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Abstract 

Ceramic topcoats provide thermal barrier coatings (TBCs) with its heat insulating properties. 
The heat transfer is primarily occurring by conduction through the bulk material, therefore 
features such as interfaces, pores and grain boundaries are essential for thermal insulation as 
they act as scattering sites. In this work, yttria-stabilized zirconia (YSZ) coatings produced by 
suspension plasma spraying (SPS) were investigated with respect to their microstructure and 
especially their porosity. SPS coatings are built-up by fine powder particles and consist of pores 
in a wide pore size range, from a few nanometer up to micrometer sizes.  

The porosity in the coatings was measured using two techniques which have never before been 
applied on SPS coatings, X-ray microscopy and nuclear magnetic resonance (NMR) 
cryoporometry. With X-ray microscopy, the coating was visualized in three dimensions 
revealing a porosity that is heterogeneously distributed within the coating. The technique 
showed pores with a complex shape, which are part of a connected pore network as well as 
closed porosity. NMR cryoporometry measured pore sizes down to a few nanometer and 
provided valuable information regarding pore bottlenecks. The pore shapes were 
approximated using simple geometrical models. For all investigated coatings, the pore shape 
for the smaller pore sizes was best described with an elongated geometry while the larger pores 
had a more spherical geometry.   

For SPS coatings, more information on the coating formation process is still required. A single 
splat analysis was performed and the first layer of deposited material by use of scanning 
electron microscopy (SEM) and electron backscattered diffraction (EBSD) technique. The splats 
were examined with respect to their appearance, i.e. their size, thickness, presence of cracks 
and grain size. Splat volume was calculated and compared with the particles in the suspension. 

Keywords: suspension plasma spraying, NMR cryoporometry, porosity measurements, 
scanning electron microscopy, X-ray microscopy, thermal barrier coatings 
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Abbreviations 

AFM - atomic force microscopy 

APS - atmospheric plasma spraying 

ASPS - axial suspension plasma spraying 

BSE - backscattered electrons 

CTE - coefficient of thermal expansion 

EB-PVD - electron beam physical vapor deposition 

EBSD - electron backscatter diffraction  

EBSP - electron backscatter pattern 

FIB - focused ion beam 

IPF - inverse pole figure 

MIP - mercury intrusion porosimetry 

NMR - nuclear magnetic resonance 

OMCTS - octamethylcyclotetrasiloxane 

SE - secondary electrons 

SEM - scanning electron microscopy 

SPS - suspension plasma spraying 

TBC - thermal barrier coating 

TGO - thermally grown oxide 

XRM - X-ray microscopy 

YSZ - yttria-stabilized zirconia 

2D - two dimensional 

3D - three dimensions 
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1 Introduction  

Thermal barrier coatings (TBCs) have been used as heat protection in the gas turbine industry 
since the mid-1970s [1]. They exist in various sectors, for example in the aero-industry and in 
land-based turbines for power generation. In current aircraft turbine engines the gas inlet has 
a temperature between 1000-1300°C, with a peak value that can exceed 1500°C [2]. Metallic 
components within a gas turbine start softening around 1100°C, therefore TBCs are used to 
gradually insulate these components from the hot combustion gases [2]. Fig. 1 provides an 
illustration of an axial flow gas turbine engine. The turbine blades and nozzle guide vanes are 
located right after the combustion chamber and these parts of the turbine have to be able to 
handle the highest temperatures [3].  

 

 

Figure 1: Axial flow gas turbine engine by Emoscopes is licensed under 
(https://creativecommons.org/licenses/by/2.0/).  

 

The aero-industry is expected to grow during the coming years/decades due to increased 
internationalization of businesses and enhanced personal wealth [4][5][6][7]. At the same time, 
there is a demand to reduce emissions and improve energy efficiency. For gas turbine engine 
components, a possible solution is the improvement of the TBC systems presently in use. If the 
engine efficiency can be increased, the emissions from the engine will be reduced. The gas 
turbines operate under the Brayton cycle and the efficiency can be described by Eq. 1 [8].  

𝜂𝜂 = 1 − 𝑇𝑇1
𝑇𝑇2

= 1 − �𝑃𝑃1
𝑃𝑃2
�

(𝛾𝛾−1)/𝛾𝛾
                                                  (1) 

where 𝜂𝜂 is the efficiency, 𝑇𝑇1 is the inlet temperature, 𝑇𝑇2 is the outlet temperature, 𝑃𝑃1 is the 
inlet pressure, 𝑃𝑃2 is the outlet pressure, and 𝛾𝛾 is the heat capacity ratio of the working fluid. It 
can be understood by Eq. 1 that if increasing the pressure ratio, 𝑃𝑃2/𝑃𝑃1, the engine efficiency 

https://creativecommons.org/licenses/by/2.0/
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will increase, and this will result in an increase in combustion outlet temperature, 𝑇𝑇2. The hot 
combustion gases will enter the turbine and the TBCs must therefore provide better thermal 
insulation to protect the turbine blades and the nozzle guide vanes than present TBCs.  
Furthermore, the TBCs must handle longer in-service times without failure to compete with the 
always increasing demands on performance. Both factors can be achieved by an optimization 
of the microstructure in the TBC topcoat which is lowering the thermal conductivity and 
increasing the strain tolerance.  

The microstructure of the TBC topcoat affects how heat from the hot combustion gases is 
transported within the material. Features such as porosity, micro-cracks, interfaces, and grain 
boundaries scatter phonons within the material and improve the heat insulation properties 
[9][10][11]. The optimal TBC topcoat would be a coating with a high amount of porosity, though 
the upper limit of porosity has to be controlled due to the risk of creating a fragile coating that 
cannot handle the strains occurring during thermal cycles.  

 

1.1 Objective and research questions  

The objective of the study can be divided into two parts: 

1. Porosity is an important feature in TBC topcoats as a higher porosity improves the thermal 
insulation of the turbine components. Therefore, the emphasis in this thesis work is to 
characterize the porosity of columnar yttria-stabilized zirconia coatings produced by 
suspension plasma spraying with focus on nano- and sub-micron sized porosity (paper I, II and 
III).  

2. To be able to tailor the properties of columnar suspension plasma sprayed coatings, it is 
important to understand how the coatings are built-up, and why a columnar structure is 
achieved. Therefore, the second objective of this thesis work aims to examine the first layer of 
deposited material, also referred to as single splat analysis (paper III and IV).  

Therefore, the research questions are the following:  

• Which techniques are suitable for analysing nano-porosity within suspension plasma 
sprayed coatings?  

• What are the pore size distribution, the amount of porosity, and the pore shape in 
columnar suspension plasma sprayed coatings?  

• How is the first layer of material deposited during suspension plasma spraying of yttria-
stabilized zirconia? Specifically, what is the grain size in a splat and are the splats formed 
by agglomerates of more than one suspension particle?  

 



3 
 

1.2 Limitations  

The work is focusing on the topcoat in the TBC system and not on the bond coat nor the 
thermally grown oxide. Strain tolerance and thermal conductivity are important properties of 
TBC topcoats, but in the scope of this licentiate thesis, strain tolerance will only be touch upon 
while thermal conductivity will be discussed more in detail. This work is not aiming at 
investigating the influence of spray parameters on the coating microstructure nor suggesting 
an optimal TBC design.   
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2 Background 

In this chapter, a brief overview of the important topics related to this study will be presented, 
e.g. thermal spray, suspension plasma spraying, comparison of different coating processes, 
thermal barrier coating system, yttria-stabilized zirconia, and coating formation.  

