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Abstract— This paper considers the scheduling problem of a
decentralized system where a number of dynamical subsystems
with no computational power are scheduled to transmit their
measurements via a resource-limited communication network
to a remote decision maker who acts as an estimator, controller
and scheduler for the subsystems. We propose a new approach
for communication resource allocation for a wide class of ob-
jective functions, for both coupled and decoupled systems, and
for both scheduling observations as well as control commands.
This framework allows to schedule over a finite horizon and
can explicitly deal with stochastic channels. For decoupled
subsystems, we propose the notion of cost of information loss
(CoIL) and we demonstrate that the communications resource
allocation problem can be directly expressed in terms of ColL.
functions as an assignment-type optimization problem. Illustra-
tive examples demonstrate how communication resources affect
the performance of the system.

I. INTRODUCTION

Control and estimation of dynamical systems under com-
munication constraints have been investigated under a wide
range of scenarios (see [1], [2] for early developments).
Optimal control for independent and identically distributed
(i.i.d.) packet dropping links have been studied in [2], [3]. A
stochastic sensor scheduling strategy for a dynamical system
is developed and upper and lower bounds on the expected
error covariance are provided in [4]. Convex relaxations for
sensor selection problem for state estimation with a finite
look-ahead window are proposed and sublinear performance
loss of using shorter windows is investigated in [5]. Sensor
scheduling for minimization of steady-state estimation error
and stabilization for a single dynamical system for both re-
liable and packet-dropping links is considered in [6]. Sensor
scheduling for i.i.d. packet dropping links are considered and
optimality of threshold policies for the single sensor case is
shown [7].

Periodic sensor scheduling solutions are recognized as an
important class of optimal solutions for varying problem set-
tings [8]-[11]. Optimal periodic sensor scheduling solutions
for a two-sensor scenario are derived in [8]. It is shown
that schedules with bounded average estimation error can
be approximated by bounded periodic schedules for infinite
horizon scheduling problems [9], [10]. The estimation error,
the boundedness of the schedules and the trajectory that
infinite-horizon schedules converge to for are shown to be
independent of the initial covariance matrices [9], [10].
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Similar results for sensing of multiple dynamical systems
over an infinite horizon are obtained in [11].Formulations
using a value function associated with measurements of a
sensor have been considered in the context of control of
dynamical systems [12]-[16] and hypothesis testing [17].
For minimization of both the final or average estimation
error, myopic policies, policies which look ahead only one
time-step, are shown to be optimal through the usage of a
generalized information gain function under some regularity
conditions [13]. By using an importance indicator based on
the difference between the mean-square error estimate at
local sensors and the prediction at the central processor side,
sensor scheduling for a shared channel is investigated in [16].

In this work, we consider such communication resource
allocation schemes under a unified framework by explicitly
incorporating control performance in our performance met-
ric. Inspired by the works of [12], [14], we analyze our setup
for the LQG scenario, but unlike their approach, our work
does not use current measurements. The communications re-
sources are limited and as a result, which agents are allowed
to transmit and which communication resource is allocated
to each agent has to be carefully designed by a remote
decision maker. To quantify the “value” of the measurements
of each sensor, we propose and utilize the concept of “Cost
of Information Loss” (ColL), which is the opposite of the
Value of Information (Vol) used in other papers (see, e.g.,
[14], [18]). This cost is based on the statistical properties
of the sensor measurements. We consider both the scenario
where the communication is guaranteed to be successfully
completed when a channel is allocated to a specific channel,
such as in CAN-like network scenarios for communications
[14], and the more general scenario where packet losses may
occur during transmission [2]. The channel seen by each
agent has different statistical properties, hence each agent has
a different probability of success on each channel. We discuss
the scenarios with both coupled and decoupled subsystems
through their states and we show how the communications
resource allocation problem can be directly expressed as an
assignment-type optimization problem.

The rest of the paper is organized as follows. Section II
describes the setup of the networked control system we
consider and Section III suggests a framework for analyzing
the performance of the system. Subsequently, in Sections V
and VI, we use the LQG framework as an example for
decoupled and coupled systems, respectively. The perfor-
mance of a networked control system for various scenarios
is demonstrated via simulations in Section VII. Finally, in
Section VIII draw conclusions and discuss directions for
future work.



