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Impurity scattering and size quantization effects in a single graphene nanoflake
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(Received 27 October 2016; published 24 February 2017)

By using Fourier-transform scanning tunneling spectroscopy we measure the interference patterns produced
by the impurity scattering of confined Dirac quasiparticles in epitaxial graphene nanoflakes. Upon comparison of
the experimental results with tight-binding calculations of realistic model flakes, we show that the characteristic
features observed in the Fourier-transformed local density of states are related to scattering between different
transverse modes (subbands) of a graphene nanoflake and allow direct insight into the gapped electronic spectrum
of graphene. We also observe a strong reduction of quasiparticle lifetime which is attributed to the interaction
with the underlying substrate. In addition, we show that the distribution of the on-site energies at flower defects
leads to an effectively broken pseudospin selection rule, where intravalley backscattering is allowed.
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Following the exfoliation of graphite monolayers in 2004
[1], graphene has attracted considerable interest as a prospec-
tive material for electronic [2,3] and spintronic [4,5] appli-
cations. Upon fabrication of graphene nanoribbons [6–11]
or nanoislands [12,13] with different edge terminations, new
properties can be introduced such as tunable band gaps [14–
16] or edge-induced magnetism [17,18]. With regard to the
electronic transport through graphene nanoribbons, the effect
of impurity scattering and edge disorder becomes an important
issue. A powerful tool to examine the quasiparticle interference
(QPI) effects in graphene due to scattering at defects and edges
is scanning tunneling microscopy and spectroscopy [19–22].
The observed QPI is directly related to modulations in the
local density of states (LDOS) [23,24] and provides access
to the present scattering vectors and thus to the electronic
structure of graphene [25–28]. Recently, the influence of local
scattering centers on the local density of states in graphene
nanoribbons has been studied theoretically [29]. The interplay
between single impurity scattering and size quantization was
shown to generate characteristic spectral features in the Fourier
transform (FT) LDOS that can be related to the transverse
modes of the nanoribbon.

Here we present a comprehensive study of size quantization
in epitaxial graphene nanoflakes (GNFs) on Ag(111) upon
analysis of QPI by STM and tight-binding simulations of
realistic model flakes. We indeed find the characteristic
features in the FT-LDOS related to scattering between different
transverse modes of a GNF as predicted by theory. Detailed
analysis of the scattering features allows one to gain a profound
insight into the behavior of charge carriers in graphene
flakes, including discrete electronic spectrum and quasiparticle
lifetimes, as well as effects of pseudospin.

Graphene nanoflakes were initially grown on Ir(111) and
decoupled by noble metal intercalation as described elsewhere
[13,30]. STM and STS measurements were carried out in
an Omicron cryogenic STM setup in ultrahigh vacuum at
T = 5−10 K. Differential conductance (dI/dV ) maps were
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obtained using a standard lock-in technique with modula-
tion voltages Vmod = 3 mV(rms) and at frequencies fmod =
600−800 Hz. Tight-binding calculations were performed us-
ing an atomistic recursive Green’s function formalism includ-
ing the effects of trigonal warping in order to account for
the relatively large doping level of graphene on Ag(111). AB
sublattice symmetry breaking was introduced via rotational
grain boundary defects modeled as a local σz (mass) potential
in addition to a scalar potential. Tight-binding parameters were
inferred from DFT simulations of comparable topological
defects. The limited quasiparticle lifetime in modeling realistic
flakes was achieved by an increase of the imaginary part of the
energy above the energy level separation resulting in the loss
of transverse quantization within the flake.

Figure 1(a) shows a typical elongated graphene nanoflake
sitting on top of an at least 7 nm high epitaxial Ag(111)
island on Ir(111). Prominent LDOS modulations, modifying
the honeycomb appearance of graphene are observed in dI/dV

mappings [Fig. 1(b)] leading to pronounced features in the fast
Fourier transform (FFT) image [Fig. 1(c)]. The LDOS patterns
at the edges are identical to those previously reported for GNFs
on Au(111) [30], suggesting single H-terminated graphene
edges. The analysis of the atomic contrast and the Moiré
structure [Fig. 1(d)] suggests the R0 adsorption configuration
of the GNF, meaning that the metal 〈112̄〉 direction is parallel to
the graphene 〈11̄00〉 direction. Atomic reconstruction reveals
an alignment of the long flake axis roughly parallel to the
armchair (ac) direction and a predominant termination with
zigzag (zz) edges for both sides of the flake. Besides the edges,
point defects within the flake interior also give rise to strong
LDOS modulations. The most abundant defect type observed
in the experiments are flower defects [31] with a peculiar
atomic appearance shown in Fig. 1(e).

