
On-Line New Event Detection Using
Minimal New Sets
Master’s thesis in Computer Science

Örn Guðjónsson

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2016

Abstract

On-line New Event Detection can be used to monitor multiple news streams
and determine when a new newsworthy event that might warrant further
attention occurs, thus helping the user not to miss important information
while helping him sift through the vast amount of information available.

In this thesis we explore a novel approach for On-line New Event Detec-
tion based on computing minimal new sets of small sizes from new stream
documents with regard to previously seen documents. We present an algo-
rithm that outputs sets of words likely to be indicative of new events which
users easily can browse through and detail several different approaches to
select the sets most likely to be informative of new events. In addition we
examine the practicality of our approaches and compare them to the most
prominent current techniques.

Acknowledgements

I’d like to thank my supervisor, prof. Peter Damaschke, for the idea for this
project and assistance and insights throughout the course of this project.

I’d also like to thank my family for supporting and encouraging me
throughout the course of this project. I would especially like to thank my
wife, Elfa Björk, for her patience and support without which this thesis would
never have been completed.

Contents

1 Introduction 4

2 Background 6
2.1 What are events? . 6
2.2 Related works . 7

3 Method 10
3.1 The base idea . 10
3.2 Enumeration . 11
3.3 Pre-processing . 12
3.4 Extensions . 12

3.4.1 Filtering common or unimportant words 12
3.4.2 Prioritizing words that occur in many minimal new pairs 14
3.4.3 Prioritizing words that appear in close proximity . . . 14
3.4.4 Splitting articles into smaller parts 14
3.4.5 Combining methods 16

4 Experiments 17
4.1 Implementation . 17

4.1.1 Pre-processing . 17
4.1.2 Enumeration . 18

4.2 Experiments . 18
4.2.1 Data . 19
4.2.2 Evaluation . 20

5 Results 21
5.1 Benchmarks . 24

2

On-line New Event Detection Using Minimal New Sets

6 Discussion 28
6.1 Comparisons with other approaches 29

6.1.1 Future Work . 30

7 Conclusion 32

A Source Code 35
A.1 main.py . 35
A.2 bag.py . 39
A.3 filters.py . 43
A.4 preprocessing.py . 47
A.5 helpers.py . 48

Chapter 0 Örn Guðjónsson 3

Chapter 1

Introduction

In today’s society the amount of information available is vast. The inter-
net, one of the largest sources of information available today, makes finding
information easy. Although large parts of the internet consist of images
and videos of cats doing silly things there are still numerous sources with
structured text information streams, such as news. However, the number of
available news streams is so vast that no man is capable of digesting them all.
Moreover, the various news sources tend to re-iterate upon events previously
reported by themselves or other sources. It can therefore become tedious
to try and stay on top of the news. Within several domains, such as stock
trading, it can be of vital importance to be able to identify important events
as soon as they occur and thus the availability of fast and reliable computer
systems that aid in the detection of such events can be of great benefit.

On-line New Event Detection (ONED) is the process of monitoring text
information streams and detecting stories that report about new events. For
instance, a story reporting a large oil leakage in the Pacific Ocean should
be identified as a new story the first time that the event is reported, while
consecutive stories further iterating upon the event or stories discussing the
environmental effects of the spill should be identified as not containing new
events.

In this thesis we present a new approach to ONED, built upon the con-
cept of identifying minimal new sets of words from new articles and using
those as basis for determining whether or not the text refers to a new event.
This concept has previously been proposed by Damaschke [4] and Wurzer et
al. [11]. The intuition is that when a new event occurs, like the death of a
celebrity, we are likely to find words together within the same article that

4

On-line New Event Detection Using Minimal New Sets

have never occurred before. Moreover we are likely to find small sets of words
that have never previously occurred together. For instance, the first report
of the recent death of the artist Prince would likely have been the first time
the words “Prince” and “dies” appeared together. By finding and filtering
these minimal new sets to only include informative word combinations based
on quantitative criteria we are able to present likely events succinctly which
allows a user to browse through them.

Unfortunately, finding cases where the aforementioned example fails is
trivial. Consider the sentence: “On Mondays I listen to Prince. On Tuesdays
I play Candy Crush until the battery in my phone dies”. Here the words
“dies” and “Prince” occur together without any relation to each other and
the pair of them does in this case not indicate any new event. Moreover,
if this co-occurrence of these two words would appear before any reports of
Prince’s death then this would prevent them from being recognized as a new
pair in those later reports. Irrelevant co-occurrences could thus yield both
false positives and false negatives. In this thesis we explore a few methods
which aim to prevent this scenario, such as considering the distance between
the words and filtering words by importance.

We will start this thesis off by discussing the background of ONED and
related works on the topic in chapter 2. We then go through the goals and
details of our method in chapter 3. In chapter 4 we explain the details of our
implementation used for the testing and the methods we employ for testing.
Chapter 5 presents the results of the tests. Finally, in chapter 6 we discuss
our findings and present suggestions for future work.

Chapter 1 Örn Guðjónsson 5

Chapter 2

Background

The task of detecting new events within a stream of documents can be sepa-
rated into two camps, Retrospective Event Detection and On-line New Event
Detection. Retrospective Event Detection focuses on discovering previously
unidentified events from a finite collection of articles [12]. On-line New Event
Detection (ONED), which is sometimes known as either simply New Event
Detection (NED) or First Story Detection (FSD), instead tries to identify
new events in real-time as soon as they arrive from live news feeds.

On-line New Event Detection has seen much development in the past 15
years as it has been one of the topics covered by the Topic Detection and
Tracking (TDT) research program [10]. In this chapter we will present a brief
overview of the techniques used for ONED by other researchers within the
field.

2.1 What are events?
The concept of events in daily speech can be somewhat ambiguous [6] and
in order for us to reason about events it is important that we specify what
we mean. ”The United States invade Vietnam” could be considered an event
but at the same time the whole Vietnam War could be considered an event.
We use TDT’s definition of events: An event is “a particular thing that
happens at a specific time and place, along with all necessary preconditions
and unavoidable consequences” [10]. A new news-story does therefore not
necessarily report a new event. For instance a news story reporting about a
natural disaster would contain a new event, whereas consecutive articles de-

6

On-line New Event Detection Using Minimal New Sets

tailing the extent of the damage caused and the particulars of the rebuilding
efforts that follow, would not. In ONED we want to be able to detect only
those stories which contain events, and in particular, only new events that
have not been reported before.

2.2 Related works
A common approach to ONED is to represent documents as term vectors
where each term within a document is weighted using some metric, typi-
cally TF-IDF (term frequency-inverse document frequency), which are then
compared in some way to the vector representations of previously seen doc-
uments. Since comparing incoming stories to all previous stories is slow,
organizing stories into clusters and comparing incoming stories to the clus-
ters is a popular step employed by many. Often, the stories within the best
fitting clusters would then be compared to the incoming story.

Papka, Allan and Lavrenko [7] use a single-pass clustering technique
where feature extraction and selection techniques are used to build query
representations of all stories. They then compare any incoming document to
the previously seen queries and flag the document as new if its comparison
score exceeds a threshold which is calculated for each document.

Yang, Pierce and Carbonell [12] also use a single-pass clustering algorithm
and incremental IDF for TF-IDF weighting, IDF is first trained on a dataset
an then updated for each document. In order to increase efficiency and due to
the temporal nature of events they use a sliding time-window to only compare
incoming documents to stories within the time window. Additionally they
also examine decay weighting where documents further away in time are
marked as less important.

Brants, Chen and Farahat [3] use a source-specific TF-IDF model where
the news stream is comprised of multiple sources and certain words are more
common depending on the source. Each incoming document is weighted and
compared to previously seen documents using either Hellinger- or cosine-
distance but normalized by subtracting the average distance of the current
document to all other documents.

Another popular approach is to represent documents using named en-
tities, the idea being that events can be summarized by “what”, “where”,
“when” and “how” as well as other similar properties.

Yang et al. [13] use a supervised learning algorithm to classify documents

Chapter 2 Örn Guðjónsson 7

On-line New Event Detection Using Minimal New Sets

in an on-line document stream into pre-defined topic categories. Weighting
is done using named entities. They then perform topic specific stopword
removal and topic sensitive feature weighting.

Kumaran and Allan [5] use named entities in addition to term vectors
with incremental TF-IDF weighting as well as topic terms and compute the
cosine similarities of each of those features to previously seen documents. A
Support Vector Machine (SVM) classifier is then trained on each of those
three features.

Zhang, Li and We [14] create a tree of clustered stories from the stories
they process which allows them to quickly find the stories which most closely
resemble the incoming story by comparison. In addition they present two
new approaches to term weighting. The first approach takes into account
the frequency of words in the previously identified clusters, a word that is
very common in one cluster but not common in others is deemed important
for that cluster while a word that is common in all clusters is determined
to be of less importance. The second weighing approach classifies various
named entities into different classes and tries to determine what type of
words are important for different story topics. For instance, in their testing
they found that locations were of utmost importance for stories relating to
natural disasters.

Petrovic, Osborne and Lavrenko [8] paraphrase incoming articles and use
locality-sensitive hashing for comparisons. By paraphrasing they can for
instance determine that “die” and “kick the bucket” hold the same meaning
and achieve good results.