II. SYSTEM MODEL AND PRELIMINARIES
A. Notation

The sets of real numbers are denoted by R. Vectors are
denoted by small letters, matrices are denoted by capital let-
ters, and sets by calligraphic capital letters. The transpose of
matrix A is denoted by AT. E{-} represents the expectation
of its argument. The transpose of a matrix or vector A is
denoted by A”. For a square matrix A € R"*", we denote
by A = 0 the positive-definite matrix A, and by diag{A}
the matrix having entries on its diagonal and zero elsewhere.
tr{-} denotes the trace and cov(-) denotes the covariance of
a matrix. The cardinality of a set A is denoted by |.A|.

B. Agents and central components

We consider a system consisting of: (a) a set A/ of agents
(dynamical subsystems) with no computational power, |N| >
1, that obtains noisy information about the state of the agent
and possibly other agents; and (b) a remote decision maker
who acts as a central estimator, a central controller, and a
central resource allocator for the agents. Based on a resource
allocator, some of the sensors transmit their measurements
to a remote decision maker who acts as an estimator, control
designer and scheduler for the agents; see Fig. 1. Each agent
possibly has different dynamical and statistical properties
and, hence, the effect of the loss of a sensor measurement
for the overall system performance varies.

The agents are characterized by a system of equations

Tp1 = h(xg, up, wy), (1

where z;, € R~ is the state of the system, n, = Zf\;l Ng,»
and n,, is the number of states of agent ¢ at time k; u;, € R™
is the control input, n,, = Zf;l Ny, and n,,, is the number
of inputs of agent 7; wy € R™ is a stochastic disturbance
with zero mean and finite second order matrix W, and h :
R™ x R™ x R™ +— R"= is a function, whose properties
ensure that there is a solution for system (1). System (1) is
the interconnection of N agents and it can be decomposed
to

Tik+1 = hi(Ti ks Wik, Wi k) + Z 9ij(@jk), (2
JEIN?

where ;3 € R": is the state of agent ¢ at time k,
u; € R™ is the control input, w; ; € R™*: is a stochastic
disturbance with zero mean and finite second order matrix
W;, with functions h; : R™=i x R™= x R™®: +— R™=: and
gij + R™ — R"™i. All agents that link to node ¢ directly
are said to be in-neighbors of agent ¢ and belong to the set
/\/;i“. If the agents are not interconnected g;; = 0 and (2)
reduces to

Ti k1 = P T oy Wi for Wi ko) 3)

It is also assumed that agents have noisy (possibly partial)
observations y; € R"v: of the state of the system xy, i.e.,

Yik = li(xr, vig), 4)

p(@k|Vr) uy,
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Fig. 1. System architecture: agents transmit their measurements to the
estimator, provided the resource allocator provides them a slot. The resource
allocator decides on the allocation of the communication resources, given
the information from the controller and cost of information loss (ColL).
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where v;;, € R™ is a stochastic disturbance with zero
mean and finite second order matrix V, independent of
w; i, and n,, is the number of observations, and function
£; : R™ x R™: — R™i. Agent ¢ has the possibility to send
its observations y; , € R™v to the central estimator over
uplink channels.

The estimator keeps track of the distribution p(zx|Vi),
where Vi, = U;); 1 is the set of all observations from all
agents up to time k and ) ;, is the set of observations sent
by agent ¢ sent to the estimator up to time k.

The controller takes as input p(x|)x), and computes the
control command uj £ [uLk uMk], which is to be
sent to the agents over downlink channels. The controller
performs the following computation

uf = argmin B, {f(ufo)) = argmin [ (a0 (ule)ds,

where f(u|z) represents the cost of control action u, given
that the system is in state x. The cost function subsumes all
constraints in the objective.

The resource allocator assigns communication resources
(time slots, power, bits, etc.) to: (i) the downlink channels to
each agent; (ii) the uplink channel from each agent.

C. Channel and resources model

For the resource allocator to assign communication re-
sources in a meaningful way, we must have a model for the
communication and the way communication losses impact
the controller. The uplink from agent 7 to the controller
is determined by the probability of successful reception,
p(r;*) € [0, 1], where 7" represents the uplink communica-
tion resources allocated to agent <. In this work, the downlink
from the resource allocator to agent ¢ is assumed to be ideal,
i.e., the probability of successful reception, p(rd") € [0, 1],
of the downlink communication resources, r?n, is equal to
1. Our objective is to allocate the limited resources so that
the system’s overall cost is minimized.



