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Abstract The temperature dependence of resistivity (p) in
the normal state of La,_, Sr,CuQOy is calculated from elec-
tron transfer (ET) rates. The minimum at about 100 K for
doping levels less than 6 % is characteristic for all cuprates.
The resistivity depends on ET between Cu(IIl) and Cu(Il)
sites. For T < 300 K, the resistivity is proportional to 73/2.
The more than linear increase of p for T >100 K depends
on increased kinetic energy in a Landau avoided crossing.
The agreement with experimental data is convincing. The
behaviour for T — 0 can be explained as nuclear tunnelling.
For T > 400 K, p bends down, presumably because the
pseudogap is overcome at a higher kinetic energy.

Keywords Cuprate - Resistivity minimum -
Superconducting gap - Pseudogap - Landau-Pekar model -
Marcus model - Jortner model - Nuclear tunnelling

1 Introduction

High-T¢ superconductors are said to be strongly corre-
lated systems which, in principle, means that a mean field
approach for electron motion is impossible as a description.
A better alternative would be to use the free energy mod-
els of Marcus or Jortner for electron transfer or electron pair
transfer [1-3] and derive an expression for resistivity based
on electron transfer (ET) rates. Such an approach involves
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a calculation of the probability for site-to-site transfer,
based on spectroscopic information or quantum chemical
calculation [4, 5].

Let us consider two adjacent copper sites, A and B,
in a cuprate crystal. As a function of collective nuclear
configuration coordinates (for example, along a breathing
vibration), the free energy is rising parabolically from two
possible equilibrium configurations: one for a state with
equal charges on the copper sites [Cu(Il) + Cu(Il)] in the
ground state of the cuprates (in the normal region) and
one for an excited state with disproportionated charges
[Cu(I) + Cu(IID)]. The interactions between the two states
lead to avoided crossings. The interdependence of electronic
density and nuclear positions is mentioned as the “inter-
nal contradiction” in a paper by Landau and Pekar [6].
These authors propose to use effective mass in a theory
which resembles the modern quasiparticle approach. How-
ever, the dependence of structure on the number of electrons
in a local system is still ignored in most papers. In fact,
the quasiparticle approach has not been very successful in
explaining high-T¢ superconductivity (SC).

In the Marcus and Jortner theories used here, the depen-
dence on nuclear coordinates is taken into account. For
example in Cu(I), Cu(Il) and Cu(Ill) systems, the relevant
CuO bond length is reduced by about 0.1 A for each new
electron removed. This is due to charge on copper and
the fact that the electrons removed belong to antibonding
orbitals.

The Marcus and Jortner models are here extended to a
theory for electron mobility from which the conductivity is
obtained [5]. According to the model, resistivity in the nor-
mal state in a cuprate has a minimum for T = (2E,)/(3kg),
where E, is the activation energy [7, 8]. For slightly doped
Lap_x)Sry,CuOy (x < 0.06), Tmin ~ 100 K and, there-
fore, the activation energy (E,) = 0.035 eV, which agrees
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with Hall effect data and the results of Takagi et al. for the
resistivity [9].

Spectral data obtained by Uchida et al. [10] have been
used. The absorption peak at 2 eV (Hubbard U) in the
photo-induced conductivity spectra of LayCuO4 has not
been correctly assigned in the literature [7]. It is due to the
Cu—Cu charge transfer (CT) [7, 8], not to the O2p — Cu3d
CT. If the relevant negative terms are included, U is not
always >0.

The results obtained for the resistivity as a function of
temperature agree well with the experimental results [9].
For T — 0, the Jortner model [3], which includes nuclear
tunnelling, is used.

Usually, a larger charge (fewer electrons) of the metal
ion at the site leads to higher self-trapping probability.
The “optical anomaly” consisting of transfer of spectral
weight when the superconducting state is approached [10]
is directly related to doping and creation of Cu(IIl) sites. U
depends on dopant concentration.

Finally, the pseudogap is discussed in the light of the
results of the simulation. The disproportionation reaction

2Cu(Il) — Cu(l) + Cu(lII) (D

is the origin of both the SC gap and the pseudogap [8].

2 Charge Transfer, Gap and Pseudogap

The maximum of photo-induced conductivity at 2 eV [10] is
often ascribed to ligand-to-metal (LM)CT (O2p — Cu3d).
It is hard to see that LMCT can lead to conductivity, and
there is no proof for it. LMCT is, in fact, related to the term
“CT insulators”, since the LMCT excitation is always within
the site of a metal ion and its closest ligands and therefore
cannot lead to conductivity.

On