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Abstract: We propose and validate a discrete-time channel model for the temporal drift

of the absolute polarization state and polarization-mode dispersion for coherent fiber optic

systems. The model can be used in simulations to test and develop DSP for coherent receivers.
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1. Introduction

Digital signal processing (DSP) assisted coherent receivers have proved to be very robust against typical transmission

impairments, such as chromatic dispersion, rotations of the state of polarization (SOP), and polarization-mode disper-

sion (PMD). The design, test, and tuning of optimal DSP algorithms can be achieved by simulating fiber transmission

using channel models, which should describe the behavior of the fiber as accurately as possible.

PMD arises in a fiber due to birefringence and its random orientation along the fiber. Environmental temperature

variations and mechanical vibrations change the local birefringence of the fiber, leading to stochastic temporal PMD

fluctuations. Birefringence arises in optical fibers due to their non-circular cores as a result of manufacturing imper-

fections and applied stress on the fiber during and after deployment. Birefringence varies the propagation speed of

the electromagnetic wave through the fiber for different SOPs, leading to pulse broadening. Essentially, the x and y

field components of an optical signal will have different transit times and the time difference between them is called

differential group delay (DGD).

When modeling PMD, the fiber is viewed as a concatenation of several fiber segments with DGD, which are stable

over long time periods, connected through time-varying short segments (assumed to have negligible DGD) that ran-

domly scatter the SOP, leading to the stochastic temporal nature of PMD. In the limit of infinite number of concatenated

segments, one obtains a Maxwellian distribution of the accumulated DGD, both in time and wavelength, a model well

established in the classic PMD literature [1]. However, experiments suggest that a typical transmission link consists

of only few such time-varying fiber segments, so called “hinges” [2]. These hinges could be amplifier sites, fiber seg-

ments exposed to temperature or mechanical variations in servicing huts, railroad bridges, etc. This model is illustrated

in Fig. 1(left), where the fiber is modeled as a sequence of N short segments corresponding to frequency-independent

hinges Hn(k) that rotate the SOP and are concatenated with random birefringent sections Dn( f ) corresponding to long

buried fiber segments, which are frozen in time, at least over the time scales of interest. The DGD of each such long

section is assumed to have a Maxwellian distribution with respect to frequency.

The statistical aspects of both the classical and hinge PMD models are well studied in the literature dating back to

the late eighties. However, no PMD channel models that take into account the temporal drifts are available. Typical

results were developed as differential equations modeling the PMD vector dependence on time and fiber length, and

used to analyze and predict outage probabilities [3]; or fast SOP changes were induced in a dispersion-compensating

module under laboratory conditions [4].

In this paper, we suggest a discrete-time channel model within the framework of the hinge model to simulate PMD

that takes into account the temporal evolution of the SOP drift in each hinge. We derive the autocorrelation function

(ACF) of the proposed model, both in time and frequency, and compare it to experimental data. We will see that

simulations match experimental data very well, both in terms of ACF fitting and DGD visual agreement. The model

can be used in simulations where stochastic temporal polarization fluctuation is an issue. For example, fiber-optic

systems can be simulated, which can be useful to, e.g., characterize receivers performance that rely to a higher and

higher degree on sophisticated DSP. Moreover, the existing PMD tracking algorithms can be optimally tuned or new,

more powerful algorithms can be designed.
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Fig. 1. Left: Model of a long fiber as a concatenation of static random birefringent sections Dn( f ) coupled

with time-varying hinges Hn(k). Right: Model of the random static sections Dn( f ) as a concatenation of static

birefringent sections Bm,n( f ) coupled with static randomly oriented polarization rotators Km,n.
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Fig. 2. The ACF is plotted as a function of (normalized) frequency on the horizontal axis and (normalized) time

on the vertical axis of the proposed model (left) and compared with results obtained from experimental data

(right). We can observe a very good (visual) agreement between the two, where the ACF from measurements

has a fairly symmetric behavior and a similar relative decorrelation speed in time versus frequency.

2. Proposed model

The Jones matrix T(k, f ) of the transmission link shown in Fig. 1 at time instance k and frequency f is given by

T(k, f ) = DN( f )HN(k) · · ·D2( f )H2(k)D1( f )H1(k), (1)

Dn( f ) = BM,n( f )KM,n · · ·D2,n( f )K2,nB1,n( f )K1,n, (2)
Bm,n( f ) =

(

eiπ f τm,n 0

0 e−iπ f τm,n

)

, (3)

for n = 1, . . . ,N and m = 1, . . . ,M. In order to ensure that the DGD of Dn( f ) is Maxwellian distributed and continuous

with respect to frequency, we model Dn( f ) in (2) as a sequence of M independent and static polarization rotators Km,n

concatenated with static birefringent sections Bm,n( f ) as shown in Fig. 1(right). For simplicity, we assume that the

N segments Dn( f ) for n = 1, . . . ,N are composed by concatenating the same number of M polarization rotators Km,n

and birefringent sections Bm,n( f ) for m = 1, . . . ,M. The polarization rotators Km,n are static and randomly oriented

such that they cover all the possible SOPs on the Poincaré sphere uniformly. The birefringent sections Bm,n( f ) are of

equal mean DGD τp, but random and independent for each section according to (3), where τm,n ∼N(τp,(τp/5)2) [5].

