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Abstract. This paper considers a structured separable convex optimization problem, moti-
vated by the deployment of model predictive control on multiagent systems that are interacting via
nondelayed couplings. We show that the dual decomposition of this problem yields a numerical
structure in the Hessian of the dual function. This numerical structure allows for deploying a quasi-
Newton method in the dual space. For large problems, this approach yields a large reduction of
the computational complexity of solving the problem, and for geographically distributed problems a
reduction in the communication burden.
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1. Introduction. Many problems in distributed control and networked systems
can be formulated as separable convex optimization problems; see e.g. [23, 27, 21].
Problems of this form can be solved using standard optimization techniques once the
data of the problem are centralized. However, when the problem is geographically
distributed or when the problem comprises agents that do not want to share sensi-
tive information, it can be highly impractical to centralize the data of the problem.
Techniques from distributed optimization are then preferable.

Several decomposition methods have been proposed to solve separable optimiza-
tion problems in a distributed fashion; see e.g. [3, 22]. A common technique is based
on a Lagrangian relaxation, which allows for decomposing the optimization problem
into low-dimensional subproblems that can be solved independently. The subprob-
lems can then be coordinated by manipulating the dual variables, i.e., by solving the
generally nonsmooth dual problem.

Lagrangian relaxations are used in many different contexts in order to solve large-
scale convex optimization problems, e.g. the authors of [6], use a coordinate ascent
method to solve matrix problems; in [18, 26, 11] a subgradient method is used to
attain dual optimality, whereas in [24, 20, 10, 19] a fast gradient method is used.
All these methods make use of only the first-order derivatives of the dual function to
obtain a search direction and their theoretical and practical convergence can therefore
not be faster than sublinear. The authors of, e.g., [21, 16, 25, 17, 14, 12, 9] overcome
this limitation by using Newton strategies in the dual space.

The fast convergence rate of Newton strategies comes at the expense of factorizing
the Hessian of the dual function at each iteration. For specific applications, the
dual Hessian can be structured and the cost for its factorization can therefore be
lowered; see e.g. [9]. However, most problems yield a dense dual Hessian, making its
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factorization computationally expensive, or even a bottleneck when solving problems
that have a large number of complicating constraints between the subproblems.

In this paper, we show that for a class of separable optimization problems, the
Hessian of the dual function is dense but numerically structured. The numerical
structure implies that the Hessian contains negligible elements outside of a given
band, such that a banded approximation of the dual Hessian can be used to deploy an
inexact Newton method. The problem class is motivated by model predictive control
of multiagent systems interacting via nondelayed couplings.

To avoid issues related to a nonsmooth dual function, the numerical structure
is first analyzed when inequality constraints are omitted in the problem formulation.
This allows for a straightforward and compact analysis of the convergence of the quasi-
Newton strategy in the neighborhood of the solution. The results are then extended
to inequality constrained problems, using the log-barrier method that was proposed
in [21], and further developed in [25, 14, 12]. However, it should be emphasized that
the numerical structure is a result of matrix properties and extends to the nonsmooth
methods proposed in, e.g., [16, 9].

The paper is outlined as follows. Section 2 introduces the class of problems consi-
dered in this work. In section 3, dual decomposition is recalled, and the numerical
structure of the Hessian is analyzed. Moreover, a quasi-Newton strategy is presented
and its convergence is analyzed. In section 4, the results are extended to inequality
constrained problems, using the log-barrier method proposed in [21]. In section 5,
the structure of the Hessian, and the convergence of the quasi-Newton method are
illustrated by a numerical example. The paper is concluded in section 6.

1.1. Notations and terminology. The notation Sn defines the set of sym-
metric matrices of dimension n × n. Moreover, we use the notation Sn++ ⊂ Sn for
symmetric and positive definite matrices. For a scalar valued function f with two
arguments, t ∈ R and x ∈ Rn, we denote the partial derivative of f(x, t) with respect
to x as ∇f(x, t)T ∈ Rn, and the partial derivative of ∇f(x, t) with respect to x as
∇2f(x, t) ∈ Sn. The notation Ai,j is referring to element (i, j) of a matrix A. Further-
more, we say that a matrix A is banded with bandwidth m if Ai,j = 0 for |i− j| > m.
We use the notation x−1 ∈ Rn for the elementwise inverse of a vector x ∈ Rn. For a
matrix A ∈ Rn×n, we will use the following matrix norms:

• The maximum row sum matrix norm is denoted as ‖A‖∞ =
max1≤i≤n

∑n
j=1 |Ai,j |.

• The Frobenius matrix norm is denoted as ‖A‖F = (
∑n
i,j=1 |Ai,j |2)1/2.

• The spectral norm is denoted as ‖A‖2 = σmax(A), where σmax(A) denotes
the largest singular value of A.

2. Problem formulation. In this paper, we consider the following separable
optimization probem

min
z

P∑
k=1

fk(zk)(2.1a)

s.t.
P∑
k=1

Fkzk = e,(2.1b)

Ckzk = dk, k = 1, . . . , P,(2.1c)

where z = [zT1 , . . . , z
T
P ]T , with zk ∈ Rn̄, is a vector of decision variables, Fk ∈ Rp̄×n̄

and e ∈ Rp̄ denote the coupling constraints, Ck ∈ Rm̄×n̄ and dk ∈ Rm̄ yield local
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equality constraints, and the fk : Rn̄ → R are functions of the form

(2.2) fk(zk) =
N∑
i=1

fk,i(zk,i),

where we have introduced the partitioning zk = [zTk,1, . . . , z
T
k,N ]T , with zk,i ∈ Rn,

of the decision variables. Additionally, we consider the following structure of the
constraints (2.1b) and (2.1c):

Ck =

 Ck,1 Dk,2

. . .
. . .

Ck,N−1 Dk,N

 ,(2.3a)

Fk =

 Fk,1
. . .

Fk,N

 ,(2.3b)

where Ck,i ∈ Rm×n, Dk,i ∈ Rm×n, and Fk,i ∈ Rp×n. The uniform problem dimensions
n, m, and p are assumed for simplicity of presentation. Furthermore, for notational
simplicity, we define the sets Zk = {zk | Ckzk = dk} and Z = Z1 × · · · × ZP .

