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Corrections to nucleon capture cross sections computed in truncated Hilbert spaces
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Nucleon capture cross sections enter various astrophysical processes. The measurement of proton capture on
nuclei at astrophysically relevant low energies is a challenge, and theoretical computations in this long-wavelength
regime are sensitive to the long-distance asymptotics of the wave functions. A theoretical foundation for estimating
and correcting errors introduced in capture cross sections due to Hilbert space truncation has so far been lacking.
We derive extrapolation formulas that relate the infrared regularized capture amplitudes to the infinite basis limit
and demonstrate their efficacy for proton-proton fusion. Our results are thus relevant to current calculations of
few-body capture reactions such as proton-proton fusion or proton capture on the deuteron, and they also open
the way for the use of ab initio many-body wave functions represented in finite Hilbert spaces in precision

calculations of nucleon capture on heavier nuclei.
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Introduction. Processes in which a nucleon is captured by
a nucleus occur in many areas of pure and applied physics.
They play an important role in big bang nucleosynthesis and
in the nuclear astrophysics of stars, novae, x-ray bursts and
supernovae; see, e.g., Ref. [1] for a recent review. Capture
reaction rates are essential inputs for computations of stellar
models [2]. Proton capture cross sections are very difficult
to measure at astrophysically relevant energies below the
Coulomb barrier, forcing us to rely on theoretical results. Here,
ab initio computations [3—6] and studies based on effective
field theory [7—-11] aim at achieving model-independent results
with reliable uncertainty estimates.

We note that precise theoretical calculations are a challenge
too, because the regime of low energies and long de Broglie
wave lengths requires one to employ very large Hilbert
spaces. It is therefore important to control the uncertainties
in theoretical calculations of cross sections that are due to
limitations of finite model spaces. This is the purpose of this
work. Let us consider proton-proton fusion, i.e., p + p —
d+ v, +e", as the simplest example of a proton capture
reaction. This reaction has been studied extensively and a
calculation that reduces the uncertainty well below 1% would
be an important development [2,6,11]. As we will see below,
the corrections due to finite Hilbert spaces become relevant if
such a precision is aimed at in ab initio computations.

Truncation of the Hilbert space imposes ultraviolet (UV)
and infrared (IR) momentum cutoffs [12-15], leading to
systematic errors in observables. Thus, capture reactions
into bound states computed in finite Hilbert spaces will
suffer from truncation errors regardless of how well the
continuum is treated. An example of previous corrections
of such shortcomings is presented in Ref. [16]. Formulas
for extrapolation of various bound-state observables to the
infinite-basis limit were derived in Refs. [17-20]. In the
same spirit, we study and quantify the IR corrections to
the capture and fusion cross sections calculated from wave
functions represented in truncated Hilbert spaces. We make
use of the dependence of the IR length scale L on the
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parameters of the oscillator basis, which is known for the
two-body problem [18], the no-core shell model [21], and
many-body product spaces [22]. Below, we also present the IR
length relevant for hyperspherical harmonics with Laguerre
polynomials as radial wave functions.

Recent progress in ab initio computations of reactions
and scattering states [23-29] (see also Ref. [30] for a recent
review) has made it possible to calculate capture cross
sections of medium-mass and heavy nuclei using discrete-basis
representations of bound state wave functions. This makes
it a timely issue to understand and correct the shortcomings
pertaining to the finite Hilbert space treatment of the bound
states involved.

Theoretical derivation. In what follows, we focus on
the nucleon-nucleon (NN) processes as examples where the
truncation error can be fully understood. This allows us to
derive IR extrapolation formulas that have a more general
applicability. The generalization to heavier nuclei will be
discussed below. We assume that the nuclear interaction
vanishes beyond the range R. Thus, at relative distances r > R
the bound state radial wave function calculated in a truncated
basis has the asymptotic form [18]

u(r) = Ase 7 [1 — e 270 (1)

Here, y», and A are, respectively, the binding momentum and
the asymptotic normalization coefficient in the infinite volume
limit [18]. Equation (1) is asymptotically valid for all partial
waves. However, its higher order corrections for s wave are of
O (e 7=2L4) ‘much smaller than the O[1/(ysor)] corrections
for higher partial waves.