Wurzer, Lavrenko and Osborne [11] present an algorithm for ONED which
operates in constant time/space with regards to the number of processed
articles. Their approach is based on the same intuition as ours and revolves
around identifying new small subsets of words from the words that make
up an article. While our method focuses on the subsets themselves, their
approach considers the amount of such new subsets identified. Particularly,
they perform ONED by generating all subsets of up to k terms for incoming
documents and estimating novelty as the fraction of such sets that have not
appeared before. For this purpose they store all these subsets using a Bloom
filter with a 32-bit hashing function. For the Bloom filter they use a fixed-
length bit array. This allows their system to perform lookups and updates in
constant time as well as constant space. To limit the amount of false positives
reported by Bloom-filter lookups they zero out a random bit each time the
proportion of non-zero bits exceeds a given threshold. This of course means

Chapter 2 Örn Guðjónsson 8

On-line New Event Detection Using Minimal New Sets

that the system forgets some of the sets of words that it has seen.

Chapter 2 Örn Guðjónsson 9

Chapter 3

Method

On-line new event detection is hard [1]. In this chapter we present a new
method which aims to perform ONED, based around the concept of minimal
new pairs. We explain the rationale behind the idea, give a detailed expla-
nation of the base algorithm and discuss some of the approaches we have
examined for expanding upon the base idea.

3.1 The base idea
Damaschke [4] observed that for new articles, the existence of previously un-
seen small sets of words could be good indicators for new events and presented
an efficient algorithm for finding such sets. This is similar to the approach
used by Wurzer et al. [11] except they use the proportion of new such sets to
quantify the novelty of incoming articles while our approach focuses on the
new sets themselves and the terms within them. However, the underlying
principle is the same: the first report of Prince’s death is likely to be the
first document within the stream containing the words “Prince” and “dead”
or similar.

In more formal terms, Damaschke [4] presents the definition of minimal
new sets.

Definition 1. Let B0, B1, B2...Bm−1 be a sequence of sets that we call bags.
For another bag B := Bm we call a subset X ⊆ B new at m, if X was not
already a subset of an earlier bag : ∀i < m : X \ Bi ̸= ∅. Otherwise X is
said to be old at m. We call X ⊆ B minimal new at m if X is new and also
minimal (with respect to inclusion) with this property.

10

On-line New Event Detection Using Minimal New Sets

Thus, to continue with our previous example, if we tokenize incoming
news articles into bags of words, then {prince, dead} would likely be a min-
imal new set for the first article reporting the tragic event of Prince’s death.

A first, naive approach could be to simply base the detection of new events
on the existence of minimal sets below a given set size k. For example, if
we choose k = 3 we would say that if an article contains new words or new
pairs of old words it contains a new event, otherwise it does not. This naive
approach does, however, not work well in practice since articles covering the
same event are quite likely to contain new words or new pairs and thus this
method is likely to falsely flag articles as containing new events.

Instead of blindly flagging articles based on the existence of minimal sets
we propose a method which automatically highlights and presents important
informative word combinations by certain quantitative criteria that allow the
user to quickly browse through them and see which of them raise interest.
This introduces the problem of having to prioritize the minimal sets identified
for any incoming article.

3.2 Enumeration
Central to our approach is the process of enumerating minimal new sets from
incoming articles. Luckily, Damaschke [4] presents an effective enumeration
algorithm:

Let’s say that at time m we have stored the bags of previous articles
sequentially: B0, B1, B2...Bm−1. In order to find all minimal new sets of bag
Bm we generate candidate sets X ⊂ Bm of increasing sizes until all candidates
are supersets of already discovered minimal new sets at m. First we find all,
if any, words that are new at m, then from any words that are not new at m
we find all possible sets of size 2 (pairs) and check for each of them if they
are new at m. If there are any pairs that were not new at m we find sets of
size 3 from those, etc.

The key to making the algorithm efficient lies in how we determine
whether a set X is new at m. We create a function f , so that f(X) :=
min{i | X ⊆ Bi} and let f(X) be undefined if X is not a subset of any
bag Bi. Now X is new at f(X) = i if such a value exists, and old at any
subsequent index j > i.

When enumerating minimal new sets of bag Bi we store X along with
f(X) = i for each of the candidate sets that we determine to be minimal

Chapter 3 Örn Guðjónsson 11

On-line New Event Detection Using Minimal New Sets

new at i. For any set of size 1 we can easily determine if it is a minimal new
set simply by checking whether a value for that set has been stored in the
table. Any time that a word makes its first appearance any larger subset
of words from the same bag containing that word will also be new at that
time, but not minimal. For any larger candidate set X ⊆ Bm, |X| > 1 we
therefore might have to take further steps to determine whether X is new at
m. Again, if f(X) is stored we know that X is old. If f(X) is not stored
then for each Y ⊂ X we check if f(Y) is stored. If f(Y) = j is stored then
we check if X ⊂ Bj. If such a j is found then X was new at j but is old at
m. If no such m is found we conclude that X is new at m. The minimal new
sets of bag Bj can be enumerated in O

(
|Bn|2k/k!

)
time.

3.3 Pre-processing
In order to enumerate minimal sets from an article, some preprocessing is
required. Incoming articles are tokenized, i.e. split into lists of words, stop-
words, the most common words of the input language, are removed along with
any punctuation and the remaining words are stemmed using a Porter2 [9]
stemmer and converted to lowercase.

3.4 Extensions
As explained in section 3.1 we might want to improve the performance of
our results by limiting the outputs of the enumerations. Two simple ways of
doing this are to simply limit the input the enumeration algorithm receives
or filtering its output. In this section we will discuss the approaches we
examined in order to try to accomplish this which mostly are based on fil-
tering common or unimportant words, prioritizing words that occur in many
minimal new pairs and prioritizing pairs of words that appear with close
proximity.

3.4.1 Filtering common or unimportant words
Words that describe a new event are likely to be relatively unique to that
event. Reversely, words which are common over multiple different articles
are unlikely to be descriptive for new specific events. Similarly, words which
are common within an article are likely to be important for that article. We

Chapter 3 Örn Guðjónsson 12

On-line New Event Detection Using Minimal New Sets

could filter out words that are common within the previously seen articles,
or words that can be determined not to be important within the incoming
article. We will examine filters based on three different metrics

• collection frequency: how often a given word has appeared within the
accumulated corpus.

• document frequency: the number of documents in which a given word
has previously appeared.

• TF-IDF score: a score indicating the importance of a word within the
given article with relation to how common it is within the corpus. TF-
IDF is calculated as tfidf = tf ∗ idf where tf is the term frequency
of the given word within the given article and idf = log N

df
for N as

the number of processed articles and df the document frequency of the
given word.

This type of filtering can be done in several different ways. We could de-
fine thresholds for our filters and focus on words which score above or below
that threshold, this is similar to the approach used by Brants et al. [3] where
any word with a document frequency lower than 2 was discarded. However,
determining the thresholds might prove difficult and we most certainly do
not want to discard all words which have not appeared in previous bags.
Another approach would be to select the n words with the highest or lowest
score and focus on them. In either case we also have the option to either
completely ignore all words but the ones we have selected or to choose only
sets containing our chosen words. The distinction between these two ap-
proaches is subtle but important. Given that the two words “Prince” and
“purple” are part of the same bag but only “Prince” satisfies the condition
of our filter. If the pair (“Prince”, “purple”) is minimal new in the unfiltered
bag the first approach would not output it since it contains “purple” which
is to be removed, while the second approach would output it since the pair
contains “Prince” which is to be included.

Another important aspect to consider is when filtering is applied. If
filtering is done as part of the preprocessing step, then the pair in the above
example will not be found. Consequently, any subsets containing the filtered
words will not be stored in the table of f(X) values. In that case only the
filtered bags should be stored and filtered words should be free to be identified
as new in later bags.

Chapter 3 Örn Guðjónsson 13

On-line New Event Detection Using Minimal New Sets

3.4.2 Prioritizing words that occur in many minimal
new pairs

It is not hard to imagine that an article reporting a new event is likely
to contain many new pairs of words that previously have not appeared to-
gether. Commonly used words are however likely to have already appeared
together. Thus, minimal new sets of size > 1 are likely to contain at least
one word that is more indicative of the events described within the given
article. If a particular word can be found within a majority of the mini-
mal new sets, then it is likely to be an old word within a new context and
likely to be a key property of the article. For instance, the words “pur-
ple”, “rain” and “Prince” are likely to have appeared together before in
Prince related articles. An article that then yields the minimal new sets
{Prince, dead}, {purple, dead}, {rain, dead} gives us a common denomina-
tor in “dead” within the minimal set, indicating that “dead” is likely to be
an important indicator of a possible new event. Based on this idea we can
identify important words by counting the number of minimum new sets they
appear in. In particular we focus on prioritizing words that occur in many
minimal new pairs.

3.4.3 Prioritizing words that appear in close proximity
Words that are indicative of new events are likely to be found in close prox-
imity. For instance an article reporting about a volcanic eruption at Yellow-
stone is much more likely to contain something along the lines of “Volcanic
eruption at Yellowstone” than mentioning “Yellowstone” in one paragraph
and “eruption” several paragraphs later.

For any minimal new sets of words from an article we can calculate the
minimum amount of words between the elements within the sets and find
which sets contain words which occur close to each other within the article.
Using this we can prioritize sets of words which appear more closely together
within the article in the hope that they are good indicators of potential
events.