Since local equality constraints of the form (2.1c) with matrices Ck of the form
(2.3a) typically arise in the context of dynamical systems, problem (2.1) is motivated
by the control of P interacting dynamical systems. Problems of the form (2.1) with
matrices Fk of the form (2.3b) arise when multiagent systems interact via nondelayed
couplings. In section 4, the problem formulation is extended to include local inequality
constraints. Throughout the paper, we assume that the following assumptions hold.

Assumption 2.1.
1. For k = 1, . . . , P , the objective functions fk are twice continuously differen-

tiable and strictly convex.
2. The constraints (2.1b) and (2.1c) fulfill the linear independence constraint

qualification.

Note that Assumption 2.1 implies that strong duality holds [4]. Additionally, we
observe that Assumption 2.1 is not restrictive since it can be fulfilled via an ad hoc
elimination of the redundant constraints.

3. Dual decomposition. In the context of Lagrangian dual decomposition, the
dual variables λ ∈ Rp̄, corresponding to the coupling constraints (2.1b), are introduced
and the Lagrange function is defined as

(3.1) L(z, λ) =

P∑
k=1

fk(zk) + λT

(
P∑
k=1

Fkzk − e

)
,

where we observe that L(z, λ) is separable in z, i.e., we can write (3.1) as

(3.2) L(z, λ) =
P∑
k=1

Lk(zk, λ),

where

(3.3) Lk(zk, λ) = fk(zk) + λT
(
Fkzk −

1

P
e

)
.
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The dual function, defined here as d(λ) = −minz∈Z L(z, λ) (see e.g. [4]), can then be
evaluated in parallel as

(3.4) d(λ) = −
P∑
k=1

min
zk∈Zk

Lk(zk, λ).

Because of strong duality the solution to problem (2.1) can be obtained via solving
the dual problem

(3.5) min
λ
d(λ).

The latter can be solved in a completely distributed or partly distributed fashion.
Assumption 2.1 ensures the strict convexity of (2.1) such that d(λ) is convex, contin-
uously differentiable, and has a gradient given by [3]:

(3.6) ∇d(λ) = −
P∑
k=1

Fkz
∗
k(λ) + e,

where z∗k(λ) denotes the solution to the subproblem

(3.7) z∗k(λ) = arg min
zk∈Zk

Lk(zk, λ).

Following directly from (3.6), the Hessian of the dual function is given by

(3.8) ∇2d(λ) = −
P∑
k=1

Fk
∂z∗k(λ)

∂λ
.

In this paper, we aim at solving the dual problem (3.5), via a quasi-Newton method.
To that end, we update the dual variables λ according to:

(3.9) λ+ = λ+ t∆λ

for a t ∈ (0, 1], where the search direction ∆λ ∈ Rp̄ is provided by the quasi-Newton
system

(3.10) M(λ)∆λ = −∇d(λ),

where the matrixM(λ) ∈ Sp̄++ is an approximation of the Hessian of the dual function
(3.8). In the following, we will show that the Hessian of the dual function for problem
(2.1) is dense, but numerically banded. This observation will motivate the use of a
diagonal band of the dual Hessian as a Hessian approximation M(λ) in (3.10), i.e.,
we propose to compute the quasi-Newton direction ∆λ from (3.10) using

M(λ) =
[
∇2d(λ)

]
M
,(3.11)

where we use the notation
[
∇2d(λ)

]
M

for the diagonal M -band of ∇2d(λ), i.e.,

(3.12)
([
∇2d(λ)

]
M

)
i,j

=

{ (
∇2d(λ)

)
i,j
|i− j| ≤M,

0 otherwise.
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The banded structure of
[
∇2d(λ)

]
M

allows for deploying structure-exploiting fac-
torization techniques for solving the linear system (3.10), and therefore lower the
computational cost of calculating the search direction.

In the following, it will be useful to introduce the matrix
[
∇2d(λ)

]C
M

defined as

(3.13)
[
∇2d(λ)

]C
M

= ∇2d(λ)−
[
∇2d(λ)

]
M
,

capturing the entries in the dual Hessian that are neglected in its banded approxima-

tion. Consequently,
[
∇2d(λ)

]C
M

has a diagonal band of zeros, but is identical to the
Hessian of the dual function outside of that band.

The rest of this section is organized as follows. In section 3.1, we show that the
Hessian of the dual function is numerically structured by quantifying the Frobenius

norm of
[
∇2d(λ)

]C
M

in terms of the problem data and the bandwidthM . In section 3.2,
we propose a quasi-Newton method, where the search directions are calculated from
(3.10), and we analyze its convergence.

3.1. Numerical structure of the dual Hessian. In this section, we show that
the Hessian of the dual function is dense but numerically structured. The numerical
structure will allow us to use a banded approximation of the dual Hessian, and deploy
it in the context of a dual quasi-Newton method.

We introduce here the notation Hk = ∇2fk(z∗k(λ)). Because of the separable
structure of fk(zk), we observe that Hk is block diagonal:

(3.14) Hk =

 Hk,1

. . .

Hk,N


with blocks Hk,i = ∇2fk,i(z

∗
k,i(λ)). Additionally, Assumption 2.1 ensures that Hk is

invertible. Using the notation (3.14), the analysis of
[
∇2d(λ)

]C
M

, will be based on the
following explicit expression for the dual Hessian.

Proposition 3.1. The Hessian of the dual function d(λ) is given by

(3.15) ∇2d(λ) =
P∑
k=1

Fk
(
H−1
k −H

−1
k CTk Λ−1

k CkH
−1
k

)
FTk ,

where

(3.16) Λk = CkH
−1
k CTk .

