
THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Towards Large-Capacity and
Cost-Effective Main Memories

DMITRY KNYAGININ

Division of Computer Engineering
Department of Computer Science and Engineering

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2017

Towards Large-Capacity and Cost-Effective Main Memories
Dmitry Knyaginin
ISBN 978-91-7597-563-4

Copyright c© 2017 Dmitry Knyaginin

Series number: 4244
in the series Doktorsavhandlingar vid Chalmers tekniska högskola
Ny serie (ISSN 0346-718X)

Technical report 142D
Computer Architecture Research Group
Division of Computer Engineering

Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Gothenburg, Sweden
Phone: +46 (0)31-772 10 00

Author e-mail:
dmitryk@chalmers.se

d.knyaginin@gmail.com

Printed by Chalmers Reproservice
Gothenburg, Sweden 2017

Towards Large-Capacity and Cost-Effective Main Memories
Dmitry Knyaginin
Division of Computer Engineering, Chalmers University of Technology

ABSTRACT
Large, multi-terabyte main memories per processor socket are instrumental to address

the continuously growing performance demands of domains like high-performance
computing, databases, and big data. It is an important objective to design large-capacity
main memories in a way that maximizes their cost-effectiveness and at the same time
minimizes performance losses caused by cost-effective tradeoffs. This thesis addresses a
number of issues towards this objective.

First, parallel memory protocols, that are key to large main memories, have a limited
number of pins. This implies that to address future capacities, the protocols would
have to multiplex the pins to transfer wider addresses in a greater number of cycles,
hurting performance. This thesis contributes with the concept of adaptive row addressing,
comprising three techniques, as a general approach to minimize the performance losses
of such cost-effective parallel memory protocols, and, in fact, make them as efficient as
an idealized protocol with many enough pins to transfer each address in one cycle.

Second, emerging Storage-Class Memory (SCM) technologies can potentially revolu-
tionize main memory design by enabling large-capacity and cost-effective hybrid main
memories, that combine DRAM and SCM. However, they add multiple dimensions to
the design space of main memories. Detailed exploration of such design spaces solely by
means of simulation or prototyping is inefficient. This thesis contributes with Crystal, an
analytic method for partitioning hybrid-memory area between DRAM and SCM at design
time, and Rock, a framework for pruning design spaces of hybrid memories. Crystal and
Rock help system architects to quickly and correctly identify the most promising design
points for subsequent detailed evaluation.

Third, in hybrid main memories, DRAM is the limited resource, and co-running
programs compete for it. Fair and at the same time high-performance management of
such memories is an important and open issue. To avoid long operating-system overheads,
this management has to be performed by hardware. This thesis contributes with ProFess:
a Probabilistic hybrid main memory management Framework for high performance and
fairness. ProFess includes two hardware-based mechanisms that cooperate to significantly
improve fairness, performance, and energy-efficiency compared to the state-of-the-art.

Keywords: Large-Capacity Local Memory; Parallel Memory Protocols; Hybrid Main
Memory; Design-Space Exploration; Hardware-Based Hybrid Memory Management;
Cost-Effectiveness; Fairness; Performance; Energy Efficiency

ii

Preface

Parts of the contributions presented in this thesis have previously been published in the
following manuscripts:

• Dmitry Knyaginin, Georgi N. Gaydadjiev, and Per Stenström, “Crystal:
A design-time resource partitioning method for hybrid main memory,” in
Proceedings of the 43rd International Conference on Parallel Processing,
Minneapolis, MN, USA, Sept. 2014, pp. 90–100.

• Dmitry Knyaginin, Vassilis Papaefstathiou, and Per Stenström, “Adaptive
row addressing for cost-efficient parallel memory protocols in large-capacity
memories,” in Proceedings of the 2nd International Symposium on Memory
Systems, Washington, DC, USA, Oct. 2016, pp. 121–132.

The following manuscripts contain parts of the contributions presented in this thesis and
have been submitted to international conferences:

• Dmitry Knyaginin and Per Stenström, “Rock: A framework for pruning the
design space of hybrid main memory systems,” Under review since Mar. 2017.

• Dmitry Knyaginin, Vassilis Papaefstathiou, and Per Stenström, “ProFess:
A probabilistic hybrid main memory management framework for high perfor-
mance and fairness,” Under review since Apr. 2017.

The following manuscript has previously been accepted to a workshop, though is not
included in this thesis:

• Dmitry Knyaginin, Sally A. McKee, and Georgi N. Gaydadjiev, “A hybrid
main memory systems taxonomy,” in Memory Architecture and Organization
Workshop, co-located with Embedded Systems Week, Tampere, Finland, Oct.
2012, pp. 1–6.

iii

iv PREFACE

Acknowledgments

First of all, I would like to thank my advisor, Per Stenström, for his continuous support,
critical feedback, and guidance throughout the years. It has been a privilege learning
Computer Architecture research from Per.

A big thank you to Vassilis Papaefstathiou for insightful discussions and successful
collaboration. His input has been extremely helpful to me.

Jan Jonsson has played a key role in my follow-up meetings throughout the years; I am
grateful to Jan for that. On a non-work note, I thank Jan for his reminders that there exists
film photography, a hobby that I have put aside for way too long.

I am thankful to Lars Svensson for great discussions and support. His help has been very
important to me, especially in the early days of my PhD.

I thank Rolf Snedsböl for managing my teaching duties. Thanks to Rolf, I have had a
great pleasure working in multiple courses together with Jan Jonsson, Roger Johansson,
Risat Mahmud Pathan, Fatemeh Ayatolahi, Lars Bengtsson, Lennart Hansson, Madhavan
Manivannan, Ahsen Ejaz, Beshr Al Nahas, Per Larsson-Edefors, Alen Bardizbanyan, and
I ask forgiveness if I forgot to mention someone.

A thank you to Sally McKee and Georgi Gaydadjiev for their input and successful
collaboration, and to Magnus Själander for his help in the beginning of my PhD.

For help with various mathematical aspects of this thesis, I thank Devdatt Dubhashi,
Christos Dimitrakakis, Fredrik Johansson, and Vinay Jethava.

I thank Miquel Pericàs for timely discussions about the last project.

To Jacob Lidman, Bhavishya Goel, and Prajith Ramakrishnan Geethakumari – a Big thank
you for supporting the ttitania cluster. I have used ttitania to run most of my experiments.

Many thanks to all the colleagues with whom I have shared the office rooms over the
years, and who have contributed to the nice, productive atmosphere. Special thanks to

v

vi ACKNOWLEDGMENTS

Alen Bardizbanyan for great humor and to Nadja Holtryd for helping me to improve my
Swedish and for her comments about a draft of this thesis.

To everybody at the Department of Computer Science and Engineering – many thanks
for the great environment. Special thanks to Eva Axelsson, Marianne Pleen-Schreiber,
Agneta Nilsson, Anna-Lena Karlsson, Malin Nilsson, Tiina Rankanen, Elisabeth Kegel
Andreasson, Monica Månhammar, Peter Helander, Johan Hansén, Rune Ljungbjörn, Koen
Lindström Claessen, Gerardo Schneider, Arne Linde, and Johan Karlsson. Cordial thanks
to the Computer Graphics group—Markus Billeter, Viktor Kämpe, Dan Dolonius, Sverker
Rasmuson, Erik Sintorn, and Ulf Assarsson—for all the fun discussions. To Anurag Negi,
Alen Bardizbanyan, Vinay Jethava, Madhavan Manivannan, Jacob Sznajdman, Vilhelm
Verendel, and Katarina Steffenburg – my gratitude for their great friendship.

Finally, I would like to thank my parents, Victoria and Vladimir, and my brother, Oleg,
for their unconditional love. I dedicate this thesis to them.

This thesis is based upon work supported by grants from the Swedish Research Council
(Vetenskapsrådet) under the Chalmers Adaptable Multicore Processing Project (CHAMPP),
from the European Union under the FP7 project EUROSERVER (No: 610456), and from
the European Research Council (ERC) under the MECCA project (contract 340328).

Dmitry Knyaginin
Gothenburg, April 2017

Contents

Abstract i

Preface iii

Acknowledgments v

Acronyms xv

1 Introduction 1
1.1 Problem Statements . 3
1.2 Contributions . 4
1.3 Thesis Organization . 5

2 Cost-Effective Addressing in Large-Capacity Main Memories 7
2.1 Background and Motivation . 9

2.1.1 DDR4 DRAM Memory System 9
2.1.2 Multi-Cycle Addressing . 12
2.1.3 DDR4-Based Two-Cycle Row Addressing 12

2.2 Adaptive Row Addressing . 13
2.2.1 Row-Address Caching . 13
2.2.2 Row-Address Prefetching . 18
2.2.3 Adaptive Row-Access Scheduling 21

2.3 Experimental Setup . 24
2.4 Experimental Results . 27

2.4.1 Main Evaluation . 27
2.4.2 Sensitivity Analysis . 31

2.5 Related Work . 33
2.6 Summary . 35

vii

viii CONTENTS

3 Partitioning of Hybrid Memory Area 37
3.1 Background . 39

3.1.1 Memory Technologies . 39
3.1.2 Benefits of Hybrid Main Memory 40
3.1.3 Allocation of Main Memory Capacity 40

3.2 Crystal . 41
3.2.1 Complexity of Equal-Area Partitioning 41
3.2.2 Assumptions . 41
3.2.3 Models and Method . 44

3.3 Experimental Methodology . 47
3.4 Experimental Results . 51

3.4.1 Applicability of Crystal . 52
3.4.2 Validation of Partitionings Produced by Crystal 56

3.5 Related Work . 60
3.6 Summary . 61

4 Pruning of Hybrid Memory Design Space 63
4.1 Hybrid Memory Design Dimensions 65
4.2 Rock . 66

4.2.1 Workload Representation . 67
4.2.2 Resource Allocation . 67
4.2.3 Data Placement . 68
4.2.4 Final Calculations . 69

4.3 Experimental Methodology . 70
4.4 Experimental Results . 73

4.4.1 Work1 Design-Space Pruning 73
4.4.2 Work2 Design-Space Pruning 77

4.5 Related Work . 81
4.6 Summary . 82

5 Hardware-Based Management of Hybrid Memory 83
5.1 Background and Motivation . 85

5.1.1 Memory Technologies . 85
5.1.2 Large-Capacity, Flat, Migrating Memory Managed by Hardware 85
5.1.3 Baseline Organization . 86
5.1.4 The Fairness Problem . 88
5.1.5 The Performance Problem . 88

5.2 ProFess . 90

CONTENTS ix

5.2.1 Slowdown Estimation Mechanism 90
5.2.2 Migration Decision Mechanism 95
5.2.3 Integration of SEM and MDM 99

5.3 Experimental Setup . 100
5.3.1 System Configuration . 100
5.3.2 Workloads . 103
5.3.3 Figures of Merit . 104

5.4 Experimental Results . 104
5.4.1 Single-Program Performance of MDM 104
5.4.2 Sensitivity Analysis of MDM 106
5.4.3 Multi-Program Evaluation of MDM 107
5.4.4 Multi-Program Evaluation of ProFess 109

5.5 Related Work . 111
5.6 Summary . 112

6 Conclusion 113
6.1 Thesis Contributions . 114
6.2 Future Work . 116

Bibliography 118

x CONTENTS

List of Figures

2.1 Simplified organization of one DDR4 die 9
2.2 RDIMM with 16 memory devices and 64-bit data bus 11
2.3 Read latency increase due to two-cycle row addressing 13
2.4 System-level performance loss due to two-cycle row addressing 13
2.5 Address mappings . 14
2.6 Address-caching schemes R-1, F-31, D-31, and W-31 15
2.7 Implementation sketch of address-caching scheme W-31 17
2.8 Example address-cache miss curves 19
2.9 Negative impact of row-address caching on request service order . . . 21
2.10 Minimum delays experienced by older read request when younger read

request gets serviced first . 23
2.11 Positive impact of row-address caching on request service order 23
2.12 Cooperation of adaptive row-access priority policy and row-address

prefetching for best efficiency of FRFCFS and R-1 27
2.13 Performance of FRFCFS-A . 29
2.14 Performance of FRFCFS-AP . 29
2.15 FRFCFS-A and 31-entry caches vs. FRFCFS-AP and 15-entry caches . 30
2.16 Page coloring applied to FRFCFS-A(P) and W-31 31
2.17 Random virtual-to-physical address mapping applied to FRFCFS-A(P)

and W-31 . 33
2.18 11-bit MSPs applied to FRFCFS-A(P) and W-31 33

3.1 Logical memory hierarchy organizations 42
3.2 System modeled . 42
3.3 Miss curves of selected programs . 48
3.4 Results for hybrids with HDD and mcf/soplex workloads 52
3.5 Results for hybrids with HDD and lbm/sjeng workloads 54
3.6 Results for hybrids III-L and III-H and lbm/sjeng workloads 54

xi

xii LIST OF FIGURES

3.7 Results for hybrids with HDD and CG/sjeng workloads 55
3.8 Color coding for parameter values and their combinations 58
3.9 Sensitivity results for hybrid II-L and W4 from lbm/sjeng program set . 58
3.10 Sensitivity results for hybrid I-L and W4 from lbm/sjeng program set . 59
3.11 Sensitivity results for hybrid III-L and W4 from lbm/sjeng program set 59

4.1 Proposed system of design dimensions 65
4.2 System with flat hybrid main memory 66
4.3 Design space of Work1 with UA DRA policy and Set1 in 3D view . . . 74
4.4 Design space of Work1 with UA DRA policy in two-dimensional view 75
4.5 Design subspace of Work2 with UA DRA policy and Set1 in 3D view . 78
4.6 Design subspace of Work2 with LU DRA policy and Set1 in 3D view . 78
4.7 Design subspace of Work2 with HU DRA policy and Set1 in 3D view . 78
4.8 Design subspace of Work2 with two DIMMs in total 79
4.9 Design subspace of Work2 with three DIMMs in total 79
4.10 Design subspace of Work2 with four DIMMs in total 79

5.1 Baseline flat migrating organization of large-capacity hybrid memory . 87
5.2 Individual program slowdowns under PoM management 88
5.3 Interleaved division into regions . 91
5.4 ST entry and STC organization . 96
5.5 Single-program performance of MDM normalized to PoM 105
5.6 Single-program M1 accesses of MDM normalized to PoM 105
5.7 Single-program STC hit rates under MDM 105
5.8 Performance sensitivity to STC size 107
5.9 Sensitivity of STC hit rates to STC size 107
5.10 Maximum slowdown of MDM normalized to PoM 108
5.11 Performance of MDM normalized to PoM 108
5.12 Energy efficiency of MDM normalized to PoM 108
5.13 Maximum slowdown of ProFess normalized to PoM 109
5.14 Performance of ProFess normalized to PoM 109
5.15 Energy efficiency of ProFess normalized to PoM 109
5.16 Individual program slowdowns under PoM, MDM, and ProFess 110

List of Tables

2.1 Cases when younger A2 gets issued ahead of older row-access command 22
2.2 System configuration for evaluation of adaptive row addressing 25
2.3 DRAM device parameters for evaluation of adaptive row addressing . . 25
2.4 Memory scheduling championship programs 26

3.1 Program profile format . 43
3.2 Parameters and variables in (3.1) to (3.8) 45
3.3 Selected single-threaded programs for evaluation of Crystal 47
3.4 System configuration for evaluation of Crystal 48
3.5 Default parameter values for evaluation of Crystal 49
3.6 Characteristics of DRAM revisions F and G 49
3.7 Selected memory-technology characteristics for evaluation of Crystal . 50
3.8 Hybrids and respective baselines for evaluation of Crystal 51

4.1 DRA policies . 67
4.2 Parameters and variables in (4.1) . 69
4.3 Selected workloads for evaluation of Rock 71
4.4 System configuration for evaluation of Rock 71
4.5 Memory-technology access latencies for evaluation of Rock 72
4.6 Sets of assumed parameter values for sensitivity analysis 72

5.1 Flat migrating organizations . 86
5.2 Migration algorithms . 89
5.3 Per-core SEM counters . 92
5.4 Experimental estimates of sampling accuracy 94
5.5 Quantized access-counter values . 97
5.6 Per-core MDM counters . 97
5.7 Migration decisions guided by SEM 99

xiii

xiv LIST OF TABLES

5.8 System configuration for evaluation of ProFess 101
5.9 Individual programs for evaluation of ProFess 103
5.10 Multiprogrammed workloads for evaluation of ProFess 103

Acronyms

3D Three-Dimensional

ACM Address-Cache Miss rate

ACT Activate

APP Adaptive row-access Priority Policy

BLISS Blacklisting memory Scheduler

CA Command/Address

CL Column Latency

CPU Central Processing Unit

CWL Column Write Latency

DDR Double Data Rate

DIMM Dual In-line Memory Module

DRA Design-time Resource Allocation

DRAM Dynamic Random Access Memory

DSE Design-Space Exploration

FRFCFS First-Ready, First-Come-First-Serve

HBM High Bandwidth Memory

HDD Hard Disk Drive

HMC Hybrid Memory Cube

HU High-Utility

IPC Instructions Per Cycle

LLC Last-Level Cache

LPDDR Low Power Double Data Rate

xv

xvi ACRONYMS

LRDIMM Load Reduced Dual In-line Memory Module

LRU Least Recently Used

LSP Least-Significant Portion

LU Low-Utility

MC Memory Controller

MCA Multi-Cycle Addressing

MDM Migration Decision Mechanism

MEA Majority Element Algorithm

MPKI Misses Per Kilo Instruction

MRS Mode Register Set

MSC Memory Scheduling Championship

MSP Most-Significant Portion

NVM Non-Volatile Memory

OS Operating System

PCM Phase-Change Memory

PRE Precharge

QAC Quantized Access-Counter

RD Column Read

RDIMM Registered Dual In-line Memory Module

RDP Run-time Data Placement

ROB Re-Order Buffer

RRAM Resistive Random Access Memory

SATA Serial Advanced Technology Attachment

SB Swap Buffer

SCA Single-Cycle Addressing

SCM Storage-Class Memory

SDR Single Data Rate

SEM Slowdown Estimation Mechanism

SSD Solid-State Disk

xvii

ST Swap-group Table

STC Swap-group Table Cache

UA Utility-Agnostic

UDIMM Unbuffered Dual In-line Memory Module

USIMM Utah Simulated Memory Module

WR Column Write

xviii ACRONYMS

1
Introduction

The supply of cost-effective memory devices to computer manufacturers has been one
of the main business drivers for the semiconductor industry since its birth in the 70s [1].
Large, multi-terabyte main memories per processor socket address demands of domains
like high-performance computing, databases, and big data. In addition, such memories
represent an attractive solution to significantly reduce costs and energy expenditure in
multinode systems by reducing the total number of nodes (scale-in) and at the same time
increasing the capacity of each node’s memory (scale-up) [2]. Thus, the design of large
and cost-effective local (per socket) main memories is an important objective, and the
thesis at hand tackles a number of issues towards it.

Dynamic Random Access Memory (DRAM) had been addressing continuously
growing main memory demands by scaling to higher areal densities at about 4x / 3
years [3]. However, in the last decade DRAM scaling has slowed to 2x / 3 years [3], fueling
interest in memory technologies that promise to scale better due to smaller cell size and/or
Three-Dimensional (3D) cell stacking [4]. This has brought NAND Flash—the densest
commercial memory technology, conventionally used for high-performance storage—
closer to the processor [5–7], generated a massive body of work about Phase-Change
Memory (PCM) [8] and Resistive Random Access Memory (RRAM) [9–13], and has lead

1

2 CHAPTER 1. INTRODUCTION

to the introduction of 3D Xpoint [14]. A new term, Storage-Class Memory (SCM), has
been introduced to collectively refer to technologies that fit in the density, latency, and cost-
per-byte gaps between DRAM and magnetic disk. In order to enjoy the best characteristics
of both DRAM and SCM while hiding their drawbacks, the two technologies can be
combined into hybrid main memory. As a result, such main memories can be more
cost-effective than DRAM-only memories [5, 15, 16]. Orthogonal to die-density scaling,
3D die stacking further increases device densities. For instance, the fourth generation of
parallel Double Data Rate (DDR) memory protocols, named DDR4 [17], has standardized
3D die stacking for DRAM and supports up to 512-GB memory modules. 3D die stacking
employed in both DRAM and SCM devices is important for maximizing hybrid main
memory capacity. Thus, this thesis considers 3D-stacked DRAM devices and 3D-stacked
SCM devices as basic building blocks of large-capacity memories.

Large local memories are organized as multiple parallel channels populated with
large-capacity modules. This organization is remaining key to large capacities, despite
that each conventional channel offers relatively modest bandwidth. For instance, Intel
Xeon E7-8893 v4 supports up to 3TB of DRAM on four channels with a maximum
bandwidth of 25.6GB/s per channel [18, 19]. Emerging protocols like High Bandwidth
Memory (HBM) [20] and Hybrid Memory Cube (HMC) [21] offer significantly higher
bandwidths per channel. However, HBM is designed for tight integration with the host
processor via a common interposer, that implies relatively small maximum capacity. At
the same time, HMC is a point-to-point protocol, and to build large-capacity memory
individual cubes have to be arranged into a “far memory” network [21], where each hop
incurs a significant latency overhead [22], making HMC unattractive for large-capacity
applications. Thus, this thesis considers the conventional parallel memory protocols.

Hybrid main memories replace some of DRAM with SCM. For instance, Intel
Purley [23] will have six channels, each accommodating one DRAM and one 3D Xpoint
module instead of two DRAM modules. In terms of topology hybrid memory can be
organized as flat, where DRAM and SCM are directly accessible by the processor [24–29],
or as hierarchical, where SCM is accessible only via DRAM [15, 16, 30]. The flat
organization is more flexible than the hierarchical one by allowing the processor to
bypass DRAM for accesses to data blocks that, due to specific access patterns, are more
beneficial to be accessed from SCM. Regardless of topology, in terms of policy for
promoting data from SCM to DRAM, hybrid memories can be organized as migrating,
where data are moved upon promotion [16, 24, 26–30], or as replicating, where data are
copied [15, 25]. When DRAM capacity is large (e.g., one DRAM module per channel like
in Intel Purley [23]), it is beneficial to employ the migrating organization, such that the
capacities of both DRAM and SCM contribute to the total capacity visible to the Operating
System (OS). This makes flat, migrating hybrid memories particularly attractive.

1.1. PROBLEM STATEMENTS 3

1.1 Problem Statements
The thesis at hand tackles the multifaceted question of building large-capacity main
memory per processor socket such that performance losses due to cost-effective tradeoffs
are minimized. The thesis identifies three problems. First, parallel memory protocols
like DDR4 [17], which are key to large main memories, have a limited number of pins
that have to be used economically for addressing future capacities. Splitting wide row
addresses into multiple parts causes additional address-transfer cycles, that increase the
average access latency and consequently hurt performance, particularly in large DRAM-
only memories. Thus, this thesis tackles the question of how to address large capacities
using the available address pins economically with minimum performance losses.

Second, the large design space of main memories combining DRAM and SCM
implies that design-space exploration via detailed simulation is slow, making it possible
that the most promising design points are not timely identified, and so reducing the
efficiency of system design. In general, the design space includes such parameters as
DRAM and SCM densities, areas (e.g., the number of devices), access latencies, and the
way DRAM and SCM are organized into hybrid memory, to name a few. Since it is highly
inefficient to compare each design point using detailed simulation, it is important to prune
the design-space using high-level models and thereby quickly identify the most promising
design points for subsequent detailed evaluation. Thus, this thesis addresses the question
of how to explore design tradeoffs quickly and correctly via design-space pruning.

Third, in large hybrid memories, naive DRAM allocation among co-running programs
can significantly hurt system performance and fairness. In such memories, DRAM is a
limited resource and co-running programs compete for it. If a program fails to obtain
enough DRAM for its needs, it might experience an excessive slowdown. Thus, for
fair execution, it is important to monitor the impact of DRAM allocation on individual
program slowdowns and to dynamically adjust DRAM allocation such that the maximum
slowdown among the programs is minimized. At the same time, for high performance, it
is important to dynamically identify data blocks that are beneficial to be accessed from
DRAM and to timely migrate them there. Such migration decisions should be driven by
individual cost-benefit analysis for each pair of blocks in SCM and DRAM, as opposed
to a heuristic that can produce naive decisions hurting performance. Thus, the thesis at
hand tackles the problem of large hybrid memory management such that high fairness is
achieved at the same time as high performance.

4 CHAPTER 1. INTRODUCTION

1.2 Contributions
This thesis addresses the above problems by making the following contributions. First, for
cost-effective parallel memory protocols in large-capacity memories, the thesis contributes
adaptive row addressing [31] as a general approach to close the performance and energy-
efficiency gaps between protocols using multi-cycle row addressing and an idealistic
protocol using single-cycle row addressing. Adaptive row addressing is presented in
Chapter 2 and combines three techniques:

• row-address caching to reduce the number of address-transfer cycles by exploiting
row-address locality [32, 33], where the thesis proposes 2-way row-address caches
with a custom organization for high encoding efficiency;

• to alleviate the penalty of address-cache misses the thesis proposes row-address
prefetching; and

• to make the memory-request scheduler aware of variable address-transfer latencies
and thus to eliminate a negative impact of row-address caching on the request-service
order, the thesis proposes an adaptive row-access priority policy.

Second, to facilitate complete and accurate design-space exploration for hybrid main
memories by timely identifying the most promising design points for subsequent detailed
evaluation, this thesis contributes two analytic methods, presented in Chapters 3 and 4:

• Crystal [34], a design-time resource partitioning method for quick memory-system area
partitioning between DRAM and SCM through exhaustive search for given workloads
and partitioning goals (e.g., minimize execution time, energy, and cost); and

• Rock, a framework that helps system architects to infer important trends for design-
space pruning by mutually considering hybrid-memory design dimensions like the total
memory-system area, memory-system area partitioning between DRAM and SCM,
allocation of the DRAM and SCM capacities among co-running programs, and data
placement within the allocated capacities.

Lastly, to address the fairness and performance issues in hardware-managed, flat, migrat-
ing hybrid memories the thesis contributes ProFess, a Probabilistic hybrid main memory
management Framework for high performance and fairness, presented in Chapter 5.
ProFess combines two mechanisms:

• a Slowdown Estimation Mechanism (SEM) to dynamically monitor individual program
slowdowns in multiprogrammed workloads based on a new approach to proxy perfor-
mance via the number of served memory requests and migrations in proposed private
(dedicated, one per core) and shared regions of the hybrid memory; and

1.3. THESIS ORGANIZATION 5

• a conceptually new, probabilistic Migration Decision Mechanism (MDM) to predict
the number of accesses to each data block and thereby enable individual cost-benefit
analysis for each pair of blocks in SCM and DRAM for driving migration decisions.

Within ProFess, MDM decides which blocks to move to DRAM for high system perfor-
mance, and SEM guides it towards high fairness.

1.3 Thesis Organization
The rest of the thesis is organized as follows. The next four chapters describe one
contribution each from motivation to proposal to evaluation: Chapter 2 presents the
concept of adaptive row addressing and the three techniques under its umbrella; Chapters 3
and 4 respectively present Crystal and Rock; and Chapter 5 presents ProFess and its
two key mechanisms, SEM and MDM. Finally, Chapter 6 discusses future work and
concludes the thesis.

6 CHAPTER 1. INTRODUCTION

2
Cost-Effective Addressing in

Large-Capacity Main Memories

Parallel DDR protocols with multi-drop buses have been de facto standard main memory
protocols for about 15 years, and DDR4 [35] is the latest in the line. Although emerging
point-to-point protocols like Hybrid Memory Cube (HMC) [21] offer significantly higher
peak bandwidths, they fall short in terms of latency in large-capacity memories. For
instance, HMC devices have to be connected into a “far memory” network to increase
capacity, and each hop adds latency1. Parallel protocols with multi-drop buses do
not have this issue; thus they will remain key to large-capacity and still low-latency
main memories [37].

Future memory capacity growth implies wider addresses. However, the address bus
currently implemented in DDR4 has reached the limit of the feasible number of pins for
high-speed (high-data-rate) parallel protocols: it is the widest bus of the protocol, and

1Based on the state-of-the-art Xilinx SERDES [36], optimistic latency estimates for a 16-lane link
with 15Gbps lanes are 15-20ns per hop, one way. Assuming 40-50ns internal DRAM latencies, such
link latencies are inline with the read latencies of a single HMC measured by Gokhale et al. [22].

7

8 CHAPTER 2. COST-EFFECTIVE ADDRESSING

increasing its width would present a connectivity challenge leading to signal integrity
issues, routing congestion, pad-limited designs, and increased manufacturing expense [38].
The burden of additional address pins would propagate through memory modules and
channels down to the processor, requiring system-level changes. That is, widening the
address bus would render parallel memory protocols slow and cost-ineffective.

So to meet large-capacity demands, parallel protocols should multiplex the avail-
able pins and transfer each address in multiple bus cycles2, implementing Multi-Cycle
Addressing (MCA). An idealistic protocol labeled DDRid would have the same speed but
enough pins to transfer each address in a single bus cycle, implementing Single-Cycle
Addressing (SCA). Compared to DDRid, MCA protocols can have significantly lower
performance and energy efficiency, and so it is important to improve them.

This chapter contributes adaptive row addressing as a general approach to close the
performance and energy-efficiency gaps between MCA and idealistic SCA protocols. It
does so by combining three techniques. A first technique is row-address caching that
exploits row-address locality [32, 33] to reduce the number of cycles per address transfer
by caching the most-significant row-address bits. I propose 2-way row-address caches
with a custom organization for high efficiency. To alleviate the performance penalty of
address-cache misses, I propose a second technique: row-address prefetching that is ef-
fective yet simple to integrate with state-of-the-art memory schedulers. Further, a detailed
analysis of memory-request scheduling reveals that row-address caching can negatively
impact the request service order. This holds for state-of-the-art schedulers that reorder row
accesses using the conventional first-ready policy [39, 40] (for instance, First-Ready, First-
Come-First-Serve (FRFCFS) [39, 40] or the Blacklisting memory Scheduler (BLISS) [41],
among many others). To eliminate the negative impact, I propose a third technique: an
adaptive row-access priority policy that can simply replace the first-ready policy.

I study the effectiveness of the above techniques using a high-speed, cost-effective
MCA protocol based on DDR4 in large-capacity, low-latency main memories. The
read latency gap between the MCA protocol and DDRid is 7.5% on average and up to
12.5%; the system-level performance and energy efficiency gaps are 5.5% on average
and up to 6.5%. My evaluation shows that: i) the proposed 2-way row-address caches
perform nearly as well as fully-associative ones; ii) the benefit of row-address prefetching
exceeds the benefit of doubling the address-cache size; and iii) the adaptive row-access
priority policy cooperates with row-address prefetching to achieve the best performance.
Combined, the three techniques of adaptive row addressing robustly close the gap between
the MCA protocol and DDRid.

2Unless stated otherwise, the word “cycle” denotes an address-bus cycle throughout this chapter.

2.1. BACKGROUND AND MOTIVATION 9

Figure 2.1: Simplified organization of one DDR4 die

The rest of this chapter is organized as follows. Section 2.1 presents the background
and motivation, Section 2.2 adaptive row addressing, and Section 2.3 describes the
experimental setup. Section 2.4 presents the results, Section 2.5 discusses related work,
and Section 2.6 summarizes the chapter.

2.1 Background and Motivation

According to insights by JEDEC member companies, future systems will employ a point-
to-point protocol for high bandwidth and a parallel protocol with multi-drop buses for
large capacity and low latency [37]. Next, Section 2.1.1 provides relevant background
information on large-capacity memories and DDR4, the latest parallel memory protocol.
Section 2.1.2 motivates MCA, and Section 2.1.3 motivates adaptive row addressing.

2.1.1 DDR4 DRAM Memory System

Device Organization A DDR4 device is organized as up to eight 3D-stacked memory
dies connected by through-silicon vias. The dies share the Command/Address (CA) bus
and the data bus. A die contains four bank groups each comprising four banks, as shown
in Figure 2.1 [42]. Each bank is organized as a memory array with up to 256K rows and
1K columns [35].

10 CHAPTER 2. COST-EFFECTIVE ADDRESSING

Device Operation The precharge command (PRE) prepares the target bank for an
activation and incurs a delay labeled tRP . The activate command (ACT) opens a row
in a bank, i.e., senses the target row into the bank’s row buffer (also known as sense
amplifiers). ACT incurs a delay labeled tRCD . Next, the target column is accessed in
the row buffer by column read (RD) or write (WR) commands with respective delays
CL and CWL. The row buffer is accessed in bursts of eight data-bus half-cycles, and so
each column access occupies the data bus for four cycles. Activations are destructive,
thus the content of the row buffer has to be restored to the memory array. The restore
starts automatically in the background and its latency is tRAS . Hence, the minimum
delay between consecutive ACTs to the same bank is tRC = tRAS + tRP . The delay
between consecutive ACTs to different banks in the same bank group is labeled tRRD_L,
and that to different banks in different groups is labeled tRRD_S . Because of bank
grouping, tRRD_L > tRRD_S . Likewise, there are two delays between consecutive
column accesses: tCCD_L and tCCD_S , where tCCD_L > tCCD_S [35].

Device Address Pins A typical DDR4 device used in large-capacity memories has
78 pins in total, half of which are power and ground and four are data pins [42]. Most of
the remaining pins belong to the CA bus.

The address pins of the CA bus include three Chip-ID pins for addressing the 3D-
stacked dies, two bank-group and two bank-address pins for addressing the banks,
and 18 pins labeled A[17:0] for row addressing during ACT. Pins A[9:0] are
multiplexed for column addressing within the open row during the column access
commands (RD or WR).