3.4.4 Splitting articles into smaller parts
Another approach for increasing the importance of words that appear to-
gether is to split an article into several smaller, sub-articles. Some natural

Chapter 3 Örn Guðjónsson 14

On-line New Event Detection Using Minimal New Sets

examples of such sub-articles would be paragraphs or sentences. One can
easily imagine that important event-related words appear within the same
paragraph or even the same sentence. This requires an extra pre-processing
step: splitting up incoming articles into the wanted bits. In addition this re-
quires some trivial changes to the base algorithm. For each article we have to
feed each sub-bag to our algorithm but take care not to add any words to the
list of previously seen bags until after we have processed all the sub-bags of
the incoming article so as to avoid identifying words that first appear within
the given article as old in sub-bags which are subsequent to the sub-bag in
which they first appear.

Let the sub-bags Pk := [S0, S1, ..., Sq] be a list of the sub-bags generated
from article k so that for the bag of all the words in the article Bk it holds that∪q

i=0 Si = Bk. We call Pk the parent bag for article k. We assume that we
have stored all the previous parent bags S0, ..., Sk−1 as well as mappings from
all previously minimal bags to sub-bags within parent-bags. The enumeration
of Bk is now the union of all the enumerations from the sub-bags Si | i ∈ [0, q]
where the minimal news sets of each Si are enumerated using the approach
described in section 3.2. If a minimal new set X is found while processing
sub-bag Si ∈ Pk we store the minimal new set along with both the numbers k
and i. If the same set X is found in another sub-bag Sj ∈ Pk where j > i we
need to make sure to store j as well. We let f ′(X) be a function which returns
the number of the parent-bag in which X was minimal new as the sub-bags
of that bag which contained X. In other words we store f ′(X) = (k, [i, j]),
to indicate that X was minimal new at k and found in sub-bags i and j.

Just like in the original enumeration algorithm, we don’t have to rely
on naive exhaustive search to calculate f ′(X) for any |X| > 1. For each
Y ⊂ X we can lookup f ′(Y) and if a pair (k, [l0...lq]) is found we check
X ⊆ Sk,li | Sk,li ∈ Pk, i ∈ [0, q]. If such a Sk,li is found we know that
X is old. Furthermore we can conclude that X was new at the smallest
k | f ′(Y) = (k, [l0, ..., lq]).

Theorem 1. Given that we have previously processed bags B1...Bn−1 the
minimal-new sets of maximum size h can be enumerated from sub-bag Sn,j ∈
Bn in O

(
p|Sj|2h/h!

)
time, where p is the amount of sub-bags in any bag

Bi | i ∈ N, i ∈ [1, n− 1].

Proof. For any given candidate set X ⊆ Sn,j of size r containing only words
which we have previously seen we know that if f ′(X) is undefined we have
to look up f ′(Y) for each Y ⊂ X. For f ′(Y) = (k, l0, .., lq) we then check

Chapter 3 Örn Guðjónsson 15

On-line New Event Detection Using Minimal New Sets

if Y ⊆ Sk,t | t ∈ f ′(Y). We will have to lookup at most 2r − 2 candidate
sets and check at most p possible subsets Sk,t. So we can check if a set X
of size r is new in O

(
p2r

)
time. The number of candidate sets we have to

consider is
(|Sn,j |

r

)
< |Bn|

r!
. It follows that finding all minimal new sets of size

h is time-bounded by O
(
p|Sj|2h/h!

)
.

Joining sub-bags

Using the same idea we can create a “sliding window” of k sub-bags to in-
crease the sizes of the sub-bags and thus increasing the odds of finding new
combinations of words. A simple example would be to always use three con-
secutive sentences as sub-bags when available. Thus the first three sentences
of an article would make up a sub-bag, then the second to the fourth sentence
would make up the next sub-bag etc. For each consecutive sentence the first
sentence of the previous bag would be removed and the new sentence added,
like sliding a three-sentence wide window over the article. This approach
allows us to explore larger sub-bags while preventing us from missing impor-
tant word combinations which we could miss if we were to simply choose the
first three sentences followed by the next three etc. Using a similar approach
as previously explained for sub-bags we store the number of the parent bag
along with the numbers of the sub-bags. The only difference now is that the
sub-bags are slightly larger and fewer.

3.4.5 Combining methods
We can of course also combine several of the methods described above. For
instance we could generate sub-bags from incoming articles but filter the
output of the enumeration to only include subsets with words that scored
above a given TF-IDF threshold.

Chapter 3 Örn Guðjónsson 16

Chapter 4

Experiments

We implemented the concepts discussed in chapter 3 using the Python pro-
gramming language. We then used these implementations to test the effec-
tiveness of the various methods on several different datasets. In this chapter
we discuss our implementation in some detail as well as how the tests were
carried out and what data was used for testing.

4.1 Implementation
For our implementation we chose Python because it supports many high-
level concepts such as lambda functions, list comprehensions etc. as well
as for its extensive standard library and excellent availability of good third-
party libraries such as the Natural Language Tool Kit (NLTK) [2]. The most
important files are included in appendix A but the full source used in this
project can be found on GitHub1.

4.1.1 Pre-processing
The NLTK provided us with most of the parts needed for preprocessing: we
used the built-in word-tokenizer for splitting whole-string articles into lists
of words, stopwords from the English corpus for stopword-removal and the
porter2 stemmer for fast and simple stemming of words. Python’s string
module provided us with a list of punctuation characters which we used to
remove punctuation. Our pre-processing step first removed any punctuation

1https://github.com/orng/ONED-Thesis

17

https://github.com/orng/ONED-Thesis

On-line New Event Detection Using Minimal New Sets

character, then tokenized the input-string, removed all the stopwords and
then stemmed each of the tokens.

4.1.2 Enumeration
We implemented the algorithm described in section 3.2. Our implementation
used sets of strings (or Python’s frozensets in cases where the sets had to be
hashed) to represent the bags of words to enumerate, a list of bags (list of
sets of strings) to store previously seen bags and a dictionary (hashmap)
with frozensets as keys and integers as values for mapping previously seen
minimal new sets to the number of the bag in which they first appeared.

As discussed by Damaschke [4] the existence of small minimal-new sets is
likely to prove more informative than large sets. In order to simplify results
we therefore chose to limit the enumerations to only consider subsets of size
two or smaller.

4.2 Experiments
We conducted a series of tests on various data sources using the base-approach
to enumeration as well as the different extensions described in chapter 3. We
created several configurations, each using one or more of the aforementioned
approaches. Each configuration was tested on four different sets of articles
and the result of each processed article was stored into a text file. Addition-
ally, for any word found in a minimal new set of size two we printed the
amount of such minimal new sets that the word occurred in. The configura-
tions we used in our experiments were as follows:

Configuration-1: The base algorithm without any further analysis or fil-
tering of the input and output sets beyond the basic pre-processing described
in section 3.3. Additionally, we conducted experiments with sorting new pairs
in descending order based on the minimum distance between the words in the
pairs or the combined number of minimal-new sets that the words appeared
in. In the latter case we also outputted the number of minimal-new sets the
words appeared in.

Configuration-2: Output filtering where any minimal-set containing at
least one of the k highest scoring words was included in the output, for
positive integer numbers of k.

Chapter 4 Örn Guðjónsson 18

On-line New Event Detection Using Minimal New Sets

Configuration-3: Filtering using the same technique as configuration-2,
except filtering was applied prior to enumeration.

Configuration-4: Processing articles by splitting them into sub-bags where
each sub-bag was a sentence.

4.2.1 Data
All of the data that we used for testing was real data obtained by crawling
various sources from the internet. They contain articles of various types and
lengths since one of our goals was to identify to some extent for what type
of input the approaches were successful. The crawled articles were stored
along with their dates of publication so that they could later be consumed
in the same order that they would have arrived had they been processed by
an on-line monitoring system. We used the following four different datasets
for testing:

D1: A collection of very short summary articles and headlines collected
from articles regarding the 2016 presidential election in the USA, gathered
from PBS Newshour2, Reuters3 and CBS News4. The data was gathered on
04.04.2016 containing 300 stories published on dates ranging from 03.03.2016
to 04.04.2016. This dataset served to test our approach on short stories
within a narrow topic. Our hope was that short articles within a shared
topic would provide good results, since high word density within a shared
topic combined with the low overall word count of each article would decrease
the amount of new words found and instead yield interesting new pairs.

D2: Timelines of president Barack Obama’s years of presidency, ’09, ’10
and ’11, taken from Wikipedia5. Each point of the timeline can be regarded
as a very short article and in this case is very likely to refer to an event. The
data was gathered on 26.04.2016 and contained 419 stories in total.

D3: A chronological account of the events of the Second World War taken
from world-war-2.info6 where we treated each paragraph as a separate article.
The point of this dataset was to test our approaches on slightly longer and
less densely focused articles within a single topic. The data was gathered on

2http://www.pbs.org/newshour/tag/vote-2016
3http://www.reuters.com/politics/election2016
4http://www.cbsnews.com/election-2016/
5https://en.wikipedia.org/wiki/Timeline_of_the_presidency_of_Barack_

Obama
6http://world-war-2.info/history/index.php

Chapter 4 Örn Guðjónsson 19

http://www.pbs.org/newshour/tag/vote-2016
http://www.reuters.com/politics/election2016
http://www.cbsnews.com/election-2016/
https://en.wikipedia.org/wiki/Timeline_of_the_presidency_of_Barack_Obama
https://en.wikipedia.org/wiki/Timeline_of_the_presidency_of_Barack_Obama
http://world-war-2.info/history/index.php

On-line New Event Detection Using Minimal New Sets

21.03.2016 and contained 495 stories in total.
D4: Real life full-length news articles taken from Reuters7. The data was

gathered on 03.08.2016 and includes 5227 articles dating from 04.11.2016 to
03.08.2016. The purpose of this dataset was to simulate real-life usage of an
ONED system on a large set of data.