 

2.1 Thermal spray 

Thermal spray technique is a surface engineering process where particles are heated to a 
molten or semi-molten state and accelerated towards a surface [12]. Upon impact with the 
surface, the particles spread out and cool down. The flattened particles, known as “splats,” 
build up during spraying to form the final coating. Thermal spray is an efficient surface 
deposition technique based on the amount of material deposited per unit of time as compared 
to other deposition techniques [13]. Thermal spray is used in many different industrial sectors 
to create coatings that are resistant to heat, wear, erosion and/or corrosion [14]. In this study, 
thermal spraying was used to produce ceramic coatings with improved heat resistance which 
could also withstand the stresses built-up during thermal cycling and can be used as topcoats 
in TBCs.  

Thermal spray can be divided into three major categories: flame spray, electric arc spray and 
plasma arc spray [12]. For plasma arc spray, a plasma jet is generated inside the torch due to 
heating of inert gasses (typically argon, argon-hydrogen or argon-helium mixture) by an 
electrical arc [15]. The plasma is accelerated out from the torch nozzle, holding a temperature 
of 6000 - 15000°C [12]. The coating material, either a powder or a suspension, is feed into the 
plasma which causes the injected particles to become molten or semi-molten. The particles are 
accelerated by the plasma towards the substrate where they spread out and rapidly solidify as 
so-called “splats” and form a bond with the substrate [14][15]. The produced coating 
thicknesses are normally between 50 and 500 µm [12][16].  

Atmospheric plasma spraying (APS) is the usual plasma spray technique for producing TBC 
topcoats. This technique is performed using a powder feedstock with particles typically in the 
size of 10 - 100 µm [17], forming a coating with lamellar structure, see Fig. 2. The spraying 
process parameters can be tailored to create coatings with properties optimized for a specific 
application. The properties are affected by features in the coating such as pores, entrapped 
unmelted or resolidified particles, cracks, boundaries, and oxide inclusions, see Fig. 2, [12]. By 
reducing the size of the powder particles, coatings with finer features can be created [17]. 
However, there is a size limit for the smallest particle that can be injected into the plasma jet 
flow when using a gas carrier [17][18][19]. One reason is the agglomeration of smaller particles 
which can cause clogging in the powder feeder. Another reason is that penetration into the 
plasma jet is more difficult for smaller particles. The particle injection force has to be in the 
same order as the force imparted to the particles by the plasma flow [17][19]. If the particle 
size is decreased, the velocity of the carrier gas flow has to increase to increase the particle 
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injection force. Though, this approach is only possible to an extent, because an increased gas 
flow rate lead to cooling of the plasma jet. So, the limitation in particle size is a consequence of 
the fact that the mass flow rate of the gas carrier cannot be more than one fifth of the plasma 
mass flow rate itself without causing disruption in the plasma jet [17]. 

 

Figure 2: Cross section of an atmospheric plasma sprayed coating showing common features. 
Republished with permission of ASM International, from Coating Structures, Properties and Materials, 
J.R. Davis, published in Handbook of Thermal Spray Technology, 2017; permission conveyed through 
Copyright Clearance Center, Inc. 

 

2.2 Suspension plasma spraying 

The significant improvement in engineering properties of nanostructured materials raised the 
interest for spraying coatings using powder particles in the nanometer size range [4]. By 
changing from a gas carrier to a liquid transport media, it is possible to achieve sufficient 
momentum for particles with a diameter below 5 µm to penetrate the plasma [17] and more 
importantly, to avoid clogging in the feeder. Suspension plasma spraying (SPS) is a relatively 
new plasma spraying method; the first patent was granted 1997 [20]. A suspension is created 
by dispersing powder particles in a solvent (commonly water or ethanol) which is then injected 
into the plasma plume. The suspension undergoes fragmentation and forms very fine 
suspension droplets consisting of individual or agglomerated solid powder particles [21]. The 
solvent then evaporates and the powder particles are melted, and/or agglomerated before 
they are deposited on the substrate surface and build-up the coating [21]. Figure 3 shows a 
suspension plasma sprayed TBC topcoat sprayed onto a metallic bond coat on top of a nickel-
based superalloy. When using a liquid feedstock, the injected powder particles can be smaller 
compared to APS without having the problem of major agglomerations of the powder particles 
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or light powder particles ending up in the outer regions of the plasma jet [18]. The possibility 
of injecting smaller powder particles can create a microstructure with smaller grains and 
smaller pore sizes which can lower the thermal conductivity of the topcoat [22].  

Although SPS is a more complex (and more expensive) spraying method than APS, the 
technique is of high interest due to the possibility of spraying topcoats with low thermal 
conductivity as well as a columnar microstructure. The thermo-mechanical mismatch between 
the ceramic topcoat and the metallic substrate causes stresses within the coating when 
exposed to operational temperatures [23]. In some coatings (both APS and SPS) the occurrence 
of vertical cracks can partly relieve the stresses and thereby improve the mechanical stability, 
but it also causes convective heat flow through the cracks which increases the thermal 
conductivity, unfavourably [9]. A columnar structure (Fig. 3) has the ability to withstand the 
thermal stresses that occur during thermal cycling of the TBCs, without concern of increasing 
thermal conductivity [24].  

 

 

Figure 3: Micrograph of a ceramic suspension plasma sprayed topcoat deposited on a metallic bond coat 
and a nickel-based superalloy in a) cross section, b) topview.  

 

2.3 Comparison of different coating processes 

A similar columnar structure as achieved for SPS topcoats can be seen in coatings produced by 
electron beam physical vapor deposition (EB-PVD) [25][26]. The major advantages of SPS over 
EB-PVD are the lower production costs [27] and the lower thermal conductivity [22]. Bernard 
et al. [22] have measured the thermal conductivity for different types of coatings (APS, SPS and 
EB-PVD) and their comparison is presented in Fig. 4. The thermal conductivity is highest for the 
coating produced by EB-PVD (1.5 W∙m-1∙K-1) followed by the coating produced by SPS having a 
columnar structure with large inter-columnar spacings (air paths between the columns). Hence, 
large inter-columnar paths lead to convective heat flow through the coating which decreases 
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the heat insulating properties. The lowest thermal conductivity, and thereby the most heat 
insulation (protection) was achieved for coatings produced by SPS having a columnar structure 
without large inter-columnar spacings (0.7 W∙m-1∙K-1) [22]. These coatings have a thermal 
conductivity which is similar or even lower than in the lamellar APS topcoats. Thermal 
conductivity will be discussed in more detail in section 3.2.  

 

 

Figure 4. Thermal conductivities at 25°C for yttria-stabilized zirconia coatings produced by APS, SPS and 
EB-PVD. Reprinted from Surface and Coatings Technology, B. Bernard, A. Quet, L. Bianchi, A. Joulia, A. 
Malié, V. Schick, B. Rémy, Thermal insulation properties of YSZ coatings: Suspension Plasma Spraying 
(SPS) versus Electron Beam Physical Vapor Deposition (EB-PVD) and Atmospheric Plasma Spraying (APS), 
Copyright (2017), with permission from Elsevier.  
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2.4 Thermal barrier coating system 

A TBC system is built-up by three parts, a deposited metallic bond coat, a thermally grown oxide 
(TGO), and a deposited ceramic topcoat, see Fig. 5. The different parts in the TBC system have 
different functions, which are described in the following sub-chapters. 

 

 

Figure 5: Description of the TBC system and its components (their function and typical thickness): topcoat 
(thermal insulation, 100 - 400 µm), TGO (oxidation barrier, 1 - 10 µm), and bond coat (oxidation 
protection, adherence, decrease of thermal expansion mismatch, 75 - 150 µm) The values given in the 
figure are  typical thickness values taken from [28].  

 

2.4.1 Bond coat 

The metallic bond coat consists typically of NiCrAlY or NiCoCrAlY and has three important 
functions [28]. As the name indicates, the first function is to create a good adherence between 
the substrate and the topcoat. The second function is to reduce mismatch between the 
substrate and the topcoat due to different values of thermal expansion coefficient (CTE) [28]. 
And last, the bond coat is supposed to function as an oxidation resistant barrier to the substrate 
[15].  