The row address is significantly wider than the column address (18 vs. 10 bits),
and in large-capacity memories this width gap has been growing. That is, the row-
address width dictates the CA-bus width. As a result, some of the CA-bus pins are
under-utilized: a detailed analysis reveals that pins A[17] and A[13] are functionally
used only during ACT3.

Channel Organization A parallel memory channel is organized as one or more
memory modules that share the CA bus and the data bus. A module is organized as
a number of memory devices that share the CA bus, but each device connects to a
private slice of the data bus. For instance, the Registered Dual In-line Memory Module
(RDIMM) [43] in Figure 2.2 [44] holds 16 memory devices each with four data pins

3Pins A[17] and A[13] are used during ACT and Mode Register Set (MRS), but during MRS
they must be set to zero [35] and thus they are not functionally used (i.e., they can be internally
hardwired to zero).

2.1. BACKGROUND AND MOTIVATION 11

Figure 2.2: RDIMM with 16 memory devices (D15-D0) and 64-bit data bus (DQ)

forming a 64-bit data bus (I exclude memory devices and respective additional data-bus
pins used for error detection and correction, since it is outside the scope of the chapter).

Channel Operation Each die of a memory device operates in lockstep with the
respective dies across the other devices of the module forming a rank. For instance, the
16 devices in Figure 2.2 with eight dies per 3D stack form eight ranks. The number
of consecutive ACTs to the same rank is limited to four per sliding window tFAW .
Consecutive column accesses to different ranks incur a switching delay labeled tRTRS .

Electrical Constraints Unlike the DDR data bus, the CA bus is Single Data Rate
(SDR) due to a high electrical load in large-capacity memories, as follows. Each memory
device appears as a single electrical load regardless of the number of dies per 3D stack,
since the bottom die isolates the loads of the other dies. Thus an Unbuffered Dual In-line
Memory Module (UDIMM) [45] with 16 devices appears as 16 loads on the CA bus
and as one load on each 4-bit slice of the 64-bit data bus. Populating the channel with
a second UDIMM doubles the respective numbers of loads. A heavily loaded CA bus
can lead to low data rates, since: 1) the maximum operating clock rate (frequency) for
reliable transmission on a bus decreases as the number of loads on the bus grows, and
2) the clock signal is shared between the CA bus and the data bus. Thus in large-capacity,
high-performance memories UDIMMs have been superseded by RDIMMs, that register
the CA bus as shown in Figure 2.2. An RDIMM appears as a single load on the channel’s
CA bus (the pre-register CA bus). However, the number of loads on the RDIMM’s CA
bus (the post-register CA bus) is still large, totaling half the number of memory devices
per module. Load Reduced DIMMs (LRDIMMs) register both the CA bus and the data
bus [46]. Though, they do not reduce the number of loads on the post-register CA bus [47].

12 CHAPTER 2. COST-EFFECTIVE ADDRESSING

Thus, even if RDIMMs or LRDIMMs are employed, the CA bus has a large number of
loads and has to be SDR in order to guarantee the peak data rates.

2.1.2 Multi-Cycle Addressing (MCA)
Future memory capacities are expected to grow. For instance, the International Technology
Roadmap for Semiconductors predicts 3D stacks taller than eight dies [48]. In addition,
memory die densities continuously increase [49].

Capacity growth implies wider addresses. However, widening the address bus beyond
that of DDR4 would cause multiple issues manifesting themselves in lower speeds
and higher costs [38]. Besides, widening the bus for row addressing would increase
the number of already under-utilized pins. Thus to stay high-speed and cost-effective,
parallel memory protocols have to address larger capacities by using the available pins
economically. In addition, the CA bus has to be SDR in order to comply with the stringent
electrical constraints, required to guarantee the peak data rates (making the CA bus DDR
would reduce its maximum frequency and hence it would slow the data bus). This suggest
MCA, where pins are multiplexed to transfer each address in multiple CA-bus cycles.

2.1.3 DDR4-Based Two-Cycle Row Addressing
To avoid costly disruptions of the well-established DDR4 ecosystem, I consider an MCA
protocol that is based on DDR4 and has the same pin count and speed. To support future
large capacities while using the available pins economically, I reassign the under-utilized
A[17] and A[13] from row address to Chip ID thus enabling up to 32 dies per 3D stack.
Row addresses are transferred over the remaining 16 pins (A[16:14], A[12:0]) in
two cycles4.

Although some address-transfer cycles can be overlapped with bank-busy cycles, the
opportunity to do so is limited. Additional address-transfer cycles interfere with other
commands on the CA bus, causing the MCA protocol to perform significantly worse than
DDRid (the idealistic protocol with enough pins for SCA). Figure 2.3 shows that two-
cycle row addressing in 100 multi-program workloads (the experimental setup is described
in Section 2.3) increases the read latency by about 7.5% on average and up to 12.5%.
Figure 2.4 shows that two-cycle row addressing reduces the system-level performance by

4An alternative optimization could reassign three pins—A[17], A[13], A[11]—from row
address to Chip ID and, e.g., bank address (should the number of banks increase in the future).
This optimization affects only MRS and ACT [35]. The MRS opcodes would have to be sent in
two cycles over pins A[12], A[10:0]. However, MRS is used only during initialization. During
normal operation, pins A[16:14], A[12], A[10:0] would transfer row addresses in two cycles.
I evaluate an equivalent of this optimization as part of sensitivity analysis in Section 2.4.2.

2.2. ADAPTIVE ROW ADDRESSING 13

1.04 1.06 1.08 1.10 1.12
Normalized Read Latency

10

15

20

A
v
g
.
M

P
K

I
p
e
r

C
o
re

Figure 2.3: Read latency increase due to two-cycle row addressing (each data point
represents one workload)

1.045 1.050 1.055 1.060 1.065
Normalized Weighted Slowdown

10

15

20

A
v
g
.
M

P
K

I
p
e
r

C
o
re

Figure 2.4: System-level performance loss due to two-cycle row addressing

about 5.5% on average and up to 6.5%. Since I consider low-latency, high-performance
memories, it is important to improve the efficiency of the MCA protocol.

2.2 Adaptive Row Addressing
I propose the concept of adaptive row addressing to close the efficiency gap between
MCA and idealistic SCA protocols. Adaptive row addressing comprises three techniques
described in the following sections: row-address caching (Section 2.2.1), row-address
prefetching (Section 2.2.2), and an adaptive row-access priority policy (Section 2.2.3).

2.2.1 Row-Address Caching
The idea of address caching is to reduce the number of address-transfer cycles by
exploiting address locality [32, 33]. The Most-Significant Portion (MSP) of each
address can be cached on the memory-device side and later encoded by the Memory
Controller (MC) with fewer bits, making it possible to transfer the entire address in
fewer cycles.

I propose to employ one row-address cache per bank and to instantiate the address-
cache update logic off the critical path on both the MC and the memory-device sides.
Before issuing an ACT, the MC checks its respective cache for the MSP of the target row

14 CHAPTER 2. COST-EFFECTIVE ADDRESSING

Figure 2.5: Address mappings

address. Upon a hit, it encodes the hit location and sends it to the target bank along with
the Least-Significant Portion (LSP) of the row address, in one cycle. Upon a miss: 1) the
MC encodes the miss and sends it with the LSP in one cycle, followed by the MSP in the
second cycle; and 2) the MC updates its respective cache, and the memory dies of the
target rank mirror the update in their own respective caches.

Row-address caches are most effective if consecutive memory accesses have the
same MSPs. If MSPs are different, row-address caches can still be effective if the reuse
distances [50] of the MSPs are short. In the following sections I discuss row-address
locality, row-address cache organizations, and their implementation details.

Row-Address Locality

Row-address locality depends on a number of factors: 1) program row-access patterns,
2) virtual-to-physical address mapping, 3) physical-to-DRAM address mapping, and
4) interference among co-running programs. Figure 2.5 illustrates the virtual-to-physical
and physical-to-DRAM address mappings in a system with a 48-bit virtual address space,
8-KB virtual pages (and 8-KB physical frames), four channels, 32 ranks per channel,
and 64-B cache blocks5. Figure 2.5 shows a physical-to-DRAM address mapping that is
considered baseline for the open-page row-buffer management policy [51]. Figure 2.5
also shows how the row field (the 18-bit row address) is split into two portions by the 16
row-address pins, with bits 41-40 being the MSP.

Virtual-to-physical address mapping is a major factor affecting row-address locality
with two extremes: 1) the OS maps virtual pages to sequential physical frames yielding
high locality, and 2) the OS maps pages to random frames yielding low locality. In real
systems, an intermediate amount of row-address locality can be expected.

5The block field (bits 14-8) is 7-bit wide to address each 64-B cache block per aggregate 8-KB
row buffer of 16 banks operating in lockstep, where each bank has a 512-B row buffer.

2.2. ADAPTIVE ROW ADDRESSING 15

Figure 2.6: Address-caching schemes R-1, F-31, D-31, and W-31

Row-Address Cache Organizations

Unlike in conventional caches, in such row-address caches tags are the same as data and
the address space to be cached increases with the cache size, as follows. Since each cache
location has to be encoded together with the LSP, doubling the address-cache size pushes
out one bit from the LSP to the MSP thus doubling the number of possible MSP values. I
estimate the efficiency of encoding as the ratio of the number of possible MSP values over
the address-cache size (the lower the ratio, the higher the efficiency).

Figure 2.6 first shows the simplest address-caching scheme labeled R-1 that employs
one MSP register per bank. R-1 uses one bit to encode a miss or a hit, and thus the MSP
of the 18-bit row address is 3-bit wide and the ratio is 23/1 = 8. A 3-entry cache would
require two bits to encode a miss or a hit location, and so the MSP becomes 4-bit wide
but the ratio improves to 24/3 = 5.33.

Next, Figure 2.6 shows a scheme labeled F-31 that employs 31-way fully-associative
caches. Bits 15-11 encode a miss or a hit way, thus the MSP is 7-bit wide (bits 22-16)
and the ratio is 27/31 = 4.13. The entire MSP has to be cached, and so the MSP-storage
size is 31 ∗ 7 = 217 bits per F-31 cache.

16 CHAPTER 2. COST-EFFECTIVE ADDRESSING

The third scheme in Figure 2.6 is labeled D-31 and employs 31-set direct-mapped
caches. Upon a miss, the caches are indexed by bits 20-16, and since the number of sets
is not a power of two, index 31 is wrapped to set 0. Since MSPs with different bits 20-16
(index 31 and index 0) can map to set 0, the entire MSP has to be cached. Thus, the
MSP-storage size of D-31 is the same as that of F-31. Making the number of sets a power
of two simplifies indexing but reduces the efficiency of encoding: like F-31, D-31 has
the ratio of 27/31 = 4.13, but a scheme with 32-set direct-mapped caches would have a
much worse ratio of 28/32 = 8.

The last scheme in Figure 2.6 is labeled W-31 and employs 31-entry, 2-way set-
associative caches. The number of sets is 16 which simplifies indexing, and to achieve the
same encoding efficiency as D-31 and F-31, I propose to disable the second way of the
last set and use the all-ones combination to encode a miss. Thus upon a hit, bit 15 encodes
the hit way and bits 14-11 the hit set, and in set 15 only the first way can be addressed.
Upon a miss, bits 15-11 are set to one. W-31 requires a smaller MSP storage than F-31
and D-31, since MSPs with different bits 19-16 map to unique sets. That is, bits 19-16
come directly from the hit-set index (bits 14-11) and only three bits of the MSP (bits
22-20) have to be cached, reducing the MSP-storage size to 31 ∗ 3 = 93 bits per W-31
cache. Thus the advantages of the proposed W-31 are simplicity, high encoding efficiency,
small MSP storage, and a conflict-miss rate likely between those of F-31 and D-31.

Implementation Details

On the device side, I instantiate row-address caches right before the Control Unit’s
Command/Address Register (recall Figure 2.1). Figure 2.7 shows an implementation
sketch of W-31. For brevity, I rename pins A[16:14], A[12:0] to A_int[15:0].

Upon an address-cache miss, the row address is a concatenation of seven bits sent by
the MC in the second address-transfer cycle (A_int[6:0]) and 11 LSP bits registered
at the first address-transfer cycle (block 1M in Figure 2.7). Upon an address-cache hit,
the row address is a concatenation of three cached MSP bits (block 1H in Figure 2.7) and
15 bits sent by the MC (A_int[14:0]).

The circuit operates transparently to the Control Unit (no changes to the Control Unit
are needed). The row-address caches are tiny, and so decoding the hit location and reading
out the MSP can be performed very fast, without a performance penalty on the SDR CA
bus. The MSP-storage overhead is trivial and is dwarfed by the area of the banks.

2.2. ADAPTIVE ROW ADDRESSING 17

Fi
gu

re
2.

7:
Im

pl
em

en
ta

tio
n

sk
et

ch
of

ad
dr

es
s-

ca
ch

in
g

sc
he

m
e

W
-3

1

18 CHAPTER 2. COST-EFFECTIVE ADDRESSING

2.2.2 Row-Address Prefetching

The tiny size of row-address caches suggests that they might have high miss rates. In the
following sections I discuss the miss rates, propose row-address prefetching to reduce
them, and describe its implementation.

Address-Cache Miss Rates

I collect Least Recently Used (LRU) stack-distance histograms using Mattson’s algo-
rithm [50] at the granularity of one cache block (64B) for single-program workloads and
the system from Section 2.3 but with just one bank per rank. I consider MSP widths from
3 to 9 bits that yield, respectively, 1 to 7 bits to encode a miss or a hit location. Thus, the
largest possible address-cache sizes are 1 to 127 entries.

To illustrate the miss rates, Figure 2.8 shows the miss curves of comm2 from the
Memory Scheduling Championship (MSC) suite [52] for one of the banks (the miss
curves for the other banks are very similar). The markers indicate the miss rates of the
largest possible row-address caches for the respective MSP widths, i.e., the best miss
rates. For instance, Figure 2.8a shows that when the virtual-to-physical mapping is
sequential (the first extreme, yielding high locality) all of the MSP values can be cached,
except when the MSP is 3-bit wide: then the best miss rate is 20%. Figure 2.8b shows
that when the MSC frame numbers [52] are used, the best miss rate is about 50% for
the 3-bit MSP (1-entry row-address cache) and about 5% for the 7-bit MSP (31-entry
row-address cache). Figure 2.8c shows that when frames are allocated randomly (the
second extreme, yielding low locality) the best miss rates increase dramatically. The
MSC frame numbers [52] exhibit an intermediate amount of row-address locality that can
be expected in real systems.

When the program is executed in a multi-program workload, the miss rates are likely
to increase due to interference. Next I describe row-address prefetching, a technique to
alleviate the penalty of address-cache misses.

Row-Address Prefetch Strategy

I propose row-address prefetching and implement it in the memory-request scheduler. I
define a row-address prefetch as a command that transfers a request’s row-address MSP
to the row-address cache of its target bank.

Schedulers maintain request queues, where the oldest request is the one that got
enqueued first. The next command for each request depends on the status of its target
bank and can be ACT, PRE, RD or WR. Memory timing constraints define whether a

2.2. ADAPTIVE ROW ADDRESSING 19

20 21 22 23 24 25 26 27

Row-Address Cache Size (Entries)

0

20

40

60

80

100

M
is

s
R

a
te

 (
%

)
MSP
width
(bits)

3

4

5

6

7

8

9

(a) Sequential address mapping

20 21 22 23 24 25 26 27

Row-Address Cache Size (Entries)

0

20

40

60

80

100

M
is

s
R

a
te

 (
%

)

MSP
width
(bits)

3

4

5

6

7

8

9

(b) MSC frame numbers [52]

20 21 22 23 24 25 26 27

Row-Address Cache Size (Entries)

0

20

40

60

80

100

M
is

s
R

a
te

 (
%

)

MSP
width
(bits)

3

4

5

6

7

8

9

(c) Random address mapping

Figure 2.8: Address-cache miss curves of comm2 [52]. Markers show best miss rates for
respective MSP widths

20 CHAPTER 2. COST-EFFECTIVE ADDRESSING

command can be issued at a specific CA-bus cycle. A row-address prefetch can be issued
at an idle cycle, i.e., if no other command can be issued at that cycle6.

I propose the following prefetch strategy. The scheduler tracks banks that are eligible
for prefetch, and initially all banks are flagged as eligible. A bank is flagged as ineligible
if the oldest request to that bank has a one-cycle row address and its next command is
ACT or PRE. A prefetch is permitted for a request if: 1) its target bank is flagged as
eligible and 2) the request has a two-cycle row address and its next command is ACT
or PRE. All permitted prefetches are prioritized first by command (requests whose next
command is ACT get the high priority) and then by age (the oldest request gets the high
priority). At an idle CA-bus cycle, the prefetch with the highest priority is issued. This
way I prefetch for as many requests as possible and avoid prefetch interference per bank,
i.e., address-cache interference of later prefetches with earlier ones. This strategy is
an efficient tradeoff between the simplest strategy that prefetches for the oldest request
(regardless of the target bank) and the finest-grain strategy that tracks address-cache sets
eligible for prefetch (and so avoids prefetch interference per set).

Implementation Details

The protocol has to have a reserved command available. For instance, DDR4 has one
reserved command [35] and MSPs up to 13 bits can be sent over pins A[12:0]. The
prefetch command is executed only by the address-cache control logic. An extension
of the sketch in Figure 2.7 is straightforward: upon a prefetch command, update the
row-address cache using A_int[6:0]. The storage overhead is one bit per bank to flag
banks eligible for prefetch.

The proposed row-address prefetching is easy to integrate with state-of-the-art
schedulers. For instance, BLISS [41] temporarily blacklists programs that recently issued
four consecutive column accesses and prioritizes non-blacklisted programs. This simply
adds one priority level to the proposed prefetch strategy: all permitted prefetches are first
prioritized by program (requests of non-blacklisted programs get the high priority), then
by command, and lastly by age.

6Idle cycles are expected since the CA bus is never utilized more than the data bus. Each request
occupies the data bus for four cycles. Upon a row-buffer miss (PRE + ACT + RD/WR), a request
with a two-cycle row address occupies the CA bus for four cycles. However, a request with a
one-cycle row address occupies the CA bus for three cycles. Upon a row-buffer hit (RD/WR), each
request occupies the CA bus for only one cycle. Hence, there is at least one idle CA-bus cycle per
request with a one-cycle row address.

2.2. ADAPTIVE ROW ADDRESSING 21

Figure 2.9: Negative impact of row-address caching on request service order

2.2.3 Adaptive Row-Access Scheduling

Counter-intuitively, row-address caching and prefetching can increase the execution time
compared to two-cycle row addressing in some cases7. I find that the problem is caused
by the memory-request scheduler being agnostic to the variable number of cycles per
row-address transfer. Next I present a detailed memory-request scheduling analysis,
propose an adaptive row-access priority policy, and discuss its implementation details.

Analysis of Memory-Request Scheduling

Because of row-address caching, some ACTs get one-cycle row addresses (A1) while
the other ACTs keep two-cycle row addresses (A2). Assuming that the address-cache
control logic can register the row-address LSP while the target bank is busy, the MC
can issue A2 one cycle earlier than A1. High-performance schedulers typically maintain
read- and write-request queues and reorder requests according to a cascade of policies,
where the last policy reorders row-access commands (ACT and PRE). FRFCFS [39, 40]
and BLISS [41], among many other state-of-the-art schedulers, employ the conventional
first-ready policy [39, 40] as the last in the cascade to prioritize the oldest row-access
command that is ready to be issued. Since A2 can be issued one cycle earlier than A1,
row-address caching can negatively impact the request service order produced by the
first-ready policy, as illustrated in Figure 2.9. I assume RDIMMs and so A2 and A1 can
be issued respectively three (t0 − 3) and two (t0 − 2) cycles before their target banks
become ready (t0). Figure 2.9 shows that if the older ACT gets a one-cycle address, the
younger ACT gets unfairly issued first, solely because it has a two-cycle address. This
delays the older ACT, potentially slowing the execution. In a particularly bad case the

7For instance, R-1 with row-address prefetching slows the execution of comm1 [52] by 2% in
the system from Section 2.3 but with one bank per rank, which emphasizes the problem.

22 CHAPTER 2. COST-EFFECTIVE ADDRESSING

Table 2.1: Cases When Younger A2 Gets Issued Ahead of Older Row-Access Command

Target Rank Target Bank
Older Command

A1 PRE
Same Same Case 1 Impossible
Same Different Case 2 Case 4

Different Any Case 3 Case 5

ACTs have the same target bank and the older ACT belongs to a load at the head of the
Re-Order Buffer (ROB).

Note that the problem can slow the execution in both single- and multi-program cases,
i.e., regardless if the ACTs belong to the same program/thread. The proposed row-address
prefetch strategy is key to alleviate the penalty of address-cache misses. However, it
prefetches for the oldest request, and thus increases the probability of the problem.

Table 2.1 lists the cases when a younger A2 gets unfairly issued ahead of an older row-
access command. Figure 2.10 shows the respective schedules for each case, highlighting
the minimum number of cycles that the service of the older read request gets delayed for,
according to DDR4 DRAM timings [35, 42]. The width of one rectangle denotes one
CA-bus cycle. The rectangles with dashed borders denote the cycles at which the older
commands would get issued if there were no younger A2. For instance, in Case 1 the
requests have the same target bank, and the delay totals tRAS + tRP = 28 + 10 = 38

cycles. The delay can be longer if the younger request is followed by other younger
requests that hit in the row buffer. In Case 2 the requests have different target banks on
the same channel, and the delay is at least tRRD_S = 5 cycles (recall that tRRD_S <

tRRD_L). Since in Cases 1 and 2 the ACTs are to the same rank, the service delays can be
longer if tFAW is not met. In Case 3 the requests are to banks of different ranks, and the
delay is at least tCCD_S + tRTRS = 4 + 2 = 6 cycles (recall that tCCD_S < tCCD_L).
Finally, Cases 4 and 5 are equivalent: the delay is one cycle, since the target banks are
different and the PRE can be issued right after the ACT.

I also observe that row-address caching can positively impact the request service
order. Figure 2.11 illustrates it relative to one-cycle row addressing (DDRid). The
younger A1 in Figure 2.11 is ready one cycle before the older A1 and thus gets issued
first. However, if due to row-address caching the younger ACT remains A1 but the older
ACT becomes A2, both are ready at the same cycle, and so the older ACT gets issued,
potentially speeding the execution. Thus it is important to design a row-access priority
policy that would eliminate the negative impact and retain the positive impact.

2.2. ADAPTIVE ROW ADDRESSING 23

Figure 2.10: Minimum delays experienced by older read request when younger read
request gets serviced first

Figure 2.11: Positive impact of row-address caching on request service order

24 CHAPTER 2. COST-EFFECTIVE ADDRESSING

Adaptive Row-Access Priority Policy

I propose an Adaptive row-access Priority Policy (APP) as follows. Since the service
delays in Cases 1 to 3 are significant, I propose to postpone the younger A2 (that is, to
not issue it at the current cycle) if there is an older A1 that will be ready at the next cycle.
However, in Cases 4 and 5 there is a tradeoff. If I issue the A2, the service delay of the
PRE is just one cycle. If I postpone the A2, its service delay would be two cycles. Thus, I
propose to not postpone a younger A2 if there is an older PRE that will be ready at the
next cycle.

To summarize, APP prioritizes an older A1 ready at the next cycle over a younger
A2 ready at the current cycle, regardless whether the ACTs have the same target bank.
I find that this single change to the first-ready policy eliminates the negative impact of
row-address caching.

The address-cache miss rate can be reduced by prioritizing a younger A1 over an
older A2 ready at the same cycle. However, this would eliminate the positive impact of
row-address caching (Figure 2.11) and could slow the execution. Thus, there is no benefit
to reduce the address-cache miss rate via scheduling beyond what APP already does.

Note that in the simplest case the MC could ignore the opportunity to issue A2 one
cycle earlier than A1. This would avoid the negative impact of row-address caching at the
cost of missing the opportunity to overlap the second address-transfer cycle of A2 with a
bank-busy cycle. That is, it would diminish the benefit of adaptive row addressing. On
the contrary, APP helps to exploit its full potential.

Implementation Details

The proposed APP can be used in state-of-the-art schedulers by simply replacing the
first-ready policy. For instance, BLISS [41] prioritizes requests first by program (non-
blacklisted programs get the high priority), then by column access, and finally by row
access, using the first-ready policy for both column and row accesses. The implementation
of APP in BLISS is straightforward: 1) prioritize an older A1 of a non-blacklisted program
ready at the next cycle over a younger A2 ready at the current cycle, regardless if its
program is blacklisted or not; and 2) prioritize an older A1 of a blacklisted program ready
at the next cycle over a younger A2 of a blacklisted program ready at the current cycle.

2.3 Experimental Setup
I evaluate adaptive row addressing using a detailed memory system simulator USIMM [53],
employed in recent memory-system research [54–57]. I extend USIMM with: 1) the

2.3. EXPERIMENTAL SETUP 25

Table 2.2: System Configuration

Number of cores 32

Core:
Clock speed 3.2GHz
ROB size 160
Retire width 4
Fetch width 4
Pipeline depth 10

Cache block size 64B
LLC size, total 16MB
LLC size, per core 512KB

Memory bus clock speed 800MHz
Memory channels 4
Ranks per channel 2
Banks per rank 16
Rows per bank 256K
Cache blocks per row 128
Physical address width 38 bits

Table 2.3: DRAM Device Parameters

Timing (800MHz cycles) Power supply (V)
tRCD 10 VDD 1.2
tRP 10 VPP 2.5
CL 10
tRAS 28 Current (mA)
tRC 38 IDD0 58
tRRD_S 5 IPP0 4
tRRD_L 6 IDD2P 30
CWL 9 IDD2N 44
tWR 12 IDD3P 44
tWTR_S 2 IDD3N 61
tWTR_L 6 IPPSB 3
tRTP 6 IDD4R 140
tCCD_S 4 IDD4W 144
tCCD_L 5 IDD5 190
tRTRS 2 IPP5 22
tREFI 6240
tRFC 208 DQ pins 4
tFAW 16

latency of CA transfers; 2) the latency of the RDIMM’s register [43]; 3) DDR4 timing
constraints; 4) DDR4 power model that implements Micron’s DDR4 System Power
Calculator [58] and in addition estimates the dynamic power of the CA bus8; 5) the
row:rank:bank:block:channel:block_offset physical-to-DRAM address mapping (baseline
for the open-page row-buffer management policy) [51]; and 6) an address extension that
separates the physical address spaces of different programs by adding unique, random
bits right after the block field9. For sensitivity analysis I extend USIMM with: 1) page
coloring such that each program gets its own bank [59, 60] and 2) sequential and random
virtual-to-physical address mappings.

System Configuration Table 2.2 shows key system parameters. I configure the
system to have a similar number of cores and channels as Intel Xeon E7-8890 v3 [18],
which has 36 threads (18 cores) and four channels. The baseline system has 32 cores and
a 38-bit physical address space formed by four channels, two ranks per channel and 16
DDR4 DRAM dies per rank with parameters shown in Table 2.3 [42]. The Last-Level
Cache (LLC) size is scaled down accordingly to the scaling of the program execution for

8I estimate the CA-bus dynamic power as the termination power of CA transfers. I use the same
termination power per CA pin as per data pin [58].

9This address extension is pessimistic for adaptive row addressing compared to the default address
extension of USIMM, that inserts core-ID bits into the most-significant bits of the row field [53].

26 CHAPTER 2. COST-EFFECTIVE ADDRESSING

Table 2.4: MSC Programs [52]

PARSEC MPKI BioBench MPKI Intel Commercial MPKI
black (blackscholes) 3.2 mummer 20.4 comm1 6.9
face (facesim) 6.2 tigr 27.4 comm2 8.5
ferret 6.7 comm3 3.5
fluid (fluidanimate) 3.0 SPEC CPU2006 comm4 2.4
freq (freqmine) 3.0 leslie (leslie3d) 6.4 comm5 1.6
stream (streamcluster) 3.7 libq (libquantum) 14.0
swapt (swaptions) 3.5

simulation [52]. The system uses 8-KB OS pages, the default USIMM virtual-to-physical
address mapping (the MSC frame numbers [52]), and the pessimistic address extension
described above. The MC employs one read-request queue and one write-request queue
per channel, FRFCFS for each queue, and the default USIMM policy for write-request-
queue draining. The write-request queue size, high and low watermarks are 96, 60 and
20, respectively.

Workloads Table 2.4 shows the single-threaded programs from the MSC suite [52],
where MPKI denotes the number of read Misses in the LLC Per Kilo Instruction. Using
the programs I generate 100 unique, random, 32-program workloads with a uniform
distribution of the average MPKI per core from 5 to 25.

Scaling Method The program address spaces are limited to 32 bits [52, 53]. Thus
a 32-program workload would exercise only 32 + 5 = 37 address bits. Since the
baseline system has a 38-bit physical address space, the most-significant bit of all row
addresses would be fixed (e.g., zero). To make the evaluation pessimistic for adaptive
row addressing, I inflate the workload address space using the following method: I insert
∆ = wPA − wWA zero bits into the least-significant bits of the row field, where wPA is
the physical address space width and wWA is the workload address space width. Thus, I
insert one zero bit to scale the 37-bit workload address space up to 38 bits. Note that for
random virtual-to-physical address mapping such scaling is not needed.

System-Level Metrics I assess weighted speedup [61], execution energy, and fair-
ness [61]. Weighted speedup is given by

∑
i

(
IPCMP

i /IPCSPi
)

for all programs i in
the workload, where IPCMP

i denotes the Instructions Per Cycle (IPC) of program i

when it is executed in the workload, and IPCSPi when it is executed alone. Since I
consider performance loss compared to DDRid, I express it as normalized weighted
slowdown, i.e., as the weighted speedup of DDRid over that of two-cycle or adaptive row

2.4. EXPERIMENTAL RESULTS 27

R-1 R-1 R-1 R-1

0

20

40

60

80

100

T
w

o
-C

y
cl

e
 R

o
w

 A
d
d
r.

 (
%

)

(a) ACM

A2
R-1 R-1 R-1 R-1

0.99

1.00

1.01

1.02

1.03

1.04

1.05

1.06

1.07

N
o
rm

.
M

a
x
 S

lo
w

d
o
w

n
(b) Fairness

Figure 2.12: Cooperation of APP and row-address prefetching for best efficiency of
FRFCFS and R-1

addressing. Execution energy is estimated by the USIMM system energy model with my
extensions described above. Fairness is estimated as the maximum slowdown across the
programs in the workload, given by maxi

(
IPCSPi /IPCMP

i

)
.

Non-System-Level Metrics I consider the read-request latency and Address-Cache
Miss rate (ACM), estimated as the percentage of two-cycle row addresses among all row
addresses transferred. Each metric is averaged across the channels.

2.4 Experimental Results
I evaluate two-cycle row addressing (A2) and adaptive row addressing with various
address-caching schemes and schedulers built on FRFCFS and BLISS (APP adds suffix -A
and row-address prefetching adds suffix -P). Performance, energy, and fairness results
are normalized to those of DDRid. Next, Section 2.4.1 presents the main evaluation and
Section 2.4.2 the sensitivity analysis.

2.4.1 Main Evaluation

Benefit of APP

Figure 2.12 presents the ACM and fairness of A2 and R-1 employing the four possible
versions of FRFCFS: baseline, FRFCFS-A (with APP), FRFCFS-P (with row-address
prefetching), and FRFCFS-AP (with both APP and prefetching). The box plots [62]
summarize the results for each configuration across 100 workloads from Section 2.3.

28 CHAPTER 2. COST-EFFECTIVE ADDRESSING

Figure 2.12a shows that FRFCFS-A slightly reduces the ACM spread compared
to FRFCFS. This is because APP prioritizes some of the one-cycle row addresses.
FRFCFS-P further reduces the ACM spread and mean. However, the lowest ACM is
achieved by FRFCFS-AP, that combines APP and row-address prefetching.

Figure 2.12b shows that the ACM improvements correlate well with fairness gains.
FRFCFS-P reduces the ACM but increases the probability of the negative impact of
row-address caching on the request service order. APP eliminates the negative impact,
and so FRFCFS-AP achieves the best fairness for R-1. Recall also that APP eliminates
the negative impact in both single- and multi-program workloads. Thus, APP is a key
technique to exploit the full potential of adaptive row addressing via cooperation with
row-address prefetching. For brevity, I further present results only with APP.

Performance of FRFCFS-A

FRFCFS-A employs APP but not row-address prefetching. Figure 2.13 presents nor-
malized weighted slowdown of A2, R-1, and various schemes with row-address caches
of three to 63 entries: direct-mapped (D-3 to D-63), 2-way (W-3 to W-63), and fully-
associative (F-3 to F-63). The W-* and F-* caches are LRU-managed. Figure 2.13
shows that the performance gap between A2 and DDRid (the 1.00 guide line) is about
5.5% on average and up to 6.5%. The gap is significant because: i) the opportunity
to overlap address-transfer cycles with bank-busy cycles is limited, and ii) additional
address-transfer cycles interfere with other commands on the CA bus.

Figure 2.13 shows that FRFCFS-A significantly improves performance: the row-
address caches with 15 or more entries perform within 1% of DDRid. Counter-intuitively,
for some workloads the MCA protocol performs even better than DDRid (see the points
below the 1.00 guide line). I find that FRFCFS-A significantly reduces the number of
two-cycle row addresses and the positive impact of the remaining two-cycle addresses on
the request service order outweighs the overhead of the extra address-transfer cycles.

Next, Figure 2.13 shows that the W-* row-address caches perform almost as well as
the respective F-* caches. For instance, both W-31 and F-31 achieve performance within
0.5% of DDRid. Hence, there is no clear benefit from associativity above two.

