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Abstract This paper considers the problem of solving Quadratic Programs
(QPs) in the context of multi-stage Model Predictive Control (MPC). A New-
ton strategy is considered on the dual of the problem to achieve a paral-
lelizable method. In this context, it has been observed that the globalization
strategy can be expensive. In this paper, we propose to dualize both the non-
anticipativity constraints and the dynamics in order to obtain a computa-
tionally cheap globalization. The dual Newton system is then reformulated to
small highly structured linear systems that to a large extent can be solved in
parallel.

Keywords Robust control · Multi-stage MPC · Dual Newton strategy

1 Introduction

Model Predictive Control (MPC) is the preferred control technique in a grow-
ing set of applications due to the natural way in which constraints can be incor-
porated in the control policy. However, constraint satisfaction can in general
not be guaranteed if uncertainties are present in the system. Several methods
have been proposed to handle uncertainties in the employed model, e.g. min-
max MPC [6] and tube-based MPC [21], [20]. Another common formulation,
often labeled multi-stage MPC or stochastic programming, represents the un-
certainty via a finite number of realizations at each decision point [23], [1], [16].
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This formulation posses attractive properties such as recursive feasibility [18],
and increased feasibility [17]. A major drawback, however, is the size of the
underlying optimization problem, which grows exponentially with the length
of the MPC control horizon.

Computational aspects of robust MPC have been considered e.g. in [9],
where a primal-dual interior point method is proposed for min-max MPC, and
in [26], where real-time feasibility is achieved via a tube-based robust MPC
formulation together with the early termination of an interior point method.
Moreover, several optimization methods have been proposed in the context
of multi-stage MPC. The authors of e.g. [4], [11], [24] propose to use tailored
interior point methods, the authors of [15], [12] use parallelizable active-set
methods, whereas the authors of [3], [22], [19] use various decomposition tech-
niques in order to exploit the intrinsic structure of the problem.

The active-set methods in [15], [12] are particularly well suited for multi-
stage MPC, due to the natural way in which the similarity between subsequent
Quadratic Programs (QPs) can be exploited, More specifically, in the case the
active set does not change between subsequent instances of the multi-stage
MPC problem, the methods converge in one step. However, the methods suf-
fer from two drawbacks stemming from the non-smooth dual problem. First,
there is no practically useful upper bound on the number of iterations needed
to solve a problem. This is a limitation in safety critical applications, although
methods of this kind usually work well in practice [7], [8]. Secondly, global-
ization can be expensive since many back-tracking steps may be required at
each iteration to enforce convergence. This can be a significant drawback since
every step involves solving QPs which become the computational bottleneck
of the method. In this paper, we overcome the second difficulty for the practi-
cally important class of multi-stage MPC problems with a diagonal cost and
simple bounds.

In contrast to the methods proposed in [15], [12], we dualize both the non-
anticipativity constraints and the dynamical constraints. As a result, the solu-
tion of the the QPs becomes computationally negligible, whereas the resulting
dual Newton system becomes larger. To enhance the solution of the Newton
system it is reformulated into several small highly structured linear systems,
which to a large extent can be solved in parallel. Consequently, computational
effort is moved from the solution of the QPs to the solution of the Newton
system. This is an improvement since the Newton system is only solved once
every iteration whereas the QPs may be solved multiple times. As a result, we
obtain a dual Newton strategy with a computational cost per iteration that
is almost constant. For cases where a considerable amount of back-tracking is
performed, our method saves a significant amount of computations.

The paper is organized as follows. In Section 2, we recall multi-stage MPC
and the non-smooth dual Newton strategy. In Section 3, we detail the parallel
calculation of the dual Hessian and the dual gradient, whereas in Section 4, we
propose a reformulation of the Newton system to exploit the problem specific
structure and enhance parallel calculations. The resulting method is presented
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in Section 5. In Section 6, a numerical experiment is presented. The paper is
concluded in Section 7.

2 Preliminaries

In this section, we recall multi-stage MPC and Newton strategies in the context
of dual decomposition.

2.1 Multi-stage MPC

As a result of imperfect models and uncertain disturbances, constraint satis-
faction can in general not be guaranteed for MPC schemes. A common remedy,
often denoted as multi-stage MPC or stochastic programming, is to discretize
the underlying stochastic process, and describe the evolution of the uncertainty
via a scenario tree [23]. To that end, we consider a discrete-time, constrained
system with uncertain parameters θ:

xi+1 = A(θ)xi +B(θ)ui (1a)

xmin ≤ xi ≤ xmax (1b)

umin ≤ ui ≤ umax (1c)

where xi ∈ Rn and ui ∈ Rm denote the state and control variables respectively.
To account for the uncertain parameters, we consider md realizations of (1)
at each time stage. The evolution of the system can then be described by a
scenario-tree as depicted in Figure 1.