 

2.4.2 Thermally grown oxide 

During operation of the gas turbine, oxygen diffuses through the porous topcoat causing the 
bond coat to oxidize and a thermally grown oxide (TGO) is formed at the interface to the bond 
coat [28]. The TGO is typically an aluminium oxide, Al2O3 [28], but can also consist of other 
oxides such as chromia, spinel oxides (((Cr,Al)2O3), (Ni(Cr,Al)2O4)) and NiO [29]. The TGO should 
ideally grow slowly and uniformly, and should be formed with low oxygen ion diffusivity which 
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hinders further oxidation of the bond coat [28]. The typical thickness of the TGO is in the range 
between 1 - 10 µm [28]. The performance and lifetime of the TBC is highly influenced by the 
TGO, because stresses are accumulated in the coating during TGO formation due to thermal 
expansion mismatch and swelling of the TGO layer [30]. Thereafter cracks are initiated which 
can lead to spallation and thereby failure of the TBC, see the crack propagation in Fig. 5.  

 

2.4.3 Ceramic topcoat 

The ceramic topcoat provides the TBC with its heat insulating properties and it needs to be able 
to handle high temperatures and an oxidizing environment [31]. The thickness of the topcoat 
is typically 100 - 400 µm [28]. The topcoat must have a low thermal conductivity at elevated 
temperatures and a CTE similar to the CTE for the bond coat to avoid mismatch stresses to 
build-up in the coating [31]. The ceramic topcoats are typically plasma sprayed yttria-stabilized 
zirconia [31]. This work is focusing on the ceramic topcoat.  

 

2.5 Yttria-stabilized zirconia 

Yttria-stabilized zirconia (YSZ) is a frequently used ceramic material when producing TBC 
topcoats and there are two main characteristics that make YSZ a popular choice. The first 
characteristic is the low thermal conductivity (2 - 3 W∙m-1∙K-1 at 1000°C), which enhances the 
protection of the components from high temperature loads [32]. The other characteristic of 
YSZ is the relatively high CTE (~9∙10-6 K-1) compared to values for other ceramic materials. This 
provides the  YSZ with good thermocyclic durability together with the other components in the 
TBC system [33].  

Pure zirconia (ZrO2) is not suitable as an isolating layer in TBCs because it undergoes a 
martensitic phase transformation between the monoclinic and the tetragonal phase when 
subjected to temperatures higher than 1170°C, which is the operational temperature for a gas 
turbine [34]. This phase transformation causes a volume reduction of 3 - 9% which increases 
the tensile stresses in the material and can lead to failure of the coating [34]. However, when 
using TBCs inside a turbine, the coating has to endure many thermal cycles, i.e. it has to have a 
long lifetime. To be able to use zirconia in high temperature applications, a stabilizer has 
therefore to be added to avoid phase transformation to occur. In Fig. 6, the phase diagram for 
zirconia is provided with the amount of stabilizer given on the x-axis and temperature on the y-
axis. Since 1980s, yttria (Y2O3) is commonly used as stabilizer for thermal barrier coatings in the 
aero-industry [35].  

When producing thermal barrier coatings using plasma spraying, the sprayed material is rapidly 
cooling down and solidifying, i.e. there is insufficient time for establishing equilibrium of the 
phases in all cases. Therefore, non-equilibrium cooling occurs and metastable phases of the YSZ 
are formed [36]. The metastable phases can be either transformable (t) or non-transformable 
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(t´) depending on the amount of yttria added [37], indicated in the lower part of Fig. 6. The 
preferable amount of yttria is 6 - 8 wt.% so that good fracture toughness is  achieved 
[35][36][38]. When adding 6 - 8 wt.% of yttria, the phase formed during plasma spraying is t´-
tetragonal which will not transform into monoclinic or cubic phase at temperatures below 
1200°C [37].  

 

 

Figure 6: Zirconia-rich side of the ZrO2-Y2O3 phase diagram. Adapted from [39]. 

 

2.6 Coating formation during suspension plasma spray process 

TBC topcoats are built-up by deposition of material onto a substrate surface. In Fig. 7, the 
various stages between injection and deposition of the suspension are illustrated. When the 
YSZ suspension is injected into the plasma jet (left side of Fig. 7), it breaks up forming droplets. 
The drag force between the droplets and the plasma creates shear deformation of the droplets 
which can lead to break up into smaller droplets [18]. This phenomena is called the 
aerodynamic break-up or secondary break up. In the next step, the solvent is evaporating and 
the powder particles or agglomerates are starting to melt. When the particles reach the 
substrate they impact and solidify.  
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Figure 7: Illustration of the various stages of the spraying process between injection of the suspension 
and impact on the substrate. Adapted from [18]. 

 

The microstructure will rapidly build-up by solidified single impacted droplets or particles, 
called splats [12]. The splats represent the building blocks of the coating and can be either fully 
molten droplets deposited on the substrate or partially molten particles adhering on the 
substrate. How the material will be deposited onto the surface will be affected by different 
spray parameters, but also by different properties of the substrate and the suspension, such as 
surface roughness and size of the feedstock particles [40]. Pawłowski [18] observed when using 
SPS, that the splats achieve a shape more similar to a pancake and not the splashed flower-like 
shape that is sometimes achieved when spraying using APS. Pawłowski suggested that the 
pancake shape of the splats is caused by a lower thermal and/or kinetic energy of the particles 
upon impact with the substrate, affected by the liquid feedstock.  

When spraying TBC topcoats using APS, the injected powder particles are in the size of 10 - 100 
µm. Hence, the coating microstructure contains features in the micrometer range [41]. When 
instead using SPS, the injected powder particles can be 10-100 times smaller and it appears 
possible to create coatings with sub-micrometer or maybe even nanometer-sized features if 
very small suspension particles are used. If the coatings achieve nanometer-sized features it is 
possible to attain the exceptional properties of a nanomaterial, i.e. increased strength and 
hardness, improved toughness, higher CTE, and lower thermal conductivity, among other novel 
and/or improved properties [17][41]. The cooling rate for the splats is typically high (106 Ks-1) 
and a finely grained polycrystalline coating should be attainable [12][42]. 

The injection of the suspension into the plasma jet is an important step in the plasma spray 
process as it highly influences the droplet formation and consequently the microstructure 
development. A successful deposition of a TBC topcoat can be achieved only if the suspension 
is introduced to the hot central zone of the plasma plume [18]. The injection of the suspension 
can be either radial or axial, and can lead to different positions and trajectories of the YSZ 
particles in the plasma plume. Radial injection of suspension is illustrated in Fig. 8, where the 
smaller particles might not penetrate the plasma and have a trajectory above the plasma 
plume, while the larger particles achieve a trajectory that may exit the plasma plume. Hence, 
the droplets may solidify before reaching the substrate due to the poor thermal treatment in 
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the periphery of the plasma plume [43]. In axial suspension plasma spraying (ASPS), the powder 
particles are expected to be centered in the plasma (hot zone) and completely melted when 
impinging the substrate. In that context, it is important to realize that smaller particles are more 
sensitive to the injection mode and are more easily ending up in the periphery of the plasma 
jet [18]. Hence, axial injection is preferred if spraying with a suspension consisting of nanometer 
sized particles.  

Figure 8: Illustration of radial injection suspension plasma spraying where the powder particles achieve 
different trajectories within the plasma jet depending on their size. Adapted from [43].  