Proof. Recall that the Hessian of the dual function is given by (3.8), where z∗k(λ)
is a solution to

0 = ∇fk(z∗k(λ)) + FTk λ+ CTk µ
∗
k(λ),(3.17a)

0 = Ckz
∗
k(λ)− dk,(3.17b)

where we have introduced the Lagrange multipliers µk ∈ Rm̄ corresponding to (2.1c).
Differentiating (3.17) yields the following linear system:

0 = Hk
∂z∗k(λ)

∂λ
+ FTk + CTk

∂µ∗k(λ)

∂λ
,(3.18a)

0 = Ck
∂z∗k(λ)

∂λ
.(3.18b)
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Solving (3.18) for
∂z∗k(λ)
∂λ then delivers

(3.19)
∂z∗k(λ)

∂λ
= −

(
H−1
k −H

−1
k CTk Λ−1

k CkH
−1
k

)
FTk ,

where Λk is invertible due to Assumption 2.1. Using (3.8) and (3.19), the expression
(3.15) for the dual Hessian follows.

Note that all matrices in (3.15) are banded except Λ−1
k , which is, in general, dense,

and consequently also makes the dual Hessian dense. However, in the following we
will show that the magnitude of the entries of matrix Λ−1

k are decaying towards the
off-diagonal corners, i.e., it is numerically structured. Since all other matrices in (3.15)
are banded, the numerical structure of Λ−1

k translates into a numerically structured

dual Hessian. Specifically, we will show that
[
∇2d(λ)

]C
M

is small for a sufficiently
large bandwidth M . To characterize this structure, we start by observing that Λk,
given by (3.16), is a block-tridiagonal matrix:

(3.20) Λk =


Λk,(1,1) Λk,(1,2)

ΛTk,(1,2) Λk,(2,2)

. . .

. . .
. . . Λk,(N−1,N)

ΛTk,(N−1,N) Λk,(N,N)


with blocks Λk,(i,j) ∈ Rm×m given by

Λk,(i,i) = Ck,i−1H
−1
k,i−1C

T
k,i−1 +Dk,iH

−1
k,iD

T
k,i,(3.21a)

Λk,(i,+1) = Dk,iH
−1
k,iC

T
k,i.(3.21b)

In consequence, Λk is a Hermitian, positive definite, banded matrix with bandwidth

2m. To quantify the magnitude of matrix
[
∇2d(λ)

]C
M

, we will rely on standard results
regarding exponentially off-diagonally decaying matrices. We briefly recall them next.

Definition 3.2. A matrix A ∈ Rn×m is labeled an exponentially off-diagonally
decaying matrix, if there exist constants K > 0 and ω ∈ (0, 1), such that

(3.22) |Ai,j | ≤ Kω|i−j|

for i = 1, . . . , n and j = 1, . . . ,m.

Exponentially decaying matrices have been extensively studied in the context of
smooth functions of sparse matrices; see, e.g., [2, 5, 1]. We will base our analysis on
the following classical result regarding the decay rate for inverses of banded matrices.

Lemma 3.3. If A is a Hermitian positive definite and banded matrix, with band-
width m, then A−1 is an exponentially off-diagonally decaying matrix, with constants

K = max{σ−1
min(A), 1 +

√
κ(A)},(3.23a)

ω =

(√
κ(A)− 1√
κ(A) + 1

)1/m

,(3.23b)

where σmin(A) and κ(A) denote the smallest singular value and the condition number
of A, respectively.
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Proof. For a proof, see, e.g., [8].

Lemma 3.3 essentially states that the entries of A−1 are bounded by an exponen-
tially decaying function along each row or column, where the bound depends on the
extreme singular values and the bandwidth of the matrix. Matrices with a high con-
dition number and/or a large bandwidth can therefore result in a large K and ω ≈ 1,
leading to a slow decay, whereas a low condition number and a small bandwidth result
in a rapid decay.

As a direct consequence of Lemma 3.3, we can conclude that Λ−1
k is an exponen-

tially off-diagonally decaying matrix, i.e.,

(3.24)
∣∣∣(Λ−1

k

)
i,j

∣∣∣ ≤ Kkω
|i−j|
k

with constants

Kk = max{σ−1
min(Λk), 1 +

√
κ(Λk)},(3.25a)

ωk =

(√
κ(Λk)− 1√
κ(Λk) + 1

)1/2m

.(3.25b)

From the structure of Λk as given in (3.20), we note that the bandwidth of Λk is small
compared to the size of the matrix if mN is large compared to 2m. This indicates that
the problem dimension N is important for the decay rate of Λk and, consequently, for
the numerical structure of the dual Hessian.

Let us now introduce the additional notations
[
Λ−1
k

]
M̃

and
[
Λ−1
k

]C
M̃

defined as

for the dual Hessian, but using another bandwidth M̃ , i.e.,

(3.26)
([

Λ−1
k

]
M̃

)
i,j

=

{ (
Λ−1
k

)
i,j
, |i− j| ≤ M̃,

0, otherwise,

and

(3.27)
[
Λ−1
k

]C
M̃

= Λ−1
k −

[
Λ−1
k

]
M̃
.

Matrix
[
Λ−1
k

]
M̃

is therefore banded, with bandwidth M̃ , whereas
[
Λ−1
k

]C
M̃

has a di-
agonal band of zeros. In the following, we will use the exponentially off-diagonally

decaying property of Λ−1
k to bound the spectral norm of

[
Λ−1
k

]C
M̃

. This result is then
used to quantify the numerical structure of the dual Hessian. Using (3.24), we can

establish the following bound on
[
Λ−1
k

]C
M̃

.

Proposition 3.4. For the constants Kk > 0 and ωk ∈ (0, 1) defined in (3.25),
the following bound holds:

(3.28)
∥∥∥[Λ−1

k

]C
M̃

∥∥∥
2
≤ Kk

ωM̃k − ωmNk
1− ωk

.

Proof. Observe that the first and last rows in
[
Λ−1
k

]C
M̃

contain the largest number

of nonzero elements. Considering the first row, we note that the elements 1 to M̃ are
zero. Accordingly, using (3.24), we observe that the maximum absolute row sum of[
Λ−1
k

]C
M̃

is bounded by

(3.29)
∥∥∥[Λ−1

k

]C
M̃

∥∥∥
∞
≤

mN∑
j=M̃+1

Kkω
|1−j|
k .
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If we rewrite (3.29) as

(3.30)
∥∥∥[Λ−1

k

]C
M̃

∥∥∥
∞
≤

mN∑
j=1

Kkω
|1−j|
k −

M̃∑
j=1

Kkω
|1−j|
k =

mN−1∑
j=0

Kkω
j
k −

M̃−1∑
j=0

Kkω
j
k,

we can then use the formula for geometric series to simplify (3.30) as

(3.31)
∥∥∥[Λ−1

k

]C
M̃

∥∥∥
∞
≤ Kk

ωM̃k − ωmNk
1− ωk

.