Figure 1(b) displays a dI/dV map on the GNF recorded
at 10 mV. As the electronic band minimum of the Ag(111)
surface state is shifted upwards to about 200 meV due to the
presence of graphene [30,32], as well as due to strain effects
in the Ag thin film [33,34], we can unambiguously assign
the observed LDOS modulations to graphene standing waves
superposed by the Moiré superstructure. The corresponding
FFT of the dI/dV map [Fig. 1(c)] reveals intervalley and
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FIG. 1. (a) STM image of a GNF on Ag(111) (V = 0.1 V; I =
300 pA). (b) dI/dV map of the area marked in (a) recorded at V =
10 mV. (c) Corresponding FFT of the conductance map displaying
intravalley (i) and intervalley (ii)–(iv) scattering features as well as
reciprocal lattice and Moiré spots. Inset: close up of the scattering
feature (iii). (d) Atomically resolved image showing Moiré and atomic
lattice (V = 0.1 V; I = 1.5 nA). (e) STM image of a flower defect
(V = −0.2 V; I = 800 pA). (f) Dispersion relation of the flake shown
in (a) with respect to the K point, as derived from dI/dV maps. Inset:
schematic of the intervalley scattering process.

intravalley scattering features characteristic for graphene
[27]. The observed intravalley feature stems from the elastic
scattering between the states on a constant energy contour
(CEC) within a single Dirac cone, whereas the intervalley
features correspond to the scattering vectors �qinter connecting
the states of the two neighboring cones [27] as displayed in
Fig. 1(f). Due to the charge transfer leading to the shift of the
Dirac point to −470 mV [Fig. 1(f)], scattering features for
graphene on Ag(111) already show the onset of the trigonal
warping. The appearance of the intervalley features deviates
substantially from the ones reported for a perfect infinite
graphene sheet, where an intensity modulated ringlike contour
is expected [19,21,27]. Instead, our measurements show a
ringlike feature with considerable intensity inside the ring,
which is located on a line through the center of the scattering
ring [inset in Fig. 1(c)]. The alignment of this feature reflects
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FIG. 2. (a) Real space geometry of a metallic AGNR of width W.
(b) Schematic representation of the constant energy contours of an
AGNR with possible scattering processes (intervalley) indicated by
arrows. Due to the transverse confinement kx = nπ/W − Kdx is
quantized giving rise to a number of scattering vectors originating at
�k′
G (blue arrows) as compared to an infinite graphene sheet, where only

points with antiparallel vectors �kG and �k′
G can be connected (thick blue

arrow). (c) Resulting FT-LDOS of a metallic AGNR corresponding
to the transitions depicted in (b).

the direction of the long axis of the GNF in real space.
In contrast to that no inner structure within the intervalley
features is observed in measurements on extended graphene
on Ag(111) underlining the confinement nature of the observed
features (see Supplemental Material [35]).

In order to understand the effect of quantum confinement on
the electron scattering, we first discuss the simplified case of
an infinitely long armchair graphene nanoribbon (AGNR) of
width W [Fig. 2(a)]. With x corresponding to the confined
direction, the transverse wave vector kx is quantized and
can be written as kx → kdn = nπ/W − Kdx , where n is an
integer and d enumerates valley pairs in the first Brillouin
zone [29]. More precisely, the values of kx involved in a
scattering event at a point defect in the ribbon are located
at intersections of lines in the ky direction with the CEC of
graphene at positions kdn [Fig. 2(b)]. In a ribbon, scattering
vectors are observed connecting two points on the circular
CEC with initial values kdn = nπ/W − Kdx and final values
kd ′m = mπ/W − Kd ′x (specific selection rules must also be
obeyed) [29]. Thus scattering intensity is observed only at a
finite number of �q points, which lie inside the circle of radius
2
√

2mE/h̄2 and constitute a scattering feature as shown in
Fig. 2(c). When comparing these characteristic patterns with
the experimentally observed scattering features of the GNF
along the armchair direction [inset in Fig. 1(c)], there is already
a striking resemblance for both contour and interior.