The formation of the microstructure in such a spraying process is complex and not yet fully 
understood. One theory that is accepted by many researcher when it comes to the formation 
of suspension plasma sprayed coatings is the model of VanEvery et al. [44]. They stated that 
the formation of the columnar structure is due to the fact that smaller powder particles (< 5 
µm [43]) injected into the plasma jet will be affected by the parallel surface velocity when 
approaching the substrate. When moving parallel to the substrate surface, they adhere at 
asperities and are responsible for the formation of columns. Similar observations and 
conclusions are made by Oberste Berghaus et al. [45], and Chen et al. [46]. Sokołowski et al. 
[47] suggested a model where the larger particles (with a trajectory in the centre of the plasma 
jet) are directly impacting the substrate surface, while the finer particles are affected by drag 
forces and achieve a velocity parallel to the surface and adhere on asperities. As discussed by 
Curry et al. [48], the roughness of the bond coat surface influences the width of the columns in 
a columnar topcoat structure. The properties of the coating can therefore be tailored by 
changing the surface roughness of the bond coat. However, Sokołowski et al. [49] managed to 
produce columnar structured topcoats on a smooth substrate surface. Furthermore, they 
achieved the columnar structure only for the coatings produced using fine powder particle 
suspensions (dV50 = 398 nm). Hence, particle size and in-flight behaviour of the particles seem 
to play an important role in the coating formation.
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3 Characteristics of suspension plasma sprayed thermal barrier coatings 

In this chapter the characteristics of a columnar YSZ coatings produced by SPS will be presented 
with focus on microstructure, porosity and thermal conductivity.  

 

3.1 Microstructure  

The microstructure of the columnar SPS coatings is affected by the process variables. The 
highest influence on the microstructure are owing to variables that directly affect the particle 
velocity and temperature, e.g. total gas flow rate, gas composition, feed rate, solid content  and 
particle size [50]. The microstructure can be tailored to optimize the coating for a specific 
application by varying these variables. For gas turbine applications, a coating with high strain 
tolerance is needed (to be able to handle thermal cycling) as well as a low thermal conductivity 
(to function as heat isolating). The cross section micrographs in Fig. 9 show examples of 
different microstructures attained by SPS. The coating in Fig. 9a has a very porous 
microstructure with a low thermal conductivity but is at the same time less suitable for handling 
strains occurring during thermal cycling. This is mainly due to the lack of strain relievers such 
as cracks or inter-columnar regions. The microstructure in Figs. 9b and 9c are also porous but 
have in addition a columnar and feathery appearance. The columnar structure can handle 
strains and extends the lifetime of the coatings in an engine application. The porosity in these 
two coatings is high enough for a TBC application.  

 

 

Figure 9: a - c) Three examples of SEM microstructures that can be attained with SPS of YSZ.  

 

The microstructure of the SPS TBC topcoats is affected by the initial particle size in the 
suspension as well as the agglomeration and melting stages [50]. When the topcoats are built-
up, various features are created, e.g. pores and cracks of different nature, see Fig. 10. The 
amount and distribution of these features are closely connected to the process variables. In 
general, the following features can be observed: Inter-columnar spacings, micro cracks, 
branching cracks and finer cracks, inter-pass porosity as well as open and closed pores.  
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Figure 10. a and b) Common microstructural features in SPS TBC topcoats. 

 

For coatings with a columnar structure the inter-columnar regions can either consist of a crack 
that runs from the bond coat to the surface or it can be a porous region in-between two more 
dense regions with or without a crack. The density of these porous regions varies. As can be 
seen in Fig. 11, the inter-columnar regions can contain solidified spherical material. These 
spheres can be powder particles that ended up in the outer regions of the plasma jet during 
spraying. As they were not fully heat treated they solidified before reaching the substrate 
during deposition (see Fig. 8). Such particles reduce the splat-to-splat contact area, hence, they 
appear as inhomogeneities in the topcoats [12]. Favourably for TBC applications, 
inhomogeneities might decrease the heat transfer through the topcoat. The drawback with 
these particles is that they might decrease the coatings resistance against failure during 
operation due to weak cohesion [12].  

In the coatings appear cracks, fine cracks and branching cracks. Vertical cracks might relief 
some of the stresses accumulated in the topcoat during thermal cycling [9][23]. Hence, 
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horizontal cracks close to the bond coat might work as initiation points for spallation of the 
topcoat. The lifetime is not only affected by the strain tolerance of the topcoat but also by how 
well the coating adheres to the bond coat. The adherence is affected by the deposition and by 
the growth of a TGO [30]. The effect on lifetime due to growth of a TGO will not be covered in 
this thesis.  

The porosity in TBC topcoats varies depending on the spray process variables, for example the 
particle speed and spray distance, but also the particle size distribution in the feedstock [12]. 
The porosity is typically 5 – 15 vol.% [12] but can be varied according to requirements for a 
specific application. In the denser areas in Fig. 11, the pores can be seen having a complex 
structure, they are not perfectly spherical nor of any other defined shape. What has to be 
considered regarding increased porosity within the TBC topcoats is the risk for higher corrosion 
rate leading to weaker coating cohesion and also a lower coating hardness which increases the 
wear rate [12]. 

 

 

Figure 11. Porosity in the columns (denser regions) and in the inter-columnar region of an YSZ coating 
produced by SPS. 

 

3.2 Thermal conductivity 

Three heat transfer contributors have to be considered in order to investigate their influence 
on the insulating properties of SPS TBC topcoats: convective, conductive and radiative heat 
transfer [9]. In the SPS coatings the influence from convective heat transfer depends on the 
appearance of wide cracks running all the way through the coating, also called segmentation 
cracks. The presence of these cracks makes it possible for a convective heat flow to occur. 
During operational temperatures, the existing cracks might widen and the probability for 
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convective heat transfer increases. Convection inside the pores are negligible due to small pore 
sizes in the SPS coatings [10].  Therefore, the heat transfer contributors are the following [9]:  

• Conduction through the bulk material 

• Conduction through the gas-filled pores 

• Radiative heat transfer 

• Convection through segmentation cracks. 

 
 

 

Figure 12. Schematic illustration of thermal conductivity in SPS TBC topcoats. The major influence on the 
conductivity in these material originates from conduction in bulk material, conduction in gas phase, and 
scattering at features such as interfaces and grain boundaries.  

 

Conductive heat transfer is the main contribution to heat transfer in SPS YSZ coatings and can 
be divided into two contributors; the conduction through the bulk material and the conduction 
through the air-filled pores, see Fig. 12. Conduction through the bulk is strongly influenced by 
features in the coating, such as grain boundaries, porosity and oxygen vacancies as they scatter 
phonons. The use of finer powder particles during the plasma spray process leads to the 
possibility of creating coatings with finer grain sizes and in turn an increased number of grain 
boundaries [42]. Hence, thermal conduction is substantially reduced by phonon scattering, 
especially if the grains are nano-sized [11][20][21]. Furthermore, nano-sized pores are expected 
to decrease thermal conductivity as they increase the number of interfaces at which phonons 
are easily scattered [9]. Even pore geometry influences thermal conduction. If the pores are 
elongated and the long axis perpendicular to the heat transfer direction, the insulating effect is 
higher due to a large amount of interfaces normal to the heat flow direction [9][53]. YSZ is 
widely used as TBC topcoat material due to its heat insulating properties with a thermal 
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conductivity (k) of 2.25 Wm-1K-1 for a fully dense material. Thermal conductivity can be as low 
as below 1 Wm-1K-1 for a plasma sprayed porous topcoat [10][16].  

By doping zirconia with yttria (Y2O3), the zirconium cation (Zr4+) is in some cases replaced with 
yttrium (Y3+). The thermal conductivity is therefore decreased due to the increasing amount of 
oxygen vacancies (occurring due to need for electron neutrality balance) which scatter phonons 
[54]. Hence, the larger the amount of yttria, the more oxygen vacancies are present, and the 
better is the thermal insulation. What has to be kept in mind is that the upper limit of the 
amount of yttria that can be added is influenced by other factors such as phase transformation.  

