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Abstract

Inconel 718 is a commonly used superalloy for turbine discs in the gas turbine indus-

try. Turbine discs are often subjected to dwell-fatigue as a result of long constant

load cycles. The effect of anisotropy on dwell-fatigue cracking in forged turbine discs

have not yet been thoroughly investigated. Crack propagation behaviour was char-

acterised using compact tension (CT) samples cut in different orientations from a

real turbine disc forging. Samples were also cut in two different thicknesses in order

to investigate the influence of plane strain and plane stress condition on the crack

propagation rates. The samples were subjected to dwell-fatigue tests at 550 ◦C with

90 s or 2160 s dwell-times at maximum load. Microstructure characterisation was

done using scanning electron microscopy (SEM) techniques such as electron chan-

nelling contrast imaging (ECCI), electron backscatter diffraction (EBSD), and light

optical microscopy (LOM). The forged alloy exhibits strong anisotropic behaviour

caused by the non-random δ-phase orientation. When δ-phases were oriented per-

pendicular compared to parallel to the loading direction, the crack growth rates were

approximately ten times faster. Crack growth occurred preferably in the interface

∗jonas.saarimaki@liu.se +46 13 28 11 93

Preprint submitted to Material Science & Engineering A March 14, 2017



between the γ-matrix and the δ-phase.

Keywords: Anisotropy, Nickel-based superalloys, Fatigue, Mechanical

characterisation, Scanning electron microscopy

1. Introduction

Superalloys show a positive combination of mechanical properties and corrosion

resistance, which is why they are used in some of the worlds most aggressive working

conditions i.e., the hot-section of gas turbines and aero engines. These harsh condi-

tions are detrimental to the alloy in the form of e.g., fatigue, creep, and oxidation,

which all, can lead to catastrophic failure.

The polycrystalline Ni-Fe-base superalloy Inconel 718 belongs to the more com-

monly used superalloys available on the market. It derives its strength from solid

solution alloying elements, gamma prime γ′ and gamma double prime γ′′ precipitates.

Inconel 718 is recurrently used for high temperature components subjected to

cyclic loading, especially when the risk for fatigue and creep deformation is evi-

dent, such as turbine discs. Turbine discs can be subjected to temperatures up to

∼ 550 ◦C in land-based gas turbines and up to ∼ 700 ◦C in aero engines at which

the mechanical properties start to degrade considerably [1].

Components subjected to combinations of high temperatures up to 700 ◦C and

sustained periods of high tensile loads can experience an accelerated crack growth

due to the dwell-times. Not only dwell-times effect crack growth but so does environ-

mental aspects. The influence of an oxidising environment has long been recognised

to be the main reason for accelerated crack growth rates [2–4]. In addition an acceler-

ated crack growth rate is often accompanied by a change in crack growth mechanism

from transgranular to intergranular crack paths. This is particularly true for fine

grained and high strength alloys [2–5]. For lower strength alloys, the effects of creep
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deformation should be considered carefully since stress relaxation ahead of the crack

tip will lower the mechanical driving forces for crack growth. If the degree of crack

tip creep deformation is significant, the local creep deformation blunts the crack tip,

which can cause a reduction of the crack growth rates [6–8]. A similar retardation

effect has also been observed when an overload is applied prior to the dwell-time

[9, 10].

A number of different microstructural and chemical features influence crack prop-

agation behaviour of Inconel 718, such as; grain size [5, 11], the presence of serrated

grain boundaries [11], the orientation of special coincident site lattice (CSL) grain

boundaries [12], the Niobium content [13] and the presence of different secondary

phases such as Laves phase [14], carbides [5] and the δ-phase [15]. The oxidation of

constituent phases in Ni-based alloys will lead to either compressive or tensile trans-

formation induced residual stresses that will effect the time dependent crack growth

rates [16]. In Inconel 718 crack tip oxidation of metal carbides and δ-phase is be-

lieved to induce tensile transformation stresses, crack tip anti-shielding and increased

susceptibility to time dependent crack growth [16].