Performance of FRFCFS-AP

FRFCFS-AP employs both APP and row-address prefetching. Figure 2.14 shows that the
latter further improves performance. For instance, R-1 in Figure 2.14 outperforms D-3
in Figure 2.13. Likewise, D-15, W-15, and F-15 in Figure 2.14 respectively outperform
D-63, W-31, and F-31 in Figure 2.13. Thus, FRFCFS-AP outperforms FRFCFS-A with
two or more times larger row-address caches. In other words, the benefit of row-address

2.4. EXPERIMENTAL RESULTS 29

A2
R-1 D-3 D-7

D-1
5
D-3

1
D-6

3
W

-3
W

-7
W

-1
5
W

-3
1
W

-6
3

F-
3

F-
7

F-
15

F-
31

F-
63

0.99

1.00

1.01

1.02

1.03

1.04

1.05

1.06

1.07

N
o
rm

.
W

e
ig

h
te

d
 S

lo
w

d
o
w

n

Figure 2.13: FRFCFS-A – Performance

R-1 D-3 D-7
D-1

5
D-3

1
D-6

3
W

-3
W

-7
W

-1
5
W

-3
1
W

-6
3

F-
3

F-
7

F-
15

F-
31

F-
63

0.99

1.00

1.01

1.02

1.03

N
o
rm

.
W

e
ig

h
te

d
S
lo

w
d
o
w

n

Figure 2.14: FRFCFS-AP – Performance

prefetching exceeds the benefit of doubling the address-cache size. I consider 31-entry
row-address caches as a reasonable design point. Although smaller caches also perform
well, they lack robustness, as I discuss in Section 2.4.2.

Detailed Results for FRFCFS-A(P)

I find that the read-request latency of A2 is longer than that of DDRid by 7.5% on average
and up to 12.5% (Figure 2.3). FRFCFS-A and FRFCFS-AP improve the read-request
latency in much the same way as they improve the system performance in Figures 2.13
and 2.14. For brevity, I omit the read-latency plots.

Figure 2.15 presents detailed results for A2 and D-31, W-31, F-31 using FRFCFS-A
vs. D-15, W-15, F-15 using FRFCFS-AP. Figure 2.15a shows that row-address prefetch-
ing significantly reduces the ACM spread: the 15-entry row-address caches using
FRFCFS-AP achieve a two times smaller ACM spread compared to the respective 31-
entry caches using FRFCFS-A. Figures 2.15b, 2.15c and 2.15d show that thanks to the
smaller ACM spread, the 15-entry caches outperform the respective 31-entry caches in
terms of system-level performance, execution energy, and fairness. This emphasizes the
benefit of row-address prefetching.

30 CHAPTER 2. COST-EFFECTIVE ADDRESSING

D-3
1
W

-3
1

F-
31

D-1
5
W

-1
5

F-
15

0

5

10

15

20

25

T
w

o
-C

y
cl

e
 R

o
w

 A
d
d
r.

 (
%

)

(a) ACM

A2
D-3

1
W

-3
1

F-
31

D-1
5
W

-1
5

F-
15

0.98

1.00

1.02

1.04

1.06

N
o
rm

.
W

e
ig

h
te

d
 S

lo
w

d
o
w

n

(b) Performance

A2
D-3

1
W

-3
1

F-
31

D-1
5
W

-1
5

F-
15

0.98

1.00

1.02

1.04

1.06

N
o
rm

.
E
x
e
cu

ti
o
n
 E

n
e
rg

y

(c) Energy

A2
D-3

1
W

-3
1

F-
31

D-1
5
W

-1
5

F-
15

0.98

1.00

1.02

1.04

1.06

N
o
rm

.
M

a
x
 S

lo
w

d
o
w

n

(d) Fairness

Figure 2.15: FRFCFS-A and 31-entry caches vs. FRFCFS-AP and 15-entry caches

Figure 2.15c shows that F-31, W-15, and F-15 have lower system-level execution
energies than DDRid for half of the workloads (the medians rest on the 1.00 guide line).
The energy-efficiency gain over DDRid is due to: 1) the narrower CA bus and 2) the
positive impact of row-address caching on the request service order.

The fairness results in Figure 2.15d are similar to the results in Figures 2.15b
and 2.15c, though the spread is larger. Still, FRFCFS-AP closes the fairness gap between
A2 and DDRid from 5% on average to less than 1%.

Results for BLISS-A and BLISS-AP

I find that the normalized results for BLISS-A(P) are very similar to the respective results
for FRFCFS-A(P), and so I omit them for brevity. Despite that BLISS truncates long
sequences of row-buffer hits (to improve fairness) [41] and thus can cause more ACTs,

2.4. EXPERIMENTAL RESULTS 31

W
-3

1
W

-3
1

0

2

4

6

8

10

T
w

o
-C

y
cl

e
 R

o
w

 A
d
d
r.

 (
%

)

(a) ACM

A2
W

-3
1
W

-3
1

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

N
o
rm

.
W

e
ig

h
te

d
 S

lo
w

d
o
w

n

(b) Performance

A2
W

-3
1
W

-3
1

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

N
o
rm

.
E
x
e
cu

ti
o
n
 E

n
e
rg

y

(c) Energy

A2
W

-3
1
W

-3
1

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

N
o
rm

.
M

a
x
 S

lo
w

d
o
w

n

(d) Fairness

Figure 2.16: Page coloring applied to FRFCFS-A(P) and W-31

adaptive row addressing is still effective. Although BLISS is more fair than FRFCFS, it
is vulnerable to the negative impact of row-address caching in single- and multi-program
workloads. Thus, BLISS needs APP to eliminate the negative impact.

2.4.2 Sensitivity Analysis

OS Page Size

The most significant bits of the page offset field of the virtual address map to the block
field of the DRAM address (Figure 2.5). Thus a larger OS page size could potentially
reduce row-buffer miss rates. To separate the physical address spaces of the programs in
the workload, I generate unique, random bits per page (Section 2.3). A larger OS page
size means fewer pages and thus it could reduce the ACM as well. However, I observe
that the results for 8-KB pages are very similar to those for 4-, 16-, and 32-KB pages.
Thus, the OS page size is not a major factor in this evaluation.

Page Coloring

The OS can implement page coloring such that each core (program) gets its own
bank [59, 60]. Such page coloring separates the physical address spaces of the programs
by adding core-ID bits right after the block field of the DRAM address. This reduces
bank-level interference among co-running programs, improving the efficiency of adaptive
row addressing.

Figure 2.16 shows that under page coloring adaptive row addressing is very effective
even without row-address prefetching: the ACM in Figure 2.16a is less than 2%, and the

32 CHAPTER 2. COST-EFFECTIVE ADDRESSING

performance, energy, and fairness of FRFCFS-A are very similar to those of FRFCFS-AP.
Figure 2.16d shows that A2 attains better fairness than DDRid for some workloads (the
bottom whisker crosses the 1.00 guide line). Though, the spread is large and for some
workloads fairness is lower by almost 10%. On the contrary, adaptive row addressing
significantly reduces the spread and attains nearly the same fairness as DDRid for all of
the workloads except a few outliers.

Random Virtual-to-Physical Address Mapping

The default USIMM virtual-to-physical address mapping, employed so far, exhibits an
intermediate amount of row-address locality expected in real systems. Figure 2.17 shows
that random virtual-to-physical address mapping degrades the efficiency of adaptive row
addressing across the metrics. Such randomization destroys locality, increasing both
row-buffer miss rates and the ACM. Thus it can be considered the worst case for adaptive
row addressing.

However, Figure 2.17a shows that row-address prefetching manages to reduce the
ACM of W-31 from about 50% on average down to less than 20% on average. Thanks to
that W-31 with FRFCFS-AP reduces the gap between A2 and DDRid to 1.5% on average,
as Figures 2.17b to 2.17d show. I omit the results for row-address caches smaller than
W-31 since they are less robust and perform poorly under random virtual-to-physical
address mapping.

Wider MSPs

The encoding efficiency of a row-address cache of a fixed size decreases as the MSP
width increases. Thus, wider MSPs make it more challenging for adaptive row addressing
to close the gap between A2 and DDRid. I assume that MSPs can be wider due to one or
more of the following reasons: i) the continuous growth of memory die densities [49]
can imply more rows per bank, requiring wider row addresses; ii) techniques like rank
multiplication [63, 64] use row-address bits for addressing additional ranks; iii) should
the rows become smaller in the future, wider row addresses will be required to address the
same bank capacity; and iv) the alternative optimization from Section 2.1.3, that reassigns
three row-address pins, would push one more bit out to the MSP. To stress adaptive row
addressing, I assume a 16 times larger capacity and therefore 4-bit wider MSPs. I employ
the scaling method from Section 2.3 to appropriately scale the 37-bit workload address
space up to the 42-bit physical address space.

Figure 2.18 shows the results for W-31 using FRFCFS-A(P). The MSP is 11 bits,
and the encoding efficiency of W-31 is 16 times worse than that of W-31 in Figure 2.6.
Figure 2.18a shows that the ACM of W-31 without row-address prefetching is high, about

2.5. RELATED WORK 33

W
-3

1
W

-3
1

0

20

40

60

80

100

T
w

o
-C

y
cl

e
 R

o
w

 A
d
d
r.

 (
%

)

(a) ACM

A2
W

-3
1
W

-3
1

0.99

1.00

1.01

1.02

1.03

1.04

1.05

1.06

1.07

N
o
rm

.
W

e
ig

h
te

d
 S

lo
w

d
o
w

n

(b) Performance

A2
W

-3
1
W

-3
1

0.99

1.00

1.01

1.02

1.03

1.04

1.05

1.06

1.07

N
o
rm

.
E
x
e
cu

ti
o
n
 E

n
e
rg

y

(c) Energy

A2
W

-3
1
W

-3
1

0.99

1.00

1.01

1.02

1.03

1.04

1.05

1.06

1.07

N
o
rm

.
M

a
x
 S

lo
w

d
o
w

n

(d) Fairness

Figure 2.17: Random virtual-to-physical mapping applied to FRFCFS-A(P) and W-31

W
-3

1
W

-3
1

0

20

40

60

80

100

T
w

o
-C

y
cl

e
 R

o
w

 A
d
d
r.

 (
%

)

(a) ACM

A2
W

-3
1
W

-3
1

0.99

1.00

1.01

1.02

1.03

1.04

1.05

1.06

1.07

N
o
rm

.
W

e
ig

h
te

d
 S

lo
w

d
o
w

n

(b) Performance

A2
W

-3
1
W

-3
1

0.99

1.00

1.01

1.02

1.03

1.04

1.05

1.06

1.07

N
o
rm

.
E
x
e
cu

ti
o
n
 E

n
e
rg

y

(c) Energy

A2
W

-3
1
W

-3
1

0.99

1.00

1.01

1.02

1.03

1.04

1.05

1.06

1.07

N
o
rm

.
M

a
x
 S

lo
w

d
o
w

n

(d) Fairness

Figure 2.18: 11-bit MSPs applied to FRFCFS-A(P) and W-31

40% on average. However, W-31 with row-address prefetching achieves an average ACM
of only 10%. This brings adaptive row addressing within 1% of DDRid in terms of the
average values of the system-level metrics (Figures 2.18b to 2.18d). Smaller row-address
caches are less robust than W-31 and perform poorly under wide MSPs.

2.5 Related Work
Multi-Part and Multi-Cycle Addressing The third generation of Low Power
Double Data Rate (LPDDR) memory protocols, LPDDR3 [65], has a 10-pin CA bus
and transfers each row address in two parts in one cycle (the CA bus is DDR), which
is practical in small memories, where the number of devices (loads) on the CA bus is

34 CHAPTER 2. COST-EFFECTIVE ADDRESSING

small. Currently LPDDR3 is being replaced by LPDDR4 [66], that has a 6-pin CA
bus and transfers each row address in four parts in four cycles (the CA bus is SDR to
support higher speeds). The protocols are optimized for relatively small memories. On the
contrary, this chapter considers future parallel protocols for large memories and proposes
adaptive row addressing to boost their efficiency.

Large-Capacity Memory Modules LRDIMMs can offer larger module capacities
than RDIMMs operating at the same speed. LRDIMMs implement rank multiplication,
that uses row-address bits to address additional ranks [63, 64]. Thus, rank multiplication
assumes that some of the row-address bits are unused, i.e., that the memory-device
capacity is smaller than the maximum capacity defined by the respective standard. Main
memories that employ future LRDIMMs designed for MCA protocols would benefit from
the proposed adaptive row addressing.

Address Caching The idea of address compression for off-chip transmission [32, 33]
has been generalized to reduce total off-chip traffic [67], and multiple later works apply it
to on-chip transmission. Unlike prior work, this chapter: 1) removes the address-cache
update logic from the critical path of the MC, i.e., it mirrors the update logic on the
memory-device side, so that the MC does not need to send explicit address-cache update
commands upon a miss; 2) proposes address-caching schemes with (2n−1)-entry, 2-way
caches where one way of one set is disabled for high encoding efficiency; and 3) studies
row-address caching for large-capacity off-chip memories in contemporary multicore
systems with state-of-the-art memory-request schedulers.

Prefetching Although prefetching is well-studied in other contexts, to the best of my
knowledge this is the first proposal of row-address prefetching for off-chip memories.

Memory Scheduling There exists a massive body of work about memory-request
scheduling, and the first-ready policy [39, 40] is commonly used to reorder row accesses.
However, prior work assumes a fixed number of cycles per row-address transfer. On
the contrary, this chapter tackles a variable number of cycles per row-address transfer
and proposes an adaptive row-access priority policy. The proposed policy eliminates the
negative impact of row-address caching in both single- and multi-program workloads and
retains its positive impact.

2.6. SUMMARY 35

2.6 Summary
Cost-effective yet high-speed parallel memory protocols with multi-cycle addressing are
key to large-capacity and still low-latency main memories. This chapter proposes the
concept of adaptive row addressing as a general approach to close the efficiency gap
between such protocols and an idealistic protocol of the same speed but with enough
pins for single-cycle addressing. Adaptive row addressing comprises three techniques:
1) row-address caching, 2) row-address prefetching, and 3) an adaptive row-access priority
policy. This chapter shows that adaptive row addressing robustly closes the said efficiency
gap by boosting system-level performance, energy efficiency, and fairness of protocols
with multi-cycle addressing up to the level of the idealistic protocol and in some cases
slightly above it.

Thus, this chapter has tackled the question of how to address large capacities using
the available address pins economically with minimum performance losses. This brings
us to the next design issue on the path to high cost-effectiveness of large-capacity main
memories tackled by this thesis: replacing some of DRAM with SCM has the promise
to further improve cost-effectiveness but creates a vast design space of hybrid main
memories to explore. Detailed evaluation of each design point is inefficient, which leads
to the second problem stated by this thesis: how to explore design tradeoffs of hybrid
main memories quickly and correctly via design-space pruning. The next chapter presents
Crystal, a method to specifically address the question of finding the best memory area
partitioning between DRAM and SCM given a fixed main memory area, i.e., to partition
a fixed number of memory modules between DRAM and SCM. Then, Chapter 4 presents
Rock, a generalized framework for hybrid main memory design-space pruning.

36 CHAPTER 2. COST-EFFECTIVE ADDRESSING

3
Partitioning of Hybrid Memory Area

Non-Volatile Memory (NVM) technologies1 introduce a new dimension to the system
design space. They typically fit in the access latency, dynamic energy, and bit density
gaps between the conventional main memory technology, DRAM, and backing store
technologies, collectively called disk here. NVM like PCM [8] and NAND Flash can
be less expensive per bit and at the same time denser than DRAM. Thus, the potential
benefits of combining DRAM with such technologies into hybrid main memory instead of
building DRAM-only memory are: 1) a lower cost for memory of the same capacity; and
2) a larger capacity for memory of the same area2. A larger capacity can help reduce the
number of disk accesses and consequently reduce system-level execution time and energy.

Finding the best amounts of DRAM and NVM is an important design-time resource
partitioning problem. Its best solution depends on many factors, including the workload,

1This chapter uses the terms NVM and SCM interchangeably.
2This chapter expresses main memory area in the number of devices, assuming that one DRAM

device and one NVM device have equal areas (as motivated in Section 3.2.2). For instance, if the
baseline system has two channels, two Dual In-line Memory Modules (DIMMs) per channel and 16
DRAM devices per DIMM, its total area is 64 devices. An equal-area hybrid system would have 64
devices, too, some of which would be DRAM and some NVM.

37

38 CHAPTER 3. HYBRID MEMORY AREA PARTITIONING

properties of memory technologies and disk, and characteristics of non-main-memory
subsystems, such as the Central Processing Unit (CPU). Speedups and energy savings
compared to a DRAM-only baseline can vary widely. Thus, main memory area partition-
ing3 is a fundamental problem for hybrid systems with a multi-dimensional design space.

Hybrid memory area partitioning has been studied via simulation [15, 30, 68]
and prototyping [69]. Simulation typically has a large implementation overhead and
consumes significant computational resources (hours for high-performance multicore
systems with contemporary workloads). Prototyping [69] has a substantial implementation
overhead, too, and restricts exploration to the host configuration (e.g., the total main
memory capacity). Thus, these approaches alone complicate extensive design space
search and impede finding the best partitioning. I frame partitioning as an optimization
problem where the minimum of a target metric is sought, the trend of that metric is
of more interest than its absolute values, and the precision of detailed simulation or
prototyping is unnecessary.

I propose a design-time resource partitioning method, Crystal, that employs first-
order, system-level models for execution time and energy. The models are analytic and
thus require no lengthy simulations. They describe the basic behavior of the memory
hierarchy and represent execution details indirectly by assumed parameters. Each program
in a multi-program workload is represented by a profile that is created once and reused
throughout design-space exploration. The models yield target metric estimates accurate
enough for optimization. Crystal thus enables quick evaluation of all partitioning options
and finds the global optimum among potentially multiple local minima. I validate the
results of Crystal via sensitivity analysis, showing that the first-order nature of the models
does not restrict the applicability of Crystal.

In this chapter I make the following contributions and observations. First, I propose
Crystal, a design-time resource partitioning method for hybrid main memory. It helps
system architects to quickly identify the most promising design points for detailed
evaluation via simulation or prototyping. For instance, Crystal shows how for a practical
partitioning goal and specific workloads, hybrid configurations employing an NVM with
the speed and energy consumption of NAND Flash can offer above 7x higher performance
and energy efficiency than equal-area hybrid configurations employing a much faster and
more energy-efficient NVM technology like PCM.

Second, I observe that simple models and coarse parameter estimates are sufficient for
design-time partitioning. For a given workload and NVM technology, the best partitioning
is robust to variations of system component characteristics. This makes Crystal applicable
early in the design process, when accurate numbers might be not yet available.

3This chapter uses the terms “area partitioning” and “resource partitioning” interchangeably.

3.1. BACKGROUND 39

Third, I observe that for the current state of technologies, execution time can be used
for partitioning even if the actual target metric is execution energy: Both metrics follow
the same trend, and minimizing execution time minimizes execution energy. This further
speeds partitioning, since the model for execution time is simpler than that for energy.

The rest of the chapter is organized as follows. Section 3.1 provides the necessary
background information and Section 3.2 presents Crystal. Section 3.3 describes work-
loads, memory technologies, and hybrid systems used for the demonstration of Crystal,
selected results of which are presented in Section 3.4. Finally, Section 3.5 discusses
related work and Section 3.6 summarizes the chapter.

3.1 Background

3.1.1 Memory Technologies

Conventional high-performance memory systems below the LLC comprise DRAM main
memory traditionally backed by magnetic Hard Disk Drives (HDDs). The random access
latency and dynamic energy gaps between DRAM and HDD are about five orders of
magnitude. Bridging or reducing these gaps remains a major design challenge.

DRAM is a volatile technology since the cell state degrades over time, requiring for
data integrity periodic refresh [51] of all rows. DRAM stores one bit per cell. NVM
technologies like PCM [8] and NAND Flash achieve higher bit densities by scaling better
than DRAM and/or by storing multiple bits per cell, enabled by their respective device
physics. NAND Flash further increases its bit density by organizing cells into strings.

NVM array reads and writes are typically slower and expend more energy than those
of DRAM. NVM cells require no refresh, but writes damage them more than DRAM cells.
Write endurance (the maximum number of writes per cell) is about 1016 for DRAM, 108

for PCM, and 103-105 for NAND Flash. This chapter disregards that NAND Flash has
a lower write endurance than PCM, because NVM with similar bit densities and access
characteristics but a much higher write endurance (e.g., RRAM [9]) may gain maturity in
the future.

NVM technologies have enabled fast disks such as Solid-State Disk (SSD) built from
NAND Flash. The random access latencies and dynamic energies of SSD are about two
orders of magnitude lower than those of HDD. Note that this chapter does not consider
3D Xpoint [14] as a distinct memory technology since for hybrid main memory it can
be roughly approximated by PCM, and for disk NAND Flash is likely to remain the
preferred technology [70].

40 CHAPTER 3. HYBRID MEMORY AREA PARTITIONING

3.1.2 Benefits of Hybrid Main Memory

NAND Flash is about 10x less expensive per bit than DRAM, and PCM might become so
in the future. Both NAND Flash and PCM are denser than DRAM. Thus, the benefits of
combining DRAM with such technologies into hybrid main memory are: 1) a lower cost
than DRAM-only memory of the same capacity; or 2) a larger capacity than DRAM-only
memory of the same area.

The best amounts of DRAM and NVM depend on many factors, one of which is the
workload. Data accessed by the workload during a given execution interval constitute
that interval’s working set. A workload is labeled in-memory if it does not access disk
in the steady state (after system warmup), i.e., if its working set fits entirely into main
memory. Otherwise, the workload is labeled not-in-memory. In terms of performance and
energy efficiency, increasing main memory capacity benefits not-in-memory workloads
as long as there are data with reuse distance (LRU stack distance [50]) greater than or
equal to the baseline capacity and less than the increased capacity. Given more memory,
such workloads access disk less, which reduces system-level execution time and energy.
Thus, such workloads can benefit from hybrid main memory that offers a larger capacity
than equal-area DRAM-only memory.

3.1.3 Allocation of Main Memory Capacity

A workload may comprise multiple concurrently executing programs. Main memory
capacity can be distributed among the programs using different policies, e.g., according
to their utility of it. Like Qureshi and Patt [71], I define the utility of memory capacity
quantitatively: For instance, programs A and B have been allocated 1MB each, and there
is another 1MB slice to allocate. Program A has 10M misses at capacity 1MB and 1M
misses at capacity 2MB, and program B has 10M and 9M misses at these capacities,
respectively. The difference in the number of misses between the two capacities is
greater for program A, thus it has a higher utility of the 1MB slice and would win it
according to a High-Utility (HU) policy. Program B would win the slice according to a
Low-Utility (LU) policy.

I distribute main memory capacity at design time and label the procedure Design-time
Resource Allocation (DRA). There are multiple ways of implementing DRA. For a
given multi-program workload and a DRA policy, the final capacity distribution depends
on the initial allocation (i.e., how much memory each program gets by default) and
the granularity of DRA (i.e., the slice size ∆c awarded to a program at each iteration of
DRA). DRA allocates the capacities of DRAM and NVM defined by design-time resource
partitioning, which is the topic of this chapter and is addressed in the next section.

3.2. CRYSTAL 41

3.2 Crystal
The design space of hybrid main memory systems is multi-dimensional and vast. Proto-
typing or simulating each design point in detail is inefficient, thereby impeding finding
the best hybrid memory partitioning early in the design process.

This chapter proposes Crystal, a method that frames design-time hybrid memory
partitioning as an optimization problem and employs first-order, analytic models to
quickly estimate system-level execution time and energy. To find a minimum of a target
metric, the trend of that metric is more important than its absolute values, making higher
precision of detailed evaluation unnecessary. The target-metric trends can be validated
via sensitivity analysis, where model parameter variation covers the inaccuracy of the
first-order models. This way, if a target-metric minimum is insensitive to model parameter
variation, then the best partitioning is insensitive to the inaccuracy of the first-order
models. The rest of this section details Crystal.

3.2.1 Complexity of Equal-Area Partitioning

A target metric might have several minima as a function of DRAM and NVM partition
capacities when the total memory area is fixed. For instance, consider the execution time
of a workload whose miss curve decreases from 0 to 1GB, stays flat up to 2GB forming
a plateau, and then decreases again. Increasing capacity from 1GB to 2GB increases
execution time, since DRAM is replaced with a slower NVM but the number of disk
accesses does not change. There is one local minimum at 1GB and one more above 2GB.
A miss curve might have multiple flat plateaus, each creating a local minimum. All of the
minima must be identified in order to find the global optimum.

3.2.2 Assumptions

For ease of demonstration, this chapter makes several assumptions about the systems
modeled. Figure 3.1 shows logical memory organizations. First, unlike conventional
main memory of Figure 3.1a, hybrid main memory consists of two partitions, M1 and M2,
organized hierarchically (M2 is only accessible via M1), as in Figure 3.1b4. To maximize
the capacity, the memory is migrating (data are moved upon promotion).

4To simplify the models, this chapter considers only hierarchical hybrid memories. As has
been mentioned in the beginning of this thesis, flat hybrid memories can be more attractive due
to higher flexibility. However, the hierarchical organization is pessimistic for hybrid memory,
allowing design-time resource partitioning to provision for the worst case. I consider flat hybrid
memories in Chapter 4.

42 CHAPTER 3. HYBRID MEMORY AREA PARTITIONING

(a) System with baseline (one-level) main memory

(b) System with hierarchical (two-level) main memory

Figure 3.1: Logical memory hierarchy organizations

Disk

I/O controllerMemory controller

CPU

Cache hierarchy

Cache

. .
 .

Main memory

DIMM

DIMM

. . .

Device 0

. .
.

Rank 0 (front side)

. . .Device 9 Device 15

Rank 1 (back side)

Device 8

Row
buffer
I/O

Bank 1

Device 1

. .
.

Device 7

. .
.

Bank 0

Bank 7

Program 0
Miss(C), fWr, Tcpu

Program 1

Program 7

DIMM

DIMM

Workload

Design-time
resource

allocation
policy

Core 0 . . .Core 1 Core 7

. .
 .

Figure 3.2: System modeled

3.2. CRYSTAL 43

Table 3.1: Program Profile Format

Miss(C) The miss curve below the LLC (the number of main me-
mory capacity misses as a function of its capacity C)

fWr The fraction of writes below the LLC

TCPU The time spent on computation and all cache accesses

Figure 3.2 details the systems. The number of cores, memory channels, and the
DIMM organization can be different. Note that the arrows connecting the DIMMs
in Figure 3.2 represent parallel memory channels and do not imply a specific logical
organization of the main memory.

Programs are represented by profiles that comprise program characteristics shown in
Table 3.1. The profiles are recorded in the steady state (after system warmup). The miss
curve, Miss(C), represents the reuse distances of the program’s data assuming that main
memory is fully-associative5 and employs the LRU replacement policy.

The workload is multi-programmed comprising one single-threaded program per
core, where the OS can be one of the programs. The program with the longest TCPU is
labeled pα. The programs start at the same time and run concurrently, so the workload’s
TCPU is set to that of pα. Program data are managed at the granularity of an OS page.
A program can be not-in-memory w.r.t. the capacity slice statically allocated to it after
DRA. If a requested page of such a program is not in main memory, it is paged in from
disk. In the hybrid system, data are paged in to M2, and if the requested page is not in
M1 but is in M2, it is migrated (moved) to M1. Each insertion (a page-in from disk or a
migration from M2 to M1) causes a respective eviction (a page-out to disk or a migration
from M1 to M2), since the miss curve represents steady-state behavior. Only dirty pages
of not-in-memory programs are paged out to disk.

For simplicity of device capacity comparison, I assume that DRAM and NVM devices
have the same area in µm2. The higher bit density of an NVM device is represented
by a greater number of rows compared to a DRAM device. In addition, I assume equal
peripheral circuits, thus the static power (excluding refresh, which belongs to maintenance
power) is the same for DRAM and NVM devices. Since the devices have equal areas,
equal-area main memories have the same number of devices, regardless of type.

Lastly, I introduce several assumed model parameters to indirectly represent imple-
mentation-dependent details: 1) Row-buffer hit rate to loosely represent details that reduce

5Although the OS can page-in from disk into a free main-memory frame without restrictions,
possible address mappings between M1 and M2 can be restricted [26–28]. Models accounting for
such restrictions could be considered in the future work.

44 CHAPTER 3. HYBRID MEMORY AREA PARTITIONING

the average main-memory access latency and dynamic energy (e.g., access reordering
and bank- and channel-level parallelism); 2) Buffer disk writes to model an ideal write
buffer in the I/O controller by overlapping each program’s disk-write time with its TCPU
and main-memory access time; 3) Write-coalesce rate to model write coalescing in main
memory, such that only a fraction of all writes to M1 propagate to disk; 4) Disk-cache
hit rate to model prefetching to the disk cache (that affects solely disk reads since only
they are likely to hit in the cache [51]); and 5) Overlap TCPU and Tmem to overlap the
workload’s TCPU with main-memory and disk access times of all the workload’s programs
except pα. This overlap intents to represent an idealized case with a significantly shorter
execution time.

3.2.3 Models and Method
The execution time and dynamic energy of a single-threaded program in the system of
Figure 3.1b are respectively given by

Thyb = TCPU +NM1· ((1− fWr)· tM1Rd + fWr· tM1Wr)

+NM2· (tM2→M1 + tM1→M2) (3.1)

+ND· (tD→M2 + (1− wcr)· fWr· tM2→D)

and

Ehyb
dyn

= NM1· ((1− fWr)· eM1Rd + fWr· eM1Wr)

+NM2· (eM2→M1 + eM1→M2) (3.2)

+ND· (eD→M2 + (1− wcr)· fWr· eM2→D),

where the parameters and variables are described in Table 3.2. For each program in
the workload, the number of accesses to M1 (NM1) is obtained from the program’s
miss curve at capacity 0. The latencies and dynamic energies per M1 read and write
are calculated simplistically according to the assumed Row-buffer hit rate (rbhr). For
instance, tM1Rd = rbhr· tM1RdH + (1− rbhr)· tM1RdM , where tM1RdH and tM1RdM

are the latencies of serving one read hitting and missing in the row buffer, respectively.
By varying the row-buffer hit rate I vary the actual latencies and dynamic energies per
M1 access. The latencies and dynamic energies per disk read are calculated according
to the assumed Disk-cache hit rate in a similar way, and I omit separate equations for
brevity. Partition M2 is accessed only at a page granularity, thus its row-buffer hit rate is
constant, and a separate parameter is unnecessary.

All the access, migration, and paging latencies and dynamic energies include those
of data transfers. For instance, the latency of a page migration from M1 to M2 (tM1→M2)

3.2. CRYSTAL 45

Table 3.2: Parameters and Variables in (3.1) to (3.8)

Miss(C), fWr, and TCPU are from program profile

A{M1,M2} Areas of M1 and M2, respectively

c{M1,M2} Capacities of M1 and M2, respectively, allocated to program

N{M1,M2,D} Numbers of accesses to M1, M2, and disk (D), respectively, given by
NM1 = Miss(0), NM2 = Miss(cM1), and ND = Miss(cM1 + cM2)

{t, e}M1 acc Latency and dynamic energy, respectively, per M1 access (acc), where access can
be read (Rd) or write (Wr), and size of access is one cache line

{t, e}X→Y Latency and dynamic energy, respectively, of reading one OS page from memory part
X, transferring, and writing it to memory part Y

tD {Rd,Wr} Latencies of reading (Rd) and writing (Wr), respectively, one OS page from/to disk

wcr Assumed Write-coalesce rate

Pnon-
mem

System power excluding main memory and disk

P{M1,M2,D}
stat

Static power of M1, M2, and disk (D), respectively. For M1 and M2, it depends on
their areas and technologies

P{M1,M2}
maint

Maintenance power of M1 and M2, respectively. Depends on areas and technologies
of M1 and M2

n Number of programs in the multi-program workload

includes the latencies of reading and transferring the page from M1 to the MC and the
latencies of transferring and writing it from the MC to M2. The latency of a page-in
from disk to M2 (tD→M2) includes the latency of transferring one page from disk to
the I/O controller and then from the MC to M2. Equations (3.1) and (3.2) represent the
basic behavior of the memory hierarchy. Respective equations for the baseline system of
Figure 3.1a are derived by simply excluding M2, and I omit them for brevity.

In order to estimate system-level execution time and energy, I first distribute the
M1 and M2 capacities among the workload’s programs (using a DRA policy of choice)
and then apply (3.3) to (3.8). Table 3.2 describes the parameters and variables in the
equations. For each program, I calculate execution time, buffering disk writes if the
respective parameter is enabled:

T ′ =

{
T if Buffer disk writes = No,

TBDW otherwise, where
(3.3)

TBDW =

TDRd
total

+ TDWr
total

if TDWr
total

≥ T − TDRd
total

− TDWr
total

,

T − TDWr
total

otherwise,

46 CHAPTER 3. HYBRID MEMORY AREA PARTITIONING

where TDRd
total

= ND· tDRd, TDWr
total

= ND· (1− wcr)· fWr· tDWr, and T is given by (3.1)

for the hybrid system and by the respective equation for the baseline system. Next, I sum
the execution times of the programs overlapping their TCPU to obtain the execution time
of the entire workload:

Tsys = max
0≤i<n

TCPUi +
∑

0≤i<n

T ′i − TCPUi , (3.4)

where T ′ is defined by (3.3). Next, the workload’s TCPU and Tmem are overlapped if the
respective parameter is enabled:

T ′sys =

{
Tsys if Overlap TCPU and Tmem = No,

Tsys
OCM

otherwise, where
(3.5)

Tsys
OCM

=

T
′
α if TCPUα ≥

∑
0≤i<n, i6=α

T ′i − TCPUi ,

Tsys − TCPUα otherwise,

where α is such that TCPUα = max
0≤i<n

TCPUi , T
′ is defined by (3.3), and Tsys by (3.4). Then,

I calculate system-level static and maintenance energies respectively by

Esys
stat

= T ′sys·
(
Pnon-
mem

+ PM1
stat

(AM1) + PM2
stat

(AM2) + PD
stat

)
(3.6)

and

Esys
maint

= T ′sys·
(
PM1
maint

(AM1) + PM2
maint

(AM2)
)
, (3.7)

where T ′sys is given by (3.5). The maintenance power of M1 or M2 can be, e.g., the
refresh power of DRAM, or nothing in case of NVM. The area of M2 (AM2) is zero in
the baseline system. Finally, system-level execution energy is calculated by

Esys
total

= Esys
stat

+ Esys
maint

+
∑

0≤i<n

Edyni , (3.8)

where Esys
stat

is given by (3.6), Esys
maint

by (3.7), and Edyni denotes the dynamic energy of

each program in the workload given by (3.2) for the hybrid system and by the respective
equation for the baseline system.