The thermal insulation of SPS TBC topcoats can be improved by incorporating porosity in the 
coatings. YSZ has a higher thermal conductivity than gas-filled pores and increased porosity will 
therefore decrease the overall conductivity remarkably [9]. The conductivity in air-filled pores 
at room temperature and atmospheric pressure is similar to the conductivity of free gas (k ≃ 
0.025 Wm-1K-1) as long as the characteristic pore size, r, is much larger (r > ~10 λ) than the 
molecular mean free path, λ (λ=60 nm in ambient temperature and pressure) [9][10]. As r 
decreases (r < ~5 λ), the thermal conductivity inside the pore decreases due to wall collisions 
which are improving the insulating properties of the TBC [9]. Again, the decrease to sizes in the 
nano-regime plays an essential role in the thermal properties of TBC topcoats.  

The contribution from radiant heat transport has to be considered for temperatures above 
1000 K but is pronounced at temperatures above 1500 K [9][55]. Also for the radiative heat 
transfer contribution, features such as interfaces, grain boundaries and porosity improve the 
insulating properties of the TBC topcoat as they effectively scatter radiation [10].  

 

  



20 
 

  



21 
 

4 Experimental methods and characterization techniques  

This chapter will cover the different techniques that were used to characterize the YSZ coatings 
and the single splats in the four appended papers. But first, a description of the investigated 
material is provided.  

 

4.1 Material  

The TBCs are produced at University West, Trollhättan, and consist of Hastelloy X substrate 
coupons with a diameter of 25 mm and a thickness of 6 mm, a CoNiCrAlY bond coat (produced 
by High Velocity Air-Fuel thermal spray process) and a ceramic topcoat. Axial suspension plasma 
spraying (ASPS) was used to apply the topcoat with help of an Axial III high power plasma torch 
(Northwest Mettech Corp., Vancouver, Canada), Fig. 13. Topcoats were produced with a 
suspension consisting of 8 wt.% YSZ dispersed in ethanol with 25 wt.% solid load (spray 
parameters are given in Table 1). When producing samples for single splat analysis, the torch 
was moved vertically with a high velocity in order to be able to collect isolated single splats. The 
YSZ powder particles had a median particle size of 500 nm as provided by the supplier 
INNOVNANO (Coimbra, Portugal).  

 

 

Figure 13.  Thermal spray process using an Axial III high power plasma torch. Photo acknowledgment to 
Stefan Björklund, University West.   

 



22 
 

Table 1. Spray parameters for producing coating A, B and C.  

Coating Spray distance 
[mm] 

Surface speed 
[cm/s] 

Power  
[kW] 

Total gas flow 
[L/min] 

Suspension feed 
rate [mL/min] 

A 100 216 116 200 45 
B 75 146 125 250 70 
C 100 75 124 300 45 

 

Three coatings with columnar or feathery-columnar structure (coating A - C in Fig. 14) have 
been chosen among the produced samples for a more detailed investigation as they show strain 
tolerance while still having a low thermal conductivity.  

 

 

Figure 14. SEM micrographs of three coatings (in cross section) with columnar or feathery-columnar 
structure in overview and at higher magnification, respectively: a) and b) coating A, c and d) coating B, 
and e and f) coating C.  

 

4.2 Imaging techniques 

During this work, different imaging techniques were used for characterization of the SPS 
coatings and they are atomic force microscopy (AFM), scanning electron microscopy (SEM), 
and electron backscattered diffraction (EBSD).   
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4.2.1 Atomic force microscopy 

Atomic force microscopy (AFM) can be used in a wide range of natural science disciplines for 
topographic imaging, force measurements and manipulations of a surface [56]. A cantilever 
with a sharp tip (or probe) is scanning a sample surface, and interactions between the surface 
and the tip leads to bending of the cantilever. The interactions are caused by forces between 
the sample surface and the tip when the tip approaches the surface [57]. The deflection of the 
cantilever is recorded by use of a laser beam and a photodiode, see Fig. 15 [57]. From the 
recorded data, a three-dimensional image of the scanned surface can be created.  

In this study, an AFM Bruker Dimension ICON SPM was used to create images and perform 
height profiles of single splats (paper IV). The data were processed by Gwyddion, a scanning 
probe microscopy data visualization and analysis tool.  

 

 

Figure 15. Schematic illustration of the primary components of an AFM. The tip attached to the cantilever 
is scanning the sample surface and the bending of the cantilever is recorded using a laser beam and 
photodiode. 

 

4.2.2 Scanning electron microscopy (SEM) and electron backscattered diffraction (EBSD)  

In scanning electron microscopy (SEM), an image is formed by scanning a surface with an 
electron beam. The electrons are generated in an electron gun and accelerated towards the 
sample. The electron beam passes through two different types of electromagnetic lenses, the 
condenser lens that controls the size of the beam, and the objective lens that focusses the 
beam [58][59]. The focused electron beam is scanning across the sample surface and interacts 
with the atoms in the sample (depending on the accelerating voltage and the material analysed, 
the penetration depth can be up to 1 µm) [58]. The interaction between the electron beam and 
the sample generates different types of radiation products, e.g. secondary electrons (SE), 
backscattered electrons (BSE), characteristic X-rays, and other photons of various energies 
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[58][59]. The produced radiation can be used for imaging or chemical analysis. SE and BSE 
signals are commonly used for imaging, while X-rays are used for chemical analysis, such as 
phase identification and quantitative measurement of elements.  

In this study, a Leo 1550 Gemini SEM equipped with a field emission gun was used. The 
micrographs in this thesis work are taken using SE detector and an accelerating voltage of 
10 keV. Prior to investigations the samples were embedded, polished and gold coated (to 
achieve electrical conductivity).  

Electron backscattered diffraction (EBSD) is a SEM-based technique which reveals information 
about grain orientation, texture, grain size, grain boundary character, and allows phase 
discrimination [60]. The EBSD detector consists of a phosphor screen and a low light camera 
[61]. The highly polished sample is tilted 70° and diffraction occurs when the incident electron 
beam hits the sample surface. When the beam interacts with the crystal lattice, backscattered 
electrons experience path differences causing constructive and destructive interference (Bragg 
diffraction) [60]. At the phosphor screen in front of the tilted sample, an electron backscatter 
diffraction pattern (EBSP) will appear, see Fig. 16. The phosphor converts the diffraction pattern 
into light which is recorded by the camera inside the detector, and a computer software 
analyses the pattern by detecting Kikuchi bands using an optimized Hough transform [60]. The 
intersection of the Kikuchi bands are called zones and correspond to crystallographic directions 
in the crystals [61]. Examples of Kikuchi bands and zones can be seen in the EBSP in Fig. 16. By 
providing the analysis software with the crystal data of possible phases, the phase present and 
the crystallographic orientation at the location of interest can be determined. The EBSD analysis 
can be performed either by spot analysis to identify phases present in the material or by 
scanning across the sample surface at a chosen step size to obtain for example orientation 
maps for grain size identification. 

 

Figure 16. Schematic illustration of the electron interaction with a crystalline material. Adapted from 
[61].  
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The raw data can be analysed by a data processing software that allows a variety of analyses to 
be performed: grain size and texture analysis, and many modes of microstructural visualization 
[60]. The grain size analysis uses changes (> 10°, typically) in the crystallographic orientation 
between neighbouring pixels [60]. In this work the grain size analysis is presented as orientation 
maps with inverse pole figure (IPF) colouring where each grain achieves a colour connected to 
its orientation according to a colour code. For each map, a reference sample direction is 
selected and the colour is addressed based on determined crystal orientation and selected 
viewing direction. For a tetragonal unit cell, red, green and blue grains originate from lattice 
planes with Miller indices <hkl> as follows <001>, <010> and <111>, respectively [60].  