ITI. CoIL FRAMEWORK AND RESOURCE ALLOCATOR

We focus on collision-free medium-access control (MAC)
protocols where access to a specific channel resource block
is only given to only one agent at a given time, such as
frequency-division multiple access (FDMA) schemes and
time-division multiple access (TDMA) schemes. The effec-
tive number of available sub-channels, i.e., resource blocks,
that can be used by the agents is smaller than the number of
agents. Such scenarios are encountered in resource-limited
multiple access schemes when the number of available
frequency bands or time-slots are smaller than the number
of agents that would like to communicate.

A. Input from controller to resource allocator

The resource allocator receives the control commands
uy, from the controller. The resource allocator assigns the
communication resources 7 C [ry" iy |. For such
an allocation to be meaningful for the control, we must
(i) define the actions taken by the central controller when
information is missing, and (ii) quantify the cost of missing
information in the uplink.

1) Actions under missing information: The controller can
still compute p(z; x|)Vx) and compute a new control action
accordingly.

2) Cost of only missing uplink information: The absence
of uplink information means that the controller does not
(necessarily) have access to the latest observations. Let S C
N denote the set of agents from which the central estimator
received their measurements and S the rest of the agents,
ie,SUS=N and SNS = (. Then, at time step k + 1,

for i € S,
fori e S,

(5a)
(5b)

(T k1| Vi US k415 U 5
P(Zi t1| Ve, 0, up),

where we explicitly include the control command u;, already
computed at time k. Here, ys r+1 denotes the values of the
observations from the agents in the set S at time k+ 1. Now,
to capture the cost of this lost information (CoLI), we define

Dref(Thy1) = P(Trp1]| Vi1, up),

i.e., the distribution of the aggregate state at time k+ 1 when
no information is lost. We now introduce

IS = min/p($s|yk,@7u”§ P(@s| Ve, Ys k41, Us 1)
s u s

fluzs, zg)degdrs — muin/pmf(x)f(ukc)da:, (6)

where x4 denotes the aggregate state vector for the agents
in set A and u’y j, denotes the set of optimum controls at
time k for the agents in set A, where A = S ,S. Since the
observations ys 1 are not known at time k, we replace
them with their most likely value, derived from (2) or (3).
In other words, we consider a distribution derived from
a synthetic observation for the for the agents for which
information will be received and a distribution from the
dynamics (2) or (3), when no information will be received.
We subtract the cost corresponding to perfect downlink and

uplink information, in order for Jgpk to capture the marginal

cost of lost uplink information. We note that Jg" > 0 and
up up S & ’
JS,k > JS’,k for S O &'

B. Resource Allocator

The aim of the resource allocator is to schedule the
available communication resource blocks to agents.

1) Reliable Channels: We first consider the scenario
where the effective channels on each resource block are
reliable. Hence if an agent is assigned to a resource block,
then there is no outage and its message is guaranteed to
be received by the remote agent. where r is the number of
channels available. Let §; ;, be an index showing whether the
observation of agent ¢ at time k is received by the estimator

3

1, observation transmitted,
67, k= .
0, otherwise.

Hence, we consider the following optimization problem

- ) up
Ji = ST B Ts 2
where § = {i : §;, = 0} by definition.

2) Unreliable Channels: Here we focus on the case where
the channels are possibly unreliable. Hence, even an agent is
assigned to a certain channel, its message is not guaranteed
to arrive at the remote center. We are interested in optimizing
the average performance over channel statistics.

Let F be the index set of available channels with |F| = r,
where r is arbitrary. Let us denote the decision variables
R = {rijx, Vi,Vj} with r; ; € {0, 1} where r; ; ; denotes
whether agent ¢ € N transmits at channel j € A at time
step k. Here 7; ; = 0 indicates that no transmission takes
place, and 7; ; , = 1 indicates that transmission takes place.
A channel can be only used by one agent at a given time

D gk <1, ViV ®)
ieN

Each agent can only use one channel at a time
> ik <1, Vi,VE 9)
JEN

We note that 7; ;  denotes whether there is a communication
attempt or not, and due to unreliable channels, neither r; ; »
for any j nor Zj i,k 1S not necessarily equal to d; k.
Instead, we have the following

Pk =1rije=1) = Gk
P(dik =O0[rijn =1) =1—qijk

where ¢; ;. denote the success probability of agent i on
channel j at time k given that there is a communication
attempt by agent ¢ on channel j. Given r; ; 1., success events
are statistically independent across all agents, channels and
time instants. We are interested in the following optimization

minE {J|R}, (10)

subject to (8) and (9). Here, the expectation is with respect
to (w.r.t.) the channel statistics.