We define a scenario as a path from the root node to a leaf node of the
scenario tree. The number of scenarios is thus growing exponentially with the
length of the MPC horizon, yielding very large optimization problems. It is
therefore often proposed to treat the uncertain parameters as constant after
a certain period of time. We denote the time period where the parameters
can change as the robust horizon Nr, in contrast to the prediction horizon N .
Accordingly, we consider M = mNr

d scenarios.

To enhance parallel computations, we introduce separate state and control
variables for each scenario, i.e. we introduce xk = [xTk,1 · · ·xTk,N ]T ∈ Rn̄, with

xk,i ∈ Rn, and uk = [uTk,0 · · ·uTk,N−1]T ∈ Rm̄, with uk,i ∈ Rm for k = 1, . . . ,M .
However, because the uncertainty cannot be anticipated, control actions are
restricted to only depend on historical realizations of the uncertainty, such that
the control variables of the scenarios are coupled at their shared nodes. More
specifically, if the uncertainty realizations for scenario k and l are identical up
to and including time stage i, their control inputs should be identical up to
that time stage, i.e. uk,j = ul,j , ∀j = 0, · · · i. This restriction is commonly
denoted as non-anticipativity constraints. The resulting MPC problem can be
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Fig. 1: The evolution of the system represented as a scenario tree. For nodes
and branches that are shared between multiple scenarios, the variable corre-
sponding to the scenario with the lowest index is visualized in the tree.

formulated as:

min
x,u

M∑
k=1

Vk(xk, uk) (2a)

s.t.

M∑
k=1

C̄kuk = 0 (2b)

Ākxk + B̄kuk = bk, k = 1, . . . ,M (2c)

xk ≤ xk ≤ xk, k = 1, . . . ,M (2d)

uk ≤ uk ≤ uk, k = 1, . . . ,M (2e)

where we have introduced the notations x = [xT1 . . . x
T
M ]T and u = [uT1 . . . u

T
M ]T

for the collection of variables over the scenarios. Additionally, we have defined
Vk(xk, uk) = 1

2x
T
k Q̄kxk + 1

2u
T
k R̄kuk + q̄Tk xk + r̄Tk uk, bk = [−x̄TATk 0 . . . 0]T ,
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where x̄ denotes the initial state estimate, and:

Q̄k =

Qk,1 . . .

Qk,N

 , R̄k =

Rk,0 . . .

Rk,N−1

 (3a)

Āk =


−I
Ak,1 −I

. . .
. . .

Ak,N−1 −I

 , B̄k =

Bk,0 . . .

Bk,N

 (3b)

where we require the matrices Q̄k ∈ SnN++ and R̄k ∈ SmN++ to be diagonal.

The formulation of the non-anticipativity constraints (2b) provides some
freedom in constructing the sparsity structure of C̄ via the ordering of the
constraints. The structure of C̄ has a direct impact on the sparsity structures
of the dual Hessian, and ought to be exploited in order to facilitate the solving
of (2). Due to the fact that the non-anticipativity constraints are enforced at
nodes in the scenario tree, and that neighboring scenarios share nodes, we
propose to enforce the non-anticipativity constraints in a chain structure. To
that end we introduce the notation:

p = m

M−1∑
k=1

nc,(k,k+1) (4)

where nc,(k,k+1) denotes the number of common nodes in the scenario tree for
scenario k and k + 1, and select the matrices C̄k ∈ Rp×m̄ as follows:

C̄ =


C1,2 −C1,2

C2,3 −C2,3

. . .
. . .

CM−1,M −CM−1,M

 =

=
[
C̄1 C̄2 . . . C̄M

]
(5)

where we have introduced:

Ck,k+1 =

 Im 0 · · · 0
. . .

...
. . .

...
Im 0 · · · 0

 ∈ Rmnc,(k,k+1)×m̄ (6)

i.e. each block row of Ck,k+1 corresponds to a common node in the scenario
tree for scenario k and scenario k + 1.
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2.2 Dual decomposition

We introduce the dual variables λ ∈ Rm(M−1) corresponding to the non-
anticipativity constraints (2b), and the dual variables µk ∈ Rn(N−1) corre-
sponding to the dynamics (2c), and define the partial Lagrange function:

L(x, u, µ, λ) =

M∑
k=1

Vk(xk, uk)+λT
M∑
k=1

C̄kuk+

M∑
k=1

µTk
(
Ākxk + B̄kuk − bk

)
(7)

where we have introduced the notation µ = [µT1 . . . µ
T
M ]T for notational conve-

nience. Observe that the Lagrange function is seperable in the primal variables
x and u and in the dual variables µ, i.e. we can express L(x, u, λ) as:

L(x, u, µ, λ) =

M∑
k=1

Lk(xk, uk, µk, λ) (8)

where we have introduced:

Lk(xk, uk, µk, λ) = Vk(xk, uk) + λT C̄kuk + µTk
(
Ākxk + B̄kuk − bk

)
(9)

Due to the decomposable structure of L(x, u, µ, λ), the Lagrange dual function
d(λ) = −min(x,u)∈Z L(x, u, µ, λ), can be evaluated in parallel as:

d(µ, λ) = −
M∑
k=1

min
(xk,uk)∈Zk

Lk(xk, uk, µk, λ) (10)

where we have introduced the feasible sets Zk = {(xk, uk) : xk ≤ xk ≤
xk, uk ≤ uk ≤ uk}, and Z = Z1 × · · · × ZM .