Let us now make the following observations. First, since
[
Λ−1
k

]C
M̃

is symmetric, its
singular values coincide with the magnitude of its eigenvalues. Second, from Gersh-
gorin’s circle theorem, all eigenvalues are located within a Gershgorin disc [13]. Since

the diagonal elements of
[
Λ−1
k

]C
M̃

are zero, all Gershgorin discs are centered at the
origin, and the magnitude of its eigenvalues are accordingly bounded by the maximum
absolute row sum. We then can conclude that:

(3.32)
∥∥∥[Λ−1

k

]C
M̃

∥∥∥
2
≤ Kk

ωM̃k − ωmNk
1− ωk

.

Accordingly, [Λ]
C
M̃ is small if the bandwidth M̃ is large or the constants Kk and

ωk are small, i.e., typically if Λk is well-conditioned. In the following we will show how

these conditions translate into a bound on the norm of
[
∇2d(λ)

]C
M

. We first establish
the following result.

Proposition 3.5. If M and M̃ fulfill

M > p,(3.33a)

0 ≤ M̃ < M −m− 2p+ 2,(3.33b)

then the following holds:

(3.34)
([
∇2d(λ)

]C
M

)
i,j

= −

(
P∑
k=1

FkH
−1
k CTk

[
Λ−1
k

]C
M̃
CkH

−1
k FTk

)
i,j

for |i− j| > M .

Proof. For notational simplicity, we introduce

Hk = FkH
−1
k FTk ,(3.35a)

Mk,M̃ = FkH
−1
k CTk

[
Λ−1
k

]
M̃
CkH

−1
k FTk ,(3.35b)

MC
k,M̃

= FkH
−1
k CTk

[
Λ−1
k

]C
M̃
CkH

−1
k FTk ,(3.35c)

and observe that

(3.36) ∇2d(λ) =
P∑
k=1

(
Hk −Mk,M̃ −M

C
k,M̃

)
.

Because matrices Fk and H−1
k are banded, matrix Hk is banded with bandwidth p.

Additionally, because matrices Fk, H−1
k , Ck, and

[
Λ−1
k

]
M̃

are banded, matrix Mk,M̃
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is banded with bandwidth M̃ + m + 2p − 2. Matrix MC
k,M̃

is dense due to factor[
Λ−1
k

]C
M̃

. Let us recall the definition of
[
∇2d(λ)

]C
M

, which reads as([
∇2d(λ)

]C
M

)
i,j

=

{
0, |i− j| ≤M,(
∇2d(λ)

)
i,j
, otherwise.

(3.37)

Accordingly, if (3.33) holds, then

M > p,(3.38a)

M > M̃ +m+ 2p− 2,(3.38b)

and matrices Hk and Mk,M̃ have bandwidths smaller than M , such that they do

not contribute to
[
∇2d(λ)

]C
M

. Equations (3.33) and (3.34) then follow directly from
(3.38) and (3.36).

Proposition 3.5 entails that if M̃ is sufficiently small compared to M , the banded

matrix
[
Λ−1
k

]
M̃

does not contribute to
[
∇2d(λ)

]C
M

. We can then use Proposition 3.4

in order to bound the Frobenius norm of
[
∇2d(λ)

]C
M

, which is the main result of this
section.

Lemma 3.6. For M > p and θ = M −m− 2p+ 1 ≥ 0, the following bound holds:

(3.39)
∥∥∥[∇2d(λ)

]C
M

∥∥∥
F
≤

P∑
k=1

‖FkH−1
k CTk ‖2F

√
m̄Kk

ωθk − ωmNk
1− ωk

for the constants Kk > 0 and ωk ∈ (0, 1) defined in (3.25).

Proof. Recall that Λ−1
k is of dimension m̄× m̄, implying that

[
Λ−1
k

]C
M̃

is of rank
at most m̄. From the equivalence of norms and (3.28), it follows that

(3.40)
∥∥∥[Λ−1

k

]C
M̃

∥∥∥
F
≤
√
m̄
∥∥∥[Λ−1

k

]C
M̃

∥∥∥
2
≤
√
m̄Kk

ωM̃k − ωmNk
1− ωk

.

Furthermore, since the Froebinius matrix norm is submultiplicative, we observe that

(3.41)
∥∥∥FkH−1

k CTk
[
Λ−1
k

]C
M̃
CkH

−1
k FTk

∥∥∥
F
≤
∥∥FkH−1

k CTk
∥∥2

F

∥∥∥[Λ−1
k

]C
M̃

∥∥∥
F
.

Using (3.40) in (3.41) yields

(3.42)
∥∥∥FkH−1

k CTk
[
Λ−1
k

]C
M̃
CkH

−1
k FTk

∥∥∥
F
≤
∥∥FkH−1

k CTk
∥∥2

F

√
m̄Kk

ωM̃k − ωmNk
1− ωk

.

Now, assuming that (3.33) holds, and specifically that M̃ takes the largest value
such that (3.33b) is fulfilled, i.e.,

(3.43) M̃ = M −m− 2p+ 1,

we note from (3.34) that

(3.44)

∣∣∣∣([∇2d(λ)
]C
M

)
i,j

∣∣∣∣ =

∣∣∣∣∣∣
(

P∑
k=1

FkH
−1
k CTk

[
Λ−1
k

]C
M̃
CkH

−1
k FTk

)
i,j

∣∣∣∣∣∣
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for |i− j| > M . Furthermore, since
[
∇2d(λ)

]C
M

has a diagonal band of zeros whereas
the matrix on the right-hand-side of (3.44) generally is dense, we note that

(3.45)

∣∣∣∣([∇2d(λ)
]C
M

)
i,j

∣∣∣∣ ≤
∣∣∣∣∣∣
(

P∑
k=1

FkH
−1
k CTk

[
Λ−1
k

]C
M̃
CkH

−1
k FTk

)
i,j

∣∣∣∣∣∣
for |i− j| ≤M . Hence, it follows that

(3.46)
∥∥∥[∇2d(λ)

]C
M

∥∥∥
F
≤

∥∥∥∥∥
P∑
k=1

FkH
−1
k CTk

[
Λ−1
k

]C
M−m−2p+1

CkH
−1
k FTk

∥∥∥∥∥
F

.

