
fort. Therefore, understanding the microstructure - mass transport relationship
is highly important. In order to successfully create such materials, measurement
methods need to resolve the mass transport (diffusion in our settings) properties
at the length scale of the material structures. This requires performing mea-
surements with (sub-)micrometer spatial resolution. The aim of this work is to
develop a new, high accuracy statistical method to map mass transport hetero-
geneity at a (sub-)micrometer scale and further promote existing microscopy
methods to determine mass transport.

In this work, we concentrate on pure diffusion and how to estimate diffusion
coefficients, both when there is only one (monodisperse) and when there are
several (polydisperse) diffusing coefficients. The organization of this thesis is
as follows: In Section 2, I give an introduction to molecular diffusion, which is
the main interest of the two appended papers. Since all the experimental data
analyzed in this study were collected with a confocal laser scanning microscope,
I briefly introduce the principles of confocal microscopy in Section 3. Then, in
Section 4, I give an overview of two large families of available methodologies
employed to study diffusion, Image Correlation Spectroscopy and Single Parti-
cle Tracking. In particular, as the method we introduced called Single Particle
Raster Image Analysis is the main focus of the two appended papers, only a
brief description of this method will be given in the introduction of this the-
sis. Additionally, more details are provided for the Raster Image Correlation
Spectroscopy technique with exhaustive computation of the correlation function
presented in the Appendix A. In Section 4, the appended papers are summarised
and in section 5 possible topics of study in future work are presented.
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2 Diffusion

Diffusion is the migration or movement of particles due to random motion driven
by thermal energy. There are three main perspectives on how we can look at
diffusion: Fick’s law, the Einstein-Smoluchowski relation, and the Wiener pro-
cess. To describe the three points of view, we start by considering pure diffusion
of particles with a single diffusion coefficient in a homogeneous medium. In this
case, the diffusion coefficient of all the particles will be the same, as the system
is monodisperse, and constant over space, as the medium in which diffusion
takes place is homogeneous. Let C(r, t) and δC(r, t), respectively, be the con-
centration of particles and the deviation from the average concentration at the
position r ∈ R

3 and time t ∈ [0, ∞). The temporal evolution of such a system
is described by Fick’s (second) law of diffusion,

∂u(r, t)
∂t

= D∇2u(r, t), (2.1)

where D > 0 is the diffusion coefficient and ∇2 is the Laplacian operator.
Fick’s law is satisfied by both the concentration C(r, t) and the deviation from
the average concentration δC(r, t), and predicts how these quantities change
with time. The physical properties of diffusion are characterised by a density
function P (r, t), called the propagator. The propagator specifies the probability
density of finding a particle located at r at time t when the particle was at the
origin at time zero. The propagator is given by

P (r, t) =
1

(4πDt) 3
2

e− ‖r‖2
4Dt . (2.2)

The propagator fully describes the type of movement exhibited by the particles
and is directly involved in the correlation function used by Raster Image Cor-
relation Spectroscopy, see the derivation of Equation (A.7) in Appendix A. For
flow with a velocity vector V = (Vx, Vy, Vz), the propagator takes the form

P (r, t) = δ(rx − Vxt)δ(ry − Vyt)δ(rz − Vzt), (2.3)
where δ(x − y) equals one if x = y and zero otherwise. There are more prop-
agators which have been used for different modes of motion, e.g. for directed
diffusion and anomalous diffusion. The former is the superposition of flow and
pure diffusion, while the latter defines generally a deviation from pure diffu-
sion. Anomalous diffusion is characterised by the displacement having a second
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moment which follows a power law ∼ tα as a function of time , and usually
is classified as subdiffusion for α < 1 or superdiffusion α > 1. This type of
motion has been observed in cell membranes as a result of both obstacles and
binding kinetics. As described in Bouchard & Georges (1990), one way to model
anomalous diffusion is to consider particles performing a random walk where the
jumps are drawn from a broad distribution or show long range correlation. Thus,
the usual central limit theorem does not hold anymore and the law of Brown-
ian motion, corresponding to pure diffusion, is not valid. Fick’s law describes
the macroscopic properties of diffusion, as it defines how the concentration of
particles changes in time. On the other hand, the following interpretation of
diffusion in terms of the Wiener process provides a microscopic view of the pro-
cess, as it gives a description of diffusion in terms of the motion of the single
particles. Molecules undergoing diffusion are mathematically modelled as par-
ticles moving according to a Brownian motion, compare Equation (2.2), where
the variance of the Gaussian increments is proportional to the interval of time
considered and the constant of proportionality is the diffusion coefficient (up
to a dimensionality constant). Formally, consider n diffusing particles and let
Xi(t) = (X1

i (t), ..., Xd
i (t)), i = 1, ..., n, denote the vector of the position in R

d of
the i-th particle at time t. Then, X1

i , ..., Xd
i are independent translated copies

of Wiener processes W defined by:

1. Wi(0) = 0;

2. Wi(t) − Wi(s) ∼ N(0, 2Di(t − s)) ∀t > s ≥ 0, where Di is the diffusion
coefficient of the i-th particle;

3. Increments of Wi for nonoverlapping time intervals are independent.

The last perspective on diffusion is given by the Einstein-Smoluchowski relation.
The Einstein-Smoluchowski relation was firstly derived by Einstein (1905) and a
year later independently by Smoluchowski (1906), and it links the macroscopic
diffusion coefficient D to the microscopic information about the mean square
displacement

E[(X(t + δt) − X(t))2] = 2dDδt. (2.4)

The above representations of diffusion are exploited by image correlation tech-
niques and single particle methods. In the first family, as particles appear as
bright spots in the image due to the fluorescent labelling, the correlation be-
tween and/or within images is coupled to the probability of finding the same
particle again at some spatiotemporal lag, which in turn is related to the prop-
agator. In single particle methods, the displacements Xi(t + δt) − Xi(t) are
directly estimated for some fixed temporal lag δt, for example the time between
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consecutive images. Then, the diffusion coefficient can be estimated from the
moments of the displacements.