Crystal uses the models for estimating the execution time and energy of all equal-area
hybrid configurations at a given partitioning granularity (the area by which DRAM
can be replaced with NVM). Then Crystal identifies the configuration that matches the
partitioning goal best. Besides minimizing execution time or energy, the goal can include
additional criteria such as system cost and lifetime. The search time complexity is linear
as a function of the number of possible hybrid configurations.

3.3. EXPERIMENTAL METHODOLOGY 47

Table 3.3: Selected Single-Threaded Programs

CG of Class C; 470.lbm, 429.mcf, 458.sjeng, and 450.soplex with
respective reference inputs

Profile name CG lbm mcf sjeng soplex
Working set size (MB) 419 403 1674 172 251
Fraction of writes (%) 0.4 42.9 20.2 44.1 16.5
TCPU (s) 8.4 4.4 6.6 3.4 4.6

3.3 Experimental Methodology
Profiling Method I generate memory-access traces by simulating a CPU with a
cache hierarchy using gem5 [72]. The CPU is x84-64, in-order, running at 1GHz. The
cache line size is 64B; the L1 caches are split, 4-way, 64-KB, and LRU-managed;
the L2 cache (the LLC) is unified, 8-way, 1-MB, and LRU-managed. This way, I
assume that programs execute one per core, and each program gets 1MB of the LLC.
In order to obtain a program’s miss curve, I process its memory access trace using
Mattson’s stack algorithm [50] at the 4-KB page granularity. To represent the steady-state
behavior, I exclude cold (compulsory) misses. In general, other profiling approaches
are possible; e.g., memory-access traces can be generated by an execution-driven cache
model. Program profiling is performed once, offline, and the profiles are reused throughout
design-space exploration.

Programs I use SPEC CPU2006 programs with reference inputs [73] and NPB 3.3
programs with large problem sizes (Class C) [74]. Each program is single-threaded
and profiled during its major simulation point [75] of 2B instructions after warming the
system for 500M instructions. Although a single simulation point does not accurately
represent the entire program, I find it sufficient for the demonstration purposes of this
chapter. Among all programs considered, for this chapter I choose those with diverse
behavior and working sets larger than 150MB, shown in Table 3.3. I use program names
as profile names; e.g., mcf denotes 429.mcf with the reference input during its major
2B-instruction execution interval.

Figure 3.3 shows the miss curves of the programs, where for ease of reading markers
are located only at the multiples of 0.1GB (instead of 4KB). Figure 3.3 shows that the
miss curve of each program, except sjeng, has a distinct plateau representing the bulk of
the working set. Unlike the other programs, mcf has two plateaus, where the first one
is about 0.1GB. Decreasing fragments of the miss curves illustrate that program pages
have gradually increasing reuse distances, and flat fragments illustrate that program pages
have equal reuse distances. For instance, lbm’s plateau is flat, and thus the pages of the

48 CHAPTER 3. HYBRID MEMORY AREA PARTITIONING

Figure 3.3: Miss curves of selected programs

Table 3.4: System Configuration

Number of cores 8 Memory devices per DIMM 16
Cache line size 64B Total number of DIMMs 4
OS page size 4KB Partitioning granularity 1 DIMM

bulk of its working set have the same reuse distance equal to approximately the size of
the working set. On the contrary, sjeng’s miss curve decreases monotonically, and so the
pages of its working set have different, gradually increasing reuse distances.

Workloads I vary the system workload according to

Wi = plarge × (n− i) + psmall × i for 0 ≤ i ≤ n, (3.9)

where n denotes the number of cores; plarge denotes one of CG, lbm, or mcf; psmall
denotes sjeng or soplex; and i denotes the number of cores that execute the psmall
program. For instance, for a system with eight cores and the mcf/sjeng program set,
workload W0 (i = 0) comprises eight instances of mcf, giving it the largest working
set and a behavior defined by mcf; W1 (i = 1) comprises seven instances of mcf and
one instance of sjeng; and W8 (i = 8) comprises eight instances of sjeng, giving it the
smallest working set and a behavior defined by sjeng. The programs are assigned one per
core, as described in Section 3.2.2.

System Configuration Table 3.4 summarizes the system configuration. The cache
line size defines the size of accesses to M1. The OS page size defines the granularity of
the program miss curves and the size of accesses to M2 and disk. There are four DIMM
slots in total organized in two fully-populated channels (two DIMMs per channel), like in

3.3. EXPERIMENTAL METHODOLOGY 49

Table 3.5: Default Parameter Values

DRAM revision G [76] Disk-cache hit rate 0%
Non-memory power 50W Write-coalesce rate 0%
Row-buffer hit rate 0% Overlap TCPU and Tmem No
Buffer disk writes No

Table 3.6: Characteristics of DRAM Revisions F and G

Numbers per rank of eight devices
Access latencies exclude MC latency
RB = Row Buffer Revision F Revision G

RB miss RB hit RB miss RB hit

Latency (ns)
64-B Read 35.00 18.75

Same as revision F
64-B Write 61.25 18.75

Dynamic energy (nJ)
64-B Read 40.49 11.24 20.77 6.14
64-B Write 43.65 14.41 24.23 9.61

Power (mW)
Static 840 540
Refresh 32 21

Figure 3.2. Each DIMM has two ranks and eight memory devices per rank (for simplicity,
no extra memory device for error detection and correction), and the organization is the
same for DRAM and NVM. I employ 128-MB DRAM devices [76], and so the capacity
of a DRAM DIMM is 2GB, yielding 8GB of DRAM-only main memory capacity. To
make some workloads not-in-memory w.r.t. the DRAM-only capacity, I scale it down four
times (to 2GB) by scaling the datasheet DRAM device capacity down to 32MB. I assume
that DRAM and NVM can be on the same channel and for demonstration purposes choose
the partitioning granularity of one DIMM6. Table 3.5 shows the default model parameters,
where non-memory power is the system power excluding main memory and disk, and
DRAM revision is explained below.

Memory Technologies DRAM and NVM DIMMs implement the 12.8GB/s DDR3
interface. I derive the timing, power, and energy models for DRAM and NAND Flash
from Micron’s datasheets [76, 77] and Power Calculator [78, 79]. I use the original
datasheet numbers despite scaling the device capacities. I model both the latency and
power overheads of DRAM refresh and the erase-before-write overhead of NAND Flash.

The default DRAM revision is G [76], and for sensitivity analysis in Section 3.4.2
I also model revision F [76], that has the same timing characteristics as revision G but at
least 1.5x worse electrical ones. Table 3.6 summarizes my estimates of selected numbers

6In real-world systems the partitioning granularity would be larger, e.g., one DIMM per channel.

50 CHAPTER 3. HYBRID MEMORY AREA PARTITIONING

Table 3.7: Selected Memory-Technology Characteristics

DRAM, PCM, and NAND Flash numbers are per rank of eight devices
Access latencies exclude respective controller latencies
Ratios (x) normalized to respective numbers of DRAM revision G

DRAM PCM NAND Flash SSD HDD
Bit density 1x 4x 16x Do not care

Latency
4-KB Read 350ns 1.13x 72x 157x 19386x
4-KB Write 376ns 1.53x 693x 146x 8492x

Dynamic energy
4-KB Read 408nJ 1.02x 7x 65x 19976x
4-KB Write 630nJ 1.14x 42x 89x 9136x

Static power 0.54W 1x 1x 0.03W 3.00W

for the two DRAM revisions. The latencies in Table 3.6 include the memory-device
access latency but exclude the respective MC latency, which is assumed 20ns and is added
to each access.

Table 3.7 shows selected characteristics of DRAM, PCM, NAND Flash, SSD, and
HDD. The latencies in Table 3.7 include the respective storage-medium access latencies
but exclude the respective controller latencies. The MC and the I/O controller latencies are
assumed 20ns and 20µs and are added to each main memory and disk access, respectively.

PCM and NAND Flash are assumed 4x and 16x denser than DRAM, respectively.
I take the PCM array read and write latencies and energies from the literature [80] and
implement PCM partial writes [80]. I scale down the NAND Flash row capacity [77]
to match that of DRAM [76], and scale my NAND Flash dynamic energy estimates
accordingly. The 4-KB read and write numbers in Table 3.7 illustrate how the large access
size mitigates the row access overhead. For instance, the array read and write latencies of
PCM are 4.4x and 12x longer than those of DRAM [80], but the 4-KB read and write
latencies of a PCM rank, shown in Table 3.7, are only 1.13x and 1.53x longer than those
of a DRAM rank. I assume that the static power of NVM is the same as that of DRAM,
as per Section 3.2.2. Recall that static power does not include refresh, which belongs to
maintenance power.

The disk numbers in Table 3.7 come from product measurements [81, 82]. I aggregate
the smallest measured values across all the products, except that I set the random access
latency of SSD to 50µs and its cache-hit latency to 30µs. The cache-hit latency of HDD
is set to 150µs. Both SSD and HDD employ the 768MB/s Serial Advanced Technology
Attachment (SATA) interface. The SSD static power is measured after ten minutes of the
system being idle [82], thus it is relatively small (e.g., smaller than that of a single NAND
Flash rank), but such inaccuracy can be tolerated, as I show in Section 3.4.2. The latency

3.4. EXPERIMENTAL RESULTS 51

Table 3.8: Hybrids and Respective Baselines

M1 M2 Disk DRA policy
a) DRAM b) PCM d) SSD f) LU

c) NAND Flash e) HDD g) HU

Label Hybrid Baseline Label Hybrid Baseline
I-L a-b-e-f a-e-f III-L a-b-d-f a-d-f

I-H a-b-e-g a-e-g III-H a-b-d-g a-d-g

II-L a-c-e-f a-e-f IV-L a-c-d-f a-d-f

II-H a-c-e-g a-e-g IV-H a-c-d-g a-d-g

and dynamic energy of a 4-KB read from the disk cache respectively are 100x and 41x
for SSD, and 443x and 457x for HDD (normalized to those of a 4-KB read from a rank
of DRAM revision G devices).

DRA Policies This chapter considers the LU and HU DRA policies. Both policies
start with the initial allocation of 32MB of DRAM to each program. The remaining
capacity is distributed iteratively at a ∆c granularity of 1MB. The process stops if: 1) the
entire memory capacity has been distributed among the programs, or 2) all programs
have become in-memory w.r.t. the capacity allocated to them. At each iteration, only
not-in-memory programs participate in allocation, and the LU and HU policies award
one ∆c to each program that has the lowest and the highest utility of it, respectively. If
two or more programs have the same utility of ∆c, each of them gets one ∆c, as long as
there is unallocated capacity. The policies first distribute the capacity of M1 and then that
of M2. Note that the DRA policies can be employed in DRAM-only systems, too.

Hybrid Organizations For comprehensive demonstration I consider eight hybrid
systems, or hybrids for short, shown in Table 3.8. The baselines for the hybrids are
DRAM-only systems with respective disk types and DRA policies.

3.4 Experimental Results

This section demonstrates Crystal by applying it to the hybrids from Table 3.8 and the
workloads from six program sets (mcf/sjeng, mcf/soplex, lbm/sjeng, lbm/soplex, CG/sjeng,
and CG/soplex). Section 3.4.1 first shows the applicability of Crystal by presenting
selected experimental results sufficient to illustrate key observations. Then, Section 3.4.2
presents the validation of the partitioning results produced by Crystal.

52 CHAPTER 3. HYBRID MEMORY AREA PARTITIONING

Figure 3.4: Results for hybrids with HDD and mcf/soplex workloads

3.4.1 Applicability of Crystal

I set the goal to partition main memory area between DRAM and NVM such that system-
level execution time and energy are within 20% of their respective global minima and
the area of the NVM partition is minimized. Due to the first-order nature of the models I
regard speedups and energy savings below 1.5-2x as noise and dismiss them. Minimizing
the area of the NVM partition keeps system cost and lifetime closest to those of the
baseline, as motivated below. Replacing a DRAM DIMM with an NVM DIMM does
not reduce main memory cost, since for one NVM DIMM to cost less than one DRAM
DIMM, NVM must cost less per bit for at least as many times as it is denser than DRAM
(which does not hold even for NAND Flash, which is 16x denser but only 10x less
expensive per bit than DRAM). Since NVM such as PCM and NAND Flash suffer
from lower write endurance than DRAM, the less NVM is employed, the better it is for
system lifetime.

Figures 3.4 to 3.7 show selected partitioning results and the respective speedups and
energy savings. Figures 3.4 to 3.7 have the same format, where the horizontal axis shows
workloads W0-W8 composed from different program sets according to (3.9). The bottom
vertical axis shows the best partitioning (i.e., partitioning that meets the above goal) as the
ratio of the NVM area over the total main memory area. The normalized NVM area ranges
from 0 to 75%, since main memory comprises four DIMMs in total, where one DIMM is
always DRAM to implement a hybrid with two partitions. That is, the partitioning options
are one to three NVM DIMMs plus the DRAM-only baseline. The best partitioning found
for execution time as the target metric is shown by bars, and that for execution energy is

3.4. EXPERIMENTAL RESULTS 53

shown by diamonds. The top vertical axis shows the respective improvements—speedups
(by bars) and energy savings (by diamonds)—expressed in times (x).

Figure 3.4 shows partitioning results for the hybrids with HDD and workloads from
the mcf/soplex set. For workloads W0-W1 and W3-W4 the hybrids employing NAND
Flash (II-L and II-H) offer significant improvements (17-19x) vs. the respective DRAM-
only baselines, but the hybrids employing PCM (I-L and I-H) do not. This is so because
hybrids II-L and II-H provide enough main memory capacity to fit the entire working
sets of these workloads, and the benefit of eliminating HDD accesses is greater than the
overhead of accessing the NAND Flash partition. At the same time, the density of PCM is
4x lower than that of NAND Flash, which makes the capacities of hybrids I-L and I-H too
small to eliminate HDD accesses even when the area of the PCM partition is maximized
to 75%. As a result, for these workloads the overhead of accessing the PCM partition is
greater than the benefit of reducing the number of HDD accesses, and so the normalized
best PCM area is 0%.

For W2 in Figure 3.4 hybrid II-L offers no improvements, despite that it can provide
enough main memory capacity to fit the entire working set of the workload. This is so
because the LU DRA policy, employed by the hybrid, does not allocate enough DRAM
to the mcf instances to fit their first plateaus (Figure 3.3). Instead, soplex wins the DRAM
capacity, since it has a lower utility of it. This results in a great number of migrations
between the DRAM and NAND Flash partitions initiated by the instances of mcf. The
execution-time and energy overhead of these migrations exceeds the benefit of eliminating
HDD accesses. On the contrary, hybrid II-H attains significant improvements (7x) for this
workload thanks to the HU DRA policy, that allocates enough DRAM to the mcf instances
to fit their first plateaus. Note that hybrids II-L and II-H offer equal improvements for
workloads W0-W1 and W3-W4, because the LU and HU DRA policies result in equal
capacity distributions.

For W5-W7 in Figure 3.4 hybrids I-L and I-H attain great improvements (10-34x),
because the benefit of eliminating HDD accesses is greater than the overhead of accessing
the PCM partition for these workloads. For W5, the hybrids offer greater improvements
than hybrids II-L and II-H, since PCM is faster and more energy efficient than NAND
Flash. For W6-W7 hybrids II-L and II-H are worse than their respective DRAM-only
baselines, because the overhead of accessing the NAND Flash partition is greater than the
benefit of eliminating HDD accesses. For W8 all four hybrids make no sense, since the
workload is in-memory w.r.t. the baseline DRAM-only capacity.

Figure 3.5 shows results for the hybrids with HDD and workloads from the lbm/sjeng

program set. The results can be explained similarly to those in Figure 3.4. For W0-
W5 the hybrids attain great improvements (above 14x), because they provide enough
main memory capacity to fit the entire working sets of the workloads, and the benefit of

54 CHAPTER 3. HYBRID MEMORY AREA PARTITIONING

Figure 3.5: Results for hybrids with HDD and lbm/sjeng workloads

Figure 3.6: Results for hybrids III-L and III-H and lbm/sjeng workloads

eliminating HDD accesses is greater than the overhead of accessing the NVM partition.
Hybrids I-L and I-H offer greater improvements for these workloads than hybrids II-L
and II-H, since PCM is faster and more energy efficient than NAND Flash. For W6-W8
all four hybrids are worse than their respective baselines, since these workloads are
in-memory w.r.t. the baseline DRAM-only capacity.

As for the systems with SSD backing store, I find that for the workloads containing
mcf, hybrids with PCM (III-L and III-H) provide either no benefit or not enough benefit for
the partitioning goal set in the beginning of this section. At the same time, hybrids IV-L
and IV-H are never better than their respective baselines for all workloads considered,
because the access latencies and dynamic energies of NAND Flash are too close to those

3.4. EXPERIMENTAL RESULTS 55

Figure 3.7: Results for hybrids with HDD and CG/sjeng workloads

of SSD, and the overhead of accessing the NAND Flash partition is greater than the
benefit of eliminating SSD accesses.

Figure 3.6 shows results for the hybrids with PCM, SSD, and workloads from the
lbm/sjeng program set. The results resemble those for hybrids I-L and I-H in Figure 3.5:
The improvements are significant for W0-W5 (4-8x) but smaller than those offered by
hybrids I-L and I-H in Figure 3.5, since the access latency and dynamic energy gaps
between DRAM and SSD are smaller than those between DRAM and HDD.

The results for workloads containing CG and respective workloads containing lbm

are similar, because CG and lbm have similar miss curves (recall Figure 3.3). For instance,
compare Figure 3.7 and Figure 3.5: The best partitionings are the same, although CG

affects the improvements by having a much smaller fraction of writes and almost double
TCPU compared to those of lbm (Table 3.3).

Intuitively, hybrid memory offers speedups and energy savings compared to equal-
area DRAM-only memory if the benefit of reducing the number of disk accesses is greater
than the overhead of migrations between the hybrid partitions. However, for specific
workloads speedups and energy savings can be relatively small (e.g., below 1.5x) and
can depend on DRA (e.g., the case of W2 in Figure 3.4). Crystal comes in handy in such
situations and quickly identifies promising design points. For instance, Crystal shows
how the density of NAND Flash enables hybrids that offer significant improvements for
W0-W1 and W3-W4 in Figure 3.4, while the density of PCM is not high enough to offer
any improvements for these workloads. The shorter access latencies and higher energy
efficiency of PCM compared to NAND Flash bear no advantage is such cases.

56 CHAPTER 3. HYBRID MEMORY AREA PARTITIONING

Finally, I observe that for all the memory technologies, hybrids, and workloads
considered in this chapter, hybrid configurations that satisfy the partitioning goal minimize
execution time at the same time as they minimizing execution energy, and speedups are
similar to energy savings for each given hybrid and workload. In other words, execution
time and energy follow the same trend for the technologies. This is so because the NVM
access latencies and dynamic energies are worse than those of DRAM but better than
those of disk. Ultimately, partitioning can be done for execution time even if the actual
target metric is energy, and this further simplifies the use of Crystal. In the next section I
validate the best partitionings identified by Crystal.

3.4.2 Validation of Partitionings Produced by Crystal

I validate the best partitionings produced by Crystal via sensitivity analysis, showing
that they are insensitive to the implementation-dependent details represented indirectly,
as described in Section 3.2.2. I vary the model parameters in broad ranges covering
a large space of execution scenarios. Figure 3.8 shows the parameter values and their
combinations, 96 in total. In order to limit the number of combinations, Write-coalesce
rate is set to Row-buffer hit rate, assuming that writes that hit in the row buffer of M1 are
guaranteed to not propagate to disk.

Each of the eight hybrids in Table 3.8 is partitioned for W0-W8 from each of the six
program sets (mcf/sjeng, mcf/soplex, lbm/sjeng, lbm/soplex, CG/sjeng, and CG/soplex)
and each of the 96 parameter combinations. The results show that the best partitioning for
each given hybrid and workload is stable for all 96 combinations and the corresponding
speedups and energy savings vary understandably, as discussed below by the example of
three selected hybrid/workload pairs.

Figures 3.9 to 3.11 show results for W4 from the lbm/sjeng set and hybrids II-L,
I-L, and III-L, respectively. Figures 3.9 to 3.11 have the same format, as follows. The
horizontal axis shows the parameter combinations from Figure 3.8. The vertical axis of the
bottom graph shows the respective best partitionings as the NVM area normalized to the
total main memory area. The vertical bars (of alternating shades for ease of reading) and
the diamonds show the best partitionings found for execution time and energy as the target
metric, respectively. The vertical axis of the top graph shows the respective improvements:
speedups (by vertical bars) and energy savings (by diamonds). The horizontal bars of
colors from Figure 3.8 spanning across multiple parameter combinations annotate the
parameter combinations of interest.

The improvements in Figures 3.9 to 3.11 are rather insensitive to the variation of
DRAM electrical characteristics represented by DRAM revisions F and G (Table 3.6).
In addition, the results are rather insensitive to non-memory power, that I vary from

3.4. EXPERIMENTAL RESULTS 57

one-half to double the default value of 50W and observe insignificant changes in energy
savings. This is why the inaccuracy of the SSD static power estimate in Section 3.3 is
tolerable. The robustness of the best partitioning (25% NVM in Figures 3.9 to 3.11)
to such parameter value variations indicates that Crystal can be applied early in the
design process, when accurate estimates of system component characteristics may not yet
be available.

The improvements offered by hybrid II-L in Figure 3.9 are most sensitive to row-
buffer hit rate and disk-cache hit rate (see the parameter combinations below the light
blue and pink horizontal bars, respectively). The improvements vary as follows. Disk is
not accessed in the hybrid (the workload is in-memory w.r.t. its capacity), so disk-write
buffering and disk-cache hits do not affect its execution time and energy. Migrations
between the DRAM and NAND Flash partitions dwarf TCPU and DRAM accesses, thus
the execution time and energy are insensitive to the overlap of TCPU and Tmem and to
DRAM row-buffer hits. At the same time, in the baseline system, disk accesses dwarf
TCPU and DRAM accesses, so its execution time and energy are insensitive to the overlap
of TCPU and Tmem, DRAM row-buffer hits, and disk-write buffering. However, the 99%
row-buffer hit rate yields the 99% write-coalesce rate, that reduces the number of disk
writes and thus reduces the baseline execution time and energy. Likewise, disk-cache
hits reduce the metrics. Thus, the high row-buffer and disk-cache hit rates result in lower
improvements: They reduce the execution time and energy of the baseline system but do
not affect those of hybrid II-L.

The improvements attainable by hybrid I-L in Figure 3.10 are sensitive to row-buffer
and disk-cache hit rates, too, plus to the overlap of TCPU and Tmem (see the parameter
combinations below the yellow bars). The sensitivity of the baseline execution time
and energy is the same as above, since hybrids II-L and I-L share the same baseline.
Like in hybrid II-L, disk is not accessed in hybrid I-L, and so disk-write buffering and
disk-cache hits do not affect its execution time and energy. But unlike hybrid II-L, hybrid
I-L employs PCM, that is much faster and more energy efficient than NAND Flash. As
a result, migrations between the DRAM and PCM partitions do not dwarf TCPU and
DRAM accesses, and so both the overlap of TCPU and Tmem and DRAM row-buffer
hits reduce the execution time and energy of hybrid I-L. Thus, the overlap of TCPU and
Tmem results in higher improvements: It reduces the execution time and energy of the
hybrid, but does not affect those of the baseline system. The 99% row-buffer hit rate
increases improvements, too: It reduces the execution time and energy of the hybrid
relatively more compared to how the corresponding 99% write-coalesce rate reduces
those of the baseline.

The improvements offered by hybrid III-L in Figure 3.11 are sensitive to the same
parameters as described above for hybrid I-L, plus to disk-write buffering (see the

58 CHAPTER 3. HYBRID MEMORY AREA PARTITIONING

Fi
gu

re
3.

8:
C

ol
or

co
di

ng
fo

rp
ar

am
et

er
va

lu
es

an
d

th
ei

rc
om

bi
na

tio
ns

Fi
gu

re
3.

9:
Se

ns
iti

vi
ty

re
su

lts
fo

rh
yb

ri
d

II
-L

an
d

W
4

fr
om

lb
m

/s
je

ng
pr

og
ra

m
se

t

3.4. EXPERIMENTAL RESULTS 59

Fi
gu

re
3.

10
:S

en
si

tiv
ity

re
su

lts
fo

rh
yb

ri
d

I-
L

an
d

W
4

fr
om

lb
m

/s
je

ng
pr

og
ra

m
se

t

Fi
gu

re
3.

11
:S

en
si

tiv
ity

re
su

lts
fo

rh
yb

ri
d

II
I-

L
an

d
W

4
fr

om
lb

m
/s

je
ng

pr
og

ra
m

se
t

60 CHAPTER 3. HYBRID MEMORY AREA PARTITIONING

parameter combinations below the red bars). Unlike the baseline for hybrid I-L, the
baseline for hybrid III-L employs SSD, which is much faster and more energy efficient
than HDD. As a result, SSD accesses do not dwarf TCPU and DRAM accesses, and
disk-write buffering reduces the execution time and energy of the baseline. On the
contrary, the parameter does not affect those of hybrid III-L, because the workload is in-
memory w.r.t. its capacity and disk is not accessed. Thus, disk-write buffering decreases
improvements. However, the 99% row-buffer hit rate diminishes the effect of buffering,
since the corresponding 99% write-coalesce rate significantly reduces the number of disk
writes in the baseline.

The sensitivity analysis shows that the assumed model parameters do not affect the
best partitioning even if varied in broad ranges (though, they do affect speedups and
energy savings within understandable margins). Intuitively, each disk access and each
migration between the DRAM and NVM partitions dwarf many execution details at higher
levels in the system. The best NVM areas for each hybrid and workload are stable among
all 96 parameter combinations. I find that this holds both at the partitioning granularity of
one DIMM and at a hypothetical, two times finer granularity. Thus, the first-order nature
of the models employed by Crystal does not restrict its applicability.

3.5 Related Work

The problem of hybrid main memory design has both design- and run-time aspects. Run-
time memory management dynamically distributes available memory capacity among co-
running programs and performs dynamic data placement. Here I address the underlying,
fundamental problem: design-time main memory area partitioning.

Qureshi et al. [15] replace all DRAM devices with PCM and add a DRAM cache to
create a hierarchical hybrid system. The DRAM cache constitutes an area overhead. Main
memory is backed by HDD with a NAND Flash cache. Using a detailed simulator, the
authors model candidate configurations for workloads that are not-in-memory w.r.t. their
DRAM-only baseline. Crystal can be modified to partition such hybrid memory organiza-
tions and applied for evaluating more configurations with less computational effort.

Ekman and Stenstrom [30, 68] reduce main memory cost by replacing part of its fast
DRAM with a less expensive, slower technology, and organizing hierarchical, migrating
systems. They study in-memory workloads with a detailed simulator identifying the
capacity of fast DRAM required for maintaining execution times similar to those of
the baseline system. Such partitioning can be done with Crystal by setting the goal
to: “for a fixed main memory capacity, minimize DRAM within a given degradation of
execution time”.

3.6. SUMMARY 61

Ye et al. [69] consider in-memory workloads and NVM with a broad range of
access characteristics. Like Ekman and Stenstrom [30, 68], they set a goal to find a
hybrid configuration with acceptable performance degradation while partitioning capacity
(i.e., when the total capacity is fixed). They prototype hybrid memory on a real, DRAM-
only machine via virtualization. The total capacity is limited to that of the host machine,
and Crystal avoids this constraint.

Jacob et al. [83] propose an analytic, first-order model for finding the number and
capacities of levels in an n-level, replicating memory hierarchy for a given cost. Unlike
Crystal, the authors assume equal bit densities of memory technologies, treat all accesses
as reads, and roughly approximate program miss curves abstracting away plateaus, that
are crucial for partitioning (recall the example in Section 3.2.1).

Yavits et al. [84] partition cache hierarchies of 3D chip multi-processors. They
propose an analytic model for finding the optimal number and areas of cache levels
for given area and power budgets. Unlike Crystal, the authors do not consider memory
technologies with different bit densities and specialize their model to on-chip caches.

Choi et al. [85] partition hybrid memories that are flat (both the DRAM and NVM
partitions can be accessed directly). They propose a model for finding the optimal
placement of in-memory program data that minimizes execution energy, time, their
product, or the number of writes to the NVM partition, and evaluate hybrid configurations
of the same total capacity. The model neither includes disk nor considers main memory
area. It employs integer linear programming and thus implies a limit on the working-set
size for which the optimal data placement can be practically found. On the contrary,
Crystal is holistic (models the entire system and is thus applicable for both in-memory
and not-in-memory workloads) and practical (considers memory area and is applicable
for workloads with realistic working-set sizes).

3.6 Summary

The right balance between DRAM and NVM is fundamental for hybrid main memory
design, but detailed simulation or prototyping alone impede comprehensive design-space
search required for finding it. I propose Crystal, an analytic approach to the design-time
resource partitioning of hierarchical hybrid systems. Crystal is holistic and enables early
partitioning, thus facilitating exhaustive design-space exploration. It employs system-
level models providing first-order estimates of execution time and energy. The best
partitionings identified by Crystal are validated via sensitivity analysis, showing that they
are robust to the imprecision of the models.

62 CHAPTER 3. HYBRID MEMORY AREA PARTITIONING

Crystal quickly identifies the best amount and type of NVM given a partitioning goal
and a workload, highlighting the most promising design points for subsequent detailed
evaluation. For instance, Crystal shows how higher system-level performance and energy
efficiency can be achieved by employing an NVM with the speed and energy consumption
of NAND Flash instead of a faster and more energy efficient NVM like PCM.

However, Crystal explores only a subset of the design space. In the next chapter, I
present a generalized framework named Rock. Unlike Crystal, Rock mutually considers
total main memory area, its partitioning, capacity allocation among programs, and data
placement within allocated capacities, among other design dimensions. This way, Rock
allows system architects to obtain insights about the entire design space to prune it.

4
Pruning of Hybrid Memory

Design Space

The problem sizes of contemporary workloads continuously grow and thereby drive the
demand for larger and still fast main memory. System architects can address this demand
by: 1) installing more memory modules and/or 2) using modules of larger capacities.
SCM technologies like PCM promise significantly higher densities than DRAM and lower
costs per bit. Thus, combining DRAM and SCM modules allows system architects to
build hybrid main memories that are more cost-effective than DRAM-only memories [8].

Memory system performance in case of DRAM-only memory depends on many
factors like: 1) the workload, 2) the total number of memory-module slots, 3) the type of
DRAM modules, 4) DRAM capacity allocation among co-running programs, and 5) disk
type, to name a few. In case of hybrid main memory, new factors are added, e.g.: 6) the
number and type of SCM modules, 7) SCM capacity allocation, and 8) data placement
within the DRAM and SCM capacities allocated per program. Thus, the design space of
hybrid main memory systems is multi-dimensional.

63

64 CHAPTER 4. HYBRID MEMORY DESIGN-SPACE PRUNING

The design point with the highest performance can be found via Design-Space
Exploration (DSE). Complete and accurate DSE where each design point is evaluated
only via prototyping [69, 86–90] and/or simulation [15, 24, 25, 30, 68, 91, 92] is
problematic due to high implementation and/or computation efforts, respectively. Analytic
modeling [34, 85] is much quicker than simulation, but is less accurate due to its first-
order nature. Thus, it is most appropriate for inferring trends and validating them via
sensitivity analysis. Crystal [34], presented in the previous chapter, employs analytic
models to partition a fixed number of memory-module slots between DRAM and SCM.
However, it explores only a subspace of the design space considered in this chapter, since:
1) it does not compare memory systems comprising different total numbers of memory
modules, and 2) it employs a single policy for data placement, thus disregarding it as a
design dimension.

This chapter proposes Rock, a generalized framework for pruning the design space
of hybrid main memory systems. A novelty of Rock is that it recognizes and mutually
considers such important design dimensions as: 1) total memory-system area, 2) memory-
system area partitioning between DRAM and SCM, 3) allocation of the DRAM and SCM
capacities among co-running programs, and 4) data placement within the allocated ca-
pacities. Design-space trends inferred during first-order DSE are validated via sensitivity
analysis; trends that pass validation are used for design-space pruning.

The first contribution of this chapter is that it systematizes hybrid memory design
dimensions by distinguishing area partitioning, resource allocation, and data placement.
The second contribution is a framework that helps system architects to quickly infer
important design-space trends by mutually considering the above dimensions, among the
conventional ones. For instance, Rock makes it easy to reveal insensitivity to a specific
design dimension in the context of the other dimensions, significantly simplifying the
design space. This chapter demonstrates the power of Rock by applying it to two carefully
selected example workloads and a scaled memory system with up to six DRAM and/or
PCM modules backed by NAND Flash SSD. Using Rock I reduce the number of design
points to just a few.