The influence of the δ-phase on crack propagation is pointed out in the work by

Ponnelle et al. [15]. Where a forged and rolled disc of Inconel 718 was investigated,

from which compact tension (CT)- and Kb-specimens were manufactured and sub-

jected to fatigue (triangular waveform, 10 s up–10 s down) and dwell-fatigue testing

(trapezoidal, 10 s up – 300 s dwell – 10 s down) at 650 ◦C and load ratio, R = 0.1. It

was shown that carbides and δ-phase particles are not randomly distributed in this

type of forging and that the cellular orientation of δ-phase particles can be linked

to the existence of a few hundred microns thick bands, which they referred to as a

forming induced arrangement. It was found that the crack preferred to grow in the

interface between the γ-matrix and δ-phase and that the crack growth rates were
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lowest for crack fronts perpendicular to the δ-phase alignments. Contradictory to

the study by Ponnelle et al. [15], PÃľdron et al. [5] found that the precipitation of

δ-phase along the grain boundaries did not drastically affect the crack growth rate

behaviour.

Ponnelle et al. [15] argued that the delamination mechanism at the γ/δ-interface

was responsible for the dwell-time crack propagation mechanism. Which was influ-

enced locally by the stress state, which could affect the crack propagation rates under

plane stress and plane strain conditions. The influence of stress state is sometimes

also visible in the shape of the crack front. In specimens with a semi-circular sur-

face or a corner crack, a phenomenon referred to as “crack tunnelling” is sometimes

observed. This is due to the fact that the constraints, which depend on the stress

state, are different at the surface and in the specimen interior [17]. Such behaviour,

is generally more pronounced under conditions resulting in intergranular cracking

[18–21]. Branco et al. [19] observed that during sustained load crack propagation

tests the introduction of side grooves, which enhance the plane strain condition of

CT-specimens, increase the time dependent crack propagation rate.

Another phenomenon which has been observed but is rarely discussed in the

open literature is out-of-plane crack growth [15, 22, 23] which seems to be more pro-

nounced during sustained-load or dwell-fatigue testing of fine grained superalloys.

In Moverare et al. [23] it was found that crack deflection occurred during in-phase

thermomechanical fatigue testing at 550 ◦C when long dwell-times (6 h) were intro-

duced but not for short (5 min) or no dwell times. No conclusive explanation to this

behaviour is available at the moment and further studies are needed.

The present study is motivated by the fact that no study exists that systemati-

cally investigates the effect of anisotropy and stress state on the crack propagation

behaviour during dwell-fatigue in a forged Nickel-based alloy. A test program was
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carried out to characterise the dwell-fatigue crack growth resistance in different di-

rections of a Inconel 718 disc forging at 550 ◦C using thin and thick (with side groves)

CT-samples in order to enable plane stress and plane strain conditions respectively.

Detailed metallographic investigations of the tested samples were performed in order

to investigate the crack growth mechanisms.

2. Experimental procedure

The material used in this study came from an Inconel 718 gas turbine disc,

which was press-forged to its basic geometry from a triple melted ingot. Forging was

performed below the δ-solvus temperature, obtaining a fine grained microstructure.

Consequently, the δ-phase orientates along flow lines during the press-forging. After

press-forging the disc was sub-solvus heat-treated accordingly: solution annealing for

3.5 h at 970 ◦C, followed by oil quenching and ageing for 8 h at 720 ◦C and 8 h at

620 ◦C. The chemical composition is shown in Table 1. The average grain size was

30 µm corresponding to ASTM grain size number 7 according to ASTM E112-96.

Table 1: Composition of elements for Inconel 718 in wt%.