In a more general case, particles can interact chemically with each other or spa-
tially with particular structures like binding sites. We consider here a solution
of particles having m distinct diffusion coefficients and denote by Cj(r, t) and
δCj(r, t) respectively the concentration of the j-th component and the deviation
from the average concentration, for components j = 1, . . . , m. Moreover, de-
note by Dj , j = 1, . . . , m, the diffusion coefficient of the j-th component. Near
equilibrium, the system evolves according to the so called reaction-diffusion
equation

∂δCj(r, t)
∂t

= Dj∇2δCj(r, t) +
m∑

k=1
KjkδCk(r, t), (2.5)

where the first term on the right hand side accounts for diffusion and the second
describes changes due to interaction. In this work, we will restrict ourself to
diffusion, leaving interaction to be a possible subject of future studies.

2.1 Microscopy data

All data considered here were collected with a confocal laser scanning micro-
scope (CLSM), see Pawley (2006) for a comprehensive introduction to the sub-
ject. The CLSM works by passing a laser beam through an illumination aperture
which is then focused by an objective lens into a small area of the sample, see
Figure 2.1. If fluorophores are present there and are illuminated with the proper
wavelength, they emit light. This light then passes through a semi-transparent
mirror, the dichroic mirror, which reflects it towards the detection system. At
this point, light passes through the emission filter, which separates the fluo-
rescent light from the laser light reflected by the sample. For every pixel in
the region of interest, the number of photons emitted from the fluorophores in
the sample or an intensity value is recorded by a photon counter or a photo
multiplier tube. A pinhole aperture in front of the detector is used to exclude
fluorescence from the out-of-focus planes. In Figure 2.1 the light beams from the
sample that come from out-of-focus planes, represented as dashed and dotted
lines, are stopped by the pinhole and not collected by the detector. Hence, con-
focal microscopy provides a "well-isolated" plane. Confocal microscopes allow
detection of fluorescent molecules with a good spatial resolution.
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Figure 2.1: Schematic illustration of confocal laser scanning microscopy.

In the experiments, fluorescent microspheres have been used as probes to study
diffusion. We considered four different diameters for the microspheres (100, 175,
500, 1000 nm) where the smallest size covers the subresolution domain, while
the largest size is nearly the size of a living cell. Within each size considered,
the standard deviation of the diameter, typically around 2-3% of the size, is
remarkably small, which allows us to ideally consider the particles as uniform in
terms of size and shape. The homogeneity of the microspheres is fundamental in
ensuring that any variation in their motion is due to the surrounding structure.
Moreover, the beads have been stained with four different fluorescent dyes.
Thus they will be visible only if excited with one of the corresponding four
well-separated wavelengths. In applications, we can use different colors to label
the structure or important immobile features in the sample and the particles.
By observing their motion using different detectors, we can easily separate the
background from the diffusing microspheres. The fluorescent dye is used to stain
the particles in such a way that the fluorophore distribution is uniform over the
volume of each microsphere. In a confocal image an immobilized fluorescent
microsphere appears as a bright round object, the radius of which depends on
the distance of the particle to the focal plane and the size of the particle. The
closer the particle is to the focal plane, the larger the radius will be, see for
example the top left plot in Figure 3.3.
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3 Methods to estimate diffusion

In this work, we focus on two major methodologies to study diffusion, the Image
Correlation Spectroscopy (ICS) and Single Particle Tracking (SPT) techniques.
As there exist many other noteworthy methods, we will briefly describe some
of them here. Fluorescence Recovery After Photobleaching (FRAP) was first
used to analyze the mobility of individual molecules within a cell membrane.
In FRAP Lorén et al. (2015), a fluorescent probe is introduced in the sample, a
cell or a soft biomaterial. Then, a high intensity laser bleaches for a short time
the fluorescence in the region of interest and a sequence of images is collected
to follow the recovery rate of the fluorescence. Over time, non-bleached probes
will diffuse into the region of interest, while the bleached ones will diffuse out
of it. Thus, from the recovery of the fluorescence information about diffusion
can be retrieved.

As ICS methods have been a part of this study, it is worth to spend some
time describing it’s precursor, namely Fluorescence Correlation Spectroscopy
(FCS). In an FCS experiment, a small volume of the sample is illuminated by
a stationary light source and the fluorescence from particles is recorded. Since
particles are allowed to diffuse in and out of the observed volume and may
undergo chemical and physical processes, fluctuations in the signal will arise.
By recording the fluorescence intensity over a time period, a time series will
be generated. The temporal autocorrelation function of this time series will
be distinct for different types of motion of the particles and interactions like
binding. Thus, by analyzing the shape of the autocorrelation function, we can
determine the behaviour of the particles in the sample and extract parameters
of interest like the diffusion coefficient or the average binding time.