Calculations of capture cross sections in a truncated basis,
therefore, effectively involve the radial matrix elements

L
T,(kin; L) = / dr P ) (e, ®)
0

where k is the momentum of the scattering wave function u (r)
in the initial state, 1 is the Sommerfeld parameter, and A defines
the multipolarity of the transition. For an electromagnetic

©2017 American Physical Society


https://doi.org/10.1103/PhysRevC.95.031301

ACHARYA, EKSTROM, ODELL, PAPENBROCK, AND PLATTER

capture process, the multipolarity is equal to A for electric
transitions and to A 4 1 for magnetic transitions. For the weak
process, the dominant contribution at low energies comes from
To(k;n; L).

Atr > Randkr > n, the radial wave function of the initial
state has the form

!
ui(r) — cos; sin |:kr — plog(kr) + o7 — ’ﬂ

l
+ sin§; cos [kr — nlog(2kr) + o7 — %], (3)

with o; being the Coulomb phase shift. For the case of neutron
capture, o; = 0 = n. Apart from the subleading  dependence,
Eq. (3) has additional O[1/(kr)] corrections for / > 0 even in
the absence of Coulomb interaction.

We now proceed to derive the IR truncation error,
AT, (k;n; L), in the matrix element Z, (k; n; L) calculated in
Hilbert spaces with L > R. However, to use the asymptot-
ically valid approximations for the wave functions given in
Egs. (1) and (3), we additionally require kL >> n for proton
capture and fusion reactions, and kL >> [ for capture in partial
waves with orbital angular momentum /.

We begin by splitting the radial integral, Eq. (2), into two
regions,

R L
I,\(k;ﬂ;L)=</ + / )druL(r)r*um). @)
0 R

The second integral, which is independent of the details of
the nuclear interaction, can be evaluated analytically using
Egs. (1) and (3) to give

L o0
/ druP(r)r* u(r) = / dr u®(r) r* ui(r)
R R
+2Re[ fi(k;n; L)], (%)

where 1 (r) is uD(r) at L — o0, and
Fillins L) = 5 Ao 07D U (g — i)

xT'A+1—in,yL —ikL)
_e—2ymL(_yoo — ko)A
XT +1—in,—yeL —ikL)], (©6)

is the result of an overlap integral of the asymptotic incoming
and outgoing scattering wave function with the finite volume
bound state wave function.

Here I'(c,z) is the complex continuation of the incom-
plete gamma function [31]. We have dropped terms of
O(e77~2L=R)y in Eq. (5). For asymptotically large values of
Yo L, we can also replace uD(r) in the first integral in Eq. (4),
which includes the contribution from the r <« L region, by
1) (r). Equation (4) can then be written as

ALy(k;n; L) = Ih(k;n;00) — (ks s L)
= —2Re[ filk;n; L)], @)
where

T, (ks m; 00) = / ¥ dr () () ®)
0

is the radial matrix element Z; (k; n; L) at L — oo.
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In addition to the exponentially suppressed term we explic-
itly dropped above, we have also neglected the contributions to
AT, (k;n; L) from the higher-order n dependence and higher
partial wave corrections to Eqs. (1) and (3). These terms
scale as AZ, _i(k;n; L) and are therefore only suppressed by
a factor of 1/L. Using the leading-order approximation in the
asymptotic expansion of the I" function,

c—1
[(c.z)=2z"" e_z<1 +— +) ()
valid for |z| > 1 and |argz| < 3m/2, in Eq. (6), the IR
truncation error in the capture matrix element reduces to a
much simpler form,

2A
AL (kin L) = ——— °°y°‘; Lre 7t
Voo Tk

l
X sin (8/ + o0 — % + kL — nlog2kL),

(10)

for asymptotically large values of y,L. We note that the
approximation for I'(c,z) used here in order to arrive at Eq. (10)
is exact for . = 0 neutron capture. However, at larger values of
X and 7, this approximation gets worse and it may be necessary
to obtain the IR truncation error using Egs. (6) and (7) instead.

Since the relative error in the cross section is twice thatin the
matrix element, we find from Eq. (10) that the IR truncation
error in the cross section scales as e~"~L. We note that this
e 7=l convergence with increasing y.,L is much slower than
the e=2"~L behavior found for bound-state observables such
as energies and radii [17].

