Linear and nonlinear characterization of low-stress high-confinement silicon-rich nitride waveguides: erratum

This document has been downloaded from Chalmers Publication Library (CPL). It is the author’s version of a work that was accepted for publication in:

Optics Express (ISSN: 1094-4087)

Citation for the published paper:

Downloaded from: http://publications.lib.chalmers.se/publication/248865

Notice: Changes introduced as a result of publishing processes such as copy-editing and formatting may not be reflected in this document. For a definitive version of this work, please refer to the published source. Please note that access to the published version might require a subscription.
Linear and nonlinear characterization of low-stress high-confinement silicon-rich nitride waveguides: erratum

CLEMENS J. KRUCKEL, ATILA FÜLÖP, THOMAS KLINTBERG, JÖRGEN BENGTSSON, PETER A. ANDREKSON, AND VICTOR TORRES-COMPANY

Photonics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden

© 2017 Optical Society of America

OCIS codes: (130.3120) Integrated optics devices; (130.7405) Wavelength conversion devices; (160.6000) Semiconductor materials; (190.4380) Nonlinear optics, four-wave mixing; (220.4241) Nanostructure fabrication; (230.5750) Resonators.

References and links

In [1], we presented an experimental study of the linear and nonlinear properties of silicon-rich nitride waveguides fabricated via low-pressure chemical vapor deposition (LPCVD). Owing to an error in the estimated coupled power in the two-pump experiment, we have overestimated the nonlinear Kerr parameter of the waveguide. The corrected Fig. 4(d) should be:

![Nonlinear phase shift \(\phi_{\text{SPM}}\) as a function of coupled pump power.](https://doi.org/10.1364/OE.25.007443)

From this figure we infer a nonlinear parameter \(\gamma = 3 \text{ (W}\cdot\text{m})^{-1}\) leading to a nonlinear coefficient \(n_2 = 0.6 \cdot 10^{-18} \text{ m}^2/\text{W}\).

The Table 1 should therefore look as follows.
Table 1. Comparison of nonlinear Kerr coefficient n_2 and optical band gap energy E_g for silicon, silicon-enriched nitride and stoichiometric silicon nitride.

<table>
<thead>
<tr>
<th></th>
<th>n_2 (at 1.5 µm) [m2/W]</th>
<th>E_g [eV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si [24,25] (100% Si)</td>
<td>$\sim 4 \cdot 10^{-18}$</td>
<td>1.12</td>
</tr>
<tr>
<td>Si$_x$N$_y$ (65% Si)</td>
<td>$0.6 \cdot 10^{-18}$</td>
<td>2.3</td>
</tr>
<tr>
<td>Si$_3$N$_4$ [22,27] (43% Si)</td>
<td>$0.24 \cdot 10^{-18}$</td>
<td>~ 5</td>
</tr>
</tbody>
</table>

The main conclusion in [1] is still valid. Varying the relative composition between silicon and nitride during LPCVD deposition provides a higher Kerr coefficient than what is possible with stoichiometric silicon nitride.