3.1 Image Correlation Spectroscopy

We present here a brief overview of Image Correlation Spectoscopy (ICS) and
introduce Raster Image Correlation Spectroscopy (RICS) in more detail. Image
Correlation Spectroscopy is a unifying term for a group of fluorescence fluc-
tuation spectroscopy techniques based on analysis of fluorescence microscopy
image data. ICS methods are subdivided according to whether fluorescence
fluctuation information in space and/or time is analysed within the image se-
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ries. Temporal ICS (TICS) Kulkarni et al. (2005) analyses fluorescence fluctu-
ations in time recorded in the pixels of an image time series. Spatiotemporal
ICS (STICS) Hebert et al. (2005) considers information in both space and time.
An innovative method is Raster scan ICS (RICS) Digman et al. (2005); Brown
et al. (2008); Gielen et al. (2009), which like STICS considers spatiotemporal
correlations, but gains access to a faster timescale by exploiting the rapid pixel-
to-pixel sampling in a laser scanning microscope. We should point out that
many other methods fall under the ICS family, as kICS ( k-reciprocal Image
Correlation Spectroscopy) Kolin et al. (2006), ICCS (Image Cross-Correlation
Spectroscopy) Comeau et al. (2006) and variants of them. All varieties of ICS
are based on an image or image time series recorded using fluorescence mi-
croscopy, such as confocal laser scanning microscopy (CLSM) or Total Internal
Reflection Microscopy (TIRF). In all pixels of an image the output of the photo-
multiplier tube or bin counts from a CCD camera are registered. For example,
in the case of a photon counting detector, the pixel intensity represents an actual
count of detected photons. The key feature that ICS methods take advantage of
is that the intensity of a point fluorescent source will be spread out upon detec-
tion due to the diffraction of light. The diffraction pattern is described by the
point spread function (PSF). The PSF is assumed to be a three-dimensional
Gaussian function for a confocal microscope with different axial (z-direction)
and lateral (xy-plane) standard deviations. Thus, if the pixel size is smaller
than the diameter of the PSF, spatial correlation will be introduced between
adjacent pixels of the image. The effect of the PSF is shown in Figure 3.1.

Point Spread Function
2

Object
1

Image
3

Figure 3.1: Image describing the effect of the point spread function. 1: the
object of interest is depicted; 2: the point spread function is plotted. 3: the
image as recorded by the microscope is shown, where the image is the result of
the convolution of the other two images.
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3.1.1 Raster Image Correlation Spectroscopy

In this section we describe RICS in more detail, and in particular we focus
on the case of line scanning, while many considerations apply also in the case
of circular scanning. In RICS, each image is scanned pixel-by-pixel and line-
by-line through the movement of the focal observation volume according to a
raster pattern. This particular sampling pattern introduces time information
within the image. The scanning of the sample is executed as shown in Figure
3.2. The observation volume is placed on the first (from left to right) pixel of
the image which is scanned. Then, after the pixel dwell time τp, the second
pixel in the first line is scanned. Scanning pixel-by-pixel, the first line of the
image will be collected. In the next step, after the line time τl, the observation
volume is retraced to the beginning of the second line of pixels. At this point,
the second line is recorded, and by iterating this process the whole image will be
sampled. Typically in a RICS measurement, adjacent pixels in the x-direction
are scanned within a microsecond, and adjacent pixels in the y-direction are
scanned within a millisecond.

Figure 3.2: Movement of the scanning beam according to the raster scan pattern
used in RICS. The scanning time between adjacent pixels in the x- and y-
directions are τp and τl, and τp 	 τl.
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In all correlation spectroscopy techniques, the signal fluctuations with respect
to the average is calculated as:

δF (r, t) = F (r, t) − 〈F (r, t)〉

where F (r, t) is the signal in r at time t, δF (r, t) is the fluctuation of the
signal and 〈·〉 denotes averaging. The normalised correlation of the fluctuations,
G(ρ, τ), is given by:

G(ρ, τ) =
〈δF (r, t)δF (r + ρ, t + τ)〉

〈F (r, t)〉2 =
〈F (r, t)F (r + ρ, t + τ)〉

〈F (r, t)〉2 − 1

where ρ = (ρx, ρy) and τ are the spatial and temporal shifts. It should be noted
that G(ρ, τ) is not exactly a correlation function, but a normalized covariance
function where the maximum of G(ρ, τ) scales as the inverse of the average
number of particles in the observation volume 〈N〉. However, in the literature
it is referred to as the correlation function, so we will use this name. The
correlation function for RICS in the case of pure diffusion, where the lags are
τ = τp|ξ| + τl|ψ| and ρx = Sξ, ρy = Sψ, where S is the pixel size and ξ and ψ
are the x- and y-axis spatial increments in the number of pixels, is given by:

G(ξ, ψ) =
1

〈N〉e

[
− (Sξ)2+(Sψ)2

w2
0+4D(τp|ξ|+τl|ψ|)

] (
1 +

4D(τp|ξ| + τl|ψ|)
w2

0

)−1
×

×
(

1 +
4D(τp|ξ| + τl|ψ|)

w2
z

)− 1
2

.

(3.1)

Some examples are plotted in Figure 3.3 and more details are provided in the
Appendix.
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Figure 3.3: Top: Examples of a typical RICS image for immobile particles
(left), diffusing particles with D = 5 μm2 s−1 (middle), and diffusing particles
with D = 20 μm2 s−1 (right). Bottom: theoretical autocorrelation functions for
the different cases.