EBSD analysis has been performed on single splat surfaces and on coatings in cross section to 
achieve information regarding orientation and size of the crystallographic grains (paper III). In 
this work, an HKL Channel 5 EBSD system with Nordlys II detector was used. An accelerating 
voltage of 10 keV was applied at a working distance of about 15 mm. The step size for the 
measurements of the single splats and the cross section samples was chosen to be 15 and 
50 nm, respectively. Prior to the investigations, the samples were coated with a thin layer of 
carbon to achieve electrical conductivity.  

 

4.3 Porosity measurement techniques 

Two of the most important features in TBC topcoats are the amount of porosity and the pore 
size distribution. Described below are the techniques used in the appended papers (paper I, II 
and III) to measure porosity: 

• Mercury intrusion porosimetry (MIP) 

• Nuclear magnetic resonance (NMR) cryoporometry  

• X-ray microscopy (XRM). 

 

4.3.1 Mercury intrusion porosimetry (MIP) 

Mercury intrusion porosimetry (MIP) is a technique that can be used to measure porosity and 
pore size distribution in porous materials. MIP is capable of measuring a broad pore size range, 
from 5 nm to 10 µm [62]. The sample is kept under vacuum and mercury is intruded into the 
porous material using external pressure. The pressure needed to intrude mercury into a pore 
is depending on the size of the pore and a higher pressure is needed for the smaller pore sizes. 
The technique relies on the fact that a non-wetting liquid (mercury) will only intrude the porous 
structure of a material when a pressure is applied. The volume of mercury intruded into the 
pores can therefore be measured as a function of applied pressure, and the pore size 
distribution can be calculated using the Washburn equation [63]. The Washburn equation 
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assumes that the pores are cylindrical as well as entirely and equally accessible to the outer 
surface [64].  

 

𝑃𝑃 = −2 𝛾𝛾 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑟𝑟

                                                               (2) 

 

where 𝑃𝑃 is the applied pressure (Pa), 𝛾𝛾 is the surface tension of mercury (Nm-1), 𝜃𝜃 is the contact 
angle between the mercury and the pore wall (°), and 𝑟𝑟 is the radius of the pore (m).  

In paper III, the as-sprayed samples were cut into pieces of 10 mm x 24 mm using water jet 
cutting, the topcoats were detached from the substrate and heated up to 130°C to remove any 
liquid inside the pores. Afterwards, porosity was investigated using a PoreMaster 33 GT 
equipment at the Institute of Plasma Physics of the Czech Academy of Sciences. The samples 
were analysed in a pressure regime from 12 kPa to 230 MPa. 

 

4.3.2 Nuclear magnetic resonance (NMR) cryoporometry 

NMR cryoporometry is used to measure porosity and pore size distribution in porous material 
[65][66]. The technique can measure pore sizes from 2 nm up to 1 µm (diameter) [66]. The 
sample material is saturated with a liquid (probe liquid) and cooled down below the freezing 
point of the liquid and thereafter the temperature is slowly raised. The liquid will start melting 
depending on pore size and when analyzing the fraction of liquid against temperature it is 
possible to determine the pore size distribution [67]. Hence, the method relies on the Gibbs-
Thomson effect, that small crystals within a confined volume have a lower phase transition 
temperature than the bulk material [67][68][69].  

When the sample which is placed inside the NMR magnetic field absorbs energy, the 
reorientation of the nuclear spins result in a radiofrequency (RF) signal which is received by the 
detector [70]. The instrument responds by recording this as a resonance signal, a peak. The 
magnetic field strength is varied to allow all different types of protons to come into resonance 
[70]. The liquid-to-solid (or reverse) phase transition of the probe material confined in the 
sample can be detected by NMR cryoexperiments. Hence, NMR spectroscopy can 
quantitatively separate a material’s liquid phase from its solid phase due to the large difference 
in spin-spin relaxation characteristics of the hydrogen atoms in the probe material when they 
occur in liquid and solid phase, respectively [70]. The relaxation time for solids is much shorter 
than for liquids, microseconds compared to seconds. The recorded NMR signal from the liquid 
phase will vary with temperature and this variation of signal intensity, I(T), reflects the pore size 
distribution [65]. Using a conventional experimental setup for quantitative NMR spectroscopy, 
i.e. an acquisition recycle delay, the recorded NMR signal integral intensity is directly 
proportional to the volume of melted probe liquid [69]. The total pore volume (between 
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selected pore size values) is provided as the sum of the calculated specific pore volumes, which 
together with the bulk density result in a value of the total porosity.  

For many porosity measurement techniques the total volume of pores is measured and the 
pore size distribution achieved by a pre-decided characteristic length scale of the pores. NMR 
cryoporometry is capable to obtain information regarding the pore geometry within the coating 
and the pore size distribution is based on this geometry. If the pore geometry within a material 
is complex, the pore geometry can be assessed with an approximation. There are different 
approaches to pore shape characterization. The most commonly used approach is to 
characterize the pores by simple model geometries [65]. The pore geometry is then interpreted 
by the shift that occurs due to the melting (or freezing) point depression for a confined material 
(probe liquid). The physical reason to this shift is the cost of creating new interfaces with a non-
zero surface tension [71][65]. Equations 3a and b are modified Gibbs-Thomson equations that 
describe the melting and freezing temperature depression, ∆T, of a confined liquid within a 
pore with radius r.  

∆Tm = Tm  - Tbulk = - G1K/(r - τ)                                             (Eq. 3a) 

    ∆Tf = Tf  - Tbulk = - G2K/(r - τ)           (Eq. 3b) 

  

where Tm and Tf are the melting and freezing temperatures, respectively, Tbulk is the bulk 
equilibrium temperature, parameter K is relating to the bulk properties of the probe liquid, the 
constants G1 and G2 depend on the geometry of the pores, and τ is the thickness of the 
omnipresent liquid layer at the surface [13]. By evaluation of the melting and freezing data, the 
ratio ∆Tf/∆Tm can be assessed and afterwards compared and matched to a corresponding 
radius, hence providing the geometry. Two of the geometrical shapes that are covered in the 
literature are the sphere (radius r), the cylinder (radius r, height h, r << h) [65], see Fig. 17 where 
the non-equilibrium phase transition is plotted for a sphere and a cylinder, with the signal 
intensity, I (a.u.), against temperature, T (a.u.). More complex geometries have been 
considered for the samples in paper I but will not be discussed further in this thesis. The vertical 
part of the curves conveys that some amount of the confined material will experience the bulk 
thermodynamic equilibrium at Tbulk, thus, freezing and melting curves overlap in this part. At a 
lower temperature the melting and freezing curves are shifted with respect to each other 
because of dissimilar metastabilities, and a hysteresis loop can be observed. As can be seen in 
Fig. 15, the melting and freezing temperature depression for the specific geometry can be 
calculated using Eqs. 3a and 3b together with values for G1 and G2 derived from surface to 
volume ratio for the respective geometries. To simplify, the thickness of the pre-molten liquid 
layer inside the pores is here considered negligible compared to the dimensions of the surface 
and volume of the material (τ <<< r).  
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Figure 17. A schematic illustration of the non-equilibrium phase transitions for a material confined in a) 
a spherical pore, (b) a cylindrical pore. Image courtesy of Simone Creci [72].  
 

In paper I, coating A and B were investigated using a Bruker Avance 600 spectrometer. The as-
sprayed coupons were cut into smaller pieces, the topcoats detached from the substrate, 
freeze-dried to sublimit any liquid inside the pores, placed in NMR tubes and saturated with 
octamethylcyclotetrasiloxane (OMCTS). All samples were cooled down to a storage 
temperature of 185 K for complete solidification before they were inserted into the NMR 
magnet. Due to the small sample volumes, a blank cell correction was applied to increase 
accuracy of the measurements. A more detailed description of the procedure is described in 
paper I. 