The extrapolation formula, Eq. (7), and its asymptotic form,
Eqg. (10), are the main results of this work. These equations hold
for heavier nuclei and for all reasonable models of the nuclear
Hamiltonian because the single-particle wave functions have
the asymptotic forms given in Eqgs. (1) and (3) in the range
R < r < L. They are valid for neutron capture as well as for
proton capture unless the energy is low enough to warrant
the use of Coulomb wave functions F;(kr) and G, (kr) for all
r < L instead of the sine and the cosine functions in Eq. (3).
Furthermore, the same radial matrix elements contribute to
break-up cross sections as well.

Numerical results. For numerical calculations, we use the
chiral effective field theory (EFT) interaction from Ref. [32].
We obtain the pp and np scattering states by solving the
momentum-space Schrodinger equation. We then calculate the
radial matrix elements, Z, (k; n; L), numerically for a range of
L values by expanding the deuteron wave function in HO bases
of varying dimensionality.

In the IR regime, the finite harmonic oscillator basis we use
is indistinguishable from a spherical box with radius [18]

L =/2(N+3/2+2)b. (11)

Here N is the maximum number of oscillator quanta and b =
/' 1/(1€2), the oscillator length for a system with reduced mass
w and oscillator frequency €2, respectively. The hyperspherical
harmonics basis is popular in few-body problems [33,34]
and has also been used in the computation of capture
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FIG. 1. IR truncation error in the axial-vector matrix element of
pp fusion at 50-keV center-of-mass energy (black circles) and in the
deuteron binding energy (blue squares). The relative errors for the
axial-vector matrix elements and those for the binding energy are
expressed in percentage and parts per million (ppm) respectively.

reactions [3,6]. For this reason, we also discuss the IR length
Lyy relevant for this method. Using the hyperradius p and a
momentum scale 8, the hyperradial basis functions

m!,B3A*3 11—32A+4 7%/3 a
\/ m(ﬂﬂ) e 2" L7 (Bp)

are orthonormal under the hyperradial integration measure
dpp34~*, which is adequate for a translationally invariant A-
body system [35,36]. Here L¢, denotes the associated Laguerre
polynomial and a is a parameter. Noting the similarity between
the hyperradial wave functions and the radial wave functions
of the three-dimensional harmonic oscillator, i.e., identifying
a=1+1/2and N = 2n + [ in Eq. (11), where n is the largest
degree of the Laguerre polynomial used, we infer that the IR
length for the hyperspherical radial basis is

Ly = (4n+2a+6)87".

12)

For the NN processes, it is computationally feasible to
calculate Z,(k;n; L) in a large enough basis and obtain an
accurate numerical approximation to Z; (k; n; 00). We begin
by comparing the numerical truncation error, AZ, (k;n; L),
thus obtained with those predicted by Eq. (10).

In Fig. 1, we plot the relative error due to a IR cutoff in
the matrix element of the Gamow-Teller operator between
the deuteron s-wave and the pp 'Sy wave functions at
50-keV center-of-mass energy, AZy(k; n; L)/Zy(k; n; 0o0). For
comparison, we also show the relative IR truncation error in
the deuteron binding energy. The error in the matrix element
at L = 35 fmis about 0.3%, which translates to an error in the
cross section of about 0.6%. The size of this error is relevant for
computing pp fusion cross sections to percentage precision,
which recent calculations [6] aim at. In contrast, the deuteron
binding energy shows a much faster IR convergence—the
relative error at L = 35 fm is about 0.5 x 10~®—reinforcing
our claim that a basis that gives highly accurate results for
bound state observables may still yield large systematic errors
in capture cross section calculations. Furthermore, we have
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FIG. 2. Numerical and analytic results for the correction
AZy(k; n; L) to the radial overlap between the 'Sy pp scattering wave
function at 50-keV center-of-mass energy and the deuteron s-wave
state.

checked and verified that the L dependences of these errors
are consistent with theoretical predictions: approximate e~ "~F
behavior for the capture matrix element as derived above, and
e2r~L for deuteron binding energy [18].

In Fig. 2, we plot the truncation error for the pp fusion
matrix element shown earlier in Fig. 1 along with the analytic
result given by Eq. (10). Since n = 0.5 is not particularly small,
we get good agreement between the analytic formula and
numerical data at larger values of L, where the corrections to
Eq. (10) due to higher-order n dependence are less important.

For comparison, we plot AZ, (k; n; L) for the same process
at 1-MeV center-of-mass energy for the same range of L values
in Fig. 3. Since n = 0.11 < 1 at this energy, we find a much
better agreement even at smaller L.