Due to strict convexity of (2), d(µ, λ) is convex and continuously differen-
tiable. The Hessian of d(µ, λ) is a piecewise constant matrix and changes with
the active-set [8]. The non-smooth dual problem is then given by:

min
µ,λ

d(µ, λ) (11)

from which the primal solution x∗ and u∗ to (2) can be recovered due to strong
duality [5].

The gradient of the dual function is given by [2]:

∇d(µ, λ) =


r1(x∗1(µ1, λ), u∗1(µ1, λ))

...
rM (x∗M (µM , λ), u∗M (µ1, λ))

r(u∗(µ, λ))

 (12)

where x∗k(µk, λ) and u∗k(µk, λ) are solutions to the subproblems:[
x∗k(µk, λ)
u∗k(µk, λ)

]
= arg min

(xk,uk)∈Zk

Lk(xk, uk, µk, λ) (13)



A dual Newton strategy with fixed iteration complexity for multi-stage MPC 7

while rk and r represent the residual of the dualized constraints, i.e.:

rk(xk, uk) = −Ākxk(µk, λ)− B̄kuk(µk, λ) + bk (14a)

r(u) = −
M∑
k=1

C̄kuk(µk, λ) (14b)

Following directly from (12), the Hessian of the dual function takes the form
of the following (permuted) block arrowhead matrix:

∇2d(µ, λ) =


∂r∗1
∂µ1

∂r∗1
∂λ

. . .
...

∂r∗M
∂µM

∂r∗M
∂λ

∂r∗

∂µ1
. . . ∂r∗

∂µM

∂r∗

∂λ

 (15)

where we have omitted the arguments and used the notations r∗k = rk(x∗1(µk, λ), u∗k(µk, λ))
and r∗ = r(u∗(µ, λ)) for notational simplicity.

In this paper, we propose to solve (11) by updating the dual variables µ
and λ according to: [

µ+

λ+

]
=

[
µ
λ

]
+ t

[
∆µ
∆λ

]
(16)

where ∆µ and ∆λ is a solution to the regularized Newton system:

(
∇2d(µ, λ) + F̄

) [∆µ
∆λ

]
= −∇d(µ, λ) (17)

and the step size t ∈ (0, 1] is chosen to enforce convergence. The regularization
F̄ is selected to enforce ∇2d(µ, λ)+ F̄ � 0, whenever the dual Hessian is rank
deficient. Specifically, this happens when the active local constraints together
with the dualized constraints form linear dependencies [14]. In cases where
LICQ is fulfilled for all compatible active sets, F̄ can be omitted.

The proceeding is organized as follows. In Section 3, we describe an efficient
way for calculating the dual gradient and the dual Hessian, whereas in Section
4, we propose an efficient method for solving the Newton system. The resulting
optimization procedure is summarized in Section 5.

3 Calculating derivatives

In this section, we detail a method for calculating the dual gradient and the
dual Hessian. Specifically, we propose a method for solving the subproblems
(13), that are needed for the forming of the gradient, and a method for calcu-
lating the partial derivatives needed to form the Hessian.
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3.1 Solving the subproblems

To evaluate the dual function, see (10), and its gradient, see (12), the optimal
solutions x∗k(µk, λ) and u∗k(µk, λ) to the subproblems are needed. Because of
the separability of the Lagrange function the calculations are separable and
can be performed in parallel on a multiple core architecture. Additionally,
as we shall see, the dualization of the non-anticipativity constraints and the
dynamic equations, results in subproblems with trivial solutions.

Note that x∗k(µk, λ) and u∗k(µk, λ) are given as solutions to a QP of the
following form:

min
xk,uk

Vk(xk, uk) + µTk Ākxk +
(
λT C̄k + µTk B̄k

)
uk (18a)

s.t. xk ≤ xk ≤ xk (18b)

uk ≤ uk ≤ uk (18c)

Since the matrices Q̄k and R̄k are diagonal, their eigenvectors are aligned
with the coordinate axes, i.e. aligned with the box constraints. This implies
that the optimal solution can, as described in [7], be found by a component-
wise clipping of the unconstrained solution, i.e. x∗k(µk, λ) and u∗k(µk, λ) can be
calculated as:

x∗k(µk, λ) = mid
(
xk, xk,−Q̄−1

k

(
q̄k + ĀTk µk

))
(19a)

u∗k(µk, λ) = mid
(
uk, uk,−R̄−1

k

(
r̄k + B̄Tk µk + C̄Tk λ

))
(19b)

where mid(a, b, c) is a vector containing the component-wise median of its
three arguments.