The rest of the chapter is organized as follows. Section 4.1 explains hybrid memory
design dimensions, Section 4.2 presents Rock, Section 4.3 the experimental methodology,
and Section 4.4 results. Finally, Section 4.5 discusses related work and Section 4.6
summarizes the chapter.

4.1. HYBRID MEMORY DESIGN DIMENSIONS 65

Figure 4.1: Proposed system of design dimensions

4.1 Hybrid Memory Design Dimensions

The design space of hybrid memory systems is multi-dimensional. Among the other
dimensions like the type of DRAM and SCM, I propose to recognize: 1) resource
partitioning, i.e., the decision of how much memory of each type to use; 2) resource
allocation, i.e., the distribution of DRAM and SCM capacities among co-running
programs; and 3) data placement, i.e., the decision of where within the allocated capacities
to store each program’s data.

In this chapter, I assume that resource partitioning is performed at design-time, and
thus it poses the question of how many DRAM and SCM modules to install, given that
the total number of modules is fixed. I do not consider run-time resource partitioning
enabled by the dynamic reconfiguration of SCM cells [93]. Resource allocation and data
placement can be performed both at design- and run-time. I propose to systematize the
design dimensions as shown in Figure 4.1, where the arrows show possible dependencies.
For instance, design-time resource partitioning defines the capacities for either design- or
run-time resource allocation. The proposed systematization facilitates directing DSE.

Resource allocation controls how much of the total DRAM and SCM capacities is
available to each program. If a program is allocated enough capacity to hold its entire
working set, it becomes in-memory and does not access disk in the steady state, which
is a key to high performance. In general, resource allocation that results in the highest
performance is an NP-complete problem even in conventional, one-level memories such
as shared caches [71] or DRAM-only main memories [94]. One way to implement
resource allocation is to drive allocation decisions by utility, where a program’s utility of
a specific capacity slice is defined as the number of main memory capacity misses that
can be eliminated by allocating the slice to the program.

66 CHAPTER 4. HYBRID MEMORY DESIGN-SPACE PRUNING

Figure 4.2: System with flat hybrid main memory

In general, data placement that results in the highest performance is an NP-complete
problem, too [24, 25, 85, 91, 92, 95]. Data placement can be imposed by the organization
of hybrid memory partitions. For brevity, like in the previous chapter, I label the DRAM
partition M1 and the SCM partition M2. The hierarchical organization of M1 and M2,
like in Figure 3.1b of the previous chapter, imposes a basic data placement policy, where
M2 can only be accessed via M1. Alternatively, the partitions can be organized as flat
hybrid memory, shown in Figure 4.2, where the CPU can directly access both M1 and
M2, allowing flexibility for sophisticated data placement policies.

Another possible dimension is the policy for promoting data (from M2 to M1):
migrating hybrid memories move data upon promotion, while replicating memories copy.
Since this thesis strives to maximize main-memory capacity, I consider migrating hybrid
memories throughout.

As already mentioned, the design point with the highest performance can be found
using DSE. However, complete and accurate DSE solely via prototyping and/or simulation
is problematic due to high costs, restrictions and/or inefficiencies. The next section
presents Rock, a framework for pruning hybrid memory design spaces and thereby
facilitating complete and accurate DSE.

4.2 Rock
Rock employs analytic models to quickly prune design spaces of hybrid main memory
systems. Analytic models have limited accuracy but make it possible to quickly infer
trends specific to a design space by comparing relative performance of its design points.
Rock normalizes the performance of each design point to that of the reference one: the
design point with the highest performance, i.e., the DRAM-only system with capacity
large enough for the workload to be in-memory. Normalization removes effects common
to the design points, equivalently making such common effects unnecessary to model.
The inferred trends are then validated using systematic sensitivity analysis. For instance,
two sets of parameters can be used per design point to represent corner-case scenarios: a
scenario with low performance and a scenario with high performance. Other execution
scenarios would yield performance falling in between the two corner cases. If a trend

4.2. ROCK 67

Table 4.1: DRA Policies

LU Low-Utility First allocates capacity to programs with low utility of it
HU High-Utility First allocates capacity to programs with high utility of it
UA Utility-Agnostic Allocates capacity regardless of utility

holds in both cases, I conclude that it is insensitive to the inaccuracies of analytic modeling
and thus it can be used for design-space pruning.

For instance, in a simplified example, I can vary the average access-latency gap
between DRAM and PCM by assuming a low row-buffer hit rate in one corner case and a
high row-buffer hit rate in the other corner case. Then, if I observe in both corner cases a
trend that, e.g., replacing DRAM with PCM improves performance (due to reducing the
number of disk accesses), I can conclude that the trend is insensitive to the variation of
row-buffer hit rate. Therefore, I can use this trend to prune the design space.

A novelty of Rock is that it mutually considers resource partitioning, resource
allocation, and data placement, among the other design dimensions. In this chapter
Rock extends Crystal [34] by integrating its method for workload representation (offline
profiling) and the baseline first-order performance model. In addition, Rock integrates
approximations for different implementations of resource allocation and data placement.
The rest of this section details Rock.

4.2.1 Workload Representation

Rock adopts Crystal’s [34] workload representation method, where each program is
approximated by a profile (Table 3.1) comprising: 1) the miss curve showing the number
of main-memory misses vs. capacity, and 2) the fraction of writes equal to the number
of main-memory write requests over the total number of main-memory requests. I
exclude from the profile the time spent on computation and cache accesses in order to
emphasize the difference between main memory configurations. Such profiling is a one-
time, offline effort (a profile is created once and reused throughout design-space pruning).
I consider multiprogrammed workloads comprising one single-threaded program per core.
A workload is represented by a set of respective program profiles.

4.2.2 Resource Allocation

I purpose to compare memory systems employing different DRA policies to reveal the
sensitivity (or lack thereof) of the memory-system performance to resource allocation.
I perform resource allocation at design-time (statically) using three distinct policies

68 CHAPTER 4. HYBRID MEMORY DESIGN-SPACE PRUNING

shown in Table 4.1: the LU and HU policies introduced in the previous chapter and a
Utility-Agnostic (UA) policy, that awards capacity to programs regardless of their utility
of it. To further investigate the sensitivity of the memory-system performance to resource
allocation, other polices can be integrated into the framework of Rock.

4.2.3 Data Placement
For simplicity of demonstration, I manage program data at the OS page granularity for
both paging to/from disk and migrations between M1 and M2 (though other granularities
can be considered). First-order performance estimates for the conventional system
(Figure 3.1a) and the hierarchical hybrid system (Figure 3.1b) can be obtained using the
model that captures the basic memory-system behavior, presented in Section 3.2.3 of the
previous chapter. Like in the previous chapter, main memory is assumed fully-associative
and implements the LRU replacement policy1.

Like in the previous chapter, I consider the following steady-state behavior. If a
requested page is not present in memory, it is paged-in from disk to main memory of the
conventional system or to M2 of the hierarchical hybrid system. Each page-in causes a
page-out, but only dirty pages are written back to disk. If a requested page is not present
in M1 but is present in M2, it is moved from M2 to M1 (since the memory is migrating).
Each migration from M2 to M1 causes a migration from M1 to M2. This behavior imposes
a Run-time Data Placement (RDP) policy labeled basic. The total memory-access time of
a single-threaded program running in a hybrid system that employs this RDP policy can
thus be estimated by (3.1). In order to emphasize the difference among main memory
configurations, I exclude from (3.1) the time spent on computation and all cache accesses
(TCPU) to obtain the following model:

T = NM1· ((1− fWr)· tM1Rd + fWr· tM1Wr)

+NM2· (tM2→M1 + tM1→M2) (4.1)

+ND· (tD→M2 + (1− wcr)· fWr· tM2→D),

where the parameters and variables are described in Table 4.2 and computed the same
way as in Section 3.2.3.

The equation for the total memory-access time of a single-threaded program in the
system with one-level main memory (Figure 3.1a) can be obtained from (4.1) by excluding
M2, and I omit it for brevity. I consider design points where the entire main memory can

1An important nuance of migrating hybrid memories where address mappings between M1 and
M2 are restricted [26–28] is that resource allocation can be controlled by data placement. Integrating
models for such systems into Rock can be a future-work direction.

4.2. ROCK 69

Table 4.2: Parameters and Variables in (4.1)

NM1, NM2, ND The numbers of accesses to M1, M2, and disk, respectively

fWr The program’s fraction of writes

tM1Rd, tM1Wr Respective latencies of reading and writing one cache line from/to M1

tM2→M1, tM1→M2 Respective latencies of one page migration from M2 to M1 and from M1 to M2

wcr An assumed write-coalesce rate, i.e., the fraction of all writes to main memory
that do not propagate to disk

tD→M2, tM2→D Respective latencies of one page-in from disk to M2 and one page-out from
M2 to disk

be either DRAM or SCM, too, and so in the context of one-level main memory M1 can
denote either DRAM or SCM. For simplicity of modeling, I assume that DRAM and
SCM modules have the same organization.

Like in Crystal, the assumed model parameters can indirectly represent system-
behavior nuances as follows: 1) Row-buffer hit rate (rbhr) allows us to vary the latency
per M1 access and loosely represents execution details like access reordering and different
forms of parallelism (e.g., bank-level). Since in the hierarchical hybrid system M2 is
accessed only at the page granularity, a separate model parameter is unnecessary; 2) Write-
coalesce rate (wcr) allows us to vary the number of page writebacks to disk and represents
writes coalescing with other writes within a page before it is paged-out; and 3) Disk-cache
hit rate (dchr) allows us to vary the latency per disk read and represents prefetching to
the disk cache that typically benefits only reads [51].

Next, to model the flat hybrid system of Figure 4.2, I propose to augment (4.1) with
two hypothetical RDP policies. The first one is labeled “80%” and eliminates 80% of
migrations between M1 and M2, i.e., N ′M2 = 0.2·NM2, where NM2 corresponds to the
basic RDP policy. The second RDP policy is labeled ideal and eliminates all migrations,
i.e., it represents the system of Figure 3.1a where main memory is built from DRAM but
has the aggregate capacity of M1 and M2. The two policies are simple yet effective for
obtaining important insights, as I will demonstrate in Section 4.4. Other RDP policies
can be integrated into the framework of Rock.

4.2.4 Final Calculations

The total memory-access times of all programs are summed to obtain the total memory-
access time of the workload. Next, I add the periodic maintenance overhead of DRAM
(refresh), except for SCM-only systems. I assume that refresh overlaps for all DRAM

70 CHAPTER 4. HYBRID MEMORY DESIGN-SPACE PRUNING

modules, and therefore calculate its overhead as the total memory-access time multiplied
by the refresh latency and divided by the refresh period.

Finally, I estimate memory system performance by its throughput, given by the total
number of main-memory requests multiplied by the request size (i.e., cache line size) and
divided by the total memory-access time (i.e., main-memory plus disk access time). As I
explain in the first paragraph of this section, for the estimates for each design point to be
useful they have to be normalized to the reference design point (the DRAM-only system
in which the workload is in-memory).

Note that in addition to the performance model, an analytic energy model like (3.2)
and (3.6) to (3.8), employed by Crystal, can be straightforwardly integrated into the
framework of Rock for pruning design spaces where the target metric is energy. An
interesting question is to test whether the observation that for the current state of memory
technologies energy follows the same trends as performance [34] holds for the larger
design spaces considered by Rock.

4.3 Experimental Methodology
The purpose of the evaluation of Rock in this chapter is to demonstrate its power in terms
of quick and accurate design-space pruning to select the most promising design points for
detailed evaluation via prototyping and/or simulation.

Programs and Workloads Rock uses the same programs and the profiling method
as Crystal (Section 3.3). I carefully choose two distinct example workloads labeled Work1
and Work2 (Table 4.3). Work1 comprises multiple instances of the same program (sjeng),
and so it is insensitive (in terms of performance) to different implementations of resource
allocation. In other words, the UA, LU, and HU DRA polices (Table 4.1) produce equal
memory-capacity allocations for Work1. In addition, unlike the other programs, sjeng

has a miss curve without plateaus, i.e., its miss curve decreases gradually (Figure 3.3).
Thus, sjeng benefits from more capacity as long as it is not-in-memory. Work2 comprises
different programs (CG, lbm, mcf, and soplex), and so its performance can be sensitive
to different resource-allocation policies (due to different M1-capacity allocations per
program). That is, Work2 creates a larger design space than Work1. In addition, the miss
curves of its programs have plateaus and cliffs (steep drops). For instance, Figure 3.3
shows that mcf’s total number of misses is ∼2· 108, that drops down to ∼107 at 0.05GB
and down to ∼105 at 0.1GB. The next section illustrates the importance of such plateaus
and cliffs for hybrid memory system performance. The aggregate working set size of
Work1 is 16×172 = 2752MB and that of Work2 is 419+403+1674+251 = 2747MB.

4.3. EXPERIMENTAL METHODOLOGY 71

Table 4.3: Selected Workloads

Work1 16 instances of sjeng
Work2 One each of CG, lbm, mcf, soplex

Table 4.4: System Configuration

Number of cores 16 (Work1), 4 (Work2)
Cache line size 64B
OS page size 4KB
Max number of DIMMs 6
Partitioning granularity 1 DIMM

Resource Allocation I consider the UA, LU, and HU DRA policies (Table 4.1). The
initial allocation is 32MB for each program, and ∆c is 1MB.

System Configuration I execute Work1 in a 16-core system and Work2 in a 4-core
system (one program per core). Main memory is organized as channels populated with
DIMMs. For demonstration purposes I scale down the memory size and choose one
DIMM as the unit by which the memory size can be changed2. I assume that DRAM and
SCM can share the same channel and that the partitioning granularity, i.e., the unit by
which DRAM can be replaced with SCM, is one DIMM.

The maximum number of DIMMs is chosen such that the workloads are in-memory
w.r.t. the DRAM-only capacity. Each DIMM has two ranks and eight memory devices
per rank (for simplicity, no extra memory device for error detection and correction), and
the organization is the same for DRAM and SCM. I employ 1-Gb DRAM devices [76]
and scale down their capacity four times, resulting in 512-MB DRAM DIMMs. Thus, to
match the working set sizes of Work1 and Work2, I need six DRAM DIMMs (3072MB
in total). The DRAM-only system of six DIMMs is therefore the reference design point,
whose performance should ideally be matched by hybrid systems with fewer modules.
Table 4.4 summarizes the system configuration.

Memory Technologies I consider systems employing DRAM, PCM, and NAND
Flash SSD (though in general Rock is applicable to other technologies, too). PCM is
assumed four times denser than DRAM [15]. DRAM and PCM DIMMs implement the
12.8GB/s DDR3 interface, and I model the access latencies of DRAM and PCM according

2In real-world, large systems the unit would be one DIMM per channel or one rank of memory
devices per channel.

72 CHAPTER 4. HYBRID MEMORY DESIGN-SPACE PRUNING

Table 4.5: Memory-Technology Access Latencies

Access latencies exclude respective controller latencies
Ratios (x) are normalized to respective DRAM latencies

64-B Read 64-B Write 4-KB Read 4-KB Write
DRAM 35ns 61.25ns 350ns 376ns
PCM 2.26x 4.23x 1.13x 1.53x
SSD Not used Not used 157x 146x

Table 4.6: Sets of Assumed Parameter Values for Sensitivity Analysis

Set1 Set2
Row-buffer hit rate (%) 0 99
Write-coalesce rate (%) 0 99
Disk-cache hit rate (%) 0 50

to a datasheet [76] and the literature [80]. SSD employs the 768MB/s SATA interface
and has a random access latency of 50µs. Table 4.5 summarizes “raw” DRAM, PCM,
and SSD access latencies, that include the respective storage-medium access latencies but
exclude the respective controller latencies.

The latency of a 64-B access hitting in the row buffer of DRAM or PCM is 18.75ns.
The latency of a 4-KB read hitting in the SSD cache is 30µs. The MC and the I/O
controller latencies are assumed 20ns and 20µs, respectively, and are added to each
main-memory and disk access. The latency and period of DRAM refresh are 110ns and
7.8125µs, respectively [76].

Sensitivity-Analysis Parameters I perform sensitivity analysis by varying the
assumed model parameters (Section 4.2.3) in broad ranges, shown in Table 4.6. For
each design point, Set1 represents a corner case where the total memory-access time is
the longest, and Set2 represents that where the total memory-access time is significantly
shorter. Other execution scenarios would result in total memory-access times falling in
between the two corner cases. Thus, if a design-space trend holds in both corner cases,
I conclude that it is insensitive to the inaccuracies of first-order modeling. Note that
real-world cases might require more than two sets for comprehensive sensitivity analysis
to narrow down the ranges of parameter values for which the trends of interest hold.

4.4. EXPERIMENTAL RESULTS 73

4.4 Experimental Results

This section demonstrates that Rock can prune design spaces effectively. Sections 4.4.1
and 4.4.2 present results for the design spaces created by Work1 and Work2, respectively.

4.4.1 Work1 Design-Space Pruning

I consider only the UA DRA policy for Work1, since the workload is insensitive to
different resource-allocation policies, as explained in Section 4.3. Figure 4.3 shows a
3D view of the design space for parameter values Set1 (Table 4.6) and has the following
format. The X axis shows the total number of DIMMs, ranging from one to six. The Y
axis shows the number of PCM DIMMs (out of the total number of DIMMs), ranging from
zero to six. I use the (X,Y) notation throughout this section to denote different memory
configurations. For instance, (2, 0) denotes DRAM-only memory of two DIMMs, (2, 1)

denotes hybrid memory of one DRAM and one PCM DIMMs, (2, 2) denotes PCM-only
memory of two DIMMs, and {(x, y) | x ∈ [2, 3] ∧ y ∈ [1, x− 1]} denotes hybrid memories
of two and three DIMMs ((2, 1), (3, 1), and (3, 2)). The Z axis shows the memory-system
throughput normalized to that of the (6, 0) system (the reference). The surface shows the
normalized throughput of the systems employing the basic RDP policy. The ribs of the
surface are projected onto the XZ plane as contour plots. For instance, the normalized
throughput of the {(x, x) | x ∈ [2, 6]} systems is about 0.38. The error bars with circles and
the error bars with dashes show the normalized throughput of the systems employing the
“80%” RDP policy and the ideal RDP policy, respectively. For instance, the throughput of
the (6, 5) system is about 0.3 if it employs the “80%” RDP policy and 1.0 if it employs
the ideal RDP policy.

Figure 4.4a shows the same design space but in a two-dimensional view (for the
ease of quantitative analysis) and has the following format. The horizontal axis shows
the total number of DIMMs. Each group of bars shows configurations of the same total
number of DIMMs, where the left-most and the right-most bars correspond to the DRAM-
only and the PCM-only configurations, respectively. The vertical axis shows throughput
normalized to the (6, 0) system. Figure 4.4b has the same format as Figure 4.4a and
shows results for parameter values Set2 (Table 4.6), used for sensitivity analysis. Next,
I discuss how I infer trends by analyzing the resource-partitioning results first and then
the data-placement results (recall the dependency between resource partitioning and data
placement in Figure 4.1).

74 CHAPTER 4. HYBRID MEMORY DESIGN-SPACE PRUNING

Figure 4.3: Design space of Work1 with UA DRA policy and Set1 in 3D view

Resource Partitioning

Figures 4.3 and 4.4a show that the throughput of the {(x, 0) | x ∈ [1, 5]} systems is
very low, under 10% of the reference throughput (the (6, 0) system). Thus, I infer
that the performance of the {(x, 0) | x ∈ [1, 5]} systems is disk-bound. This trend holds in
Figure 4.4b, too, and so it is insensitive to the errors of analytic modeling and thus can
be used for design-space pruning. That is, I can dismiss the {(x, 0) | x ∈ [1, 5]} systems,
since they offer low performance due to disk accesses.

Intuitively, I can improve performance by replacing some DRAM with PCM and
thus provisioning more capacity. I first analyze the resource-partitioning results for
hybrid systems {(x, y) | x ∈ [2, 6] ∧ y ∈ [1, x− 1]} and then those for PCM-only systems
{(x, x) | x ∈ [1, 6]}. In order to focus on resource partitioning, I first consider only the
systems employing the basic RDP policy.

Figures 4.3 and 4.4a show that the {(x, 1) | x ∈ [2, 5]} systems outperform the re-
spective {(x, 0) | x ∈ [2, 5]} systems. For instance, the normalized throughput of the
(4, 1) system is about 0.3, but that of the (4, 0) system is under 0.025. Thus, in the
{(x, 1) | x ∈ [2, 5]} systems the benefit of a larger capacity exceeds the overhead of
migrations between M1 and M2. Therefore, I infer that performance can be improved
by replacing one DIMM of the {(x, 0) | x ∈ [2, 5]} systems with PCM. This holds in
Figure 4.4b, too, and so the trend can be used for pruning.

4.4. EXPERIMENTAL RESULTS 75

(a) Set1

1 2 3 4 5 6
Total number of DIMMs

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

.
th

ro
u
g
h
p
u
t

(b) Set2 (sensitivity analysis)

Figure 4.4: Design space of Work1 with UA DRA policy in two-dimensional view

Next, Figures 4.3 and 4.4a show that the {(x, 1) | x ∈ [3, 6]} systems outperform the
{(x, y) | x ∈ [3, 6] ∧ y ∈ [2, x− 1]} systems, where each system employs the basic RDP
policy. For instance, the normalized throughput of the (3, 1) system is about 0.19, but that
of the (3, 2) system is less than 0.1. Intuitively, replacing more DRAM with PCM does
not add useful capacity for Work1, but it increases the overhead of migrations between
M1 and M2. Thus, I infer that employing two or more (but not all) PCM DIMMs reduces
performance, compared to that of the respective systems with just one PCM DIMM. This
trend holds in Figure 4.4b, too, and thus I can use it for design-space pruning.

Finally, Figures 4.3 and 4.4a show that PCM-only systems {(x, x) | x ∈ [1, 5]} outper-
form the respective DRAM-only systems {(x, 0) | x ∈ [1, 5]}. Although the performance

76 CHAPTER 4. HYBRID MEMORY DESIGN-SPACE PRUNING

of the (1, 1) system is still disk-bound, the {(x, x) | x ∈ [2, 5]} systems attain a normalized
throughput of about 0.38. On the contrary, even the (5, 0) system attains that of less than
0.1. This means that in the PCM-only systems the benefit of a larger capacity exceeds
the penalty of accessing PCM directly. Thus, I infer that replacing all DIMMs of the
{(x, 0) | x ∈ [2, 5]} systems with PCM can be an attractive option. This trend holds in
Figure 4.4b, too. Moreover, thanks to the very high assumed row buffer hit rate in Set2,
the {(x, x) | x ∈ [2, 6]} systems in Figure 4.4b are competitive with the (6, 0) system.
Though, the PCM write-endurance issue must be alleviated before PCM-only systems
can be deployed [8]. Otherwise, the write traffic of Work1 (44.1% of all memory requests,
according to Table 3.3) might wear out PCM faster than the desired system lifetime.
Future SCM technologies with higher write endurance might become a feasible DRAM
replacement option, and Rock can help to identify such opportunities.

Data Placement

The ideal RDP policy is used to identify hybrid memory configurations that are disk-
bound: in such systems, the ideal RDP policy cannot match the throughput of the (6, 0)

system. For instance, Figures 4.3 and 4.4a show that the normalized throughput of the
(2, 1) system is less than 0.1 even if it employs the ideal RDP policy. Figure 4.4b supports
this observation, and thus the (2, 1) system can be safely discarded.

Figures 4.3 and 4.4a show that the “80%” RDP policy significantly improves the
performance of the {(x, y) | x ∈ [3, 6] ∧ y ∈ [1, x− 1]} systems compared to the basic
RDP policy. However, in the systems with just one DRAM DIMM ({(x, y) | x ∈
[3, 6] ∧ y = x− 1}) the number of migrations between M1 and M2 is still large, bounding
performance to about 0.3. This means that sophisticated RDP policies, approximated by
the “80%” policy, have a high potential, but in systems with a large number of migrations
they have to eliminate much more than 80% of migrations to be competitive with the
reference (6, 0) system. This trend holds in Figure 4.4b, too.

Summary

The purpose of Rock is to help us infer and validate trends for pruning away unpromising
design points. The analysis above leaves us with hybrid systems of three to five DIMMs
in total, of which one is PCM (the {(x, 1) | x ∈ [3, 5]} systems), employing a sophisticated
RDP policy. This way, I prune the design space in Figure 4.3 down to three design points
(the above three hybrid systems) plus one (the (6, 0) reference system).

Note that the maximum total number of DIMMs is a restriction external to Rock in
this evaluation. When the total capacity is large enough to make the workload in-memory,
systems with the ideal RDP policy are equivalent to the (6, 0) system and thus could be

4.4. EXPERIMENTAL RESULTS 77

excluded from the design space even without Rock, by just estimating the workload’s
aggregate working-set size. In addition, as long as the limited write endurance of PCM
remains an issue, the PCM-only systems could be safely excluded for this workload.

4.4.2 Work2 Design-Space Pruning
Since Work2 might be sensitive to different implementations of resource allocation, I
consider the UA, LU, and HU DRA policies (Table 4.1). Figures 4.5, 4.6, and 4.7 show
three-dimensional views of the respective design subspaces for parameter values Set1
(Table 4.6). Figures 4.5, 4.6 and 4.7 have the same format as Figure 4.3 and show that
Work2 is very distinct from Work1. One striking difference is that there are hybrid
systems in Figures 4.5 and 4.6 (i.e., (4, 1), (5, 1), (5, 2), and {(6, y) | y ∈ [1, 3]}) that attain
nearly the same throughput as the reference (6, 0) system, regardless of the RDP policy.
I explain the reason and implications of this when discussing the sensitivity to data
placement later in this section.

For brevity, to discuss only new insights (compared to those I have discussed for
Work1), I restrict my further analysis to the subspace formed by systems of two to
four DIMMs. Figures 4.8, 4.9, and 4.10 show the results for the {(2, y) | y ∈ [0, 2]},
{(3, y) | y ∈ [0, 3]}, and {(4, y) | y ∈ [0, 4]} systems, respectively. The format of the left
(Set1) and right (Set2) parts of the figures is the same as that of Figure 4.4a, except
that the horizontal axis now shows the DRA policy. To highlight new insights, I build
the following discussion around performance sensitivity to resource allocation and data
placement. In this chapter I consider design points with high sensitivity undesirable, and
thus set a goal to prune them away.

Sensitivity to Resource Allocation

Figures 4.8a, 4.9a, and 4.10a show that the choice of DRA policy can significantly affect
the performance of the DRAM-only systems ((2, 0), (3, 0), and (4, 0), respectively). For
instance, in Figure 4.8a the normalized throughput of the (2, 0) system is about 0.25 if it
employs the UA or HU DRA policies, and less than 0.025 if it employs the LU policy.
Thus, I infer that the DRAM-only systems are rather sensitive to DRA. This trend holds
in Figures 4.8b, 4.9b, and 4.10b, too, which validates it, and so the trend can be used for
design-space pruning. Note that in Figures 4.9a and 4.10a the HU DRA policy results
in a lower performance of the DRAM-only systems than the UA and LU polices. This
is a known issue [71] caused by the fact that the policy allocates one slice ∆c at a time,
without lookahead, and thus does not allocate capacity to programs with flat or nearly flat
plateaus on the miss curve even when the plateaus are followed by cliffs, as long as there
are programs with a higher utility of the capacity.

78 CHAPTER 4. HYBRID MEMORY DESIGN-SPACE PRUNING

Figure 4.5: Design subspace of Work2 with UA DRA policy and Set1 in 3D view

Figure 4.6: Design subspace of Work2 with LU DRA policy and Set1 in 3D view

Figure 4.7: Design subspace of Work2 with HU DRA policy and Set1 in 3D view

4.4. EXPERIMENTAL RESULTS 79

UA LU HU
DRA policy

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

.
th

ro
u
g
h
p
u
t

(a) Set1

UA LU HU
DRA policy

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

.
th

ro
u
g
h
p
u
t

(b) Set2 (sensitivity analysis)

Figure 4.8: Design subspace of Work2 with two DIMMs in total

UA LU HU
DRA policy

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

.
th

ro
u
g
h
p
u
t

(a) Set1

UA LU HU
DRA policy

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

.
th

ro
u
g
h
p
u
t

(b) Set2 (sensitivity analysis)

Figure 4.9: Design subspace of Work2 with three DIMMs in total

UA LU HU
DRA policy

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

.
th

ro
u
g
h
p
u
t

(a) Set1

UA LU HU
DRA policy

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

.
th

ro
u
g
h
p
u
t

(b) Set2 (sensitivity analysis)

Figure 4.10: Design subspace of Work2 with four DIMMs in total

80 CHAPTER 4. HYBRID MEMORY DESIGN-SPACE PRUNING

The sensitivity to DRA can be reduced by increasing main memory capacity, i.e., by
replacing some DRAM in the (2, 0), (3, 0), and (4, 0) systems with PCM. In addition, in
the context of hybrid systems the sensitivity to DRA can be further reduced by employing
a sophisticated RDP policy (approximated by my “80%” RDP implementation). For
instance, although the (2, 1) system in Figure 4.8a is still rather sensitive to DRA (the
capacity is not large enough, and the normalized throughput with the HU DRA policy is
just above 0.4 even with the ideal RDP policy), the (3, 1) and (3, 2) systems in Figure 4.9a
and the {(4, y) | y ∈ [1, 3]} systems in Figure 4.10a are significantly less sensitive to DRA
if they employ the “80%” RDP policy. Moreover, these systems are competitive with the
reference (6, 0) system. This way, by replacing some DRAM with PCM and employing a
sophisticated RDP policy in the systems of three and four DIMMs, I increase performance
and at the same time reduce the sensitivity to DRA. This trend holds in Figures 4.8b,
4.9b, and 4.10b, too, and thus it can be used for design-space pruning.

Surprisingly, in Figure 4.10a the normalized throughput of the (4, 1) system with
the basic RDP policy is very close to 1.0 regardless whether it employs the UA or the
LU DRA policy, and is above 0.9 when it employs the HU DRA policy. Thus, the (4, 1)

system is almost insensitive to DRA, even if it employs the basic RDP policy. This
observation holds in Figure 4.10b, too.

Sensitivity to Data Placement

As I just observed in Figure 4.10a, the performance of the (4, 1) system employing the
UA or LU DRA policies is insensitive to the choice of RDP policy. That is, even the basic
RDP policy is competitive with the ideal one. This is so because both the UA and LU
DRA policies can fit the first plateau of mcf and the entire working sets of CG, lbm, and
soplex (Figure 3.3) into M1. Accesses to M2 are only due to the second plateau of mcf,
and their number is dwarfed by the total number of accesses to M1 (recall the remark
in Section 4.3 about the miss-curve cliffs). As a result, the time of all accesses to M2
is dwarfed by the time of all accesses to M1. The insensitivity of the (4, 1) systems to
the choice of RDP policy holds in Figure 4.10b, too, and so I can use this observation
for design-space pruning. The same explanation applies to the insensitivity to RDP of
the (5, 1), (5, 2), and {(6, y) | y ∈ [1, 3]} systems in Figures 4.5 and 4.6. It is important to
identify such insensitivities and to use basic policies instead of sophisticated ones, because
it helps to dramatically simplify the system without significant performance losses.

Summary

The above analysis leaves us with the {(x, y) | x ∈ [3, 5] ∧ y ∈ [1, x− 1]} systems employ-
ing a sophisticated RDP policy, since they can be competitive with the (6, 0) system.

4.5. RELATED WORK 81

In particular, the (4, 1), (5, 1), and (5, 2) systems are very promising, because their
performance is likely to be least sensitive to the implementation of both resource allocation
and data placement. In addition, even basic policies, respectively approximated by the
UA DRA policy and the basic RDP policy, could suffice. The (4, 1) system is the most
promising one, since it achieves the above performance with the least number of DIMMs.
This way, Rock successfully prunes the design space of Work2 down to two design points:
the (4, 1) system and the (6, 0) system as the reference.

4.5 Related Work

Hybrid main memory systems are actively studied, but most of the prior work either
performs detailed investigation via prototyping [69, 86–90] and simulation [15, 24, 25,
30, 68, 91, 92, 95] or employs analytic models to consider only subspaces of the larger
design space analyzed in this chapter. In addition, the previously proposed models have
limitations, as follows.

Crystal [34] focuses on resource partitioning and disregards data placement as a
design dimension. It does not consider SCM-only systems and, furthermore, partitions
only a fixed total number of memory modules. It normalizes performance and energy
estimates to those of a DRAM-only baseline of the same number of memory modules (the
“equal-area” system), regardless whether a workload is in-memory w.r.t. this baseline. As
a result, Crystal [34] does not provide insights about performance and energy efficiency
losses due to a smaller total number of memory modules (memory-system area). Rock
is a generalization that explores a larger design space by mutually considering different
memory-system areas, resource partitioning, resource allocation, and data placement,
among the other dimensions. An important result is that Rock allows system architects to
easily reveal insensitivity to one design dimension in the context of the other dimensions,
and thus to significantly simplify the design space.

Choi et al. [85] focus on design-time resource partitioning and propose a model for
the optimal static data placement, which is an NP-complete problem. The model can be
considered in the framework of Rock.

Other analytic models, including those for memory systems built using conventional
memory technologies, either focus on resource partitioning for cache hierarchies [84, 96]
or have limitations like using approximate program miss curves that disregard information
about plateaus and cliffs [83, 96]. Section 4.4.2 illustrates that detailed miss-curve
information is very important for hybrid memory design. In addition, these models
do not consider different implementations of resource allocation and data placement.
Bolotin et al. [97] focus on the question whether to organize on-chip DRAM and off-chip

82 CHAPTER 4. HYBRID MEMORY DESIGN-SPACE PRUNING

DRAM as hierarchical or flat memory but disregard miss curves completely. Thus, a
major limitation of their model is that it cannot be used for resource partitioning.