Finally, in Fig. 4, we plot the IR truncation error in the
matrix element of the electric dipole (E1) operator between
the deuteron s wave and the np 3P, wave functions, which
contributes to the radiative np capture,

0.0002 | = ]
77N
— / \\\
= 0.0001[ / ™ ]
E / ™~
3 0.0000} [I T
S H
= _0.00010 ; ]
:]? [ -------- numerical
~0.0002 | S B aravte |-
{
35 40 45 %0 *
L [fm]

FIG. 3. Numerical and analytic results for the correction
ATy(k; n; L) to the radial overlap between the 'Sy pp scattering wave
function at 1-MeV center-of-mass energy and the deuteron s-wave

state.
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FIG. 4. Numerical and analytic results for the correction
AZ(k;n; L) to the radial matrix element of the E'1 operator between
the np 3P, scattering wave function at 1-MeV center-of-mass energy
and the deuteron s-wave state.

and its reverse process, deuteron photodisintegration. Here the
analytic formula for AZ, (k;n; L) has neglected terms from
the O[1/(kr)] corrections to Eq. (3). Since these terms are
suppressed by a factor of 1/L, we get a better agreement
between the analytic and the numerical results at larger L
values.

The analytic results shown above in Figs. 2—4 were not fit
to the data. The quantities A, Yoo, and §; were known a priori
from the wave functions, and the IR truncation error was thus
completely predicted by Eq. (10). For systems with A > 2,
however, extracting values for the single-particle separation
energies, asymptotic normalization coefficients, and phase
shifts might not be as straightforward. Moreover, the use
of our analytic results in practical applications is to obtain
T, (k;n; 00) by extrapolation when the size of the basis is
constrained due to unavailability of computational resources.
One computes 7, (k; n; L) at several large values of L, and fits
Eq. (10) [or, if required, Eq. (7)] to these data with Z, (k; n; 00),
Aso, Voo, and §; treated as fit parameters. We present the
results of such extrapolations for the pp fusion process in
Table 1. The extrapolations are robust not only at 1 MeV but
also at 50-keV center-of-mass energy, where the neglected
contributions to our extrapolation formula are larger. We found
that the differences in Z; (k; n; 0o) values for different sets
of input data are very small compared to those of the other
fit parameters, Ao, Yoo, and §; (data not shown). These are
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not determined very well by the fit because of the relatively
large number of fit parameters in Eq. (10). However, we want
to remark that in any standard calculation these could be fit
to several other observables such as finite volume binding
energies or radii thereby increasing the constraints on these
parameters significantly.

Since Eq. (10) is valid at asymptotically large values of
L, we obtain better fits when the input data contain larger L
values. However, even for smaller L, the extrapolation error is
much smaller than the IR truncation error one would make
by avoiding extrapolation and simply using Zo(k; 175 Limax)
instead.

Summary. We studied the dependence of the nucleon cap-
ture cross section on the radius L of the hard wall with Dirichlet
boundary condition, which arises as an effective infrared
cutoff when the bound state wave function is represented in a
truncated basis. We presented an expression of this radius
for computations based on hyperspherical harmonics. We
showed that the infrared convergence of the cross section thus
calculated is much slower than that of bound state properties
whose errors generally scale as e~ 2r=L [17,18,20]. We also
showed that this feature can lead to errors in the pp fusion cross
section that are comparable in size to uncertainties induced by
the nucleon-nucleon interaction and the electroweak current
operator in state-of-the-art calculations [6,11]. We derived a
simple analytic formula for controlled extrapolation of the
cross section to the infinite basis limit. By exploiting our
ability to calculate the two-body wave function for a very
wide range of basis size while concurrently maintaining
ultraviolet convergence, we tested our predictions for two
different two-nucleon capture processes. Our extrapolation
formula also holds for A > 2 nuclei since their single-particle
bound- and scattering-state wave functions also have the form
given respectively by Eqs. (1) and (3). However, for the proton
capture process, the large value of 1 in heavier nuclei restricts
the domain of validity of our extrapolation formula to very
high energies. In such case, one needs to replace Eq. (3) by
the full Coulomb wave function to compute the IR correction
numerically. An analytic derivation of such results, which
could facilitate calculations at the energy regime relevant to
the rp-process, is left for future work.
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