4.2.2 Evaluation
Evaluation of the results was done through manual evaluation and compar-
ison of the results outputted by the experiments. In particular, we were in-
terested in finding methods that prioritized minimal new sets that captured
the main points of the input articles.

In chapter 5 we present the results of our tests and in chapter 6 we discuss
and analyse those results.

7http://www.reuters.com/news

Chapter 4 Örn Guðjónsson 20

http://www.reuters.com/news

Chapter 5

Results

In this chapter we will look at the results of the experiments discussed in
chapter 4.

Tables 5.1 to 5.4 show the ratio of articles which resulted in no new words,
no new pairs or both. In the cases where filtering was applied, a shorthand
for the filter type (cf=collection frequency, tf=term frequency) is included
as well as the threshold. We noted that filtering did in fact increase the
number of empty output-sets of either size and in the cases of the collection
frequency and term frequency filters along with any pre-enumeration filtering
(Configuration-3) the change was quite drastic.

No new words No new Pairs Both
Configuration-1 0.04 0.03 0.01
Configuration-2 (cf: 5) 0.00 1.00 0.93
Configuration-2 (tf: 5) 0.58 0.42 0.41
Configuration-2 (tfidf: 5) 0.05 0.35 0.01
Configuration-3 (cf: 5) 0.19 0.92 0.85
Configuration-3 (tf: 5) 0.01 0.99 0.96
Configuration-3 (tfidf: 5) 0.00 0.74 0.01
Configuration-4 0.04 0.03 0.01
Configuration-4 (tfidf: 5) 0.04 0.52 0.02

Table 5.1: The outcomes from running different configurations on dataset
D1

21

On-line New Event Detection Using Minimal New Sets

No new words No new Pairs Both
Configuration-1 0.10 0.01 0.00
Configuration-2 (tfidf: 5) 0.12 0.25 0.00
Configuration-3 (tfidf: 5) 0.01 0.69 0.00
Configuration-4 0.10 0.01 0.00
Configuration-4 (tfidf: 5) 0.11 0.36 0.01

Table 5.2: The outcomes from running different configurations on dataset
D2

No new words No new Pairs Both
Configuration-1 0.16 0.10 0.01
Configuration-2 (tfidf: 5) 0.16 0.30 0.01
Configuration-3 (tfidf: 5) 0.11 0.55 0.01
Configuration-4 0.16 0.10 0.01
Configuration-4 (tfidf: 5) 0.16 0.32 0.01

Table 5.3: The outcomes from running different configurations on dataset
D3

No new words No new Pairs Both
Configuration-1 0.13 0.74 0.13
Configuration-2 (tfidf: 5) 0.23 0.74 0.65
Configuration-3 (tfidf: 5) 0.18 0.65 0.33
Configuration-4 0.18 0.64 0.08
Configuration-4 (tfidf: 5) 0.32 0.64 0.55

Table 5.4: The outcomes from running different configurations on dataset
D4

One of the events touched upon in the D2 dataset is the BP-oil spill in
the Gulf of Mexico1 and president Obama’s actions revolving that incident.

1https://en.wikipedia.org/wiki/Deepwater_Horizon_oil_spill

Chapter 5 Örn Guðjónsson 22

https://en.wikipedia.org/wiki/Deepwater_Horizon_oil_spill

On-line New Event Detection Using Minimal New Sets

Listings 5.1 to 5.5 show the enumerations of an article in which the event was
mentioned for the second time, enumerated using different configurations.
In this case the event would be that president Obama answered questions
regarding the oil spill.

As is to be expected, the enumerations using Configuration-2 and Configuration-
4 are very similar since most of the articles in the dataset only contain one
sentence and therefore only one sub-bag. Apart from the enumeration gener-
ated by Configuration-3 which contains no useful insights about the contents
of the article, the generated enumerations appear to capture the main gist
of the article. For configurations 1,3 and 4 the minimal new sets have been
sorted based on TF-IDF score, in descending order.

Listing 5.1: Original text
May 27 – President Obama holds a news conference in the East Room to

answer questions about the BP Deepwater Horizon Gulf of Mexico oil
spill .

Listing 5.2: Configuration-1
New Words: {deepwat, horizon}
New Pairs: {(question, bp), (spill, question), (gulf, bp), (spill, answer)

, (bp, answer), (gulf, question), (gulf, spill), (question, news), (bp
, news), (spill, news), (gulf, answer), (question, oil), (mexico,
question), (mexico, bp), (mexico, spill), (spill, 27), (question, 27),
(bp, 27), (answer, news), (gulf, news), (question, east), (bp, east),
(spill, east), (bp, confer), (spill, confer), (question, confer), (

question, room), (bp, room), (spill, room), (question, may), (spill,
hold), (bp, hold), (question, hold), (oil, answer), (mexico, answer),
(gulf, 27), (27, answer), (oil, news), (east, answer), (confer, answer
), (gulf, confer), (room, answer), (gulf, room), (mexico, news), (gulf
, may), (may, answer), (gulf, hold), (27, news), (east, news), (room,
news), (may, news), (oil, 27), (confer, oil), (mexico, 27), (room, oil
), (oil, hold), (mexico, confer), (east, 27), (mexico, room), (confer,
27), (mexico, hold), (room, 27), (27, may), (east, may)}

Listing 5.3: Configuration-2
New Words: {deepwat, horizon}
New Pairs: {(question, bp), (spill, question), (gulf, bp), (spill, answer)

, (bp, answer), (gulf, question), (gulf, spill), (question, news), (bp
, news), (spill, news), (question, oil), (mexico, question), (mexico,
bp), (mexico, spill), (spill, 27), (question, 27), (bp, 27), (question
, east), (bp, east), (spill, east), (bp, confer), (spill, confer), (

Chapter 5 Örn Guðjónsson 23

On-line New Event Detection Using Minimal New Sets

question, confer), (question, room), (bp, room), (spill, room), (
question, may), (spill, hold), (bp, hold), (question, hold)}

Listing 5.4: Configuration-3
New Words: {horizon, deepwat, question}

New Pairs: {}

Listing 5.5: Configuration-4
New Words: {deepwat, horizon}
New Pairs: {(question, bp), (spill, question), (gulf, bp), (spill, answer)

, (bp, answer), (gulf, question), (gulf, spill), (question, news), (bp
, news), (spill, news), (question, oil), (mexico, question), (mexico,
bp), (mexico, spill), (spill, 27), (question, 27), (bp, 27), (question
, east), (bp, east), (spill, east), (bp, confer), (spill, confer), (
question, confer), (question, room), (bp, room), (spill, room), (
question, may), (spill, hold), (bp, hold), (question, hold), (question
, –)}

Figures 5.1 to 5.4 show how the amount of minimal new sets of size less
than 3 found in enumeration change over time using different configurations.
In all cases the amount of new words found decreases over time while the
amount of new pairs found tends to increase over time.

5.1 Benchmarks
For each configuration we measured the time taken to process each of the
datasets. Although each run produced the same output we performed each
test 20 times to achieve more accurate benchmarks. Table 5.5 shows the
average time per article for different configurations. Table 5.6 shows the
combined average time per article for the same configurations for configura-
tions using sub-bags and vice versa.

Chapter 5 Örn Guðjónsson 24

On-line New Event Detection Using Minimal New Sets

Figure 5.1: Average number of new words and new pairs per batch of 2.5%
of all articles in dataset D1. Green triangles are new pairs and red boxes are
new words.

Configuration time/article (s)
Configuration-1 0.3909
Configuration-2 (tfidf: 15) 0.2939
Configuration-4 0.0533
Configuration-4 (tfidf: 15) 0.0488

Table 5.5: Average runtimes per article using different configurations

Configuration time/article (s)
Configurations without sub-bags 0.3424
Configurations with sub-bags 0.0510

Table 5.6: Average runtimes per article using sub-bags or not

Chapter 5 Örn Guðjónsson 25

On-line New Event Detection Using Minimal New Sets

Figure 5.2: Average number of new words and new pairs per batch of 2.5%
of all articles in dataset D2. Green triangles are new pairs and red boxes are
new words.

Figure 5.3: Average number of new words and new pairs per batch of 2.5%
of all articles in dataset D3. Green triangles are new pairs and red boxes are
new words.

Chapter 5 Örn Guðjónsson 26

On-line New Event Detection Using Minimal New Sets

Figure 5.4: Average number of new words and new pairs per batch of 2.5%
of all articles in dataset D4. Green triangles are new pairs and red boxes are
new words.

Chapter 5 Örn Guðjónsson 27

Chapter 6

Discussion

Figures 5.1 to 5.4 show that over time, at least to begin with, the amount of
new words found decreases while at the same time the amount of new pairs
appears to increase. If we are more interested in new pairs than new words
then it might therefore be a good idea to pre-train the system on some set
of articles so as to skip past the period in which we mostly find new words.