4.6 Summary
Hybrid main memory is a promising way of addressing the demand for larger and still fast
main memory driven by contemporary workloads. In general, the design spaces of hybrid
memory systems are multi-dimensional and vast. Thus it is inefficient to prototype and/or
simulate each design point in order to find the best-performing one. This chapter proposes
Rock, a framework for quick and accurate pruning of such design spaces, that finds
the most promising design points for subsequent detailed prototyping and/or simulation.
The novelty of Rock is that it mutually considers total memory-system area, resource
partitioning, resource allocation, and data placement, thus being a starting point for
complete and accurate DSE. This chapter demonstrates the power of Rock by pruning
two carefully chosen example design spaces down to just a few design points.

Thus, Chapter 3 and this chapter have tackled the question of how to explore
hybrid-memory design tradeoffs quickly and correctly by pruning the respective design
spaces. This brings us to the next design issue towards large-capacity and cost-effective
main memories: run-time management—run-time resource allocation and run-time data
placement (recall Figure 4.1)—of the DRAM and SCM partitions that maximizes both
performance and fairness. DRAM is a limited resource in hybrid memories, and co-
running programs compete for it. Run-time management that maximizes performance
ignoring individual program slowdowns inevitably hurts fairness. In addition, run-time
management that employs heuristics for deciding which blocks to migrate to DRAM is
prone to making naive migration decisions that can hurt performance. This leads us to
the third and final problem stated by this thesis: how to manage hybrid main memory
such that high fairness is attained at the same time as high performance. The next chapter
presents ProFess, a Probabilistic hybrid main memory management Framework for high
performance and fairness.

5
Hardware-Based Management of

Hybrid Memory

SCM technologies like 3D Xpoint [14] promise higher bit densities and lower costs per bit
than DRAM. They enable large-capacity, cost-effective hybrid main memories with two
partitions, M1 and M2, where M1 (DRAM) is faster but has less capacity than M2 (SCM).
A lucrative way to build hybrid main memory is to use the flat topology and to place
SCM close to the processor, next to DRAM on the memory channels. For instance, each
DDR4 [35] channel in Intel Purley [23] accommodates one DRAM module and one 3D
Xpoint module. Large DRAM module capacities—currently up to 128GB [43, 98]—and
high costs motivate migrating hybrid main memories. Large numbers of entries for
translating original addresses to actual addresses in M1 and M2 motivate organizations
that store the address-translation entries in M1 [26–29].

Management of flat, migrating hybrid memories has two major challenges. First, data
are moved between M1 and M2 in blocks of a chosen granularity, and when a block is
promoted, another block has to be demoted. It is important to perform only promotions
that clearly benefit performance, such that the benefit of a promotion exceeds its overhead

83

84 CHAPTER 5. HYBRID MEMORY HARDWARE-BASED MANAGEMENT

and the penalty of the respective demotion. This implies that, ideally, to maximize
performance each migration decision should be based on an individual cost-benefit
analysis for each pair of blocks.

Second, relative to M2, M1 is a limited shared resource, and co-running programs
compete for it. If a program fails to occupy a share of M1 large enough for its needs, it
will experience an excessive slowdown. Thus, for fair execution it is important to allocate
M1 such that individual slowdowns of the co-running programs are minimized1. A major
challenge of fair management is to dynamically estimate each program’s performance as
if it was running alone while it actually runs together with the other programs.

Existing schemes [26–29] have two major limitations. First, they suffer from fairness
issues due to ignoring individual program slowdowns: these schemes offer no provision
to assess the slowdowns and to maintain fairness. Second, the schemes suffer from
performance issues due to ignoring individual cost-benefit analysis [26–29] and due
to using global thresholds on the number of served accesses2 to a block in M2 before
promoting it [26–28]. Global thresholds degrade cost-benefit analysis to a one-size-fits-all
heuristic, which compromises performance.

This chapter proposes ProFess: a Probabilistic hybrid main memory management
Framework for high performance and fairness. Its first key component is a Slowdown
Estimation Mechanism (SEM) that monitors individual program slowdowns to enable high
fairness. The second key component is a probabilistic Migration Decision Mechanism
(MDM) that performs individual cost-benefit analysis for each pair of blocks to achieve
high performance.

A novelty of the proposed SEM is that: 1) a small fraction of hybrid memory
is dedicated for exclusive use per core—thereby removing competition for M1—for
monitoring each core’s stand-alone behavior (the numbers of served accesses and
migrations), and 2) the rest of hybrid memory is used for monitoring the behavior under
competition for M1. Next, I propose two factors that proxy slowdown by the observed
behaviors and thus indicate which program suffers the most from the competition. A
novelty of the proposed MDM is that it statistically predicts an expected number of
accesses to each data block, thereby enabling individual cost-benefit analysis and avoiding
global thresholds. To achieve high fairness, ProFess guides MDM using estimates of the
slowdown factors produced by SEM. The proposed mechanisms are practical and require
little hardware.

This chapter addresses the major limitations of the existing schemes [26–29] by
making the following contributions. First, it proposes a new approach to dynamic
estimation of individual program slowdowns, based on monitoring program behavior

1Unfairness is defined by the maximum slowdown, like in MISE [99], among many other works.
2Unless stated otherwise, the word “access” is a synonym to “memory request” in this chapter.

5.1. BACKGROUND AND MOTIVATION 85

in the proposed dedicated and shared regions of hybrid memory. Second, it proposes a
conceptually new, probabilistic approach to making migration decisions, based on statistic
predictions of the numbers of accesses to each block. Lastly, the chapter combines the
two contributions into a framework. I show that for the multiprogrammed workloads
evaluated, ProFess improves fairness by 15% on average and up to 29% compared to the
best-performing state-of-the-art [27]. At the same time, ProFess outperforms it by 12%
on average and up to 29%3.

The rest of the chapter is organized as follows. Section 5.1 provides background
information and motivational data, Section 5.2 describes ProFess, Section 5.3 presents the
experimental setup, and Section 5.4 the results. Lastly, Section 5.5 discusses the related
work, and Section 5.6 summarizes the chapter.

5.1 Background and Motivation
5.1.1 Memory Technologies
SCM technologies such as PCM [8] and 3D Xpoint [14] scale better than DRAM,
promising higher bit densities and lower costs per bit. However, they are multiple times
slower than DRAM, and thus cannot replace it completely without significant performance
losses in high-performance computing systems. On the other hand, combining DRAM
and SCM enables large-capacity, cost-effective main memories that still have high
performance4 [15]. This chapter considers an SCM technology similar to expected
3D Xpoint by being eight times denser but one order of magnitude slower than DRAM.

5.1.2 Large-Capacity, Flat, Migrating Memory Managed by
Hardware

This chapter considers hybrid main memory with one DRAM module and one 3D Xpoint
module per channel, like in Intel Purley [23]. Each module comprises a large number of
memory devices [43, 98], where each device can be 3D stacked [35], resulting in large
module capacities. This chapter assumes that M1 and M2 modules have the same number
of memory devices, and so, according to the assumed SCM density, M2 modules are eight
times denser than M1 modules. Since the capacity of M1 can be hundreds of gigabytes
and represents a significant fraction of the total capacity, I organize this hybrid memory
as flat and migrating.

3It is possible to improve multiprogram performance and fairness at the same time, since the
former is measured as system throughput (weighted speedup [61]).

4Even NAND Flash, although two orders of magnitude slower than DRAM for random reads,
can be successfully employed for main memory extension [5, 7, 16].

86 CHAPTER 5. HYBRID MEMORY HARDWARE-BASED MANAGEMENT

Table 5.1: Flat Migrating Organizations

M1:M2 Capacity Ratio M1-M2 Addr. Mapping Block Size Swap Type

CAMEO [26] 1:3 Direct-mapped 64B Fast
PoM [27] Configurable (1:4, 1:8) Direct-mapped 2KB Fast
SILC-FM [28] Configurable (1:4) Set-associative 64B-2KB Slow
MemPod [29] Configurable (1:8) Fully-associative 2KB Fast

Capacity ratio in parentheses = ratio used for main evaluation in respective work.
Swap type is according to definition in PoM [27].

Similarly to flat, migrating memories where M1 is large on-chip DRAM [26–29],
this hybrid memory has to be managed by hardware, transparently to the OS (to main-
tain responsiveness and to avoid high OS overheads that diminish the benefit of data
promotions). Each request arriving at the MC requires an address translation from its
original physical address (originally allocated by the OS) to the actual one (changed after
a migration), and the MC manages the respective address-translation entries.

Because of large system capacity, the size of such translation entries totals dozens of
megabytes, and so they have to be stored in M1 [26–29]. To minimize the size of each
translation entry and to simplify their own addressing in M1, possible M1-M2 address
mappings can be restricted such that only specific addresses in M2 can map to a given
address in M1 [26, 27]. This way, only a few bits of the original address have to be
translated, and the remaining bits, common to the possible actual addresses, are used to
uniquely address the respective translation entry in M1.

5.1.3 Baseline Organization

Table 5.1 summarizes the existing flat migrating organizations. CAMEO [26] is optimized
for memories where M1 is 1/4-th of the total capacity, one of three fixed physical addresses
in M2 can map to a single fixed physical address in M1 (forming swap groups of four
blocks), data are migrated at a 64-B block granularity, and the type of swaps (promotions
that result in demotions) is fast (more than two blocks can be remapped within a swap
group). Unlike CAMEO, PoM [27] can be configured to support M1:M2 capacity ratios
other than just 1:3, which makes it practical in my study, where M1 is 1/9-th of the
total capacity. SILC-FM [28] relaxes the M1-M2 address mapping, implementing set-
associativity where an M2 block from one swap group can be swapped with an M1 block
in another swap group. In addition, SILC-FM enables sub-block interleaving [28], making
the swap-block size variable at 64-B granularity. However, this relaxation comes at a
cost of swaps being slow (the original mapping in a swap group has to be restored before

5.1. BACKGROUND AND MOTIVATION 87

Figure 5.1: Baseline flat migrating organization of large-capacity hybrid memory (figure
not to scale)

each swap). MemPod [29] further relaxes the M1-M2 address mapping by making it
fully-associative, at the cost of a dramatic increase of the storage overhead of address
translations. For instance, in hybrid memory with 128-GB M1, 1-TB M2, and 2-KB
swap blocks, MemPod would need 30 bits per block, which is a 7.5x increase compared
to PoM [27], that would need only dlog29e = 4 bits per block (to address one of nine
locations in a swap group).

In this chapter, I choose the PoM organization [27] as a baseline. I prefer it to the
SILC-FM [28] and MemPod [29] organizations, because I want to focus on the quality of
migration decisions, motivated as follows. For each pair of blocks considered for a swap,
a migration algorithm has to decide which block to award M1. By excluding the M1-M2
address-mapping associativity of SILC-FM and MemPod, I restrict the number of such
pairs, and thus emphasize the effect of each migration decision. Fundamentally, M1-M2
address-mapping relaxations are orthogonal to migration algorithms. In addition, by using
a single organization for comparing different algorithms, I make the comparison fair.

Figure 5.1 shows a baseline system where each channel has one M1 module and one
M2 module (only one channel is shown, though the system has multiple such channels).
Data are migrated at a 2-KB granularity [27]. To support migrations, the MC employs
two 2-KB Swap Buffers, SB1 and SB2. All memory locations are organized into swap
groups of eight fixed physical locations in M2 and one fixed physical location in M1 [27],
requiring only four bits of each original address to be translated. Address-translations
are stored in M1 in a Swap-group Table (ST). Recently accessed ST entries are stored
on-chip in a Swap-group Table Cache (STC).

88 CHAPTER 5. HYBRID MEMORY HARDWARE-BASED MANAGEMENT

mcf
soplex

lbm

GemsFDTD

lib
quantum

lib
quantum

bwaves

zeusm
p

milc

lib
quantum

omnetpp

leslie
3d

1.0
1.5
2.0
2.5
3.0
3.5
4.0

S
lo

w
d
o
w

n
 (

ti
m

e
s)

w09 w16 w19

(higher is worse; max slowdown is the tallest
bar in each workload)

Figure 5.2: Individual program slowdowns under PoM management

5.1.4 The Fairness Problem
Compared to M2, M1 is a limited resource, and co-running programs compete for it. A
program that fails to get enough M1 for its needs may experience an excessive slowdown,
given by

sdn = IPCSP / IPCMP , (5.1)

where IPCSP is the program’s IPC when it runs alone (uncontended IPC) and IPCMP

is that when it runs within the workload (IPC under contention). For fair execution it is
important to swap data such that the maximum slowdown across the co-running programs
is minimized.

However, the existing schemes [26–29] strive to maximize system performance
disregarding the performance of individual programs in the workload. This inevitably
leads to excessive slowdowns for some programs. Figure 5.2 shows such slowdowns
in three four-program workloads under the PoM management [27] (the experimental
setup is described in Section 5.3). For instance, in workload w09 the slowdown of
soplex is 3.7, but that of lbm and GemsFDTD is just about 2.2. Likewise, zeusmp in
workload w16 and leslie3d in w19 experience excessive slowdowns. The other existing
schemes [26, 28, 29] disregard individual program slowdowns, too, and so they suffer
from the same fairness problem.

5.1.5 The Performance Problem
For high performance it is important that the benefit of each promotion exceeds the
overhead of the swap. This implies that a cost-benefit analysis has to be performed
individually for each pair of data blocks considered for a swap.

However, the existing migration algorithms [26–29], summarized in Table 5.2, do not
perform individual cost-benefit analysis, which compromises performance. In addition, a

5.1. BACKGROUND AND MOTIVATION 89

Table 5.2: Migration Algorithms

Cost-Benefit Analysis Migration Condition
CAMEO [26] No Global threshold of 1 access

PoM [27] Yes, global Global adaptive threshold (1, 6, 18, or 48 accesses) or
prohibit migrations

SILC-FM [28] No Global threshold of 1 access; locked in M1 if aging
access counter > 50 accesses

MemPod [29] No Majority Element Algorithm (MEA) [100], up to 64 migra-
tions every 50µs

lack of cost-benefit analysis makes migration algorithms less adaptive. For instance, in
Section 5.4.1, I experimentally find that the recently published MemPod algorithm [29],
based on the Majority Element Algorithm (MEA) [100], underperforms compared to
the PoM algorithm [27] when employed in the system considered in this chapter. Both
algorithms are originally proposed for hybrid memories where M1 is large on-chip DRAM
and M2 is off-chip DRAM. However, this chapter considers a system that employs
different technologies (M1 is off-chip DRAM and M2 is off-chip SCM), and PoM adapts
to them better than MemPod, thanks to its global cost-benefit analysis, that takes into
account memory-technology characteristics.

The problem with global thresholds is that they simplify cost-benefit analysis to a
one-size-fits-all heuristic. For instance, the CAMEO algorithm [26] is optimized for 64-B
blocks and promotes them after a first access, i.e., it employs a global threshold of 1, thus
presuming that all swaps are justified after one access. Consider a pattern where both
blocks are accessed repeatedly, one after another. CAMEO would swap blocks after each
access, although a higher performance would be achieved without any swaps.

The PoM algorithm [27] is more adaptive, since it chooses one of four global
thresholds (Table 5.2) based on their respective global benefit, estimated on a per-epoch
basis. If none of the thresholds yields a positive benefit estimate, swaps get globally
prohibited for the next epoch. Though, the major limitation of PoM is conceptually
the same as that of CAMEO: it degrades individual cost-benefit analysis to a global,
one-size-fits-all heuristic. Consider a global threshold of 48, a block in M1 that is not
accessed, and a block in M2 that is accessed 49 times. PoM would promote the latter
block after 48 accesses. Clearly, higher performance would be achieved by promoting
that block after the first access.

The SILC-FM algorithm [28] uses global thresholds, does not perform cost-benefit
analysis, and thus suffers from the same performance problem. Although the MemPod
algorithm [29] does not use global thresholds, it suffers from a lack of cost-benefit
analysis, as I discuss above.

90 CHAPTER 5. HYBRID MEMORY HARDWARE-BASED MANAGEMENT

5.2 ProFess

This section presents ProFess: a Probabilistic hybrid main memory management Frame-
work for high performance and fairness, comprising: 1) a Slowdown Estimation Mecha-
nism (SEM), to monitor individual program slowdowns, and 2) a probabilistic Migration
Decision Mechanism (MDM), to address the performance problem of Section 5.1.5.
Within ProFess, SEM guides MDM towards high fairness, thereby addressing the fairness
problem of Section 5.1.4. Next, Section 5.2.1 presents the intuition and a practical
implementation of SEM, Section 5.2.2 presents those of MDM, and Section 5.2.3 presents
the integration of SEM and MDM within ProFess.

5.2.1 Slowdown Estimation Mechanism

Fair management throughout the execution of a multiprogrammed workload requires
dynamic estimation of each program’s slowdown, given by (5.1) in Section 5.1.4. The
dynamic estimation of the stand-alone performance (IPCSP in (5.1)) of each co-running
program—i.e., the dynamic estimation of each program’s performance as if it was running
alone when it actually runs together with the other programs in the workload—is a major
challenge and an open issue in hybrid memories.

To this end, I propose SEM, a Slowdown Estimation Mechanism based on the
following key insight. The swap groups can be further grouped into regions such that:
i) one region per core is private (only data of that core can be mapped to the region),
and ii) the rest of the regions are shared among the cores. Then, assuming one program
per core, each program’s behavior—the number of served requests and swaps—in its
private region is unaffected by the competition for M1 with the other programs. Thus, this
behavior can be assumed uncontended, and therefore be used to indirectly represent, or
proxy, the program’s stand-alone performance. Likewise, the program’s behavior in the
shared regions, where the programs compete for M1, can be used to proxy the program’s
performance under contention. The ratio of the two proxies, like in (5.1), can then proxy
the program’s slowdown caused by the competition for M1 with the other programs (not
to be confused with the actual slowdown estimated by (5.1)).

Since I propose to define a program’s behavior by: 1) the number of served requests
and 2) the number of swaps, I propose to proxy the program’s slowdown by two separate
Slowdown Factors, SFA and SFB , where SFA indicates the competition for M1 in terms
of served requests, and SFB indicates that in terms of swaps. Although the slowdown
factors cannot precisely estimate the actual slowdown, they can act as indicators of how
much the program suffers from competition for M1. Thus, the relative values of the
slowdown factors of two programs can then indicate which of the two programs suffers

5.2. PROFESS 91

Figure 5.3: Interleaved division into regions

the most from the competition for M1. Consequently, this indicator can be used to guide
migration decisions, such that the program that suffers the most obtains more M1. The
rest of this section details SEM.

Private and Shared Regions

I propose to divide hybrid main memory into regions along the swap groups in an
interleaved fashion, as shown in Figure 5.3 for 128 regions (from left to right: Region 0,
1, . . . , 127, 0, 1, . . .). I use 4-KB OS pages and 2-KB swap blocks, thus each page maps
to two consecutive swap groups, and the two swap groups must map to the same region.
For instance, in Figure 5.3 swap groups S0, S1, S256, S257, and so on map to Region 0,
and swap groups S2, S3, S258, S259 and so on map to Region 1. The purpose of such
interleaving is to reduce the non-uniformity of access distribution across the regions.

Next, I propose to dedicate one region per core to form private regions. The total
number of regions should be large compared to the number of cores, so that the fraction
of private regions is small. The OS has to keep track of free M1 and M2 physical page
frames in the private and shared regions and to allocate frames of the private regions to
their respective cores only. The OS should try to allocate frames in M1 first. Note that
swaps are still transparent to the OS.

The Slowdown Proxy

I propose to use each program’s behavior in the respective private region to proxy its
stand-alone performance and its behavior in the shared regions to proxy its performance
under contention. The following discussion is per core, and so I do not show the core ID.

To monitor a program’s behavior, I propose SEM counters described in Table 5.3. Us-
ing the counters, I propose to periodically compute two Slowdown Factors, SFA and SFB ,

92 CHAPTER 5. HYBRID MEMORY HARDWARE-BASED MANAGEMENT

Table 5.3: Per-Core SEM Counters

num_Req_M1_P Requests served from M1 of the private region

num_Req_Total_P Requests served from M1 and M2 of the private region

num_Req_M1_S Requests served from M1 of the shared regions

num_Req_Total_S Requests served from M1 and M2 of the shared regions

num_Swap_Self Swaps where both blocks belong to the program

num_Swap_Total Swaps where at least one block belongs to the program,
regardless which program triggers the swap

respectively given by

SFA =

(
num_Req_M1_P
num_Req_Total_P

)/(
num_Req_M1_S
num_Req_Total_S

)
(5.2)

and

SFB = 1

/(
num_Swap_Self
num_Swap_Total

)
. (5.3)

SFA proxies slowdown by comparing the fraction of requests served from M1 of
the private region (uncontended behavior; in the numerator), and that of the shared
regions (behavior under contention; in the denominator). The intuition is that due to the
competition for M1, the fraction of requests served from M1 of the shared regions would
decrease, compared to that in the private region, increasing the value of SFA and thus
proxying a greater slowdown.

SFB indicates contention in terms of swaps in the shared regions, based on the
intuition that the smaller the fraction of swaps where both blocks belong to the program,
the higher the contention. In the private region, the fraction is always 1 (hence the
numerator in (5.3)), and I do not count swaps there.

Note the similarity of each of (5.2) and (5.3) to (5.1), where the numerator represents
the uncontended performance and the denominator represents the performance under
contention. However, SFA and SFB cannot precisely estimate the actual slowdown
of (5.1). I design them to proxy, each in its own way, the slowdown caused by the
competition for M1 among co-running programs. In general, slowdown can be caused by
different factors, but this chapter specifically tackles the competition for M1, since it is
the major performance factor in hybrid memories (due to the large speed gap between M1
and M2). Thus, the limitation of the proposed SFA and SFB is that they would not be
informative for programs whose actual slowdowns are primarily caused by other factors
than the competition for M1. However, since this chapter addresses hybrid main memory
management, such cases are outside of its scope.

5.2. PROFESS 93

Instead of estimating actual slowdowns, I propose to use SFA and SFB as indicators
of which program suffers from the competition for M1 more than the other co-running
programs. For that program, the competition can be reduced by allocating more M1 to
it, at the cost of the other programs, by forcing respective swaps. In Section 5.2.3, I
identify three cases that depend on the relative values of SFA and SFB of two programs
participating in a swap, and propose a strategy to force migration decisions that would
reduce the competition for M1 for the program that suffers the most from it.

I propose to monitor slowdowns periodically, independently for each core, by resetting
the SEM counters (Table 5.3) at the beginning of a sampling period and computing the
two slowdown factors at the end of the period. Since the private regions are very small,
the counters of requests served from the private region are a source of noise in (5.2).
(Since I do not count swaps in the private regions, I exclude swaps from this discussion.)
For reliable estimates, sampling error should be small, requiring an appropriate choice of
a sampling-period duration, denoted by Msamp and measured in served requests. Ideally,
Msamp should be such that when a program runs alone, the mean SFA estimate across
all sampling periods during execution is 1 with zero variance. The next section explains
how to appropriately choose Msamp.

Sampling Accuracy

Let us consider a simplified analytic model. Let N denote the number of regions and
M the total number of memory accesses. For independent accesses, the probability of
each access going to a region is 1/N for all regions. The distribution of the number of
accesses per region after M accesses is Multinomial (the problem is identical to rolling
an N -sided die M times), and the standard deviation is given by

σ =

√
M · 1

N

(
1− 1

N

)
=

√
M(N − 1)

N
. (5.4)

For instance, for N = 128 regions and M = 217 accesses, the standard deviation is
about 32 accesses per region, i.e., about 32/(M/N) = 32/1024 ≈ 3%. Reducing
M to 213 would yield a much larger standard deviation of 8 accesses per region, i.e.,
8/(M/N) = 8/64 = 12.5%. Note that this model assumes uniform access distribution
across the regions and is thus idealized, yielding the lowest possible standard deviation per
Msamp. In a real system, the standard deviation would be greater due to non-uniformity
of the access distribution.

Table 5.4 shows experimental estimates of sampling accuracy across all sampling
periods throughout execution for Msamp of 64K, 128K, and 256K served requests for
selected single-threaded programs running alone. The setup is described in Section 5.3.

94 CHAPTER 5. HYBRID MEMORY HARDWARE-BASED MANAGEMENT

Table 5.4: Experimental Estimates of Sampling Accuracy

Mean σ̂num_req (%) σ̂raw_SFA
(%) σ̂avg_SFA

(%)

64K 128K 256K 64K 128K 256K 64K 128K 256K
bwaves 36 26 18 3 2 1 0.5 0.3 0.2
GemsFDTD 32 25 19 20 15 10 4.7 3.6 2.4
lbm 36 29 26 4 3 2 1.4 1.0 0.7
mcf 29 25 22 6 4 3 2.3 2.0 1.6
milc 27 20 15 21 13 10 5.1 3.3 2.7
omnetpp 15 12 10 6 5 4 2.1 1.6 1.4
soplex 35 26 19 4 1 1 0.8 0.7 0.5

The programs from Section 5.3 not shown in Table 5.4 provide no additional insights.
Columns 1-3 show the mean of σ̂num_req , which is the standard deviation of the number
of requests per region during Msamp. For instance, increasing Msamp from 64K to
256K accesses reduces the mean from 36% to 18% for bwaves and from 15% to 10%
for omnetpp. Columns 4-6 and 7-9 show the standard deviation of raw (σ̂raw_SFA) and
averaged (σ̂avg_SFA) SFA estimates, respectively. The raw estimates use the counter
values in (5.2) as-is, while the averaged estimates use the counter values after simple
exponential smoothing5 with a constant of 0.125. The means of the raw and averaged
SFA estimates are about 1, and I do not show them for brevity. Table 5.4 shows that such
averaging significantly reduces the standard deviation. For instance, GemsFDTD at 64K
has σ̂raw_SFA of 20% and σ̂avg_SFA of just 4.7%; milc at 128K has σ̂raw_SFA of 13%
and σ̂avg_SFA of just 3.3%.

In general, non-uniformity of access distribution depends on the access pattern and
allocation of physical page frames. I propose to choose Msamp that gives small standard
deviation according to (5.4) and to apply simple exponential smoothing to the SEM
counters (Table 5.3). To avoid zeros, I increment by one each counter before adding it to
the respective average.

Next, Section 5.2.2 presents the proposed probabilistic migration decision mecha-
nism, that maximizes performance regardless of individual program slowdowns. Then,
Section 5.2.3 explains how to use the estimated SFA and SFB for forcing migration
decisions, such that the program that suffers the most from the competition for M1
obtains more M1.

5avg_val = (1− α) ∗ avg_val_prev + α ∗ val, where avg_val is the new average value, α
is the smoothing constant, avg_val_prev is the previous average value, and val is the new value to
be averaged.

5.2. PROFESS 95

5.2.2 Migration Decision Mechanism

I propose a new approach to hybrid memory management: a probabilistic Migration
Decision Mechanism (MDM). The proposed MDM makes migration decisions based
on individual cost-benefit analysis for each pair of blocks in M1 and M2 considered for
a swap. The cost is the overhead of the swap, estimated using the number of memory
requests required to swap the blocks and the characteristics of M1 and M2. The benefit
is estimated by statistically predicting the number of remaining accesses to the block
in M2 and that to the block in M1, and then subtracting the latter from the former. A
swap is performed only if the benefit is greater than the cost. To enable predictions,
MDM keeps an accurate access counter per block and accumulates statistics about the
numbers of accesses. Then, the predicted number of remaining accesses to a block is a
probabilistically computed expected number of accesses to the block minus its current
access count. To make this approach practical, MDM maintains accurate access counters
only for actively accessed blocks. The following discussion presents two insights, on
which MDM is based.

The first and key insight is that it is possible to statistically predict expected numbers
of accesses to each block of each program separately. Blocks of each program can
be distinguished by an attribute with a small number of values, such that statistics are
collected per program per attribute value. Then, expected numbers of accesses can be
predicted per program per attribute value.

The second insight is that the Swap-group Table Cache (STC in Figure 5.1) can
function as a temporal filter to identify periods when blocks are actively accessed: while
a block’s ST entry is resident in the STC, the block is likely6 being accessed. Then, a
block’s temporal access pattern can be represented by the numbers of accesses to the
block counted during its ST-entry residency in the STC.

Combining the two insights, I propose to define a block attribute as a quantized
number of accesses to the block counted during the last residency of its ST entry in the
STC. Based on a block’s attribute value, it is possible to predict an expected number of
accesses to the block next time its ST entry gets cached in the STC.

In addition, by using the STC as a temporal filter, it is possible to limit the number
of ST entries for which accurate state—such as one access counter per block—has to
be maintained. Specifically, the number of such ST entries can be limited only to ST
entries resident in the STC. This way, it is possible to keep accurate state inexpensively,
which alleviates the stringent restrictions on the ST size, posed by the requirement to
store it in M1.

6There is uncertainty since the ST entry might be resident in the STC because of accesses to
other blocks in the same swap group.

96 CHAPTER 5. HYBRID MEMORY HARDWARE-BASED MANAGEMENT

Figure 5.4: ST entry and STC organization (not to scale)

Thus, the conceptual difference of MDM from the existing schemes [26–29] is that it
makes migration decisions based on predicted numbers of remaining accesses to each
block. This way, in the proposed MDM, the probability of a promotion that clearly
benefits performance is the highest at a first access to a block in M2. In other words,
the probability is the highest when the block’s number of already served accesses is
the smallest and, respectively, the number of remaining accesses is the greatest. Such
timely and accurate promotions are less likely under the existing schemes, since they
either consider promotions beneficial based on solely the number of already served
accesses [27, 29] or promote all blocks after the first access [26, 28], regardless of the
benefit, suffering from the performance problem of Section 5.1.5. As a result, compared
to the existing schemes [26–29], the benefit of migrations performed by MDM is likely
to be greater, improving overall performance. The rest of this section details MDM.

ST Entry and STC Organization

I propose to use one access counter per block (swap-group location) for ST entries resident
in the STC. A swap group comprises nine physical locations, and its ST entry contains
address-translation bits for each of them, as illustrated in Figure 5.4. The access counters
belong to the STC and get reset to 0 at ST-entry insertion into the STC. The ST entry
itself does not store the counter values, but rather their quantized values, that get updated
at ST-entry eviction from the STC. Table 5.5 shows the Quantized Access-Counter (QAC)

5.2. PROFESS 97

Table 5.5: Quantized Access-Counter (QAC) Values

Value Meaning Value Meaning
0 Previously unseen block (default) 2 8-31 accesses
1 1-7 accesses 3 32 or more accesses

Table 5.6: Per-Core MDM Counters

accum_cnt(qE) Accumulator for access counts of blocks with qE
num_q_sumI(qE) Counter of all transitions to qE (regardless qI)
num_q(qI , qE) Counter of blocks with qI transitioned to qE
num_q_sumE(qI) Counter of all transitions from qI (regardless qE)

values and the respective ranges used for quantization. ST entries are initialized with the
default QAC value of 0. If a block’s access count is 0 at ST-entry eviction, the MC does
not update the block’s QAC value.

Prediction of Expected Number of Accesses

Each block in a swap group is identified by its program ID (core ID) and QAC value. The
following discussion is per core, and so I do not show the core ID.

Let us denote by qI the QAC value at insertion of the swap group’s ST entry into
the STC, by qE that at eviction, by num_qI the number of qI values, and by num_qE
the number of valid qE values. According to Table 5.5, num_qI = 4. Since QAC
values are updated only for blocks with non-zero access counts, qE = 0 is invalid. Thus,
num_qE = num_qI − 1 = 3.

Next, let us denote by avg_cnt(qE) an average access count per qE , by P (qE | qI)
the probability of qI transitioning to qE , and a set of MDM counters as shown in
Table 5.6. Then, for a block with qI I propose to estimate an expected number of
accesses exp_cnt(qI) by

exp_cnt(qI) =

num_qE∑
qE=1

avg_cnt(qE)·P (qE | qI), (5.5)

where

avg_cnt(qE) =
accum_cnt(qE)

num_q_sumI(qE)
, (5.6)

and

P (qE | qI) =
num_q(qI , qE) + 1

num_q_sumE(qI) + num_qE
. (5.7)

98 CHAPTER 5. HYBRID MEMORY HARDWARE-BASED MANAGEMENT

Table 5.6 describes the counters in (5.6) and (5.7). In (5.7), the constants of 1 in the
numerator and num_qE = 3 in the denominator implement Laplace smoothing.

The MC updates the MDM counters at each ST-entry eviction for each block
with a non-zero access count. However, the MC updates avg_cnt(qE) and P (qE | qI)
periodically, in phases, where an observation phase (no updates) is followed by an
estimation phase (updates at equal intervals). Section 5.3 discusses the periodicity of
phases and updates. Note that the updates are not on the critical path.

Per core the MC needs num_qE ∗ 2 = 6 counters to compute avg_cnt(qE) and
num_qI∗num_qE+num_qI = 4∗3+4 = 16 counters to compute P (qE | qI), totaling
22 counters. Updates of avg_cnt(qE) and P (qE | qI) trigger updates of exp_cnt(qI),
and the MC registers each value between updates. Thus, per core the MC needs num_qE+

num_qI ∗ num_qE + num_qI = 3 + 4 ∗ 3 + 4 = 19 registers.