Assume we have n images with resolution K×K from which we want to estimate
diffusion. Let C(ξ, ψ, j) be the empirical correlation function relative to a shift
of ξ pixels in the x-direction and ψ pixels in the y-direction, 1 ≤ ξ, ψ ≤ K,
of the j-th image, 1 ≤ j ≤ n. In RICS, the estimation procedure obeys the
following steps:

1. Compute C(·, ·, j) for all 1 ≤ j ≤ N via the Fast Fourier Transform
algorithm;

2. To reduce the effect of noise, compute the average empirical correlation
function of the stack of images

Ĉ(ξ, ψ) =
1
n

n∑
j=1

C(ξ, ψ, j)
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3. Consider the following theoretical correlation function depending on the
vector of parameters θ = (〈N〉, D, O), respectively the average number of
particles in the observation area, the diffusion coefficient and the offset of
the correlation function:

G(ξ, ψ, θ) =
1

〈N〉e

[
− (Sξ)2+(Sψ)2

w2
0+4D(τp|ξ|+τl|ψ|)

] (
1 +

4D(τp|ξ| + τl|ψ|)
w2

0

)−1
×

×
(

1 +
4D(τp|ξ| + τl|ψ|)

w2
z

)− 1
2

+ O

(3.2)

where τp, τl, S are respectively the pixel dwell time, line time and pixel
size.

4. Define the estimate θ̂ as the weighted least squares estimate of θ, i.e.

θ̂ = arg min
θ

∑
ξ,ψ

w(ξ, ψ)
[
G(ξ, ψ, θ) − Ĉ(ξ, ψ)

]2
,

where the weights w(ξ, ψ) =
(√

Var(Ĉ(ξ, ψ))
)−1

are computed from the

set of independent images.

3.2 Single Particle Tracking

Single Particle Tracking (SPT) was first introduced by Perrin (1909). Since
then, many variants of this method have been introduced. However, they share
the goal of investigating mass transport and the same measure of mass transport
properties, even though the estimation techniques are different. One of the
main advantages of SPT is that it gives access to the entire distribution of
diffusion coefficients and subpopulations of particles, while other methodologies
like FRAP or ICS average the behaviour of hundreds or thousands of diffusing
particles. In SPT, a video or a sequence of frames is employed to track the
motion of single particles. Here, a "particle" may be anything from a single
molecule to a macromolecular complex or microsphere. Typical particles used
as labels are fluorescent particles, such as latex beads or gold nanoparticles.
The two main steps of the image analysis for SPT are: (i) particle detection, in
which bright spots that stand out from the background are identified in some
way and their positions estimated in every frame of the video, and (ii) particle
linking, in which the detected spots are connected from one frame to the next to
form tracks. Some examples of algorithms to localize particles are the centroid
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algorithm, where the center of mass of the particle is used as a computationally
simple and efficient estimate of its position, and the Gaussian fit algorithm,
where a 2D or 3D Gaussian curve is fitted to the profile of the particle, and the
mean provides a measure of the position. From the estimated trajectories one
can extract the mean square displacement (MSD) which contains information
about the type of motion. Let x(t) ∈ R

d be the position of the particle at time
t. The MSD is defined as follows:

MSD(t) = E[‖(x(s + t) − x(s))‖2], (3.3)

where ‖ · ‖ denotes the Eucledian norm in R
d. By looking at the dependence

of the MSD on time, one can distinguish different modes of motion and obtain
estimates for the corresponding parameters. Some examples are:

MSD(t) = 2dDt pure diffusion
MSD(t) = 2dDtα anomalous diffusion
MSD(t) = 2dDt + (‖V ‖t)2 directed diffusion

(3.4)

where D and V are, respectively, the diffusion coefficient and the velocity vector.
The form of the MSD in Equation (3.4) for pure and directed diffusion is an
immediate consequence of Equation (2.2) and Equation (2.3). In Figure 3.4, we
plot the behaviour of the MSD for different modes of motion of the particles.

0 0.5 1 1.5 2

t

0

2

4

6

8

M
S

D
(t

)

Diffusion D = 1

Diffusion and Flow

Diffusion D < 1

Anomalous Diffusion

Figure 3.4: The mean square displacement as a function of time for simultaneous
diffusion and flow, pure diffusion with D = 1 and D < 1, and anomalous
diffusion.
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3.2.1 Single Particle Raster Image Analysis

In typical SPT experiments, particles move negligibly within an image and ap-
preciably between consecutive images. Thus, the motion is estimated from the
position of a particle in consecutive images. In SPRIA, raster images are anal-
ysed where the scanning speed is such that the time between adjacent pixels in
the x-direction is small (the pixel dwell time is in the order of a microsecond)
while the time between adjacent pixels in the y-direction is large (the line dwell
time is in the order of a millisecond). Hence, particles will move between consec-
utive lines in an image. More details are provided in the two appended papers,
where the SPRIA method is introduced, discussed and validated on both sim-
ulated and experimental data. In this introduction we only recall briefly the
main steps of SPRIA.

A particle is defined as an axis-parallel rectangle through a double threshold
method. The first threshold is used to discriminate whether a local maximum
of photon counts is an actual particle as opposed to noise, while the second
threshold is adopted to delineate the boundary of the rectangle. In Figure 3.5 an
identified particle is depicted, where pixels are colored based on their intensity
in the image. Moreover, it can immediately be seen that two things in SPRIA
are different from a typical SPT experiment: first, particles do not look round
anymore as they are allowed to move while we are scanning them, producing
a pattern of bright shifted lines; second, linking the successive positions of the
particles to form tracks is more straightforward as the bright lines forming a
particle, which corresponds to the different time points of the trajectory, tend to
be connected, see Figure 3.5. Once a particle has been extracted as described
above, its position in each line, i.e. in each time step of the trajectory, is
estimated either by a maximum likelihood method based on the assumption of
independently Poisson distributed photon counts in each pixel (Paper I) or by
a centroid method (Paper II). In Figure 3.5, the trajectories estimated by both
methods together with the true one are shown, indicating that SPRIA works
well. Then, an estimate of the diffusion coefficient of the particle is obtained by
using Equation (3.4) for pure diffusion when t is set to be the time τl between
two consecutive lines. Finally, an overall estimate of one, or more in the case of
particle mixtures, diffusion coefficient can be retrieved from the distribution of
the diffusion coefficients of the single particles.
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Figure 3.5: A simulated raster scan image of a 50nm particle showing the true
trajectory (red), the corresponding estimated trajectory computed using the
maximum likelihood method (green) introduced in Paper I, and the centroid
based method (black) presented in Paper II.
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4 Summary of papers