The triangular inequality and (3.42) is then used to obtain the bound

(3.47)
∥∥∥[∇2d(λ)

]C
M

∥∥∥
F
≤

P∑
k=1

∥∥FkH−1
k CTk

∥∥2

F

√
m̄Kk

ωM−m−2p+1
k − ωmNk

1− ωk

which yields (3.39).

From (3.39), we observe that regardless of the size of the full Hessian,
[
∇2d(λ)

]C
M

is small if the constants Kk and ωk are small, i.e., essentially if the problem dimension
m is small and the matrix Λk is well-conditioned. For a problem originating from the
control of dynamical systems, note that the problem dimension m represents the
number of states. In section 5, the practical implications of Lemma 3.6 are evaluated
via a numerical example. Finally, we extend Lemma 3.6 to the spectral norm, due to
its usefulness in a convergence analysis.

Proposition 3.7. For M > p and θ = M −m− 2p+ 1 ≥ 0, the following bound
holds:

(3.48)
∥∥∥[∇2d(λ)

]C
M

∥∥∥
2
≤

P∑
k=1

‖FkH−1
k CTk ‖2F

√
m̄Kk

ωθk − ωmNk
1− ωk

for the constants Kk and ωk defined in (3.25).

Proof. Since the euclidean norm is bounded by the Frobenius norm, (3.48) follows
directly from (3.39).

3.2. A distributed quasi-Newton strategy. In this section, we propose a
quasi-Newton strategy based on the results presented in section 3.1.

3.2.1. Algorithm. Based on the numerical structure in the Hessian of the dual
function, we propose to solve (2.1) using search directions provided by the quasi-
Newton system (3.10); see Algorithm 3.1.

The quasi-Newton strategy is to a large extent separable, and can accordingly
be performed in a distributed or parallel fashion. More specifically, evaluating the
dual function and calculating its gradient and Hessian are separable, because of the
decomposable structures of (3.4), (3.6), and (3.8). This implies that the quasi-Newton
system can be formed by separable calculations, i.e., in a parallel manner. Depending
on the structure of the coupling constraints, it can be viable to solve the quasi-Newton
system using parallel or distributed factorization techniques; see, e.g., [7]. Addition-
ally, note that for a geographically distributed problem, a banded approximation does
not only reduce the computational complexity of one iteration, it also alleviates the
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communication burden, since the corners of the Hessian can be omitted in the com-
munication.

To ensure convergence, we choose the step size t ∈ (0, 1]. The choice is commonly
based on strategies that involves evaluating the dual function, implying that the
decision can be based on parallel or distributed calculations. In our implementation,
we use an Armijo line search with backtracking [4]. An analysis of the convergence of
Algorithm 3.1, in the neighborhood of the solution λ∗, is provided in section 3.2.2.

Algorithm 3.1: Dual quasi-Newton strategy(λ,M, ε).

comment: Solves (2.1) using the dual quasi-Newton strategy

while No convergence

do



Calculate
[
∇2d(λ)

]
M

and ∇d(λ) in parallel
if ‖∇d(λ)‖ ≤ ε
then break

Solve
[
∇2d(λ)

]
M

∆λ = −∇d(λ)
Find proper step size t ∈ (0, 1]
Update dual variables λ← λ+ t∆λ

return (λ)

3.2.2. Convergence of the quasi-Newton strategy. In this subsection, we
investigate the impact of the Hessian approximation on the convergence of the quasi-
Newton method.

In the following, we assume that M is chosen such that
[
∇2d(λ)

]
M

is positive
definite. Note that positive definiteness for a sufficiently large M follows from positive
definiteness of the full dual Hessian and Weyl’s inequality for eigenvalues of Hermitian
matrices [13]. However, the result turns out to be conservative in practice, whereas it
appears to be difficult to find a practical example where the positiveness of

[
∇2d(λ)

]
M

is not fulfilled. Thus, we omit the result, and directly turn to analyze the behavior
of the method in the neighborhood of the solution λ∗, i.e., where undamped Newton
steps yield a quadratic convergence.

Lemma 3.8. If the dual Hessian is Lipschitz continuous with constant L in a
neighborhood of the solution λ∗, then the following bound holds:

(3.49) ‖∇d(λ+ ∆λ)‖2 ≤ α‖∇d(λ)‖22 + g(M)‖∇d(λ)‖2

for λ in the neighborhood, where

g(M) = ‖ [∇d(λ)]
C
M [∇d(λ)]

−1
M ‖2,(3.50a)

α =
1

2
L‖
[
∇2d(λ)

]
M
‖22.(3.50b)

Proof. Recall that a step in the quasi-Newton method is given by the linear system

(3.51)
[
∇2d(λ)

]
M

∆λ+∇d(λ) = 0.
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Using (3.51), we observe that

(3.52)

‖∇d(λ+ ∆λ)‖2 = ‖∇d(λ+ ∆λ)−∇d(λ)−
[
∇2d(λ)

]
M

∆λ‖2

=

∥∥∥∥∫ 1

0

∇2d(λ+ t∆λ)∆λdt−
[
∇2d(λ)

]
M

∆λ

∥∥∥∥
2

=

∥∥∥∥(∫ 1

0

(
∇2d(λ+ t∆λ)−∇2d(λ)

)
dt+∇2d(λ)−

[
∇2d(λ)

]
M

)
∆λ

∥∥∥∥
2

=

∥∥∥∥(∫ 1

0

(
∇2d(λ+ t∆λ)−∇2d(λ)

)
dt+

[
∇2d(λ)

]C
M

)[
∇2d(λ)

]−1

M
∇d(λ)

∥∥∥∥
2

.