The results of our experiments indicate that TF-IDF is a good filter to
use if we want to decrease the output size, but that filtering should be done
on the output rather than the input.

Listings 5.2, 5.4 and 5.5 all have (question, bp), (spill, question), (spill
, answer) etc. among the first pairs of output, which capture the essence of
the original article. Overall, the results presented in the previous chapter
indicate that minimal-new sets can indeed be good indicators of new events
or at least novelty within articles. However, simply checking for the existence
of minimal new sets containing only one or two elements is not sufficient for
determining if an article contains a new event or not and further work has to
be done to develop a method to quantify the enumerations to calculate the
probability of them relating to a new event.

One thing that is worth highlighting is the good performance of the sub-
bag approach which, as indicated by tables 5.5 and 5.6, achieves good results
with a significant increase in performance. It should be noted for these
benchmarks that each result was written to disk after being calculated. This
might be partially responsible for the unfiltered configurations performing
worse than the filtered ones. In any case, combining filtered and unfiltered
configurations and grouping only on whether or not configurations use sub-
bags as in table 5.6 still points to sub-bags being roughly 6.7 times faster

28

On-line New Event Detection Using Minimal New Sets

than using entire articles as bags. This is perhaps unsurprising since for
articles with very different sub-bags the number of candidate sets to examine
is smaller and checking if candidate sets are subsets of sub-bags is also slightly
faster due to sub-bags being smaller. An additional potential benefit of the
sub-bags approach is that each sub-bag could be processed in parallel and
therefore the runtime could be improved even further, especially in cases
when long articles are processed.

Although it could be argued that our system could be useful for humans
to perform tool-assisted New Event Detection where users scan through a
small number of minimal new sets for incoming articles and are as such able
to process the incoming article faster than they would by reading through
them, the system still requires manual labour. In, fact since it is not yet
able to perform automatic Event Detection it is currently not a full-blown
ONED-system.

6.1 Comparisons with other approaches
Since we have not yet developed a true ONED system, comparisons with
other methods becomes troublesome. Had we developed such a system we
could have tested our approach on any of the TDT datasets, such as TDT5
and compared the results with the results of other approaches. If we as-
sume that the outputs of our approach could be quantified effectively we can
compare the time complexity of our approach to other existing approaches.

As discussed in chapter 2 Wurzer, Lavrenko and Osborne [11] present
an ONED system based on the proportion of subsets up to size k, for some
small integer k, which have not been previously stored. Through the use
of a Bloom-filter they are able to operate in constant time per input set in
relation to the number of seen articles as well as in constant memory. In their
tests they used k = 3 and achieved impressive results. However, since they
do not only consider minimal new sets they always have to find all possible
subsets of size k of the incoming bag Bn whereas we might achieve faster
times, especially for larger values of k. The base approach is time-bounded
by O

(
|Bn|2k/k!

)
while their approach is time-bounded by O

(
|Bn|

)
and since

limx→∞ 2k/k! = 0 our approach is better suited for larger values of k.
Like Wurzer, Lavrenko and Osborne [11] and unlike all the other ap-

proaches discussed in chapter 2 ours is not time-bound by the number of
processed articles and therefore does not slow down over time. However, un-

Chapter 6 Örn Guðjónsson 29

On-line New Event Detection Using Minimal New Sets

like the method of Wurzer et al. the memory consumption of our approach
grows with the number of processed articles as our approach requires storing
all processed bags.

One weakness of our current enumeration algorithm is events which are
repeated or events which occur as history repeats itself, e.g. someone is shot
in Times Square today and then someone else is shot during similar conditions
some time later. This later event is a separate and new event, distinct from
the first, but although it would likely include new information such as other
names etc., it is also possible that it would not result in any minimal new
sets since they would have been introduced by the first shooting.

Since our enumeration algorithm builds up a collection of minimal new
sets, one can not easily remove old enumerations without sacrificing accuracy,
since the elements which were minimal-new in the set that is to be removed
might have reappeared in a later set and the removal of the first set would
therefore require the later set to be updated. Because we do not know what
sets require updates, we would have to traverse all the stored bags which
arrived after the set we are removing until we either run out of bags to check
or minimal new sets found in the removed enumeration.

Others have developed such systems which forget seen articles over time.
Yang, Pierce and Carbonell [12], for instance, use a sliding window which
specifies which previously seen stories they compare incoming stories to. Fur-
thermore they explore weight decay where older stories within the window
are given less weight.

6.1.1 Future Work
We believe that the results indicate that an effective fully automatic ONED
system could be built using our approach of enumerating minimal new sets
but different ways for quantifying the enumeration have to be studied. Pos-
sible quantification methods might include combining our approach with
named entity extraction and using the number of minimal new sets contain-
ing named entities as indicators of new events. Another possible approach
would be to incorporate the previously discussed technique used by Wurzer,
Lavrenko and Osborne [11] and use the ratio of the amount of minimal new
sets of size less than some integer k over the amount of possible subsets
of size less than k. We might be able to achieve better accuracy since we
never discard any found minimal-new sets while they flip random bits in the
Bloom-filter in order to decrease the probability of false positives.

Chapter 6 Örn Guðjónsson 30

On-line New Event Detection Using Minimal New Sets

It might also be possible to improve upon the filtering methods presented
in this article through smarter filtering. Instead of generating all candidate
sets it might be worthwhile to examine only certain words, for instance named
entities or words with high TF-IDF scores and only include those as candidate
sets when enumerating.

As discussed earlier, not being able to forget stories over time might
be a drawback. Possible future work would be to modify the enumeration
algorithm in order to allow for that and examine if it improves results at all.

Lastly, we would also like to examine the feasibility of using minimal new
sets to detect trending topics. If a word or group of words appear in many
minimal new sets from articles in close succession this might be an indication
that they belong to a trending topic.

Chapter 6 Örn Guðjónsson 31

Chapter 7

Conclusion

We have presented the basis for a novel approach to ONED based on finding
minimal new subsets from incoming news article. Through experiments we
have examined the feasibility of such an approach being used for successful
ONED. Furthermore we have presented and tested some ideas for further
improving the data outputted by the base approach. We believe that the
results of our experiments support the idea that minimal new sets could be
good indicators of new events within news articles and we have shown that
our current system could potentially be used for tool assisted event detection
which would allow users to quickly scan through enumerations of articles and
detect new events. However, further work is required in order to develop the
system into a fully automatic ONED system.

32

Bibliography

[1] James Allan, Victor Lavrenko, and Hubert Jin. “First story detection
in TDT is hard”. In: Proceedings of the ninth international conference
on Information and knowledge management. ACM. 2000, pp. 374–381.

[2] Steven Bird, Ewan Klein, and Edward Loper. Natural language pro-
cessing with Python. ” O’Reilly Media, Inc.”, 2009.

[3] Thorsten Brants, Francine Chen, and Ayman Farahat. “A system for
new event detection”. In: Proceedings of the 26th annual international
ACM SIGIR conference on Research and development in informaion
retrieval. ACM. 2003, pp. 330–337.

[4] Peter Damaschke. “Pairs Covered by a Sequence of Sets”. In: 20th In-
ternational Symposium on Fundamentals of Computation Theory FCT
2015, Lecture Notes in Computer Science. Springer. 2015, pp. 214–226.

[5] Giridhar Kumaran and James Allan. “Using names and topics for new
event detection”. In: Proceedings of the conference on Human Language
Technology and Empirical Methods in Natural Language Processing.
Association for Computational Linguistics. 2005, pp. 121–128.

[6] Ron Papka. On-line new event detection, clustering, and tracking. Tech.
rep. DTIC Document, 1999.

[7] Ron Papka, James Allan, et al. “On-line new event detection using sin-
gle pass clustering”. In: University of Massachusetts, Amherst (1998),
pp. 37–45.

[8] Saša Petrović, Miles Osborne, and Victor Lavrenko. “Using paraphrases
for improving first story detection in news and Twitter”. In: Proceedings
of the 2012 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies.
Association for Computational Linguistics. 2012, pp. 338–346.

33

On-line New Event Detection Using Minimal New Sets

[9] Martin F Porter, Richard Boulton, and Andrew Macfarlane. The en-
glish (porter2) stemming algorithm. 2002. url: https://tartarus.
org/martin/PorterStemmer (visited on 04/04/2016).

[10] Tdt TDT. “Annotation Manual Version 1.2”. In: From knowledge ac-
cumulation to accommodation: cycles of collective cognition in work
groups (2004).

[11] Dominik Wurzer, Victor Lavrenko, and Miles Osborne. “Twitter-scale
New Event Detection via K-term Hashing”. In: Empirical Methods in
Natural Language Processing (2015), pp. 2584–2589.

[12] Yiming Yang, Tom Pierce, and Jaime Carbonell. “A study of retro-
spective and on-line event detection”. In: Proceedings of the 21st annual
international ACM SIGIR conference on Research and development in
information retrieval. ACM. 1998, pp. 28–36.

[13] Yiming Yang et al. “Topic-conditioned novelty detection”. In: Proceed-
ings of the eighth ACM SIGKDD international conference on Knowl-
edge discovery and data mining. ACM. 2002, pp. 688–693.