IV. RESOURCE ALLOCATION
A. Decoupled Dynamics
1) Reliable Channels: We now focus on a system in
which agents have decoupled, linear dynamics and obser-
vations. Hence the optimization problem can be written as

Jp = i Fi &, 11
k 6k:z??gikgr~ ;E;; & (1T)

where &, £ [0,k SN, k] and E; j, is the cost for agent
i at time step k. We define E? i the cost for agent ¢ when its
observation is not received; s1m11arly, Ez, & represents the cost
for agent ¢ when its observation is received. Based on the
definition of ColL, the cost function associated with losing
measurements from agent ¢ at time step k can be written as

Jaye= Y Bl +EN - Bl =E]
LeN I#i leN

1
k= Ei g

Hence, the total cost of the system at time step k, denoted
by Ji, can be expressed in terms of Jy;) x as follows:

Je =Y E)+) E},

icS €S
DI IS W
i€S i€eS iEN
= Z Sy e+ Z E}y
i€S ieEN

Since > .o E}k does not depend on the set S, mini-
mization of .Ji over S is equivalent to minimization of
T =D ien El1 - Hence, the optimization problem of min-
imizing the total cost, as generally expressed in (6), can be
equivalently written as

manJ{ Yok

i€S

12)

in which S is selected as the set of || — 7 agents with the
smallest Jg;) . Equivalently, by selecting S as the set of r
agents with the highest Jy;y ;. as follows

mgx Z ']{z}7k

i1€S

13)

We note that this optimization problem is an assignment
problem [19], [20]. Since assignment problems are typically
presented with a slightly different notation, for the sake of
clarity we now illustrate how this problem can be written as
a generic assignment problem.

Let us introduce |N|—|F]| fictitious channels. Let us define
a modified cost function C; = Jy;y 4, Vj € F and Ci; = 0
otherwise. We adopt Z 15,5,k as the decision variables. We
note that since the channels are reliable, we have > . r; j x
Si.r- Let N'= N x . Now (13) can be equlvalently written

as
> Cijrig

(3,§)EN

max

14
’I‘i,]"ke{o,l} ( )

subject to (8) and (9). We recognize this as the form of a
generic assignment problem. Assignment problems can be

solved efficiently by the Hungarian method or auction-based
algorithms [19], [20]. We note that the above symmetric form
of an assignment problem with equal number of channels and
agents is introduced for the sake of ease of exposition and
the asymmetric form with smaller number of channels can
be also efficiently solved by a variant of standard auction
algorithms [20].
2) Unreliable Channels: Let S, denote the set of indices
of the agents who make a communication attempt, i.e.,
= {i : >;rijk = 1} We note that we may have
=N dependmg on the channel availability. Let j(i) :
S — {1,...,r} denote the index j with r;;; = 1 for
i € S.. Let j; denote j(i) for notational convenience. We
observe that

E{Jx|R} = Z By + Z (EpL(1

- q131) + Eikqu,)

i€S. i€S,
- Z Ep KT Z k)47
iEN €S,
=Y BN = (i), (15)

ieN i€8S,
Since the first term does not depend on 7; ; 3, minimizing
E {Jx|R} is equivalent to the following problem:

16
. JI?Ea{}B 1} Z {i}, qujl ( )

This expression can be 1nf0rmally interpreted as the scheme
that pairs the agents with the highest cost Jg; 5 with the
channels that provide them with the highest probability of
success ¢;5,. Similar to the reliable channel case, (28) can be
also written as an assignment problem and solved efficiently
by the Hungarian method or auction-based algorithms.

B. Coupled Dynamics

Here we consider a system where agents may have coupled
dynamics and observations of states of other agents.The cost
cannot be decomposed into individual costs, but given that
the decision maker has all the information it can compute
how the posterior probability changes for different combi-
nations of transmissions. As identified in other works in
the literature, the problem is A'P—hard, and its complexity
grows exponentially with the number of agents.

If some of the subsystems are coupled in both dynamics
and cost function whereas some are not, then we can
decouple the cost function based on the coupled clusters
of subsystems. For instance, one can rewrite the resource
allocation problem for the reliable channels scenario as

Jpy= min J: = min E uwp
T sisi<r Sk T sis)<r SkCi (7
_ up
where C; C N, Cj, NCj, = 0 and U,Cj, = N. Here J g5 <

is the cost associated with cluster C;.