Migration Decisions

Upon an access to a block the MC increments its access counter in the STC. If the block
is in M1, no migration is needed. If the block is in M2, the MC assesses the benefit of
promoting the block by performing a cost-benefit analysis (not on the critical path), as
follows. First, the MC estimates the number of remaining accesses to the block by

rem_cntM2 = exp_cnt(qI)− curr_cnt, (5.8)

where exp_cnt(qI) is an expected number of accesses to the block precomputed accord-
ing to (5.5) given the block’s qI (the QAC value at insertion of its ST entry into the STC),
and curr_cnt is the block’s current access-counter value. Then, the top-level condition is

rem_cntM2 ≥ min_benefit,

where min_benefit is the least number of remaining accesses that justifies a promotion
(min_benefit depends on memory-technology characteristics; Section 5.3.1 discusses
how to compute it). If the condition is false, there is no benefit to promote the block.
Otherwise, the MC schedules a promotion if: a) M1 is vacant (not an expected case); or
b) M1 is occupied, but has not been accessed (the respective access counter is 0), and
some other block in M2 of the swap group has been accessed (which hints the MC that
the block in M1 is not going to be accessed soon); or c) M1 is occupied, the respective
access counter is not zero, and c.i) rem_cntM1 ≤ 0; or c.ii) rem_cntM1 > 0 and

rem_cntM2 − rem_cntM1 ≥ min_benefit,

where rem_cntM1 is the number of remaining accesses to the block in M1 (predicted
using (5.8) just like for the block in M2). If the condition is false, the swap has no benefit.

5.2. PROFESS 99

Table 5.7: Migration Decisions Guided by SEM

Block in M1 belongs to core cM1, block in M2 belongs to core cM2

Case 1 SFA(cM1) < SFA(cM2) and SFB(cM1) < SFB(cM2)

Decision: Consider M1 vacant and use MDM

Case 2 SFA(cM1) > SFA(cM2) and SFB(cM1) > SFB(cM2)

Decision: Do not swap

Case 3 SFA(cM1) < SFA(cM2) and SFB(cM1) > SFB(cM2) and
SFA(cM1)·SFB(cM1) > SFA(cM2)·SFB(cM2)

Decision: Do not swap

Default (all other cases): use MDM

Since MDM makes migration decisions based on a number of remaining accesses
to each block, the probability of a promotion that clearly benefits performance is the
highest at a first access to a block in M2 (an access that increments the block’s access
counter from 0 to 1), i.e., when the number of remaining accesses to the block is the
greatest. Thus, the key net difference of MDM from the existing schemes [26–29] is that
it predicts remaining accesses and thereby enables individual cost-benefit analysis for
each pair of blocks.

5.2.3 Integration of SEM and MDM

MDM strives to maximize system performance ignoring slowdowns of individual pro-
grams, which may lead to low fairness. Within ProFess, I propose to steer MDM towards
high fairness by using SEM as follows.

Upon an access to a block in M2, the core ID of the accessing program is known; let
us denote it cM2. Let us denote cM1 the core ID of the program whose block is resident
in the M1 location of the same swap group (the MC permanently stores cM1 in the ST
entry and updates it upon migration).

If cM1 equals cM2, the MC just uses MDM (Section 5.2.2) to decide whether to
swap the blocks. Otherwise, I propose to guide decisions according to Table 5.7, where
SFA(cM1) and SFA(cM2) are precomputed by (5.2) for cM1 and cM2, respectively, and
SFB(cM1) and SFB(cM2) are precomputed by (5.3).

Case 1 in Table 5.7 indicates that cM2 suffers from competition for M1 more than
cM1 (both slowdown factors support that). I propose an aggressive help strategy that
forces swaps as if the core that needs help was running alone. Thus, in Case 1 the

100 CHAPTER 5. HYBRID MEMORY HARDWARE-BASED MANAGEMENT

MC ignores the remaining accesses to the block of cM1 and uses MDM as if M1 is
vacant (Section 5.2.2).

Case 2 in Table 5.7 represents the opposite case, where cM1 suffers from the
competition for M1 more than cM2. Thus, according to my aggressive help strategy, the
MC protects the block of cM1 from being swapped out by the block of cM2.

Case 3 in Table 5.7 is special: its first condition indicates that cM2 suffers from
the competition for M1 more than cM1 according to SFA, while its second condition
indicates the opposite according to SFB . I find that to attain high fairness in such cases,
it is important to avoid disproportionately large SFB(cM1) by protecting the block of
cM1 from being swapped out, as long as the product of SFA and SFB indicates that cM1

suffers from the competition for M1 more than cM2. In other words, the third condition
of Case 3 can be rewritten as SFB(cM1)/SFB(cM2) > SFA(cM2)/SFA(cM1),
requiring that SFB(cM1) must be greater than SFB(cM2) to a greater degree than
SFA(cM2) is greater than SFA(cM1).

To exclude cases where the slowdown factors being compared are too similar, I
propose to use a small threshold in each condition in Table 5.7. For instance, the first
condition of Case 1 becomes SFA(cM1)· 1.03 < SFA(cM2), using a threshold of 3%
(1/32, to simplify hardware). Since the third condition of Case 3 compares products of
slowdown factors, I propose to use a twice larger threshold there (i.e., 1/16 ≈ 6%). If
none of the three cases in Table 5.7 is true, the MC just uses MDM as per Section 5.2.2.
Recall that migration decisions are not on the critical path.

5.3 Experimental Setup

5.3.1 System Configuration

I use a Pin-based [101] cycle-accurate x86 simulator [102] with a detailed main memory
simulator [103], which I modify to support hybrid memory. Table 5.8 summarizes the
system configuration. For multi-program evaluation, I simulate a quad-core system
with two memory channels, each of which has one M1 rank and one M2 rank. For
simulation, I scale the total capacity of M1 down to 256MB, and the capacity of M2 is
8 ∗ 256MB = 2GB, equivalent to eight times more rows per bank. For single-program
evaluation I simulate a single-core system with one memory channel, and I respectively
scale down the capacities of the L3 cache, the STC, M1, and M2 (the total main-memory
capacity in the single-core system is 64MB M1 and 8 ∗ 64MB = 512MB M2). I change
the number of sets when I change a cache size, and use CACTI [104] to obtain the
cache latencies.

5.3. EXPERIMENTAL SETUP 101

Table 5.8: System Configuration

Num. cores 4
Core frequency 3.2GHz
Core width 4
ROB size 256
Cache line size 64B
Split L1 cache 32-KB, 4-way, 2-cycle
Private L2 cache 256-KB, 8-way, 8-cycle
Shared L3 cache 8-MB, 16-way, 20-cycle

OS page size 4KB
Swap block size 2KB
ST entry size 8B
STC 64-KB, 8-way, 2-cycle

Num. memory channels 2
Channel frequency 0.8GHz (1.6GHz DDR)
Channel width 64b
M1 / M2 ranks per channel 1 / 1
Banks per rank 16
Rows per M1 / M2 bank 1K / 8K
Columns per device 1K
Device width 4b
M1 / M2 row-buffer size 8KB / 8KB
tRCD_M1 / tRCD_M2 13.75ns / 137.50ns
tWR_M1 / tWR_M2 15ns / 275ns
CL, tRP 13.75ns

The row-to-column delay of M2, tRCD_M2, is ten times that of M1. SCMs typically
have highly asymmetric latencies [8, 105], thus I assume a write-recovery latency
tWR_M2 = 2 ∗ tRCD_M2. The other timings of M1 and M2 are assumed identical,
except that I appropriately adjust tRAS and tRC of M2 and that M2 has no refresh.

The MC employs the open-page policy and FRFCFS-Cap [106], limiting the number
of consecutive row-buffer hits to four. I modify the scheduler to not cap row-buffer hits
during swaps. Note that I accurately model swaps by issuing the read and write requests
required to migrate data and by blocking the respective channel during a swap.

I implement random virtual-to-physical OS page mapping, where the OS maps pages
first to M1 and then to M2 (after M1 is full). For ProFess I implement the OS support to
distinguish private and shared regions.

I use 8-B ST entries, which implies that an ST-entry writeback to M1 would require
a data mask, that is not supported in contemporary x4 memory devices [42] used in
large-capacity modules. Thus, I implement a read-modify-write at the burst granularity
for ST writebacks.

102 CHAPTER 5. HYBRID MEMORY HARDWARE-BASED MANAGEMENT

Each read request to the ST in M1 returns a burst of eight ST entries. Like the authors
of PoM [27], I prefetch from each burst an ST entry corresponding to the second half
of the OS page. For instance, upon a miss in the STC caused by an access to Swap
Group 0, a read burst from M1 returns ST entries for Swap Groups 0 to 7. Due to spatial
locality within the OS page, the second half of the page will likely be accessed, too.
Thus, I prefetch the ST entry for Swap Group 1 together with the requested ST entry for
Swap Group 0.

PoM

I configure PoM using its default parameter values: 32 regions of which four evaluate
global thresholds of 1, 6, 18, and 48 accesses every 10K L3 misses [27]. However, due to
the characteristics of M1 and M2, for best performance I count each write request as eight
accesses, and adjust the value of PoM’s parameter K using the following method [27].

One migration first reads a 2-KB block from M1 into swap buffer SB1 (Figure 5.1)
and a 2-KB block from M2 into swap buffer SB2. Then it writes the blocks to M2 and M1,
respectively. The read latencies (tRP + tRCD +CL+ 32 ∗ 4 ∗ 1.25ns) partially overlap
(tRCD_M2 overlaps with tRCD_M1, CL, and the majority of the 32 read bursts from M1).
The write latency to M1 overlaps with tWR_M2 (32∗4∗1.25ns+ tWR_M1 < tWR_M2),
given that the 32 write bursts to M2 are issued before those to M1. Hence, a total analytic
swap latency is 796.25ns. I observe that the actual swap latency during my experiments
is about 820ns on average, which is within 3% of this analytic estimate. The difference in
64-B read latencies of M2 and M1 is 123.75ns, which gives K = d796.25/123.75e = 7.
Like the authors of PoM, I choose a slightly larger value, giving us K = 8. During
execution the above latencies vary, but I observe that static K = 8 works well.

MemPod

I find that in this system MemPod performs best using the default 50-µs MEA inter-
vals [29], counting each write request as one access, and using 128 MEA counters instead
of the default 64.

ProFess

Each ProFess ST entry stores 4 ∗ 9 = 36 address-translation bits, 2 ∗ 9 = 18 QAC bits,
and two program ID bits to keep track of the program whose block resides in the M1
location of the swap group, totaling 7B. I reserve another byte for future use (e.g., to store
a wider program ID). The min_benefit value (Section 5.2.2) has the same meaning as
PoM’s parameter K, and I use the adjusted min_benefit = K = 8. Like for PoM, I
count each write request as eight accesses.

5.3. EXPERIMENTAL SETUP 103

Table 5.9: Individual Programs [73]

MPKI Footprint (MB) MPKI Footprint (MB)
bwaves 11 265 mcf 60 525
GemsFDTD 16 499 milc 18 547
lbm 32 402 omnetpp 19 138
leslie3d 15 76 soplex 29 241
libquantum 30 32 zeusmp 5 112

Table 5.10: Multiprogrammed Workloads

w01 mcf - libquantum - leslie3d - lbm
w02 soplex - GemsFDTD - omnetpp - zeusmp
w03 milc - bwaves - lbm - lbm
w04 libquantum - bwaves - leslie3d - omnetpp
w05 mcf - bwaves - zeusmp - GemsFDTD
w06 soplex - libquantum - lbm - omnetpp
w07 milc - GemsFDTD - bwaves - leslie3d
w08 soplex - leslie3d - lbm - zeusmp
w09 mcf - soplex - lbm - GemsFDTD
w10 libquantum - leslie3d - omnetpp - zeusmp
w11 soplex - bwaves - lbm - libquantum
w12 milc - GemsFDTD - soplex - lbm
w13 mcf - soplex - bwaves - zeusmp
w14 GemsFDTD - soplex - omnetpp - libquantum
w15 leslie3d - omnetpp - lbm - zeusmp
w16 libquantum - libquantum - bwaves - zeusmp
w17 mcf - mcf - omnetpp - leslie3d
w18 mcf - milc - milc - GemsFDTD
w19 milc - libquantum - omnetpp - leslie3d

SEM employs 128 regions (such that four private regions are just 4/128 ≈ 3% of the
total capacity) and a sampling-period duration (Msamp) of 128K served requests (across
the regions, per core). MDM uses 6-bit saturating STC access counters (Figure 5.4). The
MDM observation and estimation phases are measured in updates of the MDM counters
(Table 5.6), and the duration of each phase is 1K updates per core. The counters are
reset at the beginning of each observation phase. During each estimation phase, the
MC recomputes exp_cnt(qI) using (5.5) every 100 updates per core. I choose such
periodicity to obtain timely and reliable statistics.

5.3.2 Workloads
I use SPEC CPU2006 programs [73] (Table 5.9) to compose diverse multiprogrammed
workloads (Table 5.10). The programs have various access patterns; for instance, mcf,

104 CHAPTER 5. HYBRID MEMORY HARDWARE-BASED MANAGEMENT

omnetpp, and libquantum use irregular pointer-based data structures, and soplex has mixed
regular and irregular accesses [107]. I use 500M-instruction simulation points [75] with
the reference input per program. Table 5.9 shows the respective L3 MPKI and footprints.

In each workload, I repeat programs that complete faster than the slowest one,
ensuring competition for M1 throughout execution. The total simulated execution time
depends on the workload, ranging for the baseline from about 3B cycles (w15) to about
9B cycles (w09) and averaging about 6.5B cycles across all workloads. Long simulations
with multiple repetitions produce diverse overlaps of execution phases.

5.3.3 Figures of Merit

I estimate weighted speedup, fairness [61], and memory-system energy efficiency. Weigh-
ted speedup is given by

∑
i

(
sdn−1

i

)
, where sdn is given by (5.1) for each program i in

the workload, and fairness is given by maxi (sdni). Memory-system energy efficiency is
estimated by the number of served requests per second per watt, using power reported by
the simulator [103]. Energy efficiency is more appropriate than execution energy, because
the same workload might complete different amounts of work under different schemes
(due to repeating programs that complete faster than the slowest one).

5.4 Experimental Results
This section first presents performance results for the proposed MDM in single-program
experiments (Section 5.4.1), followed by a sensitivity analysis (Section 5.4.2). Sec-
tions 5.4.3 and 5.4.4, respectively, present results for MDM and ProFess (MDM + SEM)
in multi-program experiments.

5.4.1 Single-Program Performance of MDM

Figure 5.5 shows the performance of MDM normalized to that of PoM for the programs
from Table 5.9 in the single-core system. The results across the programs are summarized
by a box plot [62], where the box shows the first and third quartiles, the whiskers show the
data range, the individual “+” markers denote outliers, the red line denotes the median,
and the red dot denotes the geometric mean.

I use the PoM migration algorithm as the baseline, since I find that the recently
published MemPod migration algorithm [29] underperforms by 6% on average compared
to PoM in this system, outperforming it only for lbm (by 25%) and zeusmp (by 4%) for
the best MemPod configuration I could find. As I discuss in Section 5.1.5, PoM adapts

5.4. EXPERIMENTAL RESULTS 105

bwaves

GemsFDTD lbm
leslie

3d
mcfmilc

omnetpp
soplex

zeusm
p

0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

N
o
rm

a
liz

e
d
 I
P
C

Figure 5.5: Single-program performance of MDM normalized to PoM

bwaves

GemsFDTD lbm
leslie

3d
mcfmilc

omnetpp
soplex

zeusm
p

0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

N
o
rm

.
M

1
 a

cc
. (lower does not mean worse)

Figure 5.6: Single-program M1 accesses of MDM normalized to PoM

bwaves

GemsFDTD lbm
leslie

3d
mcfmilc

omnetpp
soplex

zeusm
p

0.5

0.6

0.7

0.8

0.9

1.0

S
T
C

 H
it

 R
a
te

Figure 5.7: Single-program STC hit rates under MDM

better than MemPod to the characteristics of M1 and M2. For brevity, I do not discuss
MemPod further.

Figure 5.5 shows that MDM outperforms PoM by 14% on average and up to 38%
(lbm). I omit showing libquantum since its footprint is just 32MB (Table 5.9) and fits
entirely in M1, resulting in identical performance of MDM and PoM. However, I find that
in an appropriately scaled system—with 4-MB M1 and 32-MB M2—MDM outperforms
PoM for libquantum by 30%. The significant performance improvements confirm that
MDM makes better migration decisions than PoM thanks to its individual cost-benefit
analysis based on predicted numbers of accesses. In addition, I find that MDM reduces
the average read-request latency by 18%.

Figure 5.6 shows the fractions of accesses served from M1 by MDM normalized to
those served by PoM. Higher fractions in Figure 5.6 correspond to higher performance in

106 CHAPTER 5. HYBRID MEMORY HARDWARE-BASED MANAGEMENT

Figure 5.5 for all programs except mcf and omnetpp. To explain this, let us consider the
programs’ STC hit rates under MDM (Figure 5.7).

Figure 5.7 shows that mcf has an STC hit rate of about 85%, which confirms that it has
irregular accesses. Swaps of such blocks would hurt performance. I find that MDM iden-
tifies such blocks better than PoM and performs fewer swaps. This explains why MDM
serves fewer accesses from M1 in Figure 5.6 but improves performance in Figure 5.5.

Next, Figure 5.7 shows that omnetpp has an STC hit rate of just 70%, reflecting its
very irregular accesses. However, Figure 5.6 shows that MDM serves slightly more (by
about 2.5%) accesses from M1. I find that the low STC hit rate reduces the accuracy of
the MDM statistics, that misleads MDM, and it performs more swaps than PoM, which
is unnecessary for omnetpp. This explains the insignificantly lower (by about 1.5%)
performance of MDM for omnetpp in Figure 5.5.

Overall, performance improvements depend on multiple factors such as the amount
of access irregularity, the ratio of a program’s footprint to the total M1 capacity, and the
amount of noise in the MDM statistics. The next section presents a sensitivity analysis of
MDM to selected factors.

5.4.2 Sensitivity Analysis of MDM

Sensitivity to STC Size

MDM relies on the STC as a temporal filter for collecting statistics about data blocks.
Premature ST-entry evictions from the STC due to conflicts or a lack of evictions due
to no conflicts both add noise to the statistics, potentially hurting the accuracy of cost-
benefit analysis. For instance, premature evictions would reduce avg_cnt(qE) and the
probabilities of qI transitioning to qE > qI , ultimately reducing expected numbers of
accesses exp_cnt(qI) (Section 5.2.2). A lack of evictions would reduce the number of
MDM counters’ updates (Table 5.6), may lead to relatively large negative numbers of
estimated remaining accesses, and thus mislead MDM.

Figure 5.8 shows IPCs of MDM with 16-KB and 64-KB STCs normalized to the
32-KB STC (the default STC size in the single-core system). Figure 5.8 shows that the
programs are generally insensitive to STC size with a few exceptions.

First, Figure 5.8 shows that mcf loses about 8% IPC when the STC is reduced to
16KB. Figure 5.9 shows the respective STC hit rates, where mcf suffers the greatest
drop: from 85% down to 75%. The low STC hit rate increases the number of premature
ST-entry evictions, adding noise to the MDM statistics and thus making it more difficult
for MDM to make promotions that benefit performance. Similarly to mcf, omnetpp in
Figure 5.8 loses some performance when the STC size is reduced. Like mcf, omnetpp

5.4. EXPERIMENTAL RESULTS 107

0.8
0.9
1.0
1.1
1.2

N
o
rm

.
IP

C

 bwaves

 GemsFDTD
 lb

m

 le
slie

3d

 lib
quantum

 m
cf

 m
ilc

 omnetpp

 so
plex

 ze
usm

p

16KB 32KB 64KB

Figure 5.8: Performance sensitivity to STC size (normalized to 32KB)

0.5
0.6
0.7
0.8
0.9
1.0

S
T
C

 H
it

 R
a
te

 bwaves

 GemsFDTD
 lb

m

 le
slie

3d

 lib
quantum

 m
cf

 m
ilc

 omnetpp

 so
plex

 ze
usm

p

16KB 32KB 64KB

Figure 5.9: Sensitivity of STC hit rates to STC size

suffers a significant (about 8%) STC hit-rate drop in Figure 5.9, which adds noise to its
MDM statistics. However, with the reasonably sized STC of 32KB, MDM performs well.

Next, Figure 5.8 shows that a larger STC does not necessarily improve performance.
For instance, omnetpp and soplex lose about 2% IPC when the STC size is increased
to 64KB. The larger STC increases the STC hit rates in Figure 5.9, which reduces the
number of ST-entry evictions, misleading MDM for omnetpp and soplex. For instance, I
find that by forcing MDM counters’ updates every 10M processor cycles after an ST-entry
insertion into the 64-KB STC, I would increase the IPC of omnetpp by 1% and that of
soplex by 3%. However, with the default STC size of 32KB, MDM performs well.

Sensitivity to M2 Write Latency
Doubling tWR_M2 increases the performance improvement of MDM compared to PoM,
making it 18% on average and up to 61% (lbm). I find that MDM significantly reduces the
fraction of writes to M2 in programs where this fraction is above 1%, or it significantly
reduces the fraction of swaps (among the total number of served requests). For the
same reason, halving tWR_M2 (making it equal tRCD_M2) reduces the performance
improvement of MDM compared to PoM, making it 12% on average and up to 27% (lbm).
For brevity, I do not show these plots.

5.4.3 Multi-Program Evaluation of MDM
Figure 5.10 shows the maximum slowdown of MDM normalized to that of PoM for the
multiprogrammed workloads (Table 5.10) in the scaled system with 256MB M1 and

108 CHAPTER 5. HYBRID MEMORY HARDWARE-BASED MANAGEMENT

w01
w02

w03
w04

w05
w06

w07
w08

w09
w10

w11
w12

w13
w14

w15
w16

w17
w18

w19
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

N
o
rm

.
M

a
x

S
lo

w
d
o
w

n

(lower is better)

Figure 5.10: Maximum slowdown of MDM normalized to PoM

w01
w02

w03
w04

w05
w06

w07
w08

w09
w10

w11
w12

w13
w14

w15
w16

w17
w18

w19
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

N
o
rm

.
W

e
ig

h
te

d
S
p
e
e
d
u
p

(higher is better)

Figure 5.11: Performance of MDM normalized to PoM

w01
w02

w03
w04

w05
w06

w07
w08

w09
w10

w11
w12

w13
w14

w15
w16

w17
w18

w19
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

N
o
rm

.
M

e
m

o
ry

E
n
e
rg

y
 E

ff
ic

ie
n
cy (higher is better)

Figure 5.12: Energy efficiency of MDM normalized to PoM

2GB M2. Figure 5.10 shows that MDM reduces the maximum slowdown—improves
fairness—by 6% on average and up to 19% (workload w12). This is solely because
MDM speeds the programs in each workload. Figure 5.11 shows the respective system
performance, where MDM outperforms PoM by 7% on average and up to 16% (w12). In
addition, I find that MDM reduces the average read-request latency by 15%.

Since performance is estimated as weighted speedup, it is possible to improve both
performance and fairness. For instance, for w19 MDM improves fairness by 11%
(Figure 5.10), at the same time improving performance by 12% (Figure 5.11). However,
for workloads w04, w05, w10, w15, and w18 MDM is less fair than PoM. This is not
unexpected since MDM ignores individual program slowdowns, just like PoM does.

Figure 5.12 shows that MDM improves memory-system energy efficiency compared
to PoM by 7% on average and up to 26% (w18). The energy efficiency for w04 is lower

5.4. EXPERIMENTAL RESULTS 109

w01
w02

w03
w04

w05
w06

w07
w08

w09
w10

w11
w12

w13
w14

w15
w16

w17
w18

w19
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

N
o
rm

.
M

a
x

S
lo

w
d
o
w

n

(lower is better)

Figure 5.13: Maximum slowdown of ProFess normalized to PoM

w01
w02

w03
w04

w05
w06

w07
w08

w09
w10

w11
w12

w13
w14

w15
w16

w17
w18

w19
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

N
o
rm

.
W

e
ig

h
te

d
S
p
e
e
d
u
p

(higher is better)

Figure 5.14: Performance of ProFess normalized to PoM

w01
w02

w03
w04

w05
w06

w07
w08

w09
w10

w11
w12

w13
w14

w15
w16

w17
w18

w19
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

N
o
rm

.
M

e
m

o
ry

E
n
e
rg

y
 E

ff
ic

ie
n
cy (higher is better)

Figure 5.15: Energy efficiency of ProFess normalized to PoM

by 6%, which reflects its lower fairness in Figure 5.10 and no performance improvement
in Figure 5.11. But for workloads like w03 a significant energy-efficiency improvement
corresponds to significant fairness and performance improvements.

Overall, MDM improves performance but still suffers from fairness issues for
some workloads. The next section presents how ProFess addresses them by integrating
MDM and SEM.

5.4.4 Multi-Program Evaluation of ProFess

Figures 5.13, 5.14, and 5.15 show respectively fairness, performance, and energy effi-
ciency of ProFess normalized to PoM. Figure 5.13 shows that ProFess improves fairness
compared to PoM by 15% on average and up to 29% (w12), eliminating the fairness

110 CHAPTER 5. HYBRID MEMORY HARDWARE-BASED MANAGEMENT

mcf
soplex

lbm

GemsFDTD

lib
quantum

lib
quantum

bwaves

zeusm
p

milc

lib
quantum

omnetpp

leslie
3d

1.0
1.5
2.0
2.5
3.0
3.5
4.0

S
lo

w
d
o
w

n
 (

ti
m

e
s)

w09 w16 w19

PoM MDM ProFess

Figure 5.16: Individual program slowdowns under PoM, MDM, and ProFess

issues of MDM in Figure 5.10. Interestingly, for w17 ProFess does not find an opportunity
to improve fairness (the max slowdown is exactly the same as that of PoM). At the same
time, Figure 5.14 shows that ProFess outperforms PoM by 12% on average and up to
29% (w19), and Figure 5.15 shows that it improves memory-system energy efficiency by
11% on average and up to 30% (w19).

In addition, I find that ProFess reduces the average read-request latency by 9%,
which is less than the average system-level performance improvement of 12%. This
is so because ProFess significantly slows some cores (according to Section 5.2.3) to
improve system fairness, and the increased read-request latencies of those cores increase
the average latency.

Another interesting observation is that ProFess reduces the fraction of swaps (among
the total number of served requests) by 24% on average and up to 54% (w19). The
proposed aggressive help policy (Section 5.2.3) protects blocks that satisfy respective
conditions (Table 5.7) from being swapped out from M1, thereby significantly reducing
the number of swaps.

Next, I observe that there is no single relationship between fairness, performance, and
energy efficiency. For instance, for w04 ProFess improves all three metrics, but for w11
the 20% fairness improvement in Figure 5.13 and the 11% performance improvement in
Figure 5.14 correspond to a 3% lower energy efficiency in Figure 5.15.

Figure 5.16 shows slowdowns for the same workloads as in Figure 5.2 for each of the
schemes. Unlike Figures 5.10 and 5.13, that show only the max slowdown per workload,
Figure 5.16 presents individual program slowdowns, where the max slowdown is the
tallest bar in each workload.

Figure 5.16 shows that MDM can reduce the max slowdown solely by speeding
programs (e.g., soplex in w09). ProFess further improves fairness by aggressively helping
programs with high slowdowns by penalizing programs with lower slowdowns (e.g., in
w09 ProFess slows lbm and GemsFDTD to speed mcf and soplex). Workload w16 is

5.5. RELATED WORK 111

special, since ProFess finds no opportunity to improve fairness beyond that of MDM,
achieved solely by maximizing system performance.

Overall, I observe that a lower max slowdown can correspond to higher performance,
since in a workload there is no equivalence between one program’s performance increase
and another program’s performance decrease. For instance, in w19 in Figure 5.16 ProFess
increases the slowdown of milc by only about 2% compared to MDM, but at the same
time reduces the slowdown of omnetpp by 22%.

5.5 Related Work
Shared Resource Management The tandem of a utility/fairness monitor guiding
shared-resource management towards high performance/fairness has been extensively
studied in the contexts of shared SRAM caches [71, 108–110] and conventional main
memories [94]. In this chapter I study a flat, migrating hybrid memory organization,
where the shared resource of interest—M1—is not a cache, and for practical reasons
the address-translation entries (along with respective per-block metadata required for
fair management) are stored in M1. Therefore, this chapter tackles the problem of
fair and high-performance management of a different memory organization, under
different assumptions than the prior work, which makes the techniques of the prior
work not applicable.

Slowdown Monitoring Subramanian et al. [99, 111] use request service rates to
proxy individual program slowdowns in multiprogrammed workloads. The authors
propose to use the memory-request scheduler to prioritize a program for short periods of
time to remove the memory-channel contention and thereby measure the program’s stand-
alone request service rate, which is then compared to the service rate under contention
(when none of the programs is prioritized). Unlike prior work, this chapter addresses
fairness in hybrid memories and proposes to: 1) divide memory into private and shared
regions and 2) proxy slowdown by two factors, computed using a) the fractions of requests
served from M1 of the private and shared regions and b) the fraction of swaps where both
blocks belong to the same program (among all swaps that move the program’s data) in the
shared regions. By comparing the slowdown factors of two programs, I can identify the
program that suffers the most from the competition for M1. The proposed SEM can be
integrated with other migration algorithms instead of MDM. To the best of my knowledge,
this is the first proposal of slowdown monitoring in hybrid memories.

Migration Algorithms Swap decisions have been conventionally based on the
number of already served accesses, simplifying individual cost-benefit analysis to a

112 CHAPTER 5. HYBRID MEMORY HARDWARE-BASED MANAGEMENT

heuristic [24, 26–29]. For instance, RaPP [24] uses a version of the Multi-Queue
algorithm [112] that ranks blocks by frequency and recency of accesses. When a block
with the highest rank reaches a global threshold of 32 accesses, RaPP promotes the block.
Section 5.1.5 discusses the use of global thresholds by the CAMEO [26], PoM [27], and
SILC-FM [28] algorithms. The MemPod algorithm [29], based on the majority element
algorithm [100], tracks frequency and recency of accesses, does not use global thresholds,
but suffers from a lack of cost-benefit analysis.

Unlike the prior work, I propose a conceptually new approach, where migration
decisions are based on statistically predicted numbers of remaining accesses to each
block. This eliminates global thresholds, enables individual cost-benefit analysis for each
pair of blocks, and makes the probability of promotions that clearly benefit performance
the highest at a first access to a block in M2, i.e., when the number of remaining accesses
to the block is the greatest. The proposed MDM can be employed in flat, migrating hybrid
memories with different M1-M2 address mappings. To the best of my knowledge, this is
the first proposal of such probabilistic hybrid memory management.

5.6 Summary
Flat, migrating hybrid memory organizations provide a cost-effective solution for large-
capacity main memories. Fair and at the same time high-performance management of
such memories is an important challenge. This chapter presents ProFess, a probabilistic
framework for hybrid memory management comprising: 1) a slowdown estimation mech-
anism, that dynamically monitors individual program slowdowns in multiprogrammed
workloads via two proposed slowdown-proxy factors and 2) a probabilistic migration
decision mechanism, that statistically predicts the number of expected accesses to each
block and performs individual cost-benefit analysis for each pair of blocks considered for
a swap. This chapter shows that ProFess improves system fairness by 15% on average and
up to 29% compared to the state-of-the-art, while outperforming it by 12% on average
and up to 29%.

6
Conclusion

The demand for larger local (per-socket) main memories continuously grows, driven by
domains like high-performance computing, databases, and big data. Emerging SCM
technologies revolutionize main-memory design by enabling hybrid main memories, that
promise to, ideally, deliver the speed of DRAM combined with the density and cost-per-bit
of SCM. The thesis at hand identifies three problems on the way to future main memories,
both DRAM-only and hybrid, that are large-capacity, cost-effective, and practical.

First, despite that parallel memory protocols are key to realizing large off-chip mem-
ories, the maximum capacity addressable by such protocols is limited by: i) the number
of existing address pins, and ii) the state-of-the-art addressing technique, that transfers
an entire row address in one part. Transferring wider row addresses in multiple parts
would hurt performance. This poses a problem of using the existing pins economically to
address larger capacities of future memories in a cost-effective way and with minimum
performance losses.

Second, SCM technologies introduce a number of tradeoffs into the main-memory
design space, increasing its number of dimensions and size. System architects face new
questions like: i) how to partition the main memory area between DRAM and SCM,
ii) how to allocate the memory capacity among different programs, and iii) how to place

113

114 CHAPTER 6. CONCLUSION

data of different programs within the allocated capacities. Detailed exploration of such
design spaces solely via simulation or prototyping is inefficient, making it possible that
the best design points are identified late. This poses a problem of exploring design
tradeoffs quickly and correctly, such that the most promising design points are timely
identified for subsequent detailed evaluation.

Third, in hybrid main memories, DRAM—compared to SCM—is the limited resource.
Naive DRAM allocation among co-running programs in multiprogrammed workloads
leads to unfairness and low system-level performance. If DRAM allocation ignores
individual program slowdowns, a program might fail to obtain enough DRAM for its
needs, and, as a result, would experience an excessive slowdown, reducing the system
fairness. Likewise, DRAM allocation that ignores individual cost-benefit analysis, for
each pair of data blocks competing for DRAM, would hurt the system performance.
Involving the OS into hybrid memory management would introduce long overheads,
reducing the benefits of hybrid memory. This poses a problem of hybrid main memory
management that is fair, high-performance, and at the same time practical in how it
monitors individual program slowdowns and implements individual cost-benefit analysis.

6.1 Thesis Contributions

To tackle the first problem stated in this thesis, Chapter 2 contributes adaptive row
addressing as a general approach to close the performance and energy-efficiency gaps
between parallel memory protocols that transfer row addresses in multiple CA-bus cycles
and an idealistic protocol that has many enough pins to transfer row addresses in one
CA-bus cycle. Adaptive row addressing combines three techniques, where the first one is
row-address caching, that exploits row-address locality by caching the most-significant
row-address bits, to reduce the number of cycles per row-address transfer. I propose
2-way row-address caches with a custom organization, and show that they perform nearly
as well as fully-associative row-address caches.