The dominating computational cost for finding x∗k(µ, λ) and u∗k(µ, λ) is thus
constituted by a banded matrix-vector multiplication which is negligable com-
pared to solving the Newton system. As we shall see in the proceedings, this
is instrumental in obtaining a dual Newton strategy with a fixed complexity
per iteration.

3.2 Calculating the dual Hessian

In this subsection, we detail the calculation of the partial derivatives in the
dual Hessian (15), i.e. the calculation of:

∂r∗k
∂µk

= −Āk
∂x∗k(µk, λ)

∂µk
− B̄k

∂u∗k(µk, λ)

∂µk
(20a)

∂r∗k
∂λ

= −Āk
∂x∗k(µk, λ)

∂λ
− B̄k

∂u∗k(µk, λ)

∂λ
(20b)

∂r∗

∂µk
= −C̄k

∂u∗k(µk, λ)

∂µk
(20c)

∂r∗

∂λ
= −

M∑
k=1

C̄k
∂u∗k(µk, λ)

∂λ
(20d)
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In the following, we denote the active constraints of (18b) and (18c) with:

D̄A,kxk = dA,k (21a)

ĒA,kuk = eA,k (21b)

Note that every row in D̄A,k and ĒA,k has only one non-zero element, namely
1 if the row corresponds to an active upper limit or −1 if the row corresponds
to an active lower limit.

By introducing the dual variables yk and zk corresponding to (21a) and
(21b) respectively, it follows from the optimality conditions of (18) that the
following holds:

0 = Q̄k
∂x∗k(µk, λ)

∂λ
+ D̄T

A,k
∂y∗k(µk, λ)

∂λ
(22a)

0 = R̄k
∂u∗k(µk, λ)

∂λ
+ C̄Tk + ĒTk

∂z∗k(µk, λ)

∂λ
(22b)

0 = D̄A,k
∂x∗k(µk, λ)

∂λ
(22c)

0 = ĒA,k
∂u∗k(µk, λ)

∂λ
(22d)

By solving (22) for
∂x∗

k(µk,λ)
∂λ and

∂u∗
k(µk,λ)
∂λ we obtain:

∂x∗k(µk, λ)

∂λ
= 0 (23a)

∂u∗k(µk, λ)

∂λ
= −R̄−1

I,kC̄
T
k (23b)

where we have introduced R̄−1
I,k = R̄−1

k (I − ĒTA,kĒA,k). Observe that R̄−1
I,k

is identical to R̄−1
k , except that every diagonal element corresponding to an

active constraint is replaced by a zero.

Let us now focus on the computation of
∂x∗

k(µk,λ)
∂µk

and
∂u∗

k(µk,λ)
∂µk

. Similarly

to (22), we obtain the following linear system:

0 = Q̄k
∂x∗k(µk, λ)

∂µk
+ ĀTk + D̄T

A,k
∂y∗k(µk, λ)

∂µk
(24a)

0 = R̄k
∂u∗k(µk, λ)

∂µk
+ B̄Tk + ĒTk

∂z∗k(µk, λ)

∂µk
(24b)

0 = D̄A,k
∂x∗k(µk, λ)

∂µk
(24c)

0 = ĒA,k
∂u∗k(µk, λ)

∂µk
(24d)

Using block elimination, it can be verified that:

∂x∗k(µk, λ)

∂µ
= −Q̄−1

I,kĀ
T
k (25a)

∂u∗k(µk, λ)

∂µk
= −R̄−1

I,kB̄
T
k (25b)
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where we have introduced the notation Q̄−1
I,k = Q̄−1

k (I−D̄T
A,kD̄A,k). Note that

Q̄−1
I,k is identical to Q̄−1

k , except that every diagonal element corresponding to
an active constraint is replaced by a zero.

Finally, by using (23) and (25) the expressions in (20) can be simplified as:

∂r∗k
∂µk

= ĀkQ̄
−1
I,kĀ

T
k + B̄kR̄

−1
I,kB̄

T
k (26a)

∂r∗k
∂λ

= B̄kR̄
−1
I,kC̄

T
k (26b)

∂r∗

∂µk
= C̄kR̄

−1
I,kB̄

T
k (26c)

∂r∗

∂λ
=

M∑
k=1

C̄kR̄
−1
I,kC̄

T
k (26d)

This implies that the dual Hessian can be formed cheaply at the cost of a
banded matrix-matrix multiplication once the subproblems are solved and the
active set is known. In [7], a similar expression is used for the dual Hessian in
the context of standard MPC.

4 Efficient solution of the Newton system

To achieve an efficient implementation, it is crucial to exploit the structure of
the Newton system in the computation of the search direction. Additionally,
since the dual Hessian can be singular, a regularization strategy is needed in
order to solve (17). In this section, we aim at addressing these issues.