Going back to scattering in realistic graphene structures, we
extend the analysis to a direct comparison of the experimental
data from a compact GNF with the results of a theoretical
treatment of this particular flake geometry. Figure 3(a) shows
a R0 GNF on Ag(111) with a lateral size of 70 × 170 nm2.
The long edges of the experimentally measured flake are
virtually parallel to the zigzag direction, resembling the shape
of a zigzag graphene nanoribbon with rough edges. The size
of the flake allows for a reasonable atomistic tight-binding
modeling of graphene π electrons, utilizing a numerical
recursive Green’s function approach. In this approach, we
assume a free-standing graphene flake with about 3.4 × 105
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FIG. 3. (a) STM image of a compact GNF (V = 0.03 V; I =
300 pA). (b) Atomic model of a quasi-free-standing flake as used
in the tight-binding calculations. (c) FT-LDOS of the region of the
model flake marked in (b) assuming infinite quasiparticle lifetime
and no symmetry breaking at grain boundary sites. The feature
within the intervalley ring interior is directed towards the center of
the FFT. (d) FT-LDOS including limited quasiparticle lifetime, thus
yielding intervalley features aligned with the flake’s long axis inside
the scattering contour. (e) FT-LDOS including limited quasiparticle
lifetime as well as AB sublattice symmetry breaking due to the
implementation of a mass term at the rotational grain boundary sites.
(f) FFT of the experimental dI/dV map of the flake region marked in
(a) exhibiting intravalley scattering (i), intervalley scattering (ii)–(iv),
and higher order features (v). (g) Magnification of the scattering
features visible in the experimental and theoretical FT-LDOS.

atoms [Fig. 3(b)] reproducing the overall size and shape of the
experimental GNF, with the atomic structure precisely adjusted
to the experimentally observed one including flower defects
and edges (see Supplemental Material [35]). Since the edges
are hydrogen passivated, each edge carbon atom is simply
modeled by a single π orbital as in the flake interior. The results
of this approach are in very good agreement with previous

experimental observations and theoretical calculations for the
edges [30].

The tight-binding model used is defined by the Hamiltonian

H =
∑

i

εic
†
i ci +

∑

ij

tij c
†
i cj , (1)

where c
†
i and ci are creation and annihilation operators for

site i, εi is the on-site energy of site i, and tij is the hopping
amplitude between sites j and i. We set the tight-binding
hopping parameters according to the simple formula for π

orbital overlap [36] tij = t(r) = −t exp[−λ(r − acc)], where
r is the distance in the plane between carbon atoms i and
j , acc = 1.42 Å is the graphene carbon-carbon distance, and
λ ≈ 3/acc. The nearest-neighbor hopping integral −t is related
to the Dirac electron Fermi velocity h̄vF = 3acct/2. From the
measured Fermi velocity [Fig. 1(f)], we get t ≈ 2.6 eV. The
above formula is applied for interatomic distances r less than
a cutoff Rc ≈ 1.8acc, in order to take into account next-nearest
neighbor hopping as well as reasonable hopping parameters
in the pentagons and heptagons in the flower defects. We set
on-site energies εi to zero throughout the flake, except in the
flower defects where they vary between −0.6t and +1.2t .
This serves to model the charge transfer between pentagons
and heptagons in the defect. The on-site energies are unknown
for the flower defect and should in principle be computed from
density functional theory. Here the parameters have been taken
in analogy to the Stone-Wales defect, for which this has been
done thoroughly by Amara et al. [37]. For the FT-LDOS, the
exact values of these parameters actually do not matter, as
long as they are nonzero. For zero on-site energies across
the flower defect, the scattering is too weak to match the
experiment. We note that the distribution of on-site energies in
the flower defect leads to an effectively broken pseudospin
selection rule, where intravalley backscattering is allowed.
This leads to the restoration of the intravalley scattering ring
in the FT-LDOS [feature i in Fig. 3(e)], which can also be
observed experimentally in both armchair and zigzag GNFs
(see Figs. 1 and 3 for a comparison). The presence of flower
defects in the flake also yields additional intensities besides
scattering and atomic features in the FFT related to the defect
geometry, which are found for both the experimental and
theoretical flake; however, they are more pronouncedly visible
in the tight-binding FFT due to the absence of measurement
noise. Taking into account next-nearest neighbor hopping
t(r = √