Alloy Ni Cr Fe Mo Nb Co C Mn Si Cu Al Ti

Inconel 718 54.4 17.9 16.8 3.0 5.5 0.2 0.02 0.09 0.08 0.04 0.5 1.0

CT specimens were cut from the disc forging in two different orientations and for

each orientation in two different thicknesses in order to investigate the influence of

plane strain and plane stress condition on the crack propagation rates. The speci-

men and potential drop (PD) instrumentation is illustrated in Fig. 1 (a). Sample

measurements are shown in Fig. 1 (b) and (c) and given in Table 2. The orientations

C–S and S–C indicate how the samples were cut from the disc forging and are illus-

trated in Fig. 1 (d). Pre-cracking were performed at ambient temperature using the
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Table 2: Summary of elevated temperature crack growth tests, with the constants an = 12.5 mm,

W = 25 mm, Temperature 550 ◦C, and load ratio R = 0.05.

Sample # Direction B

[mm]

bn [mm] Dwell-time [s] ∆P [N] avalid [mm] afinal [mm]

1 S–C 12.50 9.50 2160 2500 19 19

2 S–C 2.25 2.25 2160 560 19 19

3 S–C 2.49 2.49 90 618 19 19

4 S–C 12.50 9.50 90 2500 19 19

5 C–S 12.50 9.50 2160 2500 18 20

6 C–S 2.77 2.77 2160 700 15.3 20

7 C–S 12.50 9.50 90 2500 18.8 20

8 C–S 2.87 2.87 90 720 17.5 20

compliance method for crack length measurements and PD was used during testing

at 550 ◦C. Both pre-cracking and the subsequent elevated temperature testing were

performed according to ASTM E647-08. Electro-discharge machined starter notches

were used measuring an = 12.5 mm, Fig. 1 (c), and the samples were fatigue pre-

cracked at room temperature to a crack length of a0 = 16 mm using a frequency of

10 Hz. The load conditions ∆P and R during the pre-cracking was the same as for

the subsequent high temperature testing and are given in Table 2. One specimen

was used for each test condition.

High temperature crack propagation tests were conducted at 550 ◦C using 90 s

and 2160 s dwell-times, with a constant ramp up/ramp down rate yielding a 10 s

single ramp time each for loading and unloading. Testing was done using a 100 kN

Zwick servo electric Kappa 50DS tensile testing machine, equipped with a three zone

(high temperature) furnace and a 20 A pulsed direct current potential drop (DCPD)

system. Table 2 summarises all the parameters used.
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Data was evaluated using evaluation code for compact tension samples [24] and

more details regarding the test setup are covered in reference [25]. A crack is not

allowed to deviate by more that 10◦ from its point of initiation at the machined

notch for a test to be considered valid the according to ASTM E647-08. If the crack

deviates by more than 10◦, the valid crack length is underestimated and the analytical

solution of the stress intensity factor, K [MPa
√
m], for CT-specimens obtained from

ASTM E647-08 will be inaccurate. In Table 2, avalid and afinal are the valid and final

crack lengths respectively

All samples presented in Table 2 were run to fracture in order to study fracture

surfaces. After which some specimens were sectioned as-is, parallel to the centreline

and perpendicular to the surface of the crack, so that the crack path could be studied

in a cross-section. These samples were prepared by grinding and careful mechanical

polishing but no etching. Two additional 90 s plane stress specimens were interrupted

before final fracture in order to enable studies of the crack tip in cross-section. Data

from these tests are presented in the supplementary material.

A Hitachi SU70 FEG analytical scanning electron microscope (SEM), operating

at 1.5–20 kV was used together with various techniques such as electron channelling

contrast imaging (ECCI) [26] to get high quality, high contrast images of the crack

growth appearance and the microstructure, electron back scatter diffraction (EBSD)

to analyse grain orientation with orientation imaging maps (OIM) with a step size of

0.5 µm, 20 mm working distance, and 20 kV acceleration voltage. Optical microscopy

was used to study fracture surfaces as well as crack paths.