Consequently, using (3.52), the Cauchy–Schwarz inequality, and the triangle inequal-
ity, we can bound ‖∇d(λ+ ∆λ)‖2 according to

(3.53) ‖∇d(λ+ ∆λ)‖2 ≤ α‖∇d(λ)‖22 + ‖ [∇d(λ)]
C
M [∇d(λ)]

−1
M ‖2‖∇d(λ)‖2,

where α fulfills

(3.54)

∥∥∥∥∫ 1

0

(
∇2d(λ+ t∆λ)−∇2d(λ)

)
dt
[
∇2d(λ)

]−1

M

∥∥∥∥
2

≤ α‖∇d(λ)‖2.

By the definition of Lipschitz continuity, the following criterion holds:

(3.55) ‖∇2d(λ+ ∆λ)−∇2d(λ)‖2 ≤ L‖∆λ‖2.

Moreover, observe that

(3.56)

∥∥∥∥∫ 1

0

(
∇2d(λ+ t∆λ)−∇2d(λ)

)
dt
[
∇2d(λ)

]−1

M

∥∥∥∥
2

≤
∥∥∥∥∫ 1

0

(
∇2d(λ+ t∆λ)−∇2d(λ)

)
dt

∥∥∥∥
2

∥∥∥[∇2d(λ)
]−1

M

∥∥∥
2

≤
∫ 1

0

∥∥∇2d(λ+ t∆λ)−∇2d(λ)
∥∥

2
dt
∥∥∥[∇2d(λ)

]−1

M

∥∥∥
2

≤ 1

2
L ‖∆λ‖2

∥∥∥[∇2d(λ)
]−1

M

∥∥∥
2
≤ 1

2
L
∥∥∥[∇2d(λ).

]−1

M

∥∥∥2

2
‖∇d(λ)‖2 .

From (3.56), we can identify that the condition (3.54) is fulfilled for α according to
(3.50b).

Observe that the (local) Lipschitz continuity of the Hessian follows from self-
concordance of the dual function. A detailed description regarding self-concordance
of the dual function can be found in [21].

Lemma 3.8 entails that choosing a small M , resulting in a nonnegligible value
of g(M), results in a degraded local linear convergence. The degradation is at worst
linear in the norm of the part of the Hessian that is neglected, and inversely propor-
tional to the lowest singular value of the dual Hessian. This implies that there is a
trade-off between using a large M to reduce the number of iterations and a small M
for reducing the computational cost for each iteration. A study of the trade-off is,
however, beyond the scope of this paper.

Next, we provide a bound on g(M), following directly from Lemma 3.6, showing
that g(M) is small when the constants Kk and ωk are small, i.e., when Λ−1

k is decaying
rapidly.
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Corollary 3.9. For M > p and θ = M −m − 2p + 1 ≥ 0, the following bound
holds:

(3.57) g(M) ≤
∥∥∥[∇2d(λ)

]−1

M

∥∥∥
2

M∑
k=1

‖FkH−1
k CTk ‖2F

√
m̄Kk

ωθk − ωmNk
1− ωk

.

Proof. By using the Cauchy–Schwarz inequality and (3.39), (3.57) follows directly
from (3.50a).

4. Extension to inequality constrained problems. In many practical ap-
plications, the decision variables are subject to inequality constraints. In this section,
we consider the extension of (2.1), where local inequality constraints are included in
the problem formulation, i.e., we consider the problem

min
z

P∑
k=1

fk(zk)(4.1a)

s.t.

P∑
k=1

Fkzk = e,(4.1b)

Ckzk = dk, k = 1, . . . , P,(4.1c)

Gkzk ≤ hk, k = 1, . . . , P,(4.1d)

where we have introduced Gk ∈ Rl̄×n̄, with the following structure:

(4.2) Gk =

 Gk,1
. . .

Gk,N

 .
Problems of the form (4.1), arise, e.g., when model predictive control is used to

control multiagent systems, that are interacting via nondelayed couplings. In that
context, the local equality constraints (4.1c) represent simulations of the agents dy-
namics, the local inequality constraints (4.1d) describe bounds on state and control
variables, whereas the coupling constraints (4.1b) describe the nondelayed interactions
between the agents.

Since the active inequality constraints can be concatenated with the local equality
constraints while preserving a block-diagonal structure, the results from section 3.1
trivially extend to problems of the form (4.1). Consequently, by dualizing (4.1b), the
Hessian of the dual function is numerically structured.

However, the resulting dual function is nonsmooth due to the local inequality
constraints (4.1d) (see, e.g., [9]), and the results in section 3.2.2 do not hold in this
context. To tackle the nonsmoothness, many methods have been proposed to obtain
a smooth dual function, including strategies where a quadratic penalty term is intro-
duced to form the augmented Lagrangian. The quadratic penalty, however, destroys
the separability of the Lagrange function. In contrast to methods based on the aug-
mented Lagrangian, it was proposed in [21] to add self-concordant barrier terms to
the Lagrange function. The barrier terms preserve the separability of the problem,
and results in a self-concordant dual function. Newton steps can then be used to
efficiently trace the central path. Similar methods were proposed in, e.g., [25, 14, 12].
In this section, we extend the results in section 3 to the method proposed in [21].
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4.1. Dual decomposition using the relaxed dual function. We add a self-
concordant log-barrier to the Lagrange function, and define the relaxed dual function
as

(4.3) d(λ, τ) = −
P∑
k=1

min
(zk,sk)∈Z̄k

Lk(zk, λ)− τ
l̄∑
i=1

log((sk)i)

 ,

where we have introduced the slack variables sk ∈ Rl̄ corresponding to (4.1d), the
barrier parameter τ > 0, and Z̄k = {(zk, sk)|Ckzk = dk, Gkzk + sk = hk, sk > 0}.
Note that the separability of the problem is preserved, and that the relaxed dual
function can be evaluated in a distributed fashion. Additionally, observe that d(λ, τ)
can be made to be an arbitrary good approximation of d(λ) by making τ small. We
define the relaxed dual problem as

(4.4) min
λ
d(λ, τ)

and note that a sequence of problems {minλ d(λ, τ)}τ→0 can be solved, in order to find
an arbitrary good approximation of the solution to (4.1). In particular, the relaxed
dual problem is the dual problem of

(4.5) min
(z,s)∈Z̄

P∑
k=1

fk(zk)− τ
P∑
k=1

l̄∑
i=1

log((sk)i),

where Z̄ = Z̄1× · · · × Z̄P , i.e., the relaxed dual problem corresponds to the centering
problem in an interior point method. Observe that (4.5) corresponds to a subclass of
problems (2.1), implying that the results regarding the dual function extend to the
relaxed dual function. Due to the importance of inequality constrained problems, this
is detailed in the following.