In what follows, we will implement the framework de-
scribed in this section for agents with linear dynamics and
with a quadratic cost function. A numerical example in
Section VII with LQG dynamics shows the ColL for such
clusters.



V. CoIL FOR DECOUPLED LQG

In this section, we consider a system in which agents have
decoupled, linear dynamics and observations. The system
dynamics are

(17a)
(17b)

Ti k1 = AiTi g + Biwg g + Wik,

Yik = Ci%i g + Vi g,

where A;, B; and C; are matrices of appropriate dimensions.
We consider a quadratic cost for a finite horizon M, i.e.,

M-1
J,=E {xTJ\}QM:cM + Z (achxk + quuk)} , (18)
k=0
where Qn = diag(Qium,--,Qnm), Q=
diag (Q1,...,Qn), R = diag(Ry,...,Ry), and
Qim, Qi R; = 0 are of appropriate dimensions. In

this case, the only coupling between the agents is via the
scarce resources available and, hence, allocation.

A. Control
The solution of the control problem min,,, .. 4,, , J sub-
ject to (17) is given by the control strategy
Uik = Li kT k) (19)

where L; j, is the feedback matrix and it is given by

Lix = —(BIT; g 41B; + R;) "' BI T 11 Ay, (20)
and where the symmetric positive semidefinite matrix II;
satisfies the discrete-time algebraic Riccati equation (DARE)

Wi = AT 1 Ay + Qi — LlTk (B, j41B; + R;) Ly ..
(21)

Remark 1: Note that the feedback gain L; ;, depends only
on the system dynamics (A;, B;) and the parameters of the
cost function (Q; ar, Qs, R;); it is, therefore, independent of
the characteristics of the disturbances. In the infinite horizon
case, II; j, converges to II; that satisfies (21) and therefore
L; 1, converges to L;.

B. Estimation

Let the a posteriori and a priori state estimates denoted
by &k = E{zik|Vir} and &; pqp = E{zsp1Vik )
respectively. Also, let the corresponding error covariances
given by

. . T
P = E{(zr — & o) (@ — &) | Vi)
. N T
Pii1e = E{(zk — & 1) (@r — Zigrrpe) [V} -
Then, by standard results in linear estimation theory,
the Kalman filter is the minimum mean square estimate

(MMSE), provided the noises are assumed Gaussian; oth-
erwise, it is the best linear unbiased estimate. Let Az ; & £

A; + B;L; ;. Then, the Kalman filter equations, based on
[21], mutatis mutandis are given by

Ty 1|k = Aili gk + Bittik = AL i kT gk
P i1k = ALi kP ke AL ik + Wi,
Kiki1 = Piy1nCl (CiPypsnCF + Vz‘)il ;o (22)
T k11 = i1k + Okt 1 Ko k1 Uikt — Cidby i)
P riijp+1 = (I = 0 k1 Ki k1 1C5) Py g1 -

Remark 2: Certainty Equivalence principle states that the
optimal solution of a linear quadratic optimal control prob-
lem subject to uncertainties is the same as for the corre-
sponding deterministic problem as long as the disturbances
present in the stochastic control system are zero mean [22].
For this problem setup, it is shown in [23] that this is
equivalent to saying that as long as the scheduling decisions
are not a function of the applied control actions Uj_; =
{ug, ..., ur_1} certainty equivalence holds. Since, our con-
trol strategy depends only on Ty, Certainty Equivalence
holds; see also [24, Theorem 3.8].

Remark 3: Let e; , & x; 1, — &; |k, then the dynamics of
the closed loop system are given by

Tikt1 = (Ai + BiL; p)xi ) — BiLi ke + wi g (23a)
k1 = (I — 0i 1K 511Ci) Asei s (23b)
+ (I = i o1 K 141 Ci)wi e — O o1 I g1

The eigenvalues of the closed loop system are the eigenvalues
of (Al + BiLi,k) and (I — 5i,k+1Ki,k+1Ci)A- In this WOI'k,
we assume that the resource allocation is such that the closed
loop system is stable.