[14] Kuo Zhang, Juan Zi, and Li Gang Wu. “New event detection based
on indexing-tree and named entity”. In: Proceedings of the 30th annual
international ACM SIGIR conference on Research and development in
information retrieval. ACM. 2007, pp. 215–222.

Chapter Örn Guðjónsson 34

https://tartarus.org/martin/PorterStemmer
https://tartarus.org/martin/PorterStemmer

Appendix A

Source Code

A.1 main.py
The driver for our implementation.
#!/usr/bin/env python

import sys
import argparse
import time
from pprint import pprint
from collections import defaultdict
import pdb
import regex as re
from Queue import Queue
from threading import Thread

import bag
import filters
import preprocessing as pre
from helpers import *

RESULTFILE = 'result.txt'

def loadWordbanks(wordbanks):
"""

Input:
wordbanks: [filepath]

Output:
texts: [{'text': string, 'url': string', 'date': datetime}]
sorted in descending order by date

"""
texts = list()
for item in wordbanks:

texts = loadJson(item, texts)
return sorted(texts, key=lambda d: d['date'])

35

On-line New Event Detection Using Minimal New Sets

def textWithTitle(textItem):
"""
Combines the title and text of textItem if a title exists
"""
if 'title' in textItem:

return u"{title}\n{text}".format(title=textItem['title'], text=textItem['text'])
else:

return textItem['text']

def enumerateTexts(
texts,
threshold,
filterType,
resultFile,
useSubBags=False,
printToJson=False,
preFilter=False,
useNeighbours=False):

"""
Enumerate the texts and print the results to resultFile.
"""
words = []
enumeratedBags = []
bagDict = {}
old = []
i = 0
nodes = set([])
edges = set([])
wordFrequency = defaultdict(int)
enumerations = []

resultFileObject = open(resultFile, 'a')

startTime = time.time()
for text in texts:

i = i+1
sys.stdout.write("Processing: {0}/{1}".format(i, len(texts)))
sys.stdout.flush()
sys.stdout.write("\r")

if useSubBags:
subBagList = pre.to_wordlist_multi(textWithTitle(text))
flatWords = [y for x in subBagList for y in x]
wordsToFilter, wordFrequency, tfidfList = filters.filterWordList(flatWords,

wordFrequency, filterType, threshold, i)↪→
words = [set(x) for x in subBagList]

else:
words = pre.preprocess(textWithTitle(text))
wordsToFilter, wordFrequency, tfidfList = filters.filterWordList(words,

wordFrequency, filterType, threshold, i)↪→
words = set(words)

if useSubBags:
if useNeighbours:

enumeration, bagDict = bag.enumerateMultiBagWithNeighbours(words,
enumeratedBags, bagDict)↪→

else:

Chapter A Örn Guðjónsson 36

On-line New Event Detection Using Minimal New Sets

enumeration, bagDict = bag.enumerateMultiBag(words, enumeratedBags, bagDict)
else:

if preFilter:
enumeration, bagDict = bag.enumerateBag(wordsToFilter, enumeratedBags,

bagDict)↪→
else:

enumeration, bagDict = bag.enumerateBag(words, enumeratedBags, bagDict)

filteredEnumeration = filters.filter_enumeration(enumeration, wordsToFilter,
tfidfList)↪→

textCopy = dict(text)
textCopy['enumeration'] = filteredEnumeration

if printToJson:
enumerations.append(textCopy)

printEnumerationToFileObject(
text['url'],
textWithTitle(text),
filteredEnumeration,
resultFileObject,
tfidfList

)

if useSubBags:
enumeratedBags.append([bag.getSubsets(x, 1) for x in words])

else:
enumeratedBags.append(bag.getSubsets(words, 1))

if filteredEnumeration == set([]):
old.append(text['url'])

endTime = time.time()
sys.stdout.write("Processing: {0}/{1}\n".format(i, len(texts)))
sys.stdout.write("Done!\n")
sys.stdout.write("Completed in {time}s.".format(time=endTime-startTime))
resultFileObject.write("Completed in {time}s.".format(time=endTime-startTime))

resultFileObject.close()

return enumerations, old

def main(threshold,
filterType,
wordbanks,
resultFile=RESULTFILE,
useSubBags=False,
printJson=False,
useNeighbours=False,
preFilter=False):

"""
Driver of the main stuff:
load the wordbanks, enumerate the bags, print the results
"""
texts = loadWordbanks(wordbanks)

Chapter A Örn Guðjónsson 37

On-line New Event Detection Using Minimal New Sets

#replace result-file contents with header
with open(resultFile, 'w') as f:

s = "Initializing run\nInputFiles: {input}\nFilter: {filter}\nThreshold:
{threshold}\nPre-filter: {preFilter}\nSubBags: {useSubBags}\nNeighbours:
{useNeighbours}\n=======================================\n"

↪→
↪→
f.write(

s.format(
input=wordbanks,
filter=filterType,
threshold=threshold,
preFilter = preFilter,
useSubBags = useSubBags,
useNeighbours = useNeighbours,

)
)

enumerations, old = enumerateTexts(
texts,
threshold,
filterType,
resultFile,
useSubBags,
printJson,
preFilter,
useNeighbours)

#print as json
if printJson:

printEnumerationJson(enumerations, resultFile)

def massRun():
thresholds = [x*0.1+0.05 for x in range(0,10)]
filters = ['cf', 'df', 'tfidf', 'none']
articles = [

'../data/ww2.jl'
]

useSubBags = [True, False]
filenameForm = "results/ww2-{filter}-{threshold}.txt"
for f in filters:

for t in thresholds:
#for s in useSubBags:

#subBagStr = '-sub' if s else ''
filename = filenameForm.format(filter=f, threshold=t)
main(t, f, articles, filename, False)
if f=='none':

break

if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Process the provided data")
parser.add_argument('-m', '--massRun', action='store_true')
parser.add_argument('-s', '--subBags', action='store_true')
parser.add_argument('-n', '--neighbours', action='store_true')
parser.add_argument('-t', '--threshold', type=float, default=10)
parser.add_argument('-f', '--filter', default='none')

Chapter A Örn Guðjónsson 38

On-line New Event Detection Using Minimal New Sets

parser.add_argument('-p', '--preFilter', action='store_true')
parser.add_argument('-j', '--printToJson',action='store_true')
parser.add_argument('-o', '--output', default=RESULTFILE)
parser.add_argument('articles', nargs='*')
args = parser.parse_args()

if args.massRun:
massRun()

else:
main(

args.threshold,
args.filter,
args.articles,
resultFile=args.output,
useSubBags=args.subBags,
useNeighbours=args.neighbours,
printJson=args.printToJson,
preFilter=args.preFilter

)

A.2 bag.py
The main code for enumeration calculations and bag handling.
#!/usr/bin/env python

"""Functions for enumerating and working with bags"""

__author__ = "Orn Gudjonsson"

from collections import defaultdict

inf = float("+inf")

def getSubsets(x, n):
"""
Given a set or a list returns all possible subsets of size n
"""
if n == 1:

return frozenset([frozenset([i]) for i in x])

subsets = []
for item in x:

for y in getSubsets(x, n-1):
subset = y | frozenset([item])
if len(subset) == n:

subsets.append(subset)
return frozenset(subsets)

def f(x, bags):
i = 1
for bag in bags:

if isSubset(x, bag):

Chapter A Örn Guðjónsson 39

On-line New Event Detection Using Minimal New Sets

return i
i = i+1

def isNewAtM(x, bags, bagDict, m):
if bagDict.get(x, inf) < m:

return False

retval = True

if len(x) > 1:
yvalMin = inf
for y in x:

yval = bagDict.get(y, inf)
if yval < inf and isSubset(x, bags[yval-1]):

retval = False
yvalMin = min(yvalMin, yval)

if retval:
bagDict[x] = m

else:
bagDict[x] = yvalMin

return retval

def isNewAtMMulti(x, bags, bagDict, (m, s)):
"""
bagDict now stores (k, [i]) where k is parent bag number
and [i] is a list of all subbags of k containing i
"""
lookupTuple = bagDict.get(x, (inf, []))
if lookupTuple[0] < m:

return False
elif lookupTuple[0] == m:

bagDict[x] = (m, lookupTuple[1]+[s])
return True

retval = True

if len(x) > 1:
yvalMin = inf
ySubsMin = []
for y in x:

(yval, ySubs) = bagDict.get(y, (inf, []))
foundSubBags = []
isFound = False
for subBag in ySubs:

if yval < inf and isSubset(x, list(bags[yval-1])[subBag]):
retval = False
isFound = True
foundSubBags.append(subBag)

if isFound:
if yval < yvalMin:

yvalMin = yval
ySubsMin = foundSubBags

if retval:
#completely new, store it
bagDict[x] = (m, [s])

else:

Chapter A Örn Guðjónsson 40

On-line New Event Detection Using Minimal New Sets

bagDict[x] = (yvalMin, ySubsMin)
return retval

def isSubset(a,b):
return a-b == set([])

def enumerateBagHelper(newBag, bags, bagDict, n, i, isNewAtMFunc=isNewAtM):
newSets = []
subsets = getSubsets(newBag, n)
for subset in subsets:

if isNewAtMFunc(subset, bags, bagDict, i):
newSets.append(subset)

return set(newSets)

def enumerateBag(newBag, bags, bagDict):
"""
Performs enumeration using the algorithm described in section 2.2