The second technique is the proposed row-address prefetching, that alleviates the
performance penalty of address-cache misses. Row-address prefetching is simple to
integrate with state-of-the-art memory schedulers, and I show that its benefit exceeds the
benefit of doubling the address-cache size.

The third technique is the proposed adaptive row-access priority policy, that eliminates
the negative effect of row-address caching on the request-service order produced by the
conventional first-ready policy [39, 40]. The adaptive row-access priority policy can
simply replace the first-ready policy in the state-of-the-art memory-request schedulers, and
I show that it cooperates with row-address prefetching to achieve the best performance.

6.1. THESIS CONTRIBUTIONS 115

Using the idealistic protocol and a high-speed, cost-effective protocol that is based
on DDR4 [35] but transfers each row address in two CA-bus cycles, Chapter 2 shows
that in large-capacity, low-latency main memories, the combined three techniques of
adaptive row addressing robustly close the performance, energy-efficiency, and fairness
gaps between the protocols.

To address the second problem stated in this thesis, Chapter 3 contributes Crystal,
an analytic method for design-time resource partitioning of hybrid main memories.
Crystal helps system architects to quickly identify the most promising combinations of
SCM technologies and hybrid memory area partitionings between DRAM and SCM for
subsequent detailed evaluation.

Chapter 3 shows how, for a practical partitioning goal and specific workloads,
Crystal reveals that hybrid configurations employing an SCM with the speed and energy
consumption of NAND Flash can offer more than 7x higher performance and energy
efficiency than equal-area hybrid configurations employing a much faster and more
energy-efficient SCM technology like PCM.

Next, Chapter 3 makes an observation that simple models and coarse parameter
estimates are sufficient for design-time hybrid memory area partitioning. For a given
workload and SCM technology, the best partitioning is robust to variations of system
component characteristics, which makes Crystal applicable early in the design process,
when accurate numbers are not yet available.

Finally, Chapter 3 shows that for the current state of DRAM, SCM, and disk
technologies, execution time can be used for hybrid memory area partitioning, even
if the actual target metric is execution energy. This is so because both metrics follow the
same trend, and minimizing execution time minimizes execution energy. This further
speeds partitioning, since the model for execution time is simpler than that for energy.

To further address the problem of quick and correct exploration of hybrid-memory
design tradeoffs, Chapter 4 contributes Rock, a generalized framework for pruning the
design space of hybrid main memory systems. Rock is the first framework to recognize
and mutually consider such important design dimensions as: 1) the total hybrid-memory
area, 2) area partitioning between DRAM and SCM, 3) allocation of the DRAM and
SCM capacities among co-running programs, and 4) data placement within the allocated
capacities. To facilitate design-space pruning, Chapter 4 systematizes the hybrid-memory
design dimensions.

Rock helps system architects to quickly infer important design-space trends, that can
be used for design-space pruning. For instance, Rock makes it easy to reveal insensitivity
to a specific design dimension in the context of the other dimensions, significantly
simplifying the design space. Chapter 4 demonstrates Rock by applying it to two design

116 CHAPTER 6. CONCLUSION

spaces, formed by carefully selected example workloads and a scaled memory system,
which Rock prunes down to just a few design points.

To address the third problem stated in this thesis, Chapter 5 contributes ProFess, a
probabilistic framework for fair and high-performance hybrid memory management. The
first key component of ProFess is the proposed hardware-based slowdown estimation
mechanism, that implements a new approach to dynamic estimation of individual program
slowdowns, based on monitoring program behavior—the numbers of served requests and
swaps—in the proposed private and shared regions of hybrid memory.

The second key component of ProFess is the proposed hardware-based probabilistic
migration decision mechanism, that implements a conceptually new approach to making
migration decisions, based on statistic predictions of the numbers of accesses to each
block, and performs individual cost-benefit analysis for each pair of blocks considered
for a swap. ProFess combines the two proposed mechanisms into a framework, where the
slowdown estimation mechanism steers the migration decision mechanism towards high
fairness, according to the proposed help strategy.

Chapter 5 shows that, for the multiprogrammed workloads evaluated, ProFess
improves fairness by 15% on average and up to 29% compared to the best-performing
state-of-the-art [27]. At the same time, ProFess outperforms it by 12% on average and
up to 29%. In addition, ProFess improves memory-system energy efficiency by 11% on
average and up to 30%.

6.2 Future Work

The research presented in this thesis can be continued in several directions. First, to
further increase the cost-effectiveness of parallel memory protocols in large-capacity
memories, the number of address pins could be reduced (inspired by LPDDR4 [66],
that employs a CA bus with only six pins). This would imply more than two cycles per
row-address transfer and possibly more than one cycle per column-address transfer. The
additional cycles on the CA bus would hurt performance of latency-sensitive programs
and require longer data bursts to keep the theoretical peak data-bus utilization high, which
is important for bandwidth-sensitive programs. The ideas of the proposed adaptive row
addressing can be further investigated in the context of such parallel memory protocols.

Second, Crystal and Rock can be extended with models of hybrid main memories
where address translations are stored in the DRAM partition, just like in the hybrid
memory organizations considered in Chapter 5. In addition, restricted address mappings
between the DRAM and SCM partitions can be accounted for. In general, Crystal and
Rock can be extended to consider new design-space dimensions, created, for instance,

6.2. FUTURE WORK 117

by dividing main memory into three partitions, each employing a different memory
technology (for instance, DRAM, 3D Xpoint, and an even denser and less expensive
technology like 3D NAND Flash).

Lastly, ProFess opens a promising direction in hybrid memory management, showing
that practical hardware mechanisms like the proposed SEM and MDM can significantly
improve system fairness, performance, and energy efficiency. The ideas of SEM can be
further investigated by designing more accurate slowdown-proxy factors and respectively
adjusting the proposed help strategy. The concept of probabilistic migration decisions,
proposed in MDM, can be further investigated by identifying ways to improve the
accuracy of statistics and the accuracy of individual cost-benefit analysis. In addition, an
important future-work direction is to further investigate the tradeoff between the amount
of state tracked per data block and the net benefit of the migration algorithm. Overall,
further investigation of the ideas of Profess can lead to large-capacity, cost-effective main
memories that have higher fairness, performance, and energy efficiency.

118 CHAPTER 6. CONCLUSION

Bibliography

[1] Int. Technology Roadmap for Semiconductors, “Executive Summary,” http:
//www.itrs2.net/2013-itrs.html, 2013.

[2] D. Zivanovic, M. Radulovic, G. Llort, D. Zaragoza, J. Strassburg, P. M. Carpenter,
P. Radojković, and E. Ayguadé, “Large-memory nodes for energy efficient high-
performance computing,” in Proc. Int. Symp. on Memory Systems, Oct. 2016, pp.
3–9.

[3] J. H. Yoon, H. C. Hunter, and G. A. Tressler, “Flash & DRAM Si scaling challenges,
emerging non-volatile memory technology enablement – implications to enterprise
storage and server compute systems,” Flash Memory Summit, Aug. 2013.

[4] Int. Technology Roadmap for Semiconductors, “Emerging research devices,”
http://www.itrs2.net/2013-itrs.html, 2013.

[5] ScaleMP, Inc., “vSMP Foundation Flash Expansion,” www.scalemp.com/

products/flx, Accessed: Dec. 2016.

[6] A. Kudryavtsev, “SSD as a system memory? Yes, with ScaleMP’s tech-
nology,” https://storagebuilders.intel.com/blog/ssd-as-a-
system-memory-yes-with-scalemps-technology-2, Feb. 2016,
Accessed: Dec. 2016.

[7] Diablo Technologies Inc., “Memory1,” www.diablo-technologies.com/
memory1, Accessed: Nov. 2016.

[8] M. K. Qureshi, S. Gurumurthi, and B. Rajendran, Phase Change Memory: From
Devices to Systems, vol. 6 of Synthesis Lectures on Computer Architecture, Nov.
2011.

[9] T.-Y. Liu, T. H. Yan, R. Scheuerlein, Y. Chen, J. Lee, G. Balakrishnan, G. Yee,
H. Zhang, A. Yap, J. Ouyang, T. Sasaki, S. Addepalli, A. Al-Shamma, C.-Y. Chen,
M. Gupta, G. Hilton, S. Joshi, A. Kathuria, V. Lai, D. Masiwal, M. Matsumoto,
A. Nigam, A. Pai, J. Pakhale, C. H. Siau, X. Wu, R. Yin, L. Peng, J. Y. Kang,

119

http://www.itrs2.net/2013-itrs.html
http://www.itrs2.net/2013-itrs.html
http://www.itrs2.net/2013-itrs.html
www.scalemp.com/products/flx
www.scalemp.com/products/flx
https://storagebuilders.intel.com/blog/ssd-as-a-system-memory-yes-with-scalemps-technology-2
https://storagebuilders.intel.com/blog/ssd-as-a-system-memory-yes-with-scalemps-technology-2
www.diablo-technologies.com/memory1
www.diablo-technologies.com/memory1

120 BIBLIOGRAPHY

S. Huynh, H. Wang, N. Nagel, Y. Tanaka, M. Higashitani, T. Minvielle, C. Gorla,
T. Tsukamoto, T. Yamaguchi, M. Okajima, T. Okamura, S. Takase, T. Hara,
H. Inoue, L. Fasoli, M. Mofidi, R. Shrivastava, and K. Quader, “A 130.7mm2 2-
layer 32Gb ReRAM memory device in 24nm technology,” in Proc. Int. Solid-State
Circuits Conf., Feb. 2013, pp. 210–211.

[10] R. Fackenthal, M. Kitagawa, W. Otsuka, K. Prall, D. Mills, K. Tsutsui, J. Javanifard,
K. Tedrow, T. Tsushima, Y. Shibahara, and G. Hush, “A 16Gb ReRAM with
200MB/s write and 1GB/s read in 27nm technology,” in Proc. Int. Solid-State
Circuits Conf., Feb 2014, pp. 338–339.

[11] S. H. Jo, T. Kumar, S. Narayanan, W. D. Lu, and H. Nazarian, “3D-stackable
crossbar resistive memory based on Field Assisted Superlinear Threshold (FAST)
selector,” in Proc. Int. Electron Devices Meeting, Dec 2014, pp. 6.7.1–6.7.4.

[12] A. Calderoni, S. Sills, C. Cardon, E. Faraoni, and N. Ramaswamy, “Engineering
ReRAM for high-density applications,” Microelectron. Eng., vol. 147, no. C, pp.
145–150, Nov. 2015.

[13] Crossbar, Inc., “3D ReRAM,” www.crossbar-inc.com/products/3d-
reram, Accessed: Jan. 2017.

[14] D. Eggleston, “3D XP: What the hell?!!,” in Proc. Flash Memory Summmit, Aug.
2015.

[15] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high performance main
memory system using phase-change memory technology,” in Proc. Int. Symp. on
Computer Architecture, June 2009, pp. 24–33.

[16] A. Badam and V. Pai, “SSDAlloc: Hybrid SSD/RAM memory management made
easy,” in Proc. Symp. on Networked Systems Design and Implementation, Mar.
2011, pp. 1–14.

[17] JEDEC Solid State Technology Association, “DDR4 SDRAM JEDEC standard,”
www.jedec.org, Nov. 2013.

[18] Intel Corp., “Intel R© Xeon R© processor E7 v4 family,” http://ark.intel.
com, Accessed: Dec. 2016.

[19] Intel Corp., “Intel R© Xeon R© processor E7-8800/4800 v4 product families,” Product
Brief, http://www.intel.com, Accessed: Dec. 2016.

[20] JEDEC, “High Bandwidth Memory (HBM) DRAM,” www.jedec.org, Nov.
2015.

[21] Hybrid Memory Cube Consortium, “Hybrid memory cube specification 2.1,”
www.hybridmemorycube.org, Oct. 2015.

www.crossbar-inc.com/products/3d-reram
www.crossbar-inc.com/products/3d-reram
www.jedec.org
http://ark.intel.com
http://ark.intel.com
http://www.intel.com
www.jedec.org
www.hybridmemorycube.org

BIBLIOGRAPHY 121

[22] M. Gokhale, S. Lloyd, and C. Macaraeg, “Hybrid memory cube performance
characterization on data-centric workloads,” in Proc. Workshop on Irregular
Applications: Architectures and Algorithms, Nov. 2015, pp. 1–8.

[23] The Next Platform, “Intel lets slip Broadwell, Skylake Xeon chip specs,” www.
nextplatform.com, Accessed: Dec. 2016.

[24] L. Ramos, E. Gorbatov, and R. Bianchini, “Page placement in hybrid memory
systems,” in Proc. Int. Conf. on Supercomputing, May 2011, pp. 85–95.

[25] H. Yoon, J. Meza, R. Ausavarungnirun, R. Harding, and O. Mutlu, “Row buffer
locality aware caching policies for hybrid memories,” in Proc. Int. Conf. on
Computer Design, Sept. 2012, pp. 337–344.

[26] C. Chou, A. Jaleel, and M. K. Qureshi, “CAMEO: A two-level memory
organization with capacity of main memory and flexibility of hardware-managed
cache,” in Proc. Int. Symp. on Microarchitecture, Dec. 2014, pp. 1–12.

[27] J. Sim, A. R. Alameldeen, Z. Chishti, C. Wilkerson, and H. Kim, “Transparent
hardware management of stacked DRAM as part of memory,” in Proc. Int. Symp.
on Microarchitecture, Dec. 2014, pp. 13–24.

[28] J. H. Ryoo, M. R. Meswani, A. Prodromou, and L. K. John, “SILC-FM:
Subblocked interleaved cache-like flat memory organization,” in Proc. Int. Symp.
on High Performance Computer Architecture, Feb. 2017, pp. 349–360.

[29] A. Prodromou, M. Meswani, N. Jayasena, G. Loh, and D. M. Tullsen, “MemPod:
A clustered architecture for efficient and scalable migration in flat address space
multi-level memories,” in Proc. Int. Symp. on High Performance Computer
Architecture, Feb. 2017, pp. 433–444.

[30] M. Ekman and P. Stenstrom, “A cost-effective main memory organization for
future servers,” in Proc. Int. Parallel and Distributed Process. Symp., Apr. 2005,
pp. 1–10.

[31] D. Knyaginin, V. Papaefstathiou, and P. Stenstrom, “Adaptive row addressing for
cost-efficient parallel memory protocols in large-capacity memories,” in Proc. Int.
Symp. on Memory Systems, Oct. 2016, pp. 121–132.

[32] A. Park and M. Farrens, “Address compression through base register caching,” in
Proc. Int. Symp. on Microarchitecture, Nov. 1990, pp. 193–199.

[33] M. Farrens and A. Park, “Dynamic base register caching: A technique for reducing
address bus width,” in Proc. Int. Symp. on Computer Architecture, May 1991, pp.
128–137.

www.nextplatform.com
www.nextplatform.com

122 BIBLIOGRAPHY

[34] D. Knyaginin, G. N. Gaydadjiev, and P. Stenstrom, “Crystal: A design-time
resource partitioning method for hybrid main memory,” in Proc. Int. Conf. on
Parallel Processing, Sept. 2014, pp. 90–100.

[35] “DDR4 SDRAM JEDEC standard,” www.jedec.org, Sept. 2012.

[36] Xilinx, Inc., “UG576 ultrascale architecture GTH transceivers,” User Guide,
www.xilinx.com, Nov. 2015.

[37] T. Schmitz, “The rise of serial memory and the future of DDR,” White Paper,
www.xilinx.com, 2014.

[38] G. Allan, “The past, present and future of DDR4 memory interfaces,” Synopsys
Insight Newsletter, www.synopsys.com, 2012.

[39] W. Zuravleff and T. Robinson, “Controller for a synchronous DRAM that
maximizes throughput by allowing memory requests and commands to be issued
out of order,” Patent 5630096, May 1997.

[40] S. Rixner, W. Dally, U. Kapasi, P. Mattson, and J. Owens, “Memory access
scheduling,” in Proc. Int. Symp. on Computer Architecture, June 2000, pp. 128–
138.

[41] L. Subramanian, D. Lee, V. Seshadri, H. Rastogi, and O. Mutlu, “The blacklisting
memory scheduler: Achieving high performance and fairness at low cost,” in Proc.
Int. Conf. on Computer Design, Oct. 2014, pp. 8–15.

[42] Micron Technology, Inc., “Micron R© 4Gb: x4, x8, x16 DDR4 SDRAM features,”
Datasheet, www.micron.com, 2014.

[43] JEDEC, “DDR4 SDRAM registered DIMM design specification,” www.jedec.
org, Aug. 2015.

[44] JEDEC, “DDR4 SDRAM registered DIMM design specification, Annex F – Raw
Card F,” www.jedec.org, Aug. 2015.

[45] JEDEC, “DDR4 SDRAM UDIMM design specification,” www.jedec.org,
Aug. 2014.

[46] JEDEC, “DDR4 SDRAM load reduced DIMM design specification,” www.

jedec.org, Sept. 2014.

[47] JEDEC, “DDR4 SDRAM load reduced DIMM design specification, Annex B –
Raw Card B,” www.jedec.org, Sept. 2014.

[48] Int. Technology Roadmap for Semiconductors, “Assembly and Packaging,” Tables,
http://www.itrs2.net/2012-itrs.html, 2012.

www.jedec.org
www.xilinx.com
www.xilinx.com
www.synopsys.com
www.micron.com
www.jedec.org
www.jedec.org
www.jedec.org
www.jedec.org
www.jedec.org
www.jedec.org
www.jedec.org
http://www.itrs2.net/2012-itrs.html

BIBLIOGRAPHY 123

[49] Int. Technology Roadmap for Semiconductors, “Process Integration, Devices, and
Structures,” http://www.itrs2.net/2013-itrs.html, 2013.

[50] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger, “Evaluation techniques for
storage hierarchies,” IBM Syst. J., vol. 9, no. 2, pp. 78–117, June 1970.

[51] B. Jacob, S. Ng, and D. Wang, Memory Systems: Cache, DRAM, Disk, 2007.

[52] “Memory scheduling championship 2012,” www.cs.utah.edu/~rajeev/
jwac12.

[53] N. Chatterjee, R. Balasubramonian, M. Shevgoor, S. Pugsley, A. Udipi, A. Shafiee,
K. Sudan, M. Awasthi, and Z. Chishti, “USIMM: the Utah SImulated Memory
Module,” University of Utah, Tech. Rep. UUCS-12-002, Feb. 2012.

[54] P. J. Nair, C.-C. Chou, and M. K. Qureshi, “Refresh pausing in DRAM memory
systems,” ACM Trans. on Architecture and Code Optimization, vol. 11, no. 1, pp.
10:1–10:26, Feb. 2014.

[55] V. K. Tavva, R. Kasha, and M. Mutyam, “EFGR: An enhanced fine granularity
refresh feature for high-performance DDR4 DRAM devices,” ACM Trans. on
Architecture and Code Optimization, vol. 11, no. 3, pp. 31:1–31:26, Oct. 2014.

[56] B. Akin, F. Franchetti, and J. C. Hoe, “Data reorganization in memory using
3D-stacked DRAM,” in Proc. Int. Symp. on Computer Architecture, June 2015, pp.
131–143.

[57] J. Choi, W. Shin, J. Jang, J. Suh, Y. Kwon, Y. Moon, and L.-S. Kim, “Multiple
clone row DRAM: A low latency and area optimized DRAM,” in Proc. Int. Symp.
on Computer Architecture, June 2015, pp. 223–234.

[58] Micron Technology, Inc., “DDR4 system power calculator,” Oct. 2014.

[59] W. Mi, X. Feng, J. Xue, and Y. Jia, “Software-hardware cooperative DRAM bank
partitioning for chip multiprocessors,” in Proc. Int. Conf. on Network and Parallel
Computing, Sept. 2010, pp. 329–343.

[60] L. Liu, Z. Cui, M. Xing, Y. Bao, M. Chen, and C. Wu, “A software memory
partition approach for eliminating bank-level interference in multicore systems,”
in Proc. Int. Conf. on Parallel Architectures and Compilation Techniques, Sept.
2012, pp. 367–376.

[61] S. Eyerman and L. Eeckhout, “System-level performance metrics for multiprogram
workloads,” MICRO, vol. 28, no. 3, pp. 42–53, May 2008.

[62] J. W. Tukey, Exploratory Data Analysis, 1977.

[63] Inphi Corp., “Introducing LRDIMM – a new class of memory modules,” White
Paper, www.inphi.com, 2011.

http://www.itrs2.net/2013-itrs.html
www.cs.utah.edu/~rajeev/jwac12
www.cs.utah.edu/~rajeev/jwac12
www.inphi.com

124 BIBLIOGRAPHY

[64] Integrated Device Technology, Inc., “DDR4 LRDIMMs for both memory capacity
and speed,” White Paper, www.idt.com, 2014.

[65] “Low Power Double Data Rate 3 (LPDDR3) JEDEC standard,” www.jedec.
org, Aug. 2015.

[66] “Low Power Double Data Rate 4 (LPDDR4) JEDEC standard,” www.jedec.
org, Nov. 2015.

[67] D. Citron and L. Rudolph, “Creating a wider bus using caching techniques,” in
Proc. Int. Symp. on High Performance Computer Architecture, Jan. 1995, pp.
90–99.

[68] M. Ekman and P. Stenstrom, “A case for multi-level main memory,” in Workshop
on Memory Performance Issues, June 2004, pp. 1–8.

[69] D. Ye, A. Pavuluri, C. Waldspurger, B. Tsang, B. Rychlik, and S. Woo,
“Prototyping a hybrid main memory using a virtual machine monitor,” in Proc. Int.
Conf. on Computer Design, Oct. 2008, pp. 272–279.

[70] J. Handy, “Why 3D XPoint SSDs will be slow,” www.thessdguy.com,
Accessed: Mar. 2017.

[71] M. K. Qureshi and Y. N. Patt, “Utility-based cache partitioning: A low-overhead,
high-performance, runtime mechanism to partition shared caches,” in Proc. Int.
Symp. on Microarchitecture, Dec. 2006, pp. 423–432.

[72] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness,
D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish,
M. Hill, and D. Wood, “The gem5 simulator,” SIGARCH Comput. Architecture
News, vol. 39, no. 2, pp. 1–7, Aug. 2011.

[73] SPEC, “SPEC CPU2006,” www.spec.org/cpu2006.

[74] NASA, “NAS Parallel Benchmarks,” www.nas.nasa.gov/

publications/npb.html.

[75] G. Hamerly, E. Perelman, J. Lau, and B. Calder, “SimPoint 3.0: Faster and more
flexible program analysis,” J. of Instruction-Level Parallelism, vol. 7, pp. 1–28,
Sept. 2005.

[76] Micron Technology, Inc., “Micron R© 1Gb: x4, x8, x16 DDR3 SDRAM features,”
Datasheet, www.micron.com, 2006.

[77] Micron Technology, Inc., “Micron R© 16Gb, 32Gb, 64Gb, 128Gb asyn-
chronous/synchronous NAND features,” Datasheet, www.micron.com, 2009.

[78] Micron Technology, Inc., “DDR3 SDRAM system-power calculator,” www.

micron.com, Sept. 2010.

www.idt.com
www.jedec.org
www.jedec.org
www.jedec.org
www.jedec.org
www.thessdguy.com
www.spec.org/cpu2006
www.nas.nasa.gov/publications/npb.html
www.nas.nasa.gov/publications/npb.html
www.micron.com
www.micron.com
www.micron.com
www.micron.com

BIBLIOGRAPHY 125

[79] Micron Technology, Inc., “Calculating memory system power for DDR3,” Tech.
Note, www.micron.com, 2007.

[80] B. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase change memory as
a scalable DRAM alternative,” in Proc. Int. Symp. on Comput. Architecture, June
2009, pp. 2–13.

[81] Tom’s Hardware, “HDD Charts 2013,” http://www.tomshardware.com/
charts/hdd-charts-2013/benchmarks,134.html, Accessed: Nov.
2013.

[82] Tom’s Hardware, “SSD Charts 2013,” http://www.tomshardware.com/
charts/ssd-charts-2013/benchmarks,129.html, Accessed: Nov.
2013.

[83] B. Jacob, P. Chen, S. Silverman, and T. Mudge, “An analytical model for designing
memory hierarchies,” Comput., IEEE Trans. on, vol. 45, no. 10, pp. 1180–1194,
Oct. 1996.

[84] L. Yavits, A. Morad, and R. Ginosar, “3D cache hierarchy optimization,” in Proc.
Int. 3D Syst. Integration Conf., Oct. 2013, pp. 1–5.

[85] J.-H. Choi, S.-M. Kim, C. Kim, K.-W. Park, and K. H. Park, “OPAMP: Evaluation
framework for optimal page allocation of hybrid main memory architecture,” in
Proc. Int. Conf. on Parallel and Distributed Syst., Dec. 2012, pp. 620–627.

[86] A. Bivens, P. Dube, M. Franceschini, J. Karidis, L. Lastras, and M. Tsao,
“Architectural design for next generation heterogeneous memory systems,” in
Proc. Int. Memory Workshop, May 2010, pp. 1–4.

[87] P. Dube, M. Tsao, D. Poff, L. Zhang, and A. Bivens, “Program behavior
characterization in large memory systems,” in Proc. Int. Symp. on Performance
Analysis of Syst. Software, Mar. 2010, pp. 113–114.

[88] A. M. Caulfield, A. De, J. Coburn, T. I. Mollow, R. K. Gupta, and S. Swanson,
“Moneta: A high-performance storage array architecture for next-generation, non-
volatile memories,” in Proc. Int. Symp. on Microarchitecture, Dec. 2010, pp.
385–395.

[89] A. M. Caulfield, J. Coburn, T. Mollov, A. De, A. Akel, J. He, A. Jagatheesan,
R. K. Gupta, A. Snavely, and S. Swanson, “Understanding the impact of emerging
non-volatile memories on high-performance, IO-intensive computing,” in Proc.
Int. Conf. for High Performance Computing, Networking, Storage and Analysis,
Nov. 2010, pp. 1–11.

www.micron.com
http://www.tomshardware.com/charts/hdd-charts-2013/benchmarks,134.html
http://www.tomshardware.com/charts/hdd-charts-2013/benchmarks,134.html
http://www.tomshardware.com/charts/ssd-charts-2013/benchmarks,129.html
http://www.tomshardware.com/charts/ssd-charts-2013/benchmarks,129.html

126 BIBLIOGRAPHY

[90] B. V. Essen, R. Pearce, S. Ames, and M. Gokhale, “On the role of NVRAM in
data-intensive architectures: An evaluation,” in Proc. Int. Parallel and Distributed
Processing Symp., May 2012, pp. 703–714.

[91] A. Saulsbury, S.-J. Huang, and F. Dahlgren, “Efficient management of memory
hierarchies in embedded DRAM systems,” in Proc. Int. Conf. on Supercomputing,
June 1999, pp. 464–473.

[92] M. Pavlovic, N. Puzovic, and A. Ramirez, “Data placement in HPC architectures
with heterogeneous off-chip memory,” in Int. Conf. on Comput. Design, Oct. 2013,
pp. 193–200.

[93] M. K. Qureshi, M. M. Franceschini, L. A. Lastras-Montaño, and J. P. Karidis,
“Morphable memory system: A robust architecture for exploiting multi-level phase
change memories,” in Proc. Int. Symp. on Comput. Architecture, June 2010, pp.
153–162.

[94] P. Zhou, V. Pandey, J. Sundaresan, A. Raghuraman, Y. Zhou, and S. Kumar,
“Dynamic tracking of page miss ratio curve for memory management,” in Proc.
Int. Conf. on Architectural Support for Programming Languages and Operating
Syst., Oct. 2004, pp. 177–188.

[95] X. Dong, Y. Xie, N. Muralimanohar, and N. Jouppi, “Simple but effective
heterogeneous main memory with on-chip memory controller support,” in Proc.
Int. Conf. for High Performance Computing, Networking, Storage and Analysis,
Nov. 2010, pp. 1–11.

[96] G. Sun, C. J. Hughes, C. Kim, J. Zhao, C. Xu, Y. Xie, and Y.-K. Chen, “Moguls:
A model to explore the memory hierarchy for bandwidth improvements,” in Proc.
Int. Symp. on Comput. Architecture, June 2011, pp. 377–388.

[97] E. Bolotin, D. Nellans, O. Villa, M. O’Connor, A. Ramirez, and S. W. Keckler,
“Designing efficient heterogeneous memory architectures,” IEEE Micro, vol. 35,
no. 4, pp. 60–68, July 2015.

[98] JEDEC, “DDR4 SDRAM load reduced DIMM design specification,” www.

jedec.org, Aug. 2015.

[99] L. Subramanian, V. Seshadri, Y. Kim, B. Jaiyen, and O. Mutlu, “MISE: Providing
performance predictability and improving fairness in shared main memory systems,”
in Proc. Int. Symp. on High Performance Computer Architecture, Feb 2013, pp.
639–650.

[100] R. M. Karp, S. Shenker, and C. H. Papadimitriou, “A simple algorithm for finding
frequent elements in streams and bags,” ACM Trans. Database Syst., vol. 28, no.
1, pp. 51–55, Mar. 2003.

www.jedec.org
www.jedec.org

BIBLIOGRAPHY 127

[101] Intel Corp., “Pin – a dynamic binary instrumentation tool,” Pin 2.12 User Guide.
software.intel.com, Apr. 2013.

[102] H. Kim, J. Lee, N. B. Lakshminarayana, J. Sim, J. Lim, T. Pho, H. Kim, and
R. Hadidi, “MacSim: A CPU-GPU heterogeneous simulation framework,” User
Guide. Georgia Institute of Technology, Sept. 2015.

[103] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim2: A cycle accurate
memory system simulator,” IEEE Computer Architecture Letters, vol. 10, no. 1,
pp. 16–19, Jan. 2011.

[104] HP Labs, “CACTI: An integrated cache and memory access time, cycle
time, area, leakage, and dynamic power model,” http://www.hpl.hp.com/
research/cacti, Accessed: Apr. 2017.

[105] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “NVSim: A circuit-level performance,
energy, and area model for emerging nonvolatile memory,” IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, vol. 31, no. 7, pp.
994–1007, July 2012.

[106] O. Mutlu and T. Moscibroda, “Stall-time fair memory access scheduling for
chip multiprocessors,” in Proc. Int. Symp. on Microarchitecture, Dec. 2007, pp.
146–160.

[107] A. Jain and C. Lin, “Linearizing irregular memory accesses for improved correlated
prefetching,” in Proc. Int. Symp. on Microarchitecture, Dec. 2013, pp. 247–259.

[108] D. Sanchez and C. Kozyrakis, “Vantage: Scalable and efficient fine-grain cache
partitioning,” in Proc. Int. Symp. on Computer Architecture, June 2011, pp. 57–68.

[109] R. Manikantan, K. Rajan, and R. Govindarajan, “Probabilistic shared cache
management (PriSM),” in Proc. Int. Symp. on Computer Architecture, June 2012,
pp. 428–439.

[110] H. Kasture and D. Sanchez, “Ubik: Efficient cache sharing with strict QoS
for latency-critical workloads,” in Proc. Int. Conf. on Architectural Support for
Programming Languages and Operating Systems, Mar. 2014, pp. 729–742.

[111] L. Subramanian, V. Seshadri, A. Ghosh, S. Khan, and O. Mutlu, “The application
slowdown model: Quantifying and controlling the impact of inter-application
interference at shared caches and main memory,” in Proc. Int. Symp. on
Microarchitecture, Dec. 2015, pp. 62–75.

[112] Y. Zhou, J. Philbin, and K. Li, “The multi-queue replacement algorithm for second
level buffer caches,” in Proc. USENIX Annual Technical Conf., June 2001, pp.
91–104.

software.intel.com
http://www.hpl.hp.com/research/cacti
http://www.hpl.hp.com/research/cacti

	Abstract
	Preface
	Acknowledgments
	Acronyms
	Introduction
	Problem Statements
	Contributions
	Thesis Organization

	Cost-Effective Addressing in Large-Capacity Main Memories
	Background and Motivation
	DDR4 DRAM Memory System
	Multi-Cycle Addressing
	DDR4-Based Two-Cycle Row Addressing

	Adaptive Row Addressing
	Row-Address Caching
	Row-Address Prefetching
	Adaptive Row-Access Scheduling

	Experimental Setup
	Experimental Results
	Main Evaluation
	Sensitivity Analysis

	Related Work
	Summary

	Partitioning of Hybrid Memory Area
	Background
	Memory Technologies
	Benefits of Hybrid Main Memory
	Allocation of Main Memory Capacity

	Crystal
	Complexity of Equal-Area Partitioning
	Assumptions
	Models and Method

	Experimental Methodology
	Experimental Results
	Applicability of Crystal
	Validation of Partitionings Produced by Crystal

	Related Work
	Summary

	Pruning of Hybrid Memory Design Space
	Hybrid Memory Design Dimensions
	Rock
	Workload Representation
	Resource Allocation
	Data Placement
	Final Calculations

	Experimental Methodology
	Experimental Results
	Work1 Design-Space Pruning
	Work2 Design-Space Pruning

	Related Work
	Summary

	Hardware-Based Management of Hybrid Memory
	Background and Motivation
	Memory Technologies
	Large-Capacity, Flat, Migrating Memory Managed by Hardware
	Baseline Organization
	The Fairness Problem
	The Performance Problem

	ProFess
	Slowdown Estimation Mechanism
	Migration Decision Mechanism
	Integration of SEM and MDM

	Experimental Setup
	System Configuration
	Workloads
	Figures of Merit

	Experimental Results
	Single-Program Performance of MDM
	Sensitivity Analysis of MDM
	Multi-Program Evaluation of MDM
	Multi-Program Evaluation of ProFess

	Related Work
	Summary

	Conclusion
	Thesis Contributions
	Future Work

	Bibliography