C. Resource Allocation

Cost J, in (18) can be written as (see [25, Lemma 6.1,
Chapter 8] or [14, Eq. (4)])

M-1
Jo =E{2{Tozo} +E { Z w,{HkHwk}
k=0

M—1
+E { Z (up + Lpxy) T (up + Lkwk)} , 24
k=0

where Ty, = (BT1l; 1B + R). The first and second terms
in (24) are independent of the control action or scheduling
and, hence, we can omit them. Thus, we consider only the
last term of (24), which after substituting (19), it becomes
[14, Eq. (5)]

M-—1
J=E { Z (21 — i'klk’)T Ty (ox — ikw)} ;25

k=0

where I', = LE(BTH;CHB + R)Ly.

In this work, we are interested in deriving a scheduling
policy for the infinite horizon case. Hence, by letting M
become very large, then due to the fact that the system is
stable, ['y converges, i.e., limy; oo 'y — I', where I' =



LT(BTIIB + R)L. We note that since the dynamics are
decoupled, T = diag(T';) and

Jg = Z E{(%k - i’z},k\k)Tri (zip — ii,ku@)}
1EN
Z E {e;f’:kl‘iei,k}
1EN
= Z tr (FiE {ei,kezk})
1EN

= Ztl‘ (FiPi,kUcfl) + Ztr (FiPi,k\k) .

i€S i€S

(26a)

(26b)

The ColL for agent ¢ in this scenario is given by
COILZ =tr (Fz(-Pz,Hk — Pi,k\k’—l)) .

Hence, for the case of reliable communication links, the
scheduling optimization problem becomes

J = mbinz;tr (Ts (P ke — Pigji—1)) 5
1€

27)

which corresponds to (12). In the case of unreliable commu-
nication links the optimization becomes

max tr (0 (5 — P pie— i3
Ti,_j,kte{o,l}zgs:. ( z( ik|k i,k|k 1)) a;3;

(28)

where the notation is as introduced before.

VI. CoIL FOR COUPLED LQG

In this section, we consider a system in which agents with
linear dynamics may have coupled dynamics and observa-
tions of states of other agents. The system dynamics are
given by

Ti k1 = Aixi g + Z Aijzjk + Biwgp +wig, (29a)
JEINT

Yik = Ciwp + vk, (29b)

where A;; is a matrix of appropriate dimensions.

We consider the same quadratic cost function as in (18),
with the difference that now Qpr, @, R > 0 are not neces-
sarily block diagonal as before.

A. Control
As it is stated in Remark 1, the feedback gain Lj will

be independent of the statistics of the observations and it
will converge to a matrix L that it will no longer be block
diagonal. Hence, the controller of agent ¢ will be of the form

Uik = [L]i 02k ks (30)

where [L]; o denotes the rows of L corresponding to agent i
and all the columns. As a result, the decentralized structure
of the system can be maintained, since both [L]; o and Iy
are computed centrally and wu;j is communicated reliably
over the downlink channel.

B. Estimation

Since only a subset of measurements reach the estimator,
we define the block diagonal matrix Ay € R™v, such that
block [Ag]; is given by

[Ar]i = {Iny"' 7

Onyi )

if ;0 =1,

31
otherwise, 3D

where Iny, and Ony, are the identity and zero matrices
of dimensions n,, x n,,, respectively. The measurement
equation (29b) for the whole system, now becomes

yr = ApCa + Mg, (32)
where C = [Cl ...C|N|]T and 7, = Agvy is a stochastic
disturbance with zero mean and finite second order matrix
Hi. Let A; 2 A+ BL and C, £ A,C. Then, the Kalman
filter equations become
1k = AZpp + Buk = ALZpk,
Pyivje = APy AL + W,
-1
K1 = POl (Cop1 PoyrsClq + Hy)
Tri1k1 = Beprpe + Ky (Ues1 — Crrrdpga) »
Pryiprrr = (I — Ki+1Ch1) Prya -
Remark 4: Let e, = xj, — Tk, then the dynamics of the
closed loop system are given by
Tht1 = Apxz, — BLiep + wy,
err1 = (I — Kyy1Cky1)Aey
+ (I = Ky 1Crp1)wp — Opp1 Kpey1.

(33a)
(33b)

The eigenvalues of the closed loop system are the eigenvalues
of A and (I — Ky 41Ck41)A.
C. Resource Allocation

In the general case, we can consider the optimization

o=, gmin E{e;Tey} (34a)
= omin _tr(CE{eef})  G4b)
= g, f (T Pui) - (34¢)

where ey = my — Zy),. The cost cannot be decomposed
into individual costs, but given that the decision maker
has all the information it can compute how Py, changes
for different combinations of transmissions. As identified
in other works in the literature, the problem is NP —hard,
and its complexity grows exponentially with the number of
agents; approximation methods can be used, but it is out of
the scope of this paper.