Args:
newBag: a list of words to enumerate

:: [string]
bags: a list of previously seen bags. Each bag is a set of frozensets

:: [set([frozenset([string])]]
bagDict: a dictionary mapping previously seen sets to the bag nr

(1-indexed) where they were first seen.
:: dict(frozenset([string])) | dict(frozenset([frozenset([string])))

"""
enumeration = set([])
for n in range(1, 3):

enumeration = enumeration | enumerateBagHelper(newBag, bags, bagDict, n, len(bags) +
1)↪→

newBag = getSubsets(newBag, n) - enumeration
if newBag == set([]):

break
return (enumeration, bagDict)

def enumerateMultiBag(newBags, bags, bagDict):
enumeration = set([])
bagNr = len(bags) +1
subsetNr = 0
for subBag in newBags:

for n in range(1,3):
enumeration = enumeration | enumerateBagHelper(subBag, bags, bagDict, n, (bagNr,

subsetNr), isNewAtMMulti)↪→
subBag = getSubsets(subBag, n) - enumeration
if subBag == set([]):

break

subsetNr += 1
return (enumeration, bagDict)

def enumerateMultiBagWithNeighbours(newBags, bags, bagDict):
"""
Enumerate using the sub bag approach, but use a sliding window of 3 subbags as bag
"""

Chapter A Örn Guðjónsson 41

On-line New Event Detection Using Minimal New Sets

enumeration = set([])
index = 0
compositeBags = []
while index + 2 < len(newBags):

first = newBags[index]
second = newBags[index+1]
third = newBags[index+2]
compositeBag = set(first | second | third)
compositeBags.append(compositeBag)
enumeration = enumeration | enumerateBagHelper(compositeBag, bags, bagDict, 1,

len(bags) + 1)↪→
index += 1

for bag in compositeBags:
pairBag = getSubsets(bag, 1) - enumeration
enumeration = enumeration | enumerateBagHelper(pairBag, bags, bagDict, 2, len(bags)

+ 1)↪→
return (enumeration, bagDict)

def enumerate(bags):
"""
Enumerates a list of 'bags'
"""
enumeratedBags = []
bagDict = {}
i = 1
for bag in bags:

newEnumeration, bagDict = enumerateBag(bag, enumeratedBags, bagDict, i)
enumeratedBags.append(newEnumeration)
i = i+1

return enumeratedBags, bagDict

def enumerationToGraph(pairs):
"""Given an enumeration (a set of frozensets with one or two elements)
returns the set of nodes (words involved in pairs) and the set of edges
(pairs)
"""
#nodes are the words that are involved in pairs
nodes = set([])
for pair in pairs:

for elem in pair:
nodes.add(elem)

return nodes, set(pairs)

def nodeDegrees(edges):
"""
Given a set of eges, return a list of tuples where
the first element is a node and the second is the degree of that node,
that is the number of edges it is included in

Input:
edges: a set of edges on the form

frozenset([frozenset([a]), frozenset([b])])

Ouput:

Chapter A Örn Guðjónsson 42

On-line New Event Detection Using Minimal New Sets

a list of tuples [(word, degree)]
"""
vertices = defaultdict(int)
for edge in edges:

for vertex in edge:
vertices[list(vertex)[0]] += 1

return sorted(zip(vertices.keys(), vertices.values()), key=lambda x: x[1], reverse=True)

A.3 filters.py
Contains filter related calculations.
#!/usr/bin/env python

"""Filters and filter helper functions"""

__author__ = "Orn Gudjonsson"

from math import log
from collections import defaultdict

def filterWordList(words, wordFrequency, filterType, threshold, docuCount):
"""

Input:
words: the list of words to filter
wordFrequency: a dictionary counting the document frequency of words
filterType: the type of filtering to use
threshold: the threshold to use for filtering
docuCount: the number of documents previously seen

Output:
wordsToFilter: words that should be filtered based on filterType and

threshold
wordFrequency: updated dictionary with document frequencies

"""
wordsToFilter = []
tfidfList = []
if filterType == 'cf':

wordFrequency = collection_frequency(words, wordFrequency)
wordsToFilter, tfidfList = filter_common(words, wordFrequency, threshold)

elif filterType == 'df':
wordFrequency = document_frequency(words, wordFrequency)
wordsToFilter, tfidfList = filter_documentFrequency(words, wordFrequency, threshold)

elif filterType == 'tfidf':
wordsToFilter, tfidfList = filter_tfidf(words, wordFrequency, threshold, docuCount)
wordFrequency = document_frequency(words, wordFrequency)

elif filterType == 'none':
wordsToFilter, tfidfList = filter_tfidf(words, wordFrequency, len(words), docuCount)
wordFrequency = document_frequency(words, wordFrequency)

else:
raise Exception("Invalid filter type" + filterType)

return wordsToFilter, wordFrequency, tfidfList

Chapter A Örn Guðjónsson 43

On-line New Event Detection Using Minimal New Sets

def filter_enumeration(enumeration, whitelist, tfidfList):
words = [x for x in enumeration if len(x) == 1]
pairs = [x for x in enumeration if len(x) > 1]
retWords = removeWords(whitelist, words)
retPairs = removePairs(whitelist, pairs)
retPairs = filter_pairs_tfidf(retPairs, tfidfList)
return retWords + retPairs

def pair_tfidf(pair, tfidfDict):
pairList = list(pair)
first = list(pairList[0])[0]
second = list(pairList[1])[0]
tfidf = tfidfDict[first] + tfidfDict[second]
return tfidf

def filter_pairs_tfidf(pairs, tfidfList):
return pairs #remove this to filter top tfidf scoring words
tfidfDict = {x: y for (x,y) in tfidfList}
retPairs = []
for pair in pairs:

tfidf = pair_tfidf(pair, tfidfDict)
if(tfidf >= 0.5): #TODO: magic number!

retPairs.append(pair)
return retPairs

def document_frequency(wordList, docFreqDict):
"""
Add 1 for each unique item in wordList to docFreqDict
"""
for word in set(wordList):

docFreqDict[word] += 1
return docFreqDict

def collection_frequency(wordList, freqDict):
"""
Add the number of a currances of each word to freqDict
"""
for word in wordList:

freqDict[word] += 1
return freqDict

def term_frequency(wordList):
"""
Given a list of words, returns a dict mapping words
to how often they appear in the list in proportion to the length of the
wordlist.
"""
freqDict = defaultdict(float)
freqDict = collection_frequency(wordList, freqDict)
l = float(len(wordList))
for key, value in freqDict.iteritems():

freqDict[key] /= l
return freqDict

def filter_common(wordList, frequencyDict, threshold):
"""
Filter the word list based on the top threshold most common items

Chapter A Örn Guðjónsson 44

On-line New Event Detection Using Minimal New Sets

in the frequencyDict
"""
freqTuples = sorted(frequencyDict.items(), key = lambda x: x[1], reverse=True)
wordsToInclude = [x[0] for x in freqTuples[:int(threshold)]]
return wordsToInclude, freqTuples

totalFreq = 0
total = sum(frequencyDict.values())
mostFrequent = []
if total == 0:

return []
for i in range(int(threshold*len(frequencyDict))):
#while totalFreq/float(total) < threshold and len(freqTuples) > 1:

nextTuple = freqTuples[i]

frequency = nextTuple[1]
mostFrequent.append(nextTuple[0])
totalFreq += frequency

return mostFrequent

def filter_documentFrequency(wordList, frequencyDict, threshold):
freqTuples = sorted(frequencyDict.items(), key = lambda x: x[1])
wordsToInclude = [x[0] for x in freqTuples[:int(threshold)]]
return wordsToInclude, freqTuples

def filter_overThreshold(wordList, frequencyDict, threshold, seenDocuments):
"""
Filter the word list base on the frequencyDict
anything above the given threshold is removed
"""
wordsToFilter = []
if seenDocuments == 0:

return wordsToFilter

n = float(seenDocuments)
for word in set(wordList):

if frequencyDict[word]/n > threshold:
wordsToFilter.append(word)

return wordsToFilter

def tfidf(word, termFrequencies, docFrequencies, docNumber):
"""
Input:

word: "someword"
termFrequencies: {"someword": 0.3, "someotherword": 0.7}
docFrequencies: {"someword": 40, "otherword": 10, "foo": 1}
docNumber: 50

Ouput:
the tf-idf of word, i.e. 0.4

"""
df = docFrequencies[word]
tf = termFrequencies[word]
idf = log(docNumber+1/(float(df+1)))
return tf*idf