In this section, we aim at solving (4.4) by updating the dual variables according
to

(4.6) λ+ = λ+ t∆λ,

where t ∈ (0, 1], and the search direction ∆λ is given by the quasi-Newton system

(4.7)
[
∇2d(λ, τ)

]
M

∆λ = −∇d(λ, τ),

where we define
[
∇2d(λ, τ)

]
M

as

(4.8)
([
∇2d(λ, τ)

]
M

)
i,j

=

{ (
∇2d(λ, τ)

)
i,j
, |i− j| ≤M,

0, otherwise.

Similarly as (3.6), the gradient of the relaxed dual problem is given by

(4.9) ∇d(λ, τ) = −
P∑
k=1

Fkz
∗
k(λ, τ) + e,

where z∗k(λ, τ) is defined by

(4.10) z∗k(λ, τ) = arg min
(zk,sk)∈Z̄k

Lk(zk, λ)− τ
l̄∑
i=1

log((sk)i).
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Directly from (4.9), it follows that the Hessian of the relaxed dual function is given
by

(4.11) ∇2d(λ, τ) = −
P∑
k=1

Fk
∂z∗k(λ, τ)

∂λ
.

The procedure is summarized in Algorithm 4.1. Additionally, a strategy for solving a
sequence of relaxed dual problems in order to find an arbitrary good approximation
of the solution to (4.1) is provided in Algorithm 4.2; for a detailed description see,
e.g., [21, 25, 14].

Algorithm 4.1: Relaxed dual quasi-Newton strategy(λ, τ).

comment: Solves (4.4) using the dual quasi-Newton strategy

while No convergence

do



Calculate
[
∇2d(λ, τ)

]
M

and ∇d(λ, τ)
if ‖∇d(λ, τ)‖ ≤ ε2
then break

Solve
[
∇2d(λ, τ)

]
M

∆λ = −∇d(λ, τ)
Find proper step size t
Update dual variables λ← λ+ t∆λ

return (λ)

Algorithm 4.2: Successive dual quasi-Newton strategy(λ, τ).

comment: Solves (4.1) by successively calling Algorithm 4.1

while No convergence

do


λ← Relaxed dual quasi-Newton strategy(λ, τ)
if τ ≤ ε2
then break

τ ← βτ
return (λ)

Since the results in section 3.1 are based on matrix properties, we will in the
following show that the Hessian of the relaxed dual function is structurally equivalent
to ∇2d(λ), implying that it is numerically structured. To that end, we introduce the
notation yk = τs−1

k ∈ Rl̄ and find an explicit expression for the relaxed dual Hessian.

Proposition 4.1. The Hessian of d(λ, τ) is given by

(4.12) ∇2d(λ, τ) =
P∑
k=1

Fk
(
Φ−1
k − Φ−1

k CTk Λ̄−1
k CkΦ−1

k

)
FTk ,

where

Φk = Hk +GTk S
−1
k YkGk,(4.13a)

Λ̄k = CkΦ−1
k CTk ,(4.13b)

where Sk = diag(sk) and Yk = diag(yk).
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Proof. The optimality conditions of (4.10) can be stated as

0 = ∇fk(z∗k(λ, τ)) + FTk λ+ CTk µ
∗
k(λ, τ) +GTk y

∗
k(λ, τ),(4.14a)

0 = Ckz
∗
k(λ, τ)− dk,(4.14b)

0 = Gkz
∗
k(λ, τ) + s∗k(λ, τ)− hk,(4.14c)

0 = Yks
∗
k(λ, τ)− τ1,(4.14d)

s∗k(λ, τ) > 0, y∗k(λ, τ) > 0.(4.14e)

where Yk = diag(y∗k(λ, τ)) and 1 represents a vector of ones. By differentiating (4.14),
the following linear system is obtained:

0 = Hk
∂z∗k(λ, τ)

∂λ
+ FTk + CTk

∂µ∗k(λ, τ)

∂λ
+GTk

∂y∗k(λ, τ)

∂λ
,(4.15a)

0 = Ck
∂z∗k(λ, τ)

∂λ
,(4.15b)

0 = Gk
∂z∗k(λ, τ)

∂λ
+
∂s∗k(λ, τ)

∂λ
,(4.15c)

0 = Yk
∂s∗k(λ, τ)

∂λ
+ Sk

∂y∗k(λ, τ)

∂λ
,(4.15d)

where Sk = diag(s∗k(λ, τ)). The expression (4.12) follows directly from (4.11) and
(4.15).

Let us now observe the following. Since Yk and S−1
k are positive definite, Φk is

positive definite. Additionally, note the structural equivalences between Φk and Hk

(see (3.14)), and consequently between Λ̄k and Λk (see (3.16)). Since the results of
section 3.1 are based on properties of matrices, a straightforward extension can be
made for the relaxed dual function, i.e., the Hessian of the relaxed dual function is
numerically structured. Here, we only extend the main result of section 3.1.

Corollary 4.2. For M > p and θ = M −m − 2p + 1 ≥ 0, the following bound
holds:

(4.16)
∥∥∥[∇2d(λ, τ)

]C
M

∥∥∥
F
≤

P∑
k=1

‖FkΦ−1
k CTk ‖2F

√
m̄K̄k

ω̄θk − ω̄mNk
1− ω̄k

for the constants

K̄k = max{σ−1
min(Λ̄k), 1 +

√
κ(Λ̄k)},(4.17a)

ω̄k =

(√
κ(Λ̄k)− 1√
κ(Λ̄k) + 1

)1/2m

.(4.17b)

Proof. See Lemma 3.6 for the proof.