Choosing τm,n differently for each Bm,n( f ) avoids spectral periodicity with period τm,n/2 of Dn( f ), and consequently

of T(k, f ).
This model of Dn( f ) in (2) has been used traditionally to emulate static PMD, where in the limit of M → ∞ the

DGD of each segment Dn( f ) follows a Maxwellian distribution in frequency. However, for a finite M, the distribution

is truncated and the truncation occurs at the sum of the absolute DGD values τm,n for m = 1, . . . ,M [6]. The fiber

modeled by T(k, f ) can be viewed as a concatenation of NM Bm,n( f ) sections, thus the mean DGD of the fiber can be

computed by the well-know expression τ =
√

8NM/3πτp [7].

We model the hinges Hn(k) connecting the segments Dn( f ) as randomly time-varying polarization rotators that

scatter the SOP isotropically on the Poincaré sphere. The temporal drift of the hinges Hn(k) is emulated as a sequence

of random Jones matrices [8]

Hn(k) = J(
•

αααn(k))Hn(k− 1), (4)

where J(ααα) = exp(−iααα ·~σσσ ) is a matrix function and ~σσσ is a tensor of the three Pauli spin matrices [1]. The components

of
•

αααn(k) are random and drawn independently from a zero-mean Gaussian distribution at each time instance k:
•

αααn(k)∼
N(0,(2π∆pT/N)I3), where T is the sampling period and ∆p is the polarization linewidth [8], quantifying the speed of

the SOP drift. Each hinge Hn(k) at the initial time k = 0 is a “uniform random matrix” such that it transforms an input

vector to any output vector by a uniform probability, i.e., uniformly covering the Poincaré sphere. Such a matrix can

be obtained by J(ααα(0)), where ααα(0) = θa is formed from the unit vector (cosθ ,a1 sinθ ,a2 sinθ ,a3 sinθ )T = g/‖g‖
and g ∼ N(0,I4). The same holds for the static polarization rotators, i.e., Km,n = J(ααα(0)), which independently and

uniformly scatter the SOP on the Poincaré sphere. The ACF of the channel matrix T(k, f ) separated by a time and

frequency difference of lT and ∆ f , respectively, in response to a constant input u can be expressed as

AT(l,∆ f ) = E[(T(k, f )u)HT(k+ l, f +∆ f )u]≈ ‖u‖2
exp

(

− 3π |l|T ∆p−
3π

3(|∆ f |τ)2

16

)

. (5)

Fig. 2 compares the ACF of the proposed model (left) with results obtained from experimental data (right). The

experimental data was obtained by measuring the Jones matrices of a 127 km long buried fiber from 1505 nm to 1565
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Fig. 3. DGD versus (normalized) frequency on the horizontal axis and (normalized) time on the vertical axis.

Numerical DGD obtained from the model (left) yields a similar behavior as experimental data (right).

nm in steps of 0.1 nm for 36 days at every ∼ 2.2 h. The fiber enters 12 hub stations, where a few tens of meters of

fiber that were mechanically fixed are exposed to fluctuating air temperature, causing the temporal drift. The details

of the measurement setup and postprocessing are published elsewhere [9]. The analytical ACF (5) can be fitted to

measurements by setting τ = 2.95 ps, T = 2.2 h (both computed from the measurement data), ∆p = 80 nHz, and

l = 0, . . . ,387. The temporal drift of the fiber is caused to a large extent by the temperature fluctuations, which appear

in the measurements as a slow drift on hourly and even daily cycles, thus explaining the very slow polarization drift.

In Fig. 3, we compare an example of the DGD obtained from the proposed model with experimental data [9]. We

used the same parameters as above, i.e., τ = 2.95 ps, ∆p = 80 nHz, and T = 2.2 h, whereas the number of hinges

was N = 12 (same as the number of hubs), M = 1000, and k = 1, . . . ,388. Comparing the two figures, we can notice

a similar behavior, except some sudden changes occuring in the measured data around days 10, 18, 20, 30, and 35.

The implications of the hinge model [2] suggesting that not all spectral components are equally vulnerable to PMD-

induced outages can also be noticed in Fig. 3, in both simulations and measurements. Most of the spectral components

experience a low DGD for long time periods, resulting in a low outage probability, and few spectral components

experience high DGD, making them more vulnerable to outages. During the measurement campaign, two fibers were

measured and the DGD plot of the other fiber is published in [9], which also shows a similar behavior to the one shown

here.

3. Conclusions

We proposed the first ever discrete-time channel model to simulate random temporal polarization fluctuations with

PMD. The model is defined within the framework of the hinge model and has been successfully verified using exper-

imental data measured on deployed fibers by comparing the ACF and DGD. The model can be used in simulations

to emulate fiber transmission with time-varying PMD and to design, test, and tune DSP for coherent receivers, which

was not possible with previous static models.
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