 

4.3.3 X-ray microscopy (XRM)  

X-ray microscopy is an advanced image technique that visualizes the specimen in three 
dimensions (3D). An X-ray beam with high-brightness is sent towards the specimen and the 
beam is focused by a high-efficiency capillary condenser [73]. The specimen rotates and the 
transmitted beam is collected in a wide range of projection angles using a scintillator  coupled 
to a CCD detector [73]. The acquisition time for a nanoscale specimen is from a few hours up 
to a day. The collected data is reconstructed to 3D tomographic images using Visual SI Advanced 
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software by Object Research Systems, Canada. With the visualization software and its in-built 
capabilities it is for example possible to visualize internal features and to quantitatively segment 
and analyse the porosity (total porosity, pore volume distribution, pore thickness distribution, 
determination of the ratio of connected versus unconnected porosity).  

In this study (paper II and III), a Zeiss Xradia Ultra 810 X-ray microscopy was used, which has a 
true spatial resolution down to 50 nm and minimal voxel size of 16 nm [74]. A pillar of Coating 
A was prepared using a ZEISS Auriga focused ion beam (FIB) instrument by removing the 
surrounding material. In Fig. 18, two areas of the pillar are marked using dashed squares and 
the areas were imaged with high resolution and large field of view, respectively. The analysis 
was performed using two different contrast mechanisms, i.e. absorption contrast and Zernike 
phase contrast.  

 

 

Figure 18. FIB image showing the investigated pillar cut out from a columnar region of a SPS sample 
(coating A). The dashed squares are illustrating the regions investigated by XRM using high resolution 
and large field of view mode, respectively. 
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5 Summary of results and discussion 

Some of the results presented in the four appended articles will be summarized in this chapter 
and presented along with a discussion. This chapter is divided into two sub-chapters, i.e. 
investigation of porosity (5.1) and single splat analysis (5.2). Below, the papers are listed and in 
which sub-chapters they will be discussed.  

 
• Paper I “Porosity investigation of yttria-stabilized zirconia topcoats using NMR 

cryoporometry” is covered in sub-chapter 5.1.  
 

• Paper II “3D analysis of porosity in a ceramic coating using X-ray microscopy” is covered in 
sub-chapter 5.1.  

 
• Paper III “EBSD analysis and assessment of porosity in thermal barrier coatings produced by 

axial suspension plasma spraying (ASPS)” is covered in both sub-chapter 5.1 and 5.2.   
 
• Paper IV “Analysis of single splats produced by axial suspension plasma spraying” is covered 

in sub-chapter 5.2.   
 

 
5.1 Investigation of porosity  

Thermal conductivity is affected by the properties of the material itself and the porosity which 
incorporates air into the material. Since air has a much lower coefficient of thermal conductivity 
than YSZ, a large amount of porosity is decreasing the thermal conductivity significantly. The 
thermal conductivity is furthermore decreased by features in the plasma sprayed coating, as 
they scatter phonons. Hence, if the features are sub-micron or nanometer-sized, the amount 
of scattering features per volume increases and thermal conductivity is decreased. There is a 
challenge in measuring the porosity in YSZ coatings produced by SPS due to the small pore sizes 
and the wide pore size range. In this thesis work, two techniques - new in this field - were used 
along with mercury intrusion porosimetry (MIP), which is an established technique for 
characterizing TBCs. The two new techniques presented are NMR cryoporometry (paper I) and 
X-ray microscopy (XRM) (paper II), see section 4.3 for background about the techniques. 

  

5.1.1 Pore size distribution 

The techniques used for porosity investigations can measure different size ranges. MIP can 
measure pore sizes down to a few nanometer and up to 10 µm (diameter). NMR can also 
measure pores down to a few nanometer but has an upper limit of 1 µm (diameter). With XRM 
much smaller objects can be visualized (down to 50 nm in spatial resolution) compared to other 
computer tomography techniques. The investigated coatings have a wide pore size distribution; 
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pores were ranging over the complete measurable pore size interval. In the SEM there are large 
pores observed in the inter-columnar regions which might be beyond what can be measured 
by the three techniques. Moreover, the SEM investigations indicated that the porosity is higher 
for Coating A than Coating B and C, which is confirmed by MIP and NMR cryoporometry. By 
comparing the pore size distribution achieved by MIP with the pore size distribution achieved 
by NMR cryoporometry, equivalent results were obtained. When analysing Coating A and B by 
MIP (paper III), it was revealed that micrometer and sub-micrometer pores are the most 
frequent in Coating A (70%), while in Coating B pores with a diameter below 20 nm dominate 
(65%). The result from NMR cryoporometry (paper I) shows that Coating A has a high porosity 
over the whole measured size range, with an increase in frequency for pores below 10 nm in 
diameter. NMR cryoporometry results for Coating B show that the amount of large pores is low, 
but increases for pores below 150 nm in diameter with the largest quantity of pores having a 
diameter of less than 20 nm.  

 

5.1.2 Pore shape  

With XRM, a small volume of Coating A was quantitatively segmented and both open and closed 
porosity analysed. The true geometry of the pores was visualized in 3D without using any model 
based assumptions. In Fig. 19, the analysed material can be seen in high resolution absorption 
contrast in two dimensional (2D) slices from top view, side views and as a reconstruction of the 
three 2D slices. The results from the XRM investigations (paper II) shows that the pores are 
heterogeneously distributed and have a complex geometry. With NMR cryoporometry, the 
pore shape was approximated using basic model geometries for Coating A - C. The smaller pores 
in the coatings were approximated as elongated pores, while the larger pores are more 
spherical (paper I). Considering the size, the elongated pores can be associated to finer cracks 
present in the coating material.  

Some of the complex pore shapes seen by XRM consist of pores connected by narrow pore 
throats. During NMR cryoporometry experiments, metastable liquid can occur inside the pores 
if freezing propagation through the pore throat from one pore to another is not achievable 
(formation of bottlenecks). NMR cryoporometry is a technique that is capable of detecting the 
appearance of bottlenecks in the samples by detection of variations between the melting and 
freezing data. For the larger pore sizes there were only a few indications of bottlenecks, while 
for pores with a diameter below 60 nm, there are indications of pore throats smaller than 20 
nm (paper I).  
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Figure 19. Three 2D slice micrographs of coating A obtained from a 16 h absorption contrast high 
resolution scan, and a reconstruction of the 2D slices. The geometrical figures corresponds to the 
orientation of the 2D slices.  

 

5.1.3 Total porosity  

The porosity was measured within the YSZ coatings by MIP, NMR cryoporometry and XRM. The 
measured values are ranging from 5 - 16 vol.%, with highest porosity for Coating A while Coating 
B is denser. Coating C has a porosity which lies in-between that of Coating A and B. The porosity 
values obtained by one technique should not directly be compared to the values obtained from 
another techniques due to the difference in investigated size range. In Table 2, the porosity 
presented in paper I, II and III is therefore recalculated to a pore size range that is overlapping 
for the three techniques, 50 - 400 nm in diameter. XRM is defining the lower pore size and NMR 
cryoporometry the upper limit. The porosity value from the XRM investigation is not 
recalculated to the upper limit of 400 nm as porosity is only given by considering the volume of 
voids versus bulk and not taking the pore size distribution into account. The results from the 
XRM investigation has to be considered as a measurement of the local porosity in a columnar 
region within Coating A, due to the small sample volume.  

As can be seen in Table 2, the values from the MIP investigations are much lower than the ones 
achieved by XRM and NMR cryoporometry. This may be due to the fact that the complete pore 
volume is not accessible to the mercury. As Diamond stated [64], a pore with a narrow pore 
throat is assigned the size of the throat. The accuracy of the NMR cryoporometry values can 
also be improved by increasing the amount of material with respect to the probe liquid.  
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Table 2. The value of porosity for coating A, B and C in volume percentage. The measured pore diameter 
given in brackets.   