Accordingly, we observe that
[
∇2d(λ, τ)

]C
M

is small if the constants K̄k and ω̄k
are small, i.e., essentially if the problem dimension m is small and the matrix Λ̄k
is well-conditioned. It should, however, be emphasized that the condition number
of Λ̄k can be high when some elements in the factor S−1

k Yk are large compared to
Hk. Typically, this happens when the barrier parameter is small. In our practical
experiments, however, we have observed a rapid and consistent decay in Λ̄k for all
problems and all values of the barrier parameter τ .
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Similarly, the convergence results of section 3.2.2 are based on properties of ma-
trices and on Lipschitz continuity of the dual Hessian. From self-concordance of the
relaxed dual function, it follows that the relaxed dual Hessian is at least locally Lip-
schitz continuous. This implies that a straightforward extension can be made of the
results in section 3.2.2 to the method presented in Algorithm 4.1.

As a final remark on the results in this section, note that the method proposed
in [21] closely resembles an interior point method. In particular, for a primal-dual
interior point method using the so-called normal equation form to calculate search
directions, the normal equation corresponding to (4.1b) is closely related to the dual
Newton system. This suggests that a similar numerical structure can be found in
the normal equations if problems of the form (4.1) are tackled via an interior point
method. In [15], this is analyzed for an interior point method used to solve problems
originating from direct collocation.

5. Numerical experiments. In this section, we give a numerical example to
illustrate the proposed results. Consider a quadratic program of the form (4.1), with
P = 2 and N = 30, i.e.,

(5.1) fk(zk) =
1

2
zTkHkzk + cTk zk, k = 1, 2,

with the following data:

(5.2)

Hk,1 = · · · = Hk,30 =

[
1 0
0 1

]
, k = 1, 2,

Fk,1 = · · · = Fk,30 =
[

0 1
]
, k = 1, 2,

Ck,1 = · · · = Ck,29 =
[

1 0
]
, k = 1, 2,

Dk,2 = · · · = Dk,30 =
[

1 1
]
, k = 1, 2,

Gk,1 = · · · = Gk,30 =

[
1 0
0 1

]
, k = 1, 2,

hk,1 = · · · = hk,30 =

[
2
2

]
, k = 1, 2,

and ck, e, and dk are zero vectors. Additionally, we consider the relaxed dual problem
in the case where τ = 1. For λ = 1 ∈ R30, the absolute value of the elements in
the relaxed dual Hessian, are visualized in Figure 1. Observe that elements with a
large absolute value are located close to the diagonal, whereas elements with a small
absolute value are located close to the off-diagonal corners.

Let us now evaluate the convergence of Algorithm 4.1. In our implementation,
we use an Armijo line search with backtracking to choose the step size t ∈ (0, 1] [4].
Moreover, the algorithm is initialized far from the solution at λ = 50 · 1. By using
the full Hessian, i.e., M = 29, the convergence is visualized in Figure 2(a). Note
that the method is converging linearly in its damped phase, and quadratically in its
undamped phase, i.e., from iteration 9. For smaller bandwidths, the convergence is
visualized in Figures 2(b) and 2(c). For small bandwidths it can be observed that the
quadratic term in (3.49) is dominating far from the solution, whereas the linear term
is more prominent close to the solution. Note that a small M can be used before the
convergence is seriously hindered.
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Fig. 1. A heat map illustrating the numerical structure of the relaxed dual Hessian evaluated
at λ = 1, τ = 1. The intensity represents the magnitude of the elements in ∇2d(λ, τ) ∈ S30++.

Table 1
Evaluation of the Hessian approximation, evaluated at λ = 1, τ = 1.

M
∥∥[∇2d(λ, τ)

]
M

∥∥
F

∥∥∥[∇2d(λ, τ)
]C
M

∥∥∥
F

Bound in (4.16)

20 4.0244 3.1554 · 10−13 2.8730 · 10−3

17 4.0244 2.7623 · 10−11 2.3436 · 10−2

15 4.0244 5.2877 · 10−10 9.5057 · 10−2

10 4.0244 8.0137 · 10−7 3.1605
9 4.0244 3.4445 · 10−6 6.3736
7 4.0244 6.3346 · 10−5 25.937
5 4.0244 1.1589 · 10−3 105.64
3 4.0243 2.1113 · 10−2 430.61

In Table 1, the Frobenius norms of
[
∇2d(λ, τ)

]
M

and
[
∇2d(λ, τ)

]C
M

are summa-
rized at λ = 1, τ = 1, for the bandwidths in Figures 2(b) and 2(c). Note that the
neglected elements in the relaxed dual Hessian, are small compared to elements lo-
cated close to the diagonal, even for small bandwidths. Additionally, the bound (4.16)

on
[
∇2d(λ, τ)

]C
M

(see Corollary 4.2), is provided in Table 1. Note that the bound is
nontight in practice.

6. Conclusions and future research directions. In this paper, we show that
the Hessian of the Lagrange dual function, originating from a class of separable op-
timization problems, is numerically structured. The problem class is motivated by
distributed model predictive control. Because of the numerical structure, a banded
approximation of the Hessian can be used to form a quasi-Newton method. Using
structure-exploiting factorization techniques for banded matrices, the quasi-Newton
method can be used to solve problems at a lower computational cost compared to an
exact Newton method.
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Fig. 2. Convergence of Algorithm 4.1, initialized at λ = 50 ·1 with τ = 1, for (a): full Hessian;
(b)–(c): banded approximations of the Hessian.

The results were presented for problems without inequality constraints, and ex-
tended to the methods presented in [21, 25, 14]. The results were illustrated via a
numerical example.

It should be emphasized here that there are several directions for future research.
An analysis of the trade-off between the computational effort for one iteration of
the quasi-Newton method and the increased number of iterations required to solve
a particular problem should be explored. Alternatively, an online adaptation of the
bandwidth, e.g., along the lines proposed in [15], could be considered. Additionally,
the authors of [16, 17] propose to solve the Newton system using a conjugate-gradient
method, in contrast to the direct method which is proposed in this paper. In that con-
text, the numerically structured Hessian could serve as a basis for forming a practical
and efficient preconditioner to ease the solution of the Newton system.
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