VII. ILLUSTRATIVE EXAMPLES

To demonstrate how the system behaves under limited
communication resources, we consider a toy example of a
system consisting of 3 agents and at each time step, only 2 of
them can communicate with the central estimator. Using this
setup, we investigate different scenarios. As a cost function,



we consider a quadratic cost with @ = I, where I is the
identity matrix of appropriate dimensions, and R = 0.011.
The process and measurement noises are given by

0.03 0 0.01 0
Wi= { 0 0.01} and Vs = { 0 0.05}’

respectively.
A. Nonidentical agents with decoupled dynamics

In this scenario, we consider 3 agents with different
dynamics. At every time step 2 out of 3 agents can transmit
their measurement to the estimator. In Fig. 2, we see the
performance of the system. Specifically, in the top figure we
compute the expected cost for each agent pair selection at
each step and the one giving the minimum cost is chosen
for transmission. The bottom figure shows how the system
switches between different modes of operation (¢ € {1, 2, 3}
corresponds to the case agent ¢ does not transmit its measure-
ment). We observe that it is necessary to give more resources
to some of the agents.
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Agent 3 is not transmitting
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Fig. 2. Scheduling for a system with decoupled nonidentical agents. In
the top figure the expected cost for each agent pair selection at each step
is shown, justifying that the some agents need more resources than others
(bottom figure).

Note that a round robin approach would have increased
the cost of the system. We compare the cost at each time
step for our method and round robin and the cost for each
approach at each time step is shown in Fig. 3. Our method
had a total cost reduction by 29%.

40 T T T T
— Round Robin 1
—— Optimal per-step scheduling
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< 20f 1
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0o 2 4 6 8 10 12 14 16 18 20
Time steps

Fig. 3. Cost per time step for our method (red) and round robin approach

(blue).

B. Part of agents with decoupled dynamics

In this scenario, we consider 3 agents, 2 of which are
coupled. More specifically, the coupled dynamics of agents
1 and 2 are given by

1 01 02 —01
0 1 0 04
Ara = 02 —0.1 1 01/
0 04 O 1
0.1 05 0 0
B, [005 05 0 0
2= 1o 0 01 05
0 0 005 05

The dynamics of agent 3 are

1 01 01 05
As = [0 1 ] Bs = {0.05 0.5}’

and C; = I for all 3 agents.
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Fig. 4. Scheduling for a system in which some of the agents are coupled.

Fig. 4 shows that for the given dynamics more resources
are needed to be allocated to the coupled systems, whereas
if we run another example in which the dynamics of agent
3 are changed to

1.2 0.1
As = { 0 1.1]
we observe that agent 3 needs more resources and the cou-

pled system is “sampled” alternatively; this is demonstrated
in Fig. 5.

VIII. CONCLUSIONS AND FUTURE DIRECTIONS

A. Conclusions

In this paper, we considered the scheduling problem of a
decentralized system where a number of dynamical subsys-
tems with no computational power are scheduled to transmit
their measurements via a resource-limited communication
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Fig. 5. Scheduling for a system in which some of the agents are coupled.

network to a remote decision maker who acts as an estimator,
controller and scheduler for the subsystems. We proposed
a new approach for communication resource allocation for
a wide class of objective functions, for both coupled and
decoupled systems, and for both scheduling observations
as well as control commands. The proposed framework
allows to schedule over a finite horizon and can explicitly
deal with stochastic channels. For decoupled subsystems, we
proposed the notion of ColL and we demonstrated that the
communications resource allocation problem can be directly
expressed in terms of ColL functions as an assignment-type
optimization problem. Illustrative examples demonstrated
how communication resources affect the performance of the
system.

B. Future Directions

It was proven in [9] that any schedule that has a bounded
average estimation error can be arbitrarily approximated by
bounded periodic schedules. We wish to develop a systematic
way of designing periodic schedules for these cases. Part of
ongoing research considers the case for which the uplink
channels that are non-orthogonal to each, thus having agents
experiencing interference. In addition, we plan to consider
the case for which the downlink communication channels can
be in outage as well. Finally, an interesting yet challenging
scenario will be to consider networks of control systems that
have a graph like structure in both interactions and commu-
nication links, and design distributed scheduling algorithms.
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