Porosity (vol.%) 

Coating MIP  
(50 nm - 400 nm) 

NMR cryoporometry  
(50 nm - 400 nm) 

XRM  
(50 nm - * nm) 

A 4 11 13 
B 1 4.5 - 
C 1 4 - 

 

*The largest pore size measured by XRM is not known. The pore size distribution was measured 
only for the closed pores.  

 

With XRM both open and closed porosity are included in the measured pore volume, while MIP 
and NMR cryoporometry can measure only open porosity. The value of pore connectivity 
measured by XRM (paper II) shows that in this sample 11% of the total pore volume consists of 
closed pores. Therefore, the open porosity measured by MIP and NMR cryoporometry for this 
sample can be considered being close to the actual total porosity, but this has to be confirmed 
by additional XRM measurements both on the columns and in the inter-columnar regions. Fig. 
20, XRM results regarding pore connectivity are presented, where the blue colour illustrates 
the fraction of open pores while red colour illustrates the fraction of closed pores.  

 

Figure 20. Visualization of the porosity measured in the analysed volume (11 x 11 µm) using X-ray 
microscopy. The blue colour illustrates open porosity and the red colour closed porosity.  
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5.2 Single splat analysis  

Microstructure formation for SPS coatings is not yet fully understood as the particles cannot be 
monitored during in-flight. As a contribution to the topic, a single splat analysis was performed 
where the first building blocks of the coating were analysed with respect to their appearance 
and the splat size was compared to the volume of the YSZ particles in suspension (paper IV). 
The single splats were also investigated using EBSD to be able to compare the grain size of the 
single splats with the grain size in the coating to further understand the build-up of the 
microstructure (paper III).  

Single splat samples were produced with one stroke of YSZ suspension at high velocity passing 
the sample. The amount of heating and momentum transfer the individual droplets 
experienced were depending on where in the jet they had their trajectory during in-flight [21]. 
In the plasma jet core, the heat and momentum transfer between plasma and suspension is at 
its maximum and the solid suspension particles would be fully melted when depositing at the 
substrate (Fig. 21a). In the plasma fringes, the heat transfer is not high enough to achieve 
complete melting of the solid suspension particles and they would reach the substrate slightly 
solidified and with lower impact (Fig. 21b). Paper III and IV are focusing of the powder particles 
with their trajectory in the plasma core. The splats are circular or slightly cylindrical with a 
median surface area of 0.65 µm2 (corresponding to a splat diameter close to 1 µm for a perfect 
circular splat). The thickness of 100 splats was measured using SEM, and when considering 
these splats as cylinders, it was possible to calculate the volume and correlate the single splats 
to the particles in the suspension. For about 30% of the splats the volume of one splat 
corresponds to the volume of one single powder particle in the suspension. For the other 70% 
of the splats, the volume corresponds to agglomerates of several powder particles.  

 

 

Figure 21. SEM micrographs of YSZ single splats that impacted the substrate a) as a melted droplet, b) 
not fully heat treated particle.    
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It is of interest to know how the grain size in the first layer of single splats, and if the grains have 
a preferred growth direction. In Fig. 22a and c, EBSD orientation maps are shown inverse pole 
figure colouring in growth direction. The grains are randomly oriented in the splat and coating, 
i.e. they are not showing any preferred growth direction. In paper III, EBSD is used to measure 
the grain size in a single splat to compare it to the grain sizes in the coating and at the interface 
between the topcoat/bond coat. The average grain size in the splat is much smaller than in the 
final coating (45 ± 25 nm in diameter compared to 309 ± 317 nm). At the interface, the average 
grain size is slightly smaller than in the coating. When the grains in the splats are much smaller 
than those in the coating, grain growth must have occurred during deposition. Hence, as 
mentioned in paper III, a more detailed analysis of the first layer of deposited material is needed 
to better understand the processes during coating formation.  

 

 

Figure 22. a) EBSD orientation map of coating A (inverse pole figure colouring in growth direction, step 
size of 50 nm) obtained 30 µm from the interface between the topcoat and the bond coat. The average 
grain size is 348 ± 291 nm. b) SEM micrograph of the splat investigated in c, tilted 70°. c) EBSD orientation 
map of a single splat (inverse pole figure colouring in growth direction) obtained using step size 20 nm. 
The average grain size was determined to be 57 ± 25 nm.  
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6 Conclusion  

The aim of this work was to investigate columnar YSZ coatings produced by SPS. Main focus 
was on determination of porosity in the coatings, especially the submicron and nano-sized 
porosity. The second objective was to investigate the appearance of the first layer of deposited 
material during the plasma spray process by a single splat analysis.   

Columnar SPS YSZ coatings exhibit a microstructure built-up by fine powder particles. They have 
a porous microstructure with pore sizes ranges from micrometer down to nanometer. Nano-
sized pores as well as a wide pore size range make porosity investigations of the coatings 
challenging. In this study, NMR cryoporometry and XRM have been confirmed to be good 
complements to other available techniques for porosity and pore size measurements in YSZ SPS 
coatings. Using XRM, it was possible to conclude that the investigated topcoats have a complex 
pore geometry consisting of open and closed pores. By NMR cryoporometry, the pores could 
be approximated as being elongated for smaller pore sizes and rather spherical for the larger 
pore sizes. By use of MIP, XRM and NMR cryoporometry, the total porosity for the investigated 
topcoats was measured to be between 5 – 16 vol.%, with Coating A being the most porous 
topcoat. Furthermore, the ratio of connected versus closed pores in Coating A was determined 
using XRM reconstruction software. The results showed that 11% of the porosity were closed 
pores.  

Investigation of the first layer of YSZ produced by SPS shows that single splats have a circular or 
slightly elliptical shape. When calculating the volume of the splats, it could be concluded that 
about 30% of the splats originated from one single particle in the suspension, while the larger 
splats are formed by agglomerated suspension particles. EBSD measurements performed on 
single splats in top view and on coatings in cross section showed that the splats are 
polycrystalline with an average grain size of around 50 nm, compared to the much larger grain 
sizes in the coating, i.e. around 300 nm in average. The grains have random orientations both 
within the splats and in the coating. 

 

 

  



38 
 

  



39 
 

7 Future work  

SPS coatings consist of a microstructure with a high amount of pores in the nanometer and sub-
micrometer size range. It has been observed that fine scale porosity will more likely experience 
structural changes at high temperatures than coarse pore sizes [10]. During operation of an 
engine, sintering and grain growth can occur. Microstructural studies before and after heat 
treatment need to be performed, including SEM and EBSD analysis, as well as porosity 
measurements by NMR cryoporometry and XRM.   

Porosity investigations performed in paper I, II and III have shown that NMR cryoporometry and 
MIP can measure open porosity for pore sizes down to about 6 - 8 nm in diameter (as a result 
of used probe liquid and instrumental hardware), while XRM can measure both open and closed 
pores down to 50 nm resolution. The thermal conductivity in the coatings is highly influenced 
by the small scale porosity and it is important to be able to study the porosity for even smaller 
pore sizes. Hence, it would be of interest to either perform investigations with a different probe 
liquid or by using synchrotron radiation which allows to achieve information for both open and 
closed pores down to 1 nm in diameter.   

In paper III and IV, a single splat study was performed to characterize the first layer of deposited 
material according to appearance, volume and grain size. More work is however needed to 
better understand how the topcoats are built-up, and the reason to the formation of a 
columnar structure. The single splats can be further characterized by e.g. the use of EBSD to 
examine grain size and grain orientation in splats in cross section. Moreover, it would be of 
interest to investigate the spherical particles in the inter-columnar regions using SEM, EBSD 
and TEM, as those particles can be important for the understanding of the coating formation 
process with respect to cooling rate and in-flight behaviour.  
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