In this section, we introduce the methods used and summarise the results pre-
sented in the two appended papers. Regarding the simulated data analysed in
this thesis, diffusion was reproduced by simulating discrete time Brownian mo-
tion of spheres in a box with periodic boundary conditions. Different settings
of the scan rate, pixel size, pixel dwell time and line time were considered. In
experimental data the motion of four (Paper I) and three (Paper II) different
types of beads were recorded. A calibration step was performed on immobilized
175nm beads in a gelatin gel to obtain the lateral and axial waists of the point
spread function for our experimental setup.

4.1 Paper I: Single particle raster image analysis of
diffusion

The introduction of Raster Image Correlation Spectroscopy has lead to a shift
in the spatiotemporal analysis of dynamics in complex heterogeneous systems.
By exploiting the time structure within single raster images, it is possible to
increase the time resolution and resolve faster timescale dynamics by means of
the quick pixel-to-pixel sampling. In this article we introduced Single Particle
Raster Image Analysis (SPRIA), a single particle method to study raster im-
ages. The motivation of this study was to develop a method that could locally
map mass transport properties. Previously, RICS has been applied to study
heterogeneity Schuster et al. (2016), however as it gains strength from the aver-
aging of many molecules, its spatial resolution is limited by the minimum size
of the region of interest. Here, single particles are extracted using a double
threshold method, where one thresholding is used to define which local maxima
are particles and the second to separate the particles from the background. The
maximum likelihood method is then employed to reconstruct the tracks of the
molecules based on the assumption of pixelwise independent Poisson distributed
photon counts. Two main problems were encountered when developing SPRIA:
first, the symmetry of the likelihood with respect to the y and z coordinates
made us restrict ourselves to estimate the diffusion coefficient only from the
motion along the x-axis. Second, the raster scanning introduces a bias on the
observed diffusion coefficient which is more significant the slower the scan rate
is. This is due to the inherent preferential sampling of small compared to large
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line-to-line displacements. We suggested a simulation based method to correct
for this bias. Both on simulated and experimental data, SPRIA has shown to
provide accurate estimates. In the simulation study, we demonstrated that the
bias correction leads to better estimates. Finally, we introduced a bootstrap
method to estimate standard errors in RICS, where images are resampled from
the original stack of images to create new datasets. The motivation behind the
introduction of the bootstrapped standard error comes from the observation
that in some cases the traditional way of estimating standard errors for RICS
by means of the residuals gives unrealistically small values. The explanation for
such small estimates could be that the residuals are highly correlated.
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4.2 Paper II: Raster image analysis of diffusion for
particle mixtures

In this study we extended the work done in Paper I to mixtures of particles. In
SPRIA, the motion of each single particle is estimated, and we gain information
about the distribution of the mean square displacement and functions that
depend on it. As the mathematical model used for pure diffusion corresponds
to a particle performing a Brownian motion, the theoretical distribution of
the estimated diffusion coefficients can be computed, and involves a gamma
distribution with parameters depending on the true diffusion coefficient and the
length of the trajectory observed. We set up a maximum likelihood method
to detect mixture models and estimate the diffusion coefficients of the different
populations. In the validation study SPRIA has shown to give good estimates,
but some caution must be taken when selecting the number of components
in the mixture. When using criteria based on likelihood improvement, the
maximum suggested number of components in the mixture is always selected,
indicating that the likelihood is too sensitive to variability in the distribution
of the diffusion coefficient. Thus, a complementary condition was necessary,
where we rejected components for which the estimated proportion fell below a
threshold. We also found that when applying RICS to such complex systems
of mixtures of particles, a rather large difference between the components in
the mixture was needed to allow identifiability. Thus, we investigated the use
of RICS for mixtures by looking in more detail at the correlation function for
different models involving diffusion to quantify how large the difference between
the diffusion coefficients of each component need to be.
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5 Future work

A natural extension of the present work is to apply SPRIA and compare it with
ICS methods on heterogeneous samples with spatially varying mass transport
properties. To this end, we have started to look at boundary effects to better
understand the dynamics of molecules close to the transition phase in phase
separated systems. More specifically, the interphase region in polymer networks
and gels between the two phases typically presents a network like structure
consisting of strands from the gel phase and voids. The network of strands
becomes less dense the further away we move from the gel. Thus, mass transport
properties like diffusion will be altered by the interphase region, changing from
the behaviour expected in the gel phase to the one expected in the other phase.
In a simple heterogeneous simulation example presented in Paper I, we have
already shown that SPRIA could be applicable to complex systems. There, we
imagined a sample made of two media, one characterized by low mobility and
the other by high mobility of particles, and that the particles could move freely
between the two. In particular, the case of a circular boundary between the two
media has been considered. Such a situation could provide a simple model for
e.g. an oil drop in water.

Concerning Paper II, at present we do not allow interactions between molecules
of different subpopulations. The theory for SPRIA would be rather easy to
extend to cover a diffusion-reaction process by means of the dependence of the
mean square displacement on time. Similarly, a microrheology study could be
performed to exlore rheological properties of the medium such as viscoelasticity.