3. Results

Crack growth rate da/dN versus ∆K = Kmax−Kmin, where Kmin and Kmax are

minimum and maximum stress intensity factors [MPa
√
m] respectively are presented
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in Fig. 2. A test is considered invalid if the main crack grows out of plane by more

than 10◦ according to both ASTM E399-97 and ASTM 647-08. The dashed circles

and filled dots in Fig. 2 mark where the cracks start to grow out of plane by more

than 10◦ perpendicular to the loading direction, i.e., the evaluation method according

to ASTM E399-97 and ASTM 647-08 used is regarded invalid because of a change in

stress mode resulting in an underestimation of the crack length a. The black circles

mark the theoretical validity of the tests. Only samples cut in the C–S direction

show out of plane crack growth.

An increase in dwell-time drastically affects the crack growth rate. A longer

dwell-time results in an accelerated crack growth rate, approximately a factor ten,

for all samples cut in both the S–C and C–S directions. Crack growth rates are

significantly faster in the S–C direction compared to the C–S directions and there is

a tendency for higher crack propagation rates for the plane strain condition compared

to the plane stress condition, especially when longer dwell-times are applied.

Microstructure images of plane stress S–C (sample 3, left column) and C–S (sam-

ple 6, right column) dwell-time samples are shown in Fig 3 (a) and (b) respectively.

The arrows mark δ-phase orientation and the ellipsis mark δ-phase clusters (form-

ing induced arrangement). EBSD analysis adds further information regarding grain

orientation, Fig (c) and (d). Σ3 − Σ29 CSL grain boundary orientations are shown

in (e) and (f), as well as pole density figures (g) and (h). The CSL grain bound-

ary orientation maps and pole density figures (e)–(h) show that the S–C and C–S

samples are very similar and that there is no evident crystallographic texture. The

CSL grain boundary orientation maps show that except for a large amount of twin

boundaries (Σ3) the CSL grain boundaries are randomly distributed.

Fracture surfaces and cross sections of both an S–C (sample 1) and C–S (sample

5) plane strain test sample run with 2160 s dwell-times are shown in Fig. 4. A cross
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section of sample 1 shows that the crack grew perpendicular to the loading direction

in (a). The fracture surface of sample 1 in (b) is much flatter “in plane” compared

to the fracture surface in (d) from sample 5 which has grown significantly “out of

plane”, even though the sample had side grooves. The thin (plane stress) S–C and

C–S samples show the same characteristic appearance.

In Fig. 5, microstructure and cracking behaviour is shown for samples cut in

both S–C (left column) and C–S (right column) directions respectively. The crack

tip was observed to frequently grow in the interface between the γ-matrix and δ-

phase, indicated by ellipsis in (b) and (f) and an arrow in (d). Cracking behaviour

was mainly intergranular for both dwell-times, 90 s and 2160 s, as seen in the cross-

sections in (b), (c), and (f). Secondary cracks growing in the interface between the

γ-matrix and δ-phase are shown in (a), (b), and (f). δ-phase delamination was also

observed in grain boundaries, Fig. 5 (b) and (e). The crack tip also show signs of

blunting which is expected as an effect of the superimposed dwell-time. The blunting

effect is illustrated in (a) and (d). Despite the intergranular cracking behaviour, slip

bands and plastically deformed material surrounding the crack path is shown in (b),

(c), and (f) as well as secondary cracks oriented in the same directions as the δ-phases,

indicating that the fracture of the grain boundaries during crack propagation is not

fully brittle. The same characteristic appearance was observed for the thick (plane

strain) samples regardless of superimposed dwell-time.

4. Discussion

Turbine discs manufactured from wrought fine grained polycrystalline nickel base

superalloys, such as Inconel 718, is in many situations limited by its susceptibility

to fast intergranular cracking during extended dwell-times at high temperatures and

high tensile stresses [23]. It is well established that time dependent intergranular
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cracking of nickel-base superalloys, under both sustained and cyclic loads, is dom-

inated by environmental interactions with oxygen and or other embrittling species

at the crack tip resulting in dynamic embrittlement (DE) or stress accelerated grain

boundary oxidation (SAGBO) [27, 28]. Previous studies [29, 30] have shown that

complex oxides of Ni, Cr, and Fe, as well as oxides formed from niobium carbides

along grain boundaries, can be formed at the crack tip in Inconel 718. The transition

from from transgranular to intergranular crack growth behaviour is thus typically as-

sociated with an acceleration in crack growth rate, especially in combination with

dwell-times. This conforms with our observations that the crack growth rate at

550 ◦C increased when a dwell time of 2160 s was applied at the maximum load, see

Fig. 2.