4.1 Alternative Newton system

To exploit the sparsity structure of (15), block elimination can be used to ob-
tain alternate formulations of the search direction computation. For problems
of the form (2), we propose to exploit the sparsity structure and to enable
parallel computations by eliminating ∆µk from (17). In this case, the reg-
ularization matrix F̄ can be calculated implicitly in a parallel fashion. The
resulting formulation can be expressed as:

(J + F )∆λ = −r +

M∑
k=1

∂r

∂µk

(
∂rk
∂µk

+ Fk

)−1

rk (27a)(
∂rk
∂µk

+ Fk

)
∆µk = −rk −

∂rk
∂λ

∆λ, k = 1, . . . ,M (27b)

where we have introduced:

J =
∂r

∂λ
−

M∑
k=1

∂r

∂µk

(
∂rk
∂µk

+ Fk

)−1
∂rk
∂λ

(28)
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and Fk ∈ SnN+ and F ∈ Sp+ are chosen to enforce that ∂rk
∂µk

+ Fk � 0 and
J + F � 0.

We can then first find ∆λ by solving (27a), and then use the result to
find ∆µk. Observe that (27b) is trivially decomposable and can be solved in
parallel on M CPUs.

4.2 Regularization

To guarantee that the search direction, ∆µ and ∆λ, is a descent direction, the
regularized dual Hessian has to be positive definite. In the following lemma,
we show that the formulation (27) results in search directions that are descent
directions. This implies that the regularization matrix F̄ can be calculated
implicitly and partly in parallel without explicitly forming the dual Hessian.

Lemma 1 If the conditions:

1. ∂rk
∂µk

+ Fk � 0, for k = 1, . . . ,M
2. J + F � 0

hold, then the regularized dual Hessian is positive definite.

Proof Recall that a Hermitian matrix is positive definite if and only if it has
a uniquely defined Cholesky factor [10]. By restricting ∇2d(µ, λ) + F̄ to have
the same sparsity structure as the dual Hessian, we introduce the Cholesky
factor L̄, such that ∇2d(µ, λ) + F̄ = L̄L̄T , i.e.:

L̄ =


L̄1,1

. . .

L̄M,M

L̄M+1,1 . . . L̄M+1,M L̄M+1,M+1

 (29)

where the lower triangular blocks L̄k,k ∈ RnN×nN and the rectangular blocks
L̄M+1,k ∈ Rp×nN , can be calculated according to:

L̄k,kL̄
T
k,k =

∂rk
∂µk

+ Fk, k = 1, . . . ,M (30a)

L̄M−1,kL̄
T
k,k =

∂r

∂µk
, k = 1, . . . ,M (30b)

L̄M+1,M+1L̄
T
M+1,M+1 =

∂r

∂λ
−

M∑
k=1

L̄M+1,kL̄
T
M+1,k + F (30c)

For uniqueness of the of the Cholesky factor, observe that Fk and F must
be chosen to enforce that the right hand sides of (30a) and (30c) are positive
definite. Observe that positive definiteness of the right hand side of (30a) is
identical to condition 1. Moreover, using (30a) and (30b), we can express (30c)
as:

L̄M+1,M+1L̄
T
M+1,M+1 = J + F (31)

Hence, positive definiteness of the right hand side of (30c), is identical to
condition 2.
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4.3 Finding search directions ∆µk

In this subsection, we detail the calculation of the search directions ∆µk, i.e.
a solution method for (27b).

First, let us introduce the following notation:

Λk =
∂rk
∂µk

+ Fk = ĀkQ̄
−1
I,kĀ

T
k + B̄kR̄

−1
I,kB̄

T
k + Fk (32)

We observe that if Fk is restricted to have the same sparsity structure as ∂rk
∂µk

,
then Λk has a block-tridiagonal structure , i.e.:

Λk =


Λk,(1,1) Λk,(1,2)

ΛTk,(1,2) Λk,(2,2)

. . .

. . .
. . . Λk,(N−1,N)

ΛTk,(N−1,N) Λk,(N,N)

 (33)

with blocks Λk,(i,j) ∈ Rn×n. Consequently, the Cholesky factor Lk of Λk which
yield Λk = LkL

T
k , is block-lower bidiagonal:

Lk =


Lk,(1,1)

Lk,(2,1) Lk,(2,2)

. . .
. . .

Lk,(N,N−1) Lk,(N,N)

 (34)

with blocks Lk,(i,j) ∈ Rn×n, which can be calculated using the following block-
wise procedure:

Λk,(1,1) = Lk,(1,1)L
T
k,(1,1) (35a)

Λk,(i,i+1) = Lk,(i,i)L
T
k,(i+1,i), i = 1, . . . , N (35b)

Λk,(i,i) − Lk,(i,i−1)L
T
k,(i,i−1) = Lk,(i,i)L

T
k,(i,i), i = 2, . . . , N (35c)

Using Lk, the search direction ∆µk can be calculated from (27b) via a
sparse forward and backward substitution. Note that the calculation and fac-
torization of Λk and the calculation of ∆µk for k = 1, . . . ,M can be performed
in a parallel fashion on M CPUs.