3acc) = −t ′, we have in the above model ED = 3t ′ ≈
0.33t . For the simulations we use EF = 0.61t , which is more
electron doped than observed experimentally. This serves to
enlarge the scattering features; see Fig. 3. It should be noted
that this puts us further into the trigonal warping regime due
to the substantial shift of ED with respect to EF .

The LDOS is computed via the imaginary part of the
retarded Green’s function G = (EF + iη − H )−1. Broaden-
ing of energy levels can lead to loss of visibility of the
scattering features (cf. Fig. 2) associated with size quantiza-
tion. Broadening can be due to electron-electron interaction,
electron-phonon interaction or, for instance, weak coupling of
the graphene π -electron system to the underlying metallic
substrate. Here we introduce it phenomenologically as an
imaginary part of the energy E → E + iη when computing
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the Green’s function for electron propagation in the flake. For
example, for a rectangular flake of dimension 70 × 170 nm2,
with the zigzag direction along the long axis, we have different
estimates for energy level separations in the two directions.
We get �Eac ≈ 10 meV and �Ezz ≈ 25 meV. Thus, at an
imaginary part η ∼ �Eac, we will no longer see quantization
along the long axis, only along the short axis. Indeed, the
simulated FT-LDOS images show complicated flake levels for
small η, while these are broadened in favor of clean zigzag
ribbonlike levels for the chosen η = 3 × 10−3t ≈ 8 meV; see
Fig. 3(e). This translates into a quasiparticle lifetime of about
80 fs and, taking into account the experimentally obtained
Fermi velocity, a mean free path of about 70 nm, which
corresponds to the short axis length of the flake. In comparison
to graphene sheets on HOPG, the obtained quasiparticle
lifetime is approximately one order of magnitude smaller [38].

Upon examination of the intervalley scattering features in
the experimentally obtained FFT [Fig. 3(f)], in addition to
graphene bulk features (circles), a rich inner structure due
to transverse confinement is visible in the FT-LDOS. The
calculated FT-LDOS [Fig. 3(e)] displays very pronounced
trigonally warped intervalley scattering contours enclosing
additional features aligned with the flake’s long axis. These
fine structures are very narrow at the center of the ring, while
fanning out towards the rim. This is in perfect agreement with
the experimentally obtained data as can be readily seen from
the juxtaposition of the magnified experimental and theoretical
scattering features compiled in Fig. 3(g). Also the intravalley
scattering ring observed in the measured FT-LDOS is restored
in the tight-binding calculation upon the inclusion of AB
sublattice symmetry breaking at the flower defects. Thus a
correct description of the scattering features is only possible

when taking into account the size and exact atomic structure
of the nanoflake along with the symmetry breaking at point
defects and substantial energy level broadening.

In summary, clear footprints of confinement can be
observed in quasiparticle scattering of epitaxially grown
graphene nanoflakes. We have demonstrated that the exper-
imentally observed scattering features are in very good agree-
ment with tight-binding calculations of well-defined graphene
nanoribbons, which besides conventional intra- and intervalley
scattering display quasiparticle wave vectors arising from
additional scattering channels between the ribbons’ transverse
modes. However, certain interactions and imperfections of
the crystal lattice in realistic flakes have to be accounted
for. Modeling flakes with grain boundary defects allows us
to distinguish the effects of rough edges, defects, and quasi-
particle lifetime. While we have shown that the introduced
grain boundary defect breaks the AB sublattice symmetry thus
restoring the intravalley scattering contour at �q = 0, it cannot
reproduce the alignment of the scattering feature interior with
the long axis of the calculated flakes. This was achieved upon
implementation of a finite quasiparticle lifetime in analogy to
the scattering processes in infinite graphene nanoribbons. Due
to the limited lifetime, confinement is hence only preserved
along the short axis visible in the FT-LDOS as an altered
intensity distribution strongest at the center of the ring contours
and aligned with the long axis.
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