Chapter A Örn Guðjónsson 45

On-line New Event Detection Using Minimal New Sets

def filter_tfidf(wordList, dfDict, threshold, n):
"""
Filter the given wordlist using td-idf.
Using the document frequency dict dfDict
Any item who's td-idf score is below threshold is ignored
n is the number of documents
"""
tfDict = term_frequency(wordList)
tfidfTuples = []
td_idf = 0
for word in set(wordList):

tf_idf = tfidf(word, tfDict, dfDict, n)
tfidfTuples.append((word, tf_idf))

sortedItems = sorted(tfidfTuples, key=lambda x: x[1], reverse=True)
wordsToFilter = [x[0] for x in sortedItems[:int(threshold)]]
return wordsToFilter, tfidfTuples

def removeListFromList(filterList, wordList):
return filter(lambda x: x not in filterList, wordList)

def removeFilterWords(filterList, wordList):
"""
input:

filterList: ['foo', 'baz']
wordList: [frozenset(['foo']), frozenset(['bar'])]

output: ['bar']
"""
words = [y for x in wordList for y in x]
return removeListFromList(filterList, words)

def removeWords(whitelist, wordList):
"""
input:

filterList: ['foo', 'baz']
wordList: [frozenset(['foo']), frozenset(['bar'])]

output: [frozenset(['bar'])]
"""
filterSetList = [frozenset([x]) for x in whitelist]
return filter(lambda x: x in filterSetList, wordList)

def removePairs(whitelist, pairList):
return filter(lambda s: isSetItemInList(whitelist, s), pairList)

def flattenPairSet(pairSet):
"""
input: frozenset([frozenset(['foo']), frozenset(['bar'])])
output: frozenset(['foo', 'bar'])
"""
return frozenset([y for x in pairSet for y in x])

def isSetItemInList(filterList, pairSet):
"""
input:

pairSet: frozenset([frozenset(['foo']), frozenset(['bar'])])
filterList = ['foo', 'baz']

Chapter A Örn Guðjónsson 46

On-line New Event Detection Using Minimal New Sets

output:
true if an item in filterlist is in any subset of pairset
false otherwise

"""
flatPairs = flattenPairSet(pairSet)
for item in flatPairs:

if item in filterList:
return True

return False

A.4 preprocessing.py
Contains code that’s used for preprocessing.
#!/usr/bin/env python

"""Module containing preprocessing stuff"""

__author__ = "Orn Gudjonsson"

from stemming.porter2 import stem
import nltk
from nltk.corpus import stopwords
import regex as re
import string

def stem_words(wordlist):
"""
Given a string returns a list of all the words, stemmed.
"""
return [stem(x) for x in wordlist]

def remove_stopwords(words):
"""
Given a list of english words returns the list with all stopwords removed.
"""
swords = set(stopwords.words('english'))
return [x for x in words if x not in swords]

def remove_duplicates(words):
return list(set(words))

def remove_punctuation(text):
"""
Input:

unicode text
Ouput:

unicode text with removed punctuation
"""
table = {ord(c): u' ' for c in string.punctuation}
return text.translate(table)

def remove_numbers(words):

Chapter A Örn Guðjónsson 47

On-line New Event Detection Using Minimal New Sets

return filter(lambda x: not x.isdigit(), words)

def tokenize(text):
"""
Given a string outputs a list of words
"""
return nltk.word_tokenize(text)

def to_wordlist(text):
return stem_words(

remove_stopwords(
tokenize(

remove_punctuation(
text.lower()

)
)

)
)

def get_sentences(text):
return nltk.sent_tokenize(text)

def to_wordlist_multi(text):
sentences = get_sentences(text)
return [tuple(to_wordlist(sentence)) for sentence in sentences]

def preprocess(string):
return to_wordlist(string)

A.5 helpers.py
Utility functions for printing out results etc.
#!/usr/bin/env python

import json
import sys

import preprocessing as pre
import bag

def loadJson(filename, texts):
"""
load the given json lines file and return an array of whatever the lines
contain
"""
with open(filename, 'r') as f:

for line in f:
texts.append(json.loads(line))

return texts

def stringify(s):

Chapter A Örn Guðjónsson 48

On-line New Event Detection Using Minimal New Sets

"""Converts a set to string"""
if type(s) not in map(type, [set([]), frozenset([])]):

return unicode(s)
l = list(s)
isMultiSet = len(l) > 1
if isMultiSet:

retStr = "("
for item in l[:-1]:

retStr += stringify(item) + ', '
retStr += stringify(l[-1])
retStr += ")"

else:
retStr = ""
retStr += stringify(l[0])

return retStr

def outputToString(output):
"""Converts a list of sets to string"""
if output == []:

return "{}"
retStr = ''
for item in output[:-1]:

retStr += stringify(item) + ', '
retStr += stringify(output[-1])
return '{' + retStr + '}'

def distanceDictToString(distanceDict):
fmtStr = u'{pair}: {distance}'
output = ""
if distanceDict == {}:

return ""
valueList = sorted(distanceDict.items(), key=lambda x: x[1])
for (k,v) in valueList[:-1]:

output += fmtStr.format(pair=stringify(k), distance=v)
output += ", "

output += fmtStr.format(pair=stringify(valueList[-1][0]), distance=valueList[-1][1])
return output

def frozenPairToTuple(pair):
pairList = list(pair)
first = list(pairList[0])[0]
second = list(pairList[1])[0]
return (first, second)

def tfidfPairsToString(pairs, tfidfDict):
if len(pairs) == 0:

return "{}"
retString = ""
fmtString = u"{pair}: {tfidf}, "
for pair in sorted(pairs, key=lambda x: list(x)[1]):

p = frozenPairToTuple(pair)
tfidf = tfidfDict[p[0]] + tfidfDict[p[1]]
retString += fmtString.format(pair=stringify(pair), tfidf=tfidf)

return retString

Chapter A Örn Guðjónsson 49

On-line New Event Detection Using Minimal New Sets

def nodeDegreesToString(nodeDegrees):
res = ""
formatString = u"{node}: {degree}, "
for nodeTuple in nodeDegrees:

res += formatString.format(node=nodeTuple[0], degree=nodeTuple[1])
return res

def find(lst, item):
"""
returns list of indices where item is within list
empty list if not precent in list
"""
return [i for i, x in enumerate(lst) if x==item]

def distanceDictFromPairs(pairList, textList):
distDict = {}
for pair in pairList:

p = list(pair)
distDict[pair] = calculateWordDistance(p[0], p[1], textList)

return distDict

def extractString(s):
"""
input: frozenset([frozenset([...frozenset(['somestring'])...)
output: somestring
"""
if type(s) in map(type, [u'', '']):

return s
if len(s) == 0:

return ""
return extractString(list(s)[0])

def calculateWordDistance(word1, word2, textList):
word1 = extractString(word1)
word2 = extractString(word2)
indexes1 = find(textList, word1)
indexes2 = find(textList, word2)
minDist = sys.maxint
for i1 in indexes1:

for i2 in indexes2:
dist = abs(i1-i2)
minDist = min(dist, minDist)

return minDist

def enumerationToJsonable(enumeration):
"""
Turns an enumeration set into datatypes that can be serialized
Input:

enumeration: set([frozenset['newWord'], frozenset([frozenset(['new']),
frozenset(['pair'])])])↪→

Output:
[(newWord,), ('new', 'pair')]

"""
retval = []
for item in enumeration:

if len(item) > 1:
newItem = [tuple(x) for x in item]

Chapter A Örn Guðjónsson 50

On-line New Event Detection Using Minimal New Sets

else:
newItem = tuple(item)

retval.append(newItem)
return retval

def printEnumerationJson(enumList, filename):
"""
Input:

enumList: [{k:v, },]
filename: /some/file.txt

Output: None, prints each item as jsonline to filename
"""
with open(filename, 'w') as f:

for enumeration in enumList:
enum = list(enumeration['enumeration'])
enum = enumerationToJsonable(enum)
enumeration['enumeration'] = enum
jsonString = json.dumps(enumeration)
f.write(jsonString+'\n')

def printEnumeration(url, words, enumeration, filename):
enumerationString = enumerationToString(url, words, enumeration)
with open(filename, 'a') as f:

f.write(enumerationString)

def printEnumerationToFileObject(url, words, enumeration, fileobject, tfidfList):
enumerationString = enumerationToString(url, words, enumeration, tfidfList)
fileobject.write(enumerationString)

def enumerationToString(url, words, enumeration, tfidfList):
lineString = u'Url: {url}\nWords: {words}\nNew Words: {newWords}\nNew Pairs:

{pairs}\nNodes: {nodes}\n\n\n'↪→
newWords = [x for x in enumeration if len(x) < 2]
pairs = [x for x in enumeration if len(x) >= 2]
tfidfDict = {x: y for (x,y) in tfidfList}
newWords = sorted(newWords, key=lambda frozenWord: -tfidfDict[list(frozenWord)[0]])
pairs = sorted(pairs, key=lambda frozenPair: -sum(tfidfDict[x] for x in

frozenPairToTuple(frozenPair)))↪→
newWordStr = outputToString(newWords)
textList = pre.to_wordlist(words)
pairStr = outputToString(pairs)
nodes, edges = bag.enumerationToGraph(pairs)
nodeDegrees = bag.nodeDegrees(edges)
nodeDegreeStr = nodeDegreesToString(nodeDegrees)
lineString = lineString.format(

url=url,
words=words,
newWords=newWordStr,
pairs=pairStr,
nodes=nodeDegreeStr,

)
return lineString.encode('UTF-8')

Chapter A Örn Guðjónsson 51

	Introduction
	Background
	What are events?
	Related works

	Method
	The base idea
	Enumeration
	Pre-processing
	Extensions
	Filtering common or unimportant words
	Prioritizing words that occur in many minimal new pairs
	Prioritizing words that appear in close proximity
	Splitting articles into smaller parts
	Combining methods

	Experiments
	Implementation
	Pre-processing
	Enumeration

	Experiments
	Data
	Evaluation

	Results
	Benchmarks

	Discussion
	Comparisons with other approaches
	Future Work

	Conclusion
	Source Code
	main.py
	bag.py
	filters.py
	preprocessing.py
	helpers.py