4.4 Finding the search direction ∆λ

The search direction ∆λ is provided by the linear system (27a). In this sub-
section, we establish the sparsity structure of J , and propose a method for
solving (27a). Let us start with detailing the sparsity structure of J . Using
(26) and (28), we write J as:

J =

M∑
k=1

C̄k

(
R̄−1
I,k − R̄

−1
I,kB̄

T
k Λ
−1
k B̄kR̄

−1
I,k

)
C̄Tk (36)
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Using the structure of C̄k detailed in (5), we note that J is block tridiagonal:

J =


J1,1 J1,2

J1,2 J2,2
. . .

. . .
. . . JM−2,M−1

JM−2,M−1 JM−1,M−1

 (37)

with blocks Jk,k ∈ Smnc,(k,k+1) and Jk,k+1 ∈ Rmnc,(k+1,k+2)×mnc,(k,k+1) given
by:

Jk,k = Ck,k+1(Kk +Kk+1)CTk,k+1 (38a)

Jk−1,k = −Ck−1,kKkC
T
k,k+1 (38b)

where we have introduced:

Kk = R̄−1
I,k − R̄

−1
I,kB̄

T
k Λ
−1
k B̄kR̄

−1
I,k (39)

Note that the size of the blocks in the block-tridiagonal structure of J are
inherited from the structure of the scenario tree. More specifically, the size
of Jk,k is determined by the number of common nodes between scenarios k
and k+ 1, whereas the size of Jk,k+1 is determined by the number of common
nodes between scenario k, k + 1 and scenario k + 1, k + 2.

If F is restricted to have the same sparsity structure as J the Cholesky
factor L, yielding J + F = LLT , is block lower bidiagonal:

L =


L1,1

L2,1 L2,2

. . .
. . .

LM−1,M−2 LM−1,M−1

 (40)

and can be efficiently calculated according to:

J1,1 + F1,1 = L1,1L
T
1,1 (41a)

Jk,k+1 + Fk,k+1 = Lk,kL
T
k+1,k, k = 1, . . . ,M − 1 (41b)

Jk,k + Fk,k − Lk,k−1L
T
k,k−1 = Lk,kL

T
k,k, k = 2, . . . ,M − 1 (41c)

Using L, the search direction ∆λ can be calculated from (27a) via a sparse
forward and backward substitution.

4.5 Forming matrix J

In this subsection, we propose a parallelizable method for forming matrix J ,
where we put the emphasis on reusing components that are available from
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previous computations. First, let us introduce the following block partitioning
of Kk:

Kk =

 Kk,(1,1) . . . K
T
k,(N,1)

...
. . .

...
Kk,(N,1) . . . Kk,(N,N)

 (42)

with blocks Kk,(i,j) ∈ Rm×m, and the notation:

KN1,N2

k =

 Kk,(1,1) . . . KT
k,(N2,1)

...
. . .

...
Kk,(N1,1) . . . Kk,(N1,N2)

 (43)

for the N1 × N2 most top-left blocks of matrix Kk. Due to the structure of
Ck,k+1, see (6), the expressions in (38) can now be simplified as:

Jk,k = K
nc,(k,k+1),nc,(k,k+1)

k +K
nc,(k,k+1),nc,(k,k+1)

k+1 (44a)

Jk−1,k = −Knc,(k−1,k),nc,(k,k+1)

k (44b)

Accordingly, our concern is to calculate a part of Kk for each scenario, where
the size of the part that needs to be computed is governed by the number of
common nodes in the scenario tree for scenario k and its neighboring scenarios.
In the following, we propose a method for calculating top-left parts of Kk.

Let us first make the observation that we can express Kk as:

Kk = R̄−1
I,k − Z̄

T
k Λ
−1
k Z̄k (45)

where we have introduced:

Z̄k = B̄kR̄
−1
I,k (46)

Let us now consider the calculation of the term Z̄Tk Λ
−1
k Z̄k. Due to symmetry,

we can find a rectangular factor Uk, such that Z̄Tk Λ
−1
k Z̄k = UTk Uk, where we

introduce the following block partitioning of Uk:

Uk =

 Uk,(1,1) . . . Uk,(1,N)

...
. . .