Another interesting topic would be to further investigate model selection criteria
for both SPRIA and RICS. For SPRIA, the likelihood provides a direct way
to measure performance of different models, but as presented in Paper II, it
often overfits the data. In the case of RICS instead, residuals can be used
to determine the most appropriate model by using cross-validation. Overall,
resampling techniques like bootstrap could play a major role, as in SPRIA we
have independent particles and in RICS independent images which could be
used to produce new samples.
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Appendices
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A Derivation of RICS correlation
function for pure diffusion

In this appendix we derive the formula for the correlation function given in
Equation (3.1). In all correlation spectroscopy techniques, the signals fluctua-
tion with respect to the average is calculated as

δF (r, t) = F (r, t) − 〈F (r, t)〉,
where F (r, t) is the signal in r at time t, δF (r, t) is the fluctuation of the
signal and 〈·〉 denotes averaging. The normalised correlation of the fluctuations,
G(ρ, τ), is given by:

G(ρ, τ) =
〈δF (r, t)δF (r + ρ, t + τ)〉

〈F (r, t)〉2 =
〈F (r, t)F (r + ρ, t + τ)〉

〈F (r, t)〉2 − 1,

where ρ and τ are the spatial and temporal shifts. First we derive the expression
for the non-normalised correlation, g(ρ, τ),

g(ρ, τ) = 〈δF (r, t)δF (r + ρ, t + τ)〉. (A.1)

Fluctuations in the fluorescence signal are related to fluctuations in the concen-
tration of particles, δC(r, t), by

δF (r, t) =
∫

W (u)ηδC(r − u, t) du, (A.2)

where η is a parameter that accounts for the collection efficiency of the setup,
considered to be constant. W (r) is the point-spread function. Using equations
(A.1) and (A.2)

g(ρ, τ) =
〈∫

W (u)ηδC(r − u, t) du

∫
W (u′)ηδC(r + ρ − u′, t + τ) du′

〉

= η2
∫ ∫

〈W (u)δC(r − u, t)W (u′)δC(r + ρ − u′, t + τ)〉 du du′

= η2
∫

W (u)
∫

W (u′)〈δC(r − u, t)δC(r + ρ − u′, t + τ)〉 du′ du

(A.3)

20



Let P (ρ, τ) be the propagator for the given type of movement. Suppose we can
show that

〈δC(r, t)δC(r + ρ, t + τ)〉 = 〈C〉P (ρ, τ) (A.4)

Then using equation (A.4), the equation (A.3) becomes

g(ρ, τ) = 〈C〉η2
∫

W (u)
∫

W (u′)P (u − u′ + ρ, τ) du′ du

= 〈C〉η2
∫

W (u) (W (u + ρ) ⊗ P (u + ρ, τ)) du

(A.5)

where W (u + ρ) ⊗ P (u + ρ, τ) =
∫

W (u′)P (u − u′ + ρ, τ) du′ is a convolution.

Now since the PSF is an even function, W (u) = W (−u) and

g(ρ, τ) = 〈C〉η2
∫

W (u) (W (u + ρ) ⊗ P (u + ρ, τ)) du

= 〈C〉η2
∫

W (−u) (W (u + ρ) ⊗ P (u + ρ, τ)) du

= 〈C〉η2 [W (ρ) ⊗ (W (ρ) ⊗ P (ρ, τ))]
= 〈C〉η2 [(W (ρ) ⊗ W (ρ)) ⊗ P (ρ, τ)] ,

(A.6)

where in the last line we applied the associativity of convolution. Now the
average signal is given by

〈F (r, t)〉 = 〈
∫

W (u)ηC(r − u, t) du〉 = η〈C〉.

The normalised correlation is given by

G(ρ, τ) =
(W (ρ) ⊗ W (ρ)) ⊗ P (ρ, τ)

〈C〉 . (A.7)

We will now prove (A.4) for diffusing particles. Let us consider a solution with
m different components with diffusion coefficients Dj , j = 1, ..., m. Let Cj(r, t)
denote the concentration in r at time t of the j-th component. Furthermore, let
C̄j = 〈Cj(r, t)〉 and again δCj(r, t) = Cj(r, t) − C̄j . Due to the fact that we are
considering diffusion, both the concentration of particles and the fluctuations
will satisfy the diffusion equation

∂u(r, t)
∂t

= D∇2u(u, t)

which in our case means
∂δCj(r, t)

∂t
= Dj∇2δCj(r, t). (A.8)
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Now the zero-time correlations 〈δCj(r, 0)δCk(r′′, 0)〉 can be evaluated by taking
advantage of the following properties of the solution: the correlation length is
much smaller than the distances between molecules, the positions of different
molecules of the same species as well as those of different species are uncorre-
lated:

〈δCj(r, 0)δCk(r′′, 0)〉 = C̄jδjkδ(r − r′′) (A.9)

In order to obtain the solution δCj(r, t) as a function of the initial conditions
δCj(r, 0) we apply a Fourier transform to equation (A.8):

dC̃l(q, t)
dt

=
m∑

k=1
MlkC̃k(q, t) (A.10)

where C̃l(q, t) = (2π)− 3
2

∫
δCl(r, t)eiqrdr is the Fourier transform of δCl(r, t),

and Mlk = δlkDlq
2. That is, M = [Mlk] is a diagonal matrix with eigenvalues

λl = −Dlq
2 for l = 1, ..., m and the corresponding eigenvectors are

el = [0, · · · , 0, 1︸︷︷︸
l−th element

, 0, · · · , 0]
.