Retardation of the crack growth rate, on the other hand, is typically associated

with a significant degree of plastic deformation, crack tip blunting and branching.

Also creep deformation will lead to stress relaxation ahead of the crack tip that will

reduce the crack propagation rate [6–8]. The plastic deformation seen in Fig. 5 (c)

also led to crack tip blunting and branching in connection to slip bands in (b) and

(d). So it is clear that mechanisms leading to both acceleration and retardation of

the crack growth rate are present at the same time and the overall response depends

on all active mechanisms. However, the most interesting result in the present study

is the observation of a strong anisotropy in crack propagation rate between different

specimen orientations, see Fig. 2.

The microstructure has been analysed in order to investigate what microstruc-

tural features effect the anisotropy in crack growth behaviour. The OIM:s and pole

density figure show no signs of preferred grain orientations, nor any significant elonga-

tion of the grains in certain directions of the forging. This was done to verify that the

sample cross sections are the same, just oriented with a 90◦ difference. No changes in
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crack growth behaviour due to grain orientation can be evinced. Certain special CSL

grain boundaries, have been proposed to be less prone to intergranular cracking, and

could be the reason for the difference in crack growth behaviour. Thermomechanical-

processing is used to achieve a higher fraction of CSL grain boundaries, to reduce

the sensitivity for dwell-time cracking [12, 31]. Apart from twin boundaries, (Σ3), a

low fraction of CSL grain boundaries are present in the material, listed in Table 3.

No preferred orientational aspects can be seen for the CSL grain boundaries inves-

tigated displayed in Fig.3 (e) and (f). Due to the small differences in CSL fractions

listed in Table 3, no distinct conclusions can be drawn regarding anisotropy effects.

The δ-phase is the only observed microstructural feature which exhibits a preferred

orientation. It is elongated perpendicular to the force applied during the die forging

operation, illustrated in Fig. 3 (a) and (b). The orientational effect (forming induced

arrangement) of the δ-phase has been reported to significantly affect crack propaga-

tion behaviour in Inconel 718 [15]. Crack growth rates were higher in the S–C samples

with the δ-phase discs oriented longitudinally perpendicular to the loading direction.

The Nb-rich δ-phase discs are prone to oxidation [13, 29], leading to a weakening of

the γ–δ interface. Delamination of the interface occurs when a tensile load is applied

resulting in faster crack growth. Delamination of the γ–δ interface is shown in Fig.

5 (b) and (e). Similar observations have also been reported in [15]. Samples cut in

the C–S direction show the slowest crack growth rates because the γ–δ interface is

shorter perpendicular to the loading direction compared to the S–C samples. The

cracks in the C–S samples deviates from planar crack growth when reaching δ-phase

due to the weakening of the γ–δ interface. Resulting in crack growth more parallel

to the loading direction along the interface as seen in 5 (d). When the crack deflects,

the driving force is retarded, lowering the crack propagation rates even if the crack

propagates along the γ–δ interface.
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Table 3: Fraction of coincidence site lattice grain boundaries, Σ3− Σ29 (length fraction [%]).
Σ value S–

C

C–S Σ S–

C

C–S Σ S–

C

C–S Σ S–

C

C–S Σ S–

C

C–

S

3 48.52 42.87 13a 0.00 0.00 19a 0.06 0.03 25a 0.00 0.00 29b 0.14 0.14

5 0.16 0.18 13b 0.00 0.04 19b 0.00 0.10 25b 0.63 0.14

7 0.22 0.48 15 0.08 0.30 21a 0.00 0.13 27a 0.02 0.48

9 1.02 0.90 17a 0.00 0.17 21b 0.00 0.11 27b 0.00 0.01

11 0.20 0.74 17b 0.33 0.42 23 0.25 0.14 29a 0.16 0.79

Sum 51.77 48.17

Our crack growth rates reported until their points of validity, and correspond well

to that reported by Ponelle et al. [15] (disc) for both directions, Gustafsson et al.