...
Uk,(N,1) . . . Uk,(N,N)

 (47)

with blocks Uk,(i,j) ∈ Rm×m. By using this partitioning, we can express Kk,(i,i)

and Kk,(i,j) as:

Kk,(i,i) = R−1
I,k,i − U

T
k,(1,i)Uk,(1,i) − · · · − U

T
k,(N,i)Uk,(N,i) (48a)

Kk,(i,j) = −UTk,(1,i)Uk,(1,j) − · · · − U
T
k,(N,i)Uk,(N,j) (48b)

where R−1
I,k,i ∈ Rm×m denotes the block of R̄−1

I,k corresponding to time stage i+
1. This implies that we need to compute the first nk = max{nc,(k−1,k), nc,(k,k+1)}
block columns of Uk, in the following denoted as Unk

k , in order to assemble
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the required blocks Kk,(i,j). Next, we propose to compute Unk

k by reusing the
Cholesky factor Lk in (34).

Observe that the factor Uk can be calculated according to:

LkUk = Z̄k (49)

This implies that Unk

k can be computed by using only the corresponding part
of Z̄k, i.e. by solving:

LkU
nk

k = Znk

k (50)

where Znk

k ∈ RnN×mnk denotes the first mnk columns of Z̄k.
The computational cost of finding J is accordingly constituted byM matrix

forward substitutions, to calculate Unk

k , and M matrix-matrix multiplications,
to calculate the required parts of Kk. The computations are, however, trivially
decomposable and can be performed in parallel on M CPUs.

5 A dual Newton method with a fixed complexity per iteration

In this section, we provide a summary of the proposed dual Newton strategy
and suggest algorithmic details to enhance its performance.

The method is summarized in Algorithm 1. Note that each iteration con-
sists of a, possibly damped, Newton step on the dual variables, i.e. the calcu-
lation of the search directions ∆µ and ∆λ and an appropriately chosen step
size t. The calculation of the search directions can be performed to a large
extent in parallel as described in Section 3 and 4.

Algorithm 1: Dual Newton strategy
Input: wk, λ, τ

1 while No convergence do
2 Solve subsystems to obtain x∗k(µk, λ) and u∗k(µk, λ)

3 Calculate the blocks in ∇2d(µ, λ) using (26)
4 Solve Newton system to obtain ∆µ and ∆λ
5 Compute an appropriate step size t
6 Update dual variables according to (16)

7 end

5.1 Choice of step size

Because of the non-smooth dual function, a globalization strategy is needed to
ensure convergence of the dual Newton strategy. Several line-search strategies
have been proposed [8], with the common property that they require the eval-
uation of the dual function for candidate step sizes t ∈ (0, 1], i.e. the evaluation
of d(µ+ t∆µ, λ+ t∆λ). Since the dual function can be evaluated by perform-
ing only small matrix-vector multiplications, which are negligible compared to
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solving the large Newton system, the computational cost for performing one
iteration of Algorithm 1 is essentially constant.

In this paper, we select t based on an Armijo line search with backtracking.
Specifically, for every search direction ∆µ and ∆λ, we initialize the step size
as t = 1, and backtrack according to:

t+ = βt (51)

until the following criterion is fulfilled:

d(µ+ t∆µ, λ+ t∆λ) ≤ d(µ, λ) + σ∇d(µ, λ)T
[
∆µ
∆λ

]
(52)

for constants σ, β ∈ (0, 1). Note that because of the low computational cost
for evaluating the dual function, a careful line search can be afforded, i.e. large
constants σ and β can be used. Additionally, observe that due to convexity of
d(µ, λ), a step size t ∈ (0, 1] can always be found such that (52) is fulfilled.

Finally, we note that the line search strategy is parallelizable since the
evaluation of the dual function can be performed in parallel on M CPUs. In
this context the communication overhead resulting from the parallelization
can be reduced by evaluating several candidate step sizes at once.

5.2 Elimination of redundant constraints

In the context of dual Newton strategies, the Hessian of the dual function is
rank deficient if the active constraints (2d) and (2e) together with the dual-
ized constraints (2b) and (2c) are linearly dependent, leading to an inconsis-
tent Newton system [14]. This implies that the need for regularization can be
reduced by eliminating redundant constraints.

For the multi-stage MPC problem (2), linear dependencies occur if inequal-
ity constraints become active for scenarios participating in the same node. In
consequence, for every node in the scenario-tree, we only enforce an inequality
constraint on one scenario participating in that node. The inequality con-
straints are thus enforced implicitly on the other scenarios via the dynamics
and the non-anticipativity constraints. For a detailed description see [12].

5.3 Warm-starting

One of the key advantages of using the dual Newton strategy in the context
of MPC is its capability to exploit the similarity between two subsequent
QPs. Specifically, if the method is provided with an initialization of the dual
variables which corresponds to the correct active set, a one step convergence
follows [8].

An often practically efficient strategy for standard MPC, is to initialize
the method by using a time shift of the dual solution of the previous problem
instance. Due to the tree structure of a multi-stage MPC problem, a time
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Fig. 2: Illustration of two-mass-spring system.

shift of this kind can be performed in several different ways. However, we have
not found a shifting strategy that is consistently performing better than a
warm-start where the problem is initialized at the non-shifted dual solution of
the previous problem instance. For this reason, we only consider a non-shifted
warm-start in the numerical experiments.