The solutions of (A.10) can be represented through eigenvalues and eigenvectors
of M by:

C̃l(q, t) = hle
−Dlq2t (A.11)

The coefficients hl are to be found from the initial conditions: C̃l(q, 0) = hl and
so

C̃l(q, t) = C̃l(q, 0)e−Dlq2t (A.12)

With the same reasoning we can obtain

C̃l(q, t + τ) = C̃l(q, t)e−Dlq2τ (A.13)

and
δCl(r, t) = (2π)− 3

2

∫
C̃l(q, t)e−iqr dq. (A.14)

Now taking into account that Fourier transform and averaging can be applied
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in any order, we get

〈δCj(r, t)δCl(r + ρ, t + τ)〉 = (2π)− 3
2

∫
〈δCj(r, t)C̃l(q, t + τ)〉e−iq(r+ρ) dq =

= (2π)− 3
2

∫
〈δCj(r, t)C̃l(q, t)〉e−Dlτq2

e−iq(r+ρ) dq =

= (2π)−3
∫

e−Dlτq2
e−iq(r+ρ)

∫
〈δCj(r, t)δCl(r′′, t)〉eiqr′′

dr′′ dq =

= (2π)−3C̄lδjl

∫
e−Dlτq2

e−iq(r+ρ)eiqr dq =

= (2π)−3C̄lδjl

∫
e−Dlτq2

e−iqρ dq =

= (2π)−3C̄lδjl

∫
e−Dlτq2

1 e−iq1ρ1 dq1

∫
e−Dlτq2

2 e−iq2ρ2 dq2

∫
e−Dlτq2

3 e−iq3ρ3 dq3 =

= (2π)−3C̄lδjl

(√
π

Dlτ

)3
e

− ρ2
1+ρ2

2+ρ2
3

4Dlτ =

= C̄lδjl

(
1√

4πDlτ

)3
e

− ρ2
4Dlτ =

= C̄lδjlP (ρ, τ)

,

(A.15)

where on line 1 we exchanged the order of Fourier and average and used (A.14)
with r+ρ and t+τ in place of r and t. On line 2 we used equation (A.13). On line
3 we utilized 〈δCj(r, t)δCl(r′′, t〉 = C̄lδjlδr − r′′ by (A.9) and on line 4 we used
that

∫
eiqr′′

δ(r − r′′) dr′′ = eiqr. On line 6 we splitted the integral into a product
of single component integrals. On line 7 we used that

∫
e−Dlτq2

1 e−iq1ρ1 dq1 =√
π

Dlτ e
− ρ2

1
4Dlτ by Fourier transform of a Gaussian distribution, and the same for

the other two integrals.

We can now use the computation above to compute the correlation function for
RICS in case of diffusion. Recall that the normalised correlation is given by

G(ρ, τ) =
(W (ρ) ⊗ W (ρ)) ⊗ P (ρ, τ)

〈C〉 ,

where the PSF is

W (r) =
( 2

π )3/2

w2
0wz

exp

(
−2

r2
x + r2

y

w2
0

− 2
r2

z

w2
z

)
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and the propagator is

P (ρ, τ) =
1

(
√

4πDτ)3
exp

(
−ρ2

x + ρ2
y + ρ2

z

4Dτ

)
.

Now if we write down the normalised correlation with the above expression for
P and W we get (the constant has changed using 〈C〉π 3

2 w2
0wz = 〈N〉)

G(ρ, τ) =
1

〈N〉(√4πDτ)3

∫∫∫
exp

[
−a2 + b2

w2
0

− c2

w2
z

]
×

×exp

[
− (ρx − a)2 + (ρy − b)2 + (ρz − c)2

4Dτ

]
da db dc =

=
1

M

∫∫∫
e

− (w2
0+4Dτ)a2−2w2

0ρxa+w2
0ρ2

x+(w2
0+4Dτ)b2−2w2

0ρyb+w2
0ρ2

y

w2
04Dτ ×

×e
− (w2

z+4Dτ)c2−2w2
zρzc+w2

zρ2
z

w2
z4Dτ da db dc

(A.16)

where M = 〈N〉(√4πDτ)3. Then by separating the integral with respect to
each variable we obtain

G(ρ, τ) =
1

M

∫
e

− (w2
0+4Dτ)a2−2w2

0ρxa+w2
0ρ2

x

w2
04Dτ da

∫
e

− (w2
0+4Dτ)b2−2w2

0ρyb+w2
0ρ2

y

w2
04Dτ db×

×
∫

e
− (w2

z+4Dτ)c2−2w2
zρzc+w2

zρ2
z

w2
z4Dτ dc.

(A.17)

Now just focus on the first integral term in the above product and rewrite the
exponent to get:

∫
e

− (w2
0+4Dτ)a2−2w2

0ρxa+w2
0ρ2

x

w2
04Dτ da =

∫
e

−
a2−

2w2
0ρx

w2
0+4Dτ

a+
w2

0ρ2
x

w2
0+4Dτ

w2
04Dτ

w2
0+4Dτ da := (∗∗)

Observe now that the numerator in the exponential can be written as

a2 − 2w2
0ρx

w2
0 + 4Dτ

a+
w2

0ρ2
x

w2
0 + 4Dτ

= a2 − 2w2
0ρx

w2
0 + 4Dτ

a+
w2

0ρ2
x

w2
0 + 4Dτ

± w4
0ρ2

x

(w2
0 + 4Dτ)2 =
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=
(

a − w2
0ρx

w2
0 + 4Dτ

)2

+
w2

0ρ2
x

w2
0 + 4Dτ

− w4
0ρ2

x

(w2
0 + 4Dτ)2

then

(∗∗) =
∫

exp

⎡
⎣−

(a − w2
0ρx

w2
0+4Dτ

)2

w2
04Dτ

w2
0+4Dτ

−
w2

0ρ2
x

w2
0+4Dτ

− w4
0ρ2

x

(w2
0+4Dτ)2

w2
04Dτ

w2
0+4Dτ

⎤
⎦ da =

= exp

[
−w4

0ρ2
x + 4Dτw2

0ρ2
x − w4

0ρ2
x

(w2
04Dτ)(w2

0 + 4Dτ)