[9, 32] (bar material), for the C–S direction, all conducted at similar temperatures,

550–650 ◦C.

No significant difference in the tendency for blunting or crack branching has been

observed between the two different orientations. Blunting of the crack tip will impede

the crack growth rate since the energy needed to propagate a blunted crack tip is

higher compared to a sharp crack tip. Studying the crack tip at higher magnification

revealed a tendency for what could be environmental assisted cracking in the form

of nano sized pores seen in Fig. 5 (d) which has also been observed in [10]. From

the blunted crack tip in Fig. 5 (d), what could be a small crack (marked by a arrow)

in front of the crack tip has been formed growing towards the δ-phase. Which

would propagate towards the interface causing delamination of the δ–γ interface.

Blunting and environmental effects such as DE and SAGBO can probably not be

solely used to determine the anisotropy effects in our material. It is more likely to be

microstructure dependent i.e., δ-phase orientation. The main difference between the

two sample orientations, is the tendency for crack deflection. In contradiction to the

S–C samples with a crack growth perpendicular to the loading direction, Fig. 4 (a),
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crack growth in samples cut in the C–S direction was out of plane, almost parallel

to the loading direction, Fig. 4 (c).

For arbitrary crack shapes, the geometrical plane stress/strain conditions may

effect the crack propagation behaviour which makes fatigue life predictions more

challenging. For test specimens with a well defined geometry, the effect is manifested

through differences in crack propagation rates between thin and thick samples with

through-thickness cracks or tunnelling effects in samples with surface cracks [33–36].

Crack tunnelling during cyclic loading could be related to the amount of crack closure

present. Higher closure values will be associated with more plane stress conditions,

giving a lower propagation rate [37, 38]. During sustained loading, crack tunnelling

is more difficult to relate to crack closure, but should still depend on the constraint

level. Long dwell-times are known to cause crack tunnelling [17, 20, 22, 39] with a

strong growth toward the depth for certain specimen geometries and load cycles. In

the present study two types of specimens have been used to promote either plane

strain conditions (thick samples with side groves) or plane stress conditions (thin

samples). From Fig. 2 it is clear that the plane stress/strain condition have a

minor effect on the crack propagation rate compared to the dwell time effect or the

anisotropy effect present in the material. It is only for the condition with the highest

crack propagation rates, the S-C orientation and 2160s dwell time were a significant

thickness effect is observed.

5. Conclusions

Dwell-fatigue crack growth tests was performed on CT specimens. The specimens

were cut in two different orientations and each orientation in two thicknesses from

an Inconel 718 disc forging. Tests were run at 550 ◦C with two different dwell-times,
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90 s and 2160 s, in order to investigate the effects of anisotropy on dwell-fatigue and

crack growth behaviour. The following conclusions can be drawn from this work:

• Crack growth is approximately a factor ten faster in the samples cut in the

S–C compared to the C–S direction due to the δ-phases being elongated along

the crack growth direction.

• The 2160 s dwell-time tests show a crack growth rate approximately a factor

ten faster than the 90 s dwell-time tests, for both directions respectively.

• Fatigue crack growth rates are slightly faster for plane strain than for plane

stress conditions for the highest crack propagation rates.

• Crack growth occurs preferably in the interface between the γ-matrix and δ-

phase.

• The small orientational and fractional difference in coincident site lattice grain

boundaries and/or crystallographic texture could not explain the anisotropy

effects.

As a final remark, if possible, the manufacturing process and heat treatments should

be conducted in such a way that the δ-phases were to be optimally oriented to reduce

the risk of catastrophic failure of turbine discs.
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