6 Numerical experiments

To study the properties of the presented dual Newton scheme we consider a
benchmark example of a two-mass-spring system [25], [13], as illustrated in
Figure 2. The two carts have the same mass m1 = m2 = 1 kg while the spring
constant K is uncertain, However, we know that K ∈ [Kmin, Kmax] where
Kmin = 0.5 N/m and Kmax = 10 N/m. The linear model that describes the
system in continuous time is:

ẋ1

ẋ2

ẋ3

ẋ4

=


0 0 1 0
0 0 0 1

−K/m1 K/m1 0 0
K/m2 −K/m2 0 0



x1

x2

x3

x4

+


0
0

1/m1

0

u (53)

where x1 and x2 denote the relative position of the two carts with respect to
their initial position, x3 and x4 denote the velocities of the carts and u is the
force applied on the active cart, i.e. on cart number 1 as depicted in Figure 2.
We assume that full state measurements are available and define the following
control objectives:

1. Track a unit-step command on the position x2.
2. Keep control actions in the range |u| ≤ 1 N.
3. Allow a maximum of 20% overshoot on x2.

To fulfill these requirements under the given parameter uncertainty we
use the multi-stage MPC framework with prediction horizon N = 50, ro-
bust horizon Nr = 2 and md = 3 realizations of the uncertainty, namely
K ∈ {0.5, 5.25, 10}, i.e. we consider mNr

d = 9 scenarios. The continuous time
dynamics in (53) are discretized using matrix exponentials, assuming piecewise
constant controls in intervals of Ts = 0.1 s. The steady state point to be tracked
is xref = [1, 1, 0, 0]T , uref = 0 and the initial condition x0 = [0, 0, 0, 0]T . Fi-
nally, the quadratic weights in the objective function are chosen constant and
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Fig. 3: Position of passive cart in closed loop for the whole range of spring
constant values in the simulation model.

equal to:

Qk,i =


1 0 0 0
0 10 0 0
0 0 1 0
0 0 0 1

 , ∀k, i 6= N (54a)

Qk,N =


10 0 0 0
0 100 0 0
0 0 10 0
0 0 0 10

 (54b)

Rk,i = 1, ∀k, i (54c)

To validate the robustness of the adopted control scheme, we first run a
series of closed-loop simulations with different values of the spring constant
Knom in the simulation model. The closed-loop trajectories of the cart position
x2 for Knom ∈ {1, 2 . . . , 10} are shown in Figure 3. The stopping criterion is
‖∇d(µ, λ)‖∞ < 10−4. The predicted optimal state and control trajectories for
one MPC step for a non-trivial problem instance with Knom = 2 are depicted
in Figure 4. Note that the control variables for the scenarios are identical on
the robust horizon and that the state and control bounds are respected.

In the experiments we use a Levenberg-Marquardt regularization, i.e. we
select F = δI whenever J is singular and Fk = δI whenever ∂rk

∂µk
is singular,

where we use δ = 10−8. Table 1 summarizes the maximum and average num-
ber of iterations in a closed-loop simulation with Knom = 10, with and without
the redundant constraints as described in Section 5.2, for a cold-started and
warm-started scheme as described in Section 5.3. Note that the performance is
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Fig. 4: Optimized trajectories for x2, x4 and u in one MPC problem instance.

Table 1: Dual Newton iterations in closed-loop.

Elim. of redund. const. Initialization Max. no. it. Avg. no. it.

Yes Cold start at zero 36 12
Yes Warm-start 16 5.3

No Cold start at zero 39 12
No Warm-start 17 5.5

significantly improved by employing a warm-started scheme whereas a modest
improvement is achieved by eliminating the redundant constraints. The aver-
age number of iterations in Table 1 are calculated over the non-trivial part of
the simulation, i.e., until no inequality constraints are active at the solution.

To conclude, we visualize some essential sparsity patterns based on the
benchmark example of this section. To make the structures more visible we
use a shorter prediction horizon of N = 5 here. Figure 5 depicts the structure
of the dual Hessian ∇2d(µ, λ) which is in agreement with (15). The block
tridiagonal matrices Λk and J , which allow for efficient factorizations, are
shown in Figure 6.

7 Conclusions

In this paper, we present a dual Newton strategy for multi-stage MPC. To
achieve a fixed computational complexity per iteration, we propose to dual-
ize both the dynamic constraints and the non-anticipativity constraints. As
a result, the dual function can be evaluated very cheaply, and the gradient
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Fig. 6: Sparsity patterns of matrices Λk and J .

and Hessian of the dual function can be formed at a low computational cost.
Additionally, the dual Newton system can be reformulated into several small
and highly structured linear systems that to a large extent can be solved in
parallel. As a consequence, the resulting method supports a large degree of
parallelism.
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