] ∫
exp

⎡
⎣−

(a − w2
0ρx

w2
0+4Dτ

)2

w2
04Dτ

w2
0+4Dτ

⎤
⎦ da =

(multiply and divide by
√

π
w2

04Dτ

w2
0+4Dτ

)

= e
− ρ2

x
w2

0+4Dτ

∫ √
π

w2
04Dτ

w2
0+4Dτ√

π
w2

04Dτ

w2
0+4Dτ

exp

⎡
⎣−

(a − w2
0ρx

w2
0+4Dτ

)2

w2
04Dτ

w2
0+4Dτ

⎤
⎦ da =

= e
− ρ2

x
w2

0+4Dτ

√
π

w2
04Dτ

w2
0 + 4Dτ

∫
1√

π
w2

04Dτ

w2
0+4Dτ

exp

⎡
⎣−

(a − w2
0ρx

w2
0+4Dτ

)2

w2
04Dτ

w2
0+4Dτ

⎤
⎦ da.

But

f(a) =
1√

π
w2

04Dτ

w2
0+4Dτ

exp

⎡
⎣−

(a − w2
0ρx

w2
0+4Dτ

)2

w2
04Dτ

w2
0+4Dτ

⎤
⎦

is the density of a normal distribution, N
(

w2
0ρx

w2
0+4Dτ

,
w2

02Dτ

w2
0+4Dτ

)
, and hence

∫
f(a) da = 1.

This implies that

∫
e

− (w2
0+4Dτ)a2−2w2

0ρxa+w2
0ρ2

x

w2
04Dτ da = e

− ρ2
x

w2
0+4Dτ

√
π

w2
04Dτ

w2
0 + 4Dτ

.
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With a similar computation we can get the second and third integrals in the
expression of the normalised correlation:

∫
e

− (w2
0+4Dτ)b2−2w2

0ρyb+w2
0ρ2

y

w2
04Dτ db = e

− ρ2
y

w2
0+4Dτ

√
π

w2
04Dτ

w2
0 + 4Dτ

and ∫
e

− (w2
z+4Dτ)c2−2w2

zρzc+w2
zρ2

z
w2

z4Dτ dc = e
− ρ2

z
w2

z+4Dτ

√
π

w2
z4Dτ

w2
z + 4Dτ

We can now rewrite the correlation function

G(ρ, τ) =
1

M

∫
e

− (w2
0+4Dτ)a2−2w2

0ρxa+w2
0ρ2

x

w2
04Dτ da

∫
e

− (w2
0+4Dτ)b2−2w2

0ρyb+w2
0ρ2

y

w2
04Dτ db×

×
∫

e
− (w2

z+4Dτ)c2−2w2
zρzc+w2

zρ2
z

w2
z4Dτ dc =

=
1

M
e

− ρ2
x

w2
0+4Dτ e

− ρ2
y

w2
0+4Dτ

(
π

w2
04Dτ

w2
0 + 4Dτ

)
e

− ρ2
z

w2
z+4Dτ

√
π

w2
z4Dτ

w2
z + 4Dτ

(A.18)

Now we can use the fact that imaging is done in a two-dimensional plane,
so we will consider only the case ρ = (ρx, ρy, 0) and so

G(ρ, τ) =
1

〈N〉(√4πDτ)3
e

− ρ2
x

w2
0+4Dτ e

− ρ2
y

w2
0+4Dτ

(
π

w2
04Dτ

w2
0 + 4Dτ

) √
π

w2
z4Dτ

w2
z + 4Dτ

=

=
1

〈N〉e
− ρ2

x+ρ2
y

w2
0+4Dτ

(
π

w2
04Dτ

w2
0 + 4Dτ

1
4Dτ

) √
π

w2
z4Dτ

w2
z + 4Dτ

1
π4Dτ

=

=
1

〈N〉e
− ρ2

x+ρ2
y

w2
0+4Dτ

(
π

w2
04Dτ

w2
0 + 4Dτ

1
π4Dτ

) √
π

w2
z4Dτ

w2
z + 4Dτ

1
π4Dτ

=

=
1

〈N〉e
− ρ2

x+ρ2
y

w2
0+4Dτ

(
w2

0
w2

0 + 4Dτ

) √
w2

z

w2
z + 4Dτ

=

=
1

〈N〉e
− ρ2

x+ρ2
y

w2
0+4Dτ

(
w2

0 + 4Dτ

w2
0

)−1 (
w2

z + 4Dτ

w2
z

)− 1
2

=

=
1

〈N〉e
− ρ2

x+ρ2
y

w2
0+4Dτ

(
1 +

4Dτ

w2
0

)−1 (
1 +

4Dτ

w2
z

)− 1
2

(A.19)
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To get the final form it is enough to substite above τ = τp|ξ|+τl|ψ| and ρx = Sξ,
ρy = Sψ, where S is the pixel size and ξ and ψ are, respectively, the x and y
axis spatial increments in the number of pixels:

G(ξ, ψ) =
1

〈N〉e

[
− (Sξ)2+(Sψ)2

w2
0+4D(τp|ξ|+τl|ψ|)

] (
1 +

4D(τp|ξ| + τl|ψ|)
w2

0

)−1
×

×
(

1 +
4D(τp|ξ| + τl|ψ|)

w2
z

)− 1
2

.

(A.20)

Thus, we have obtained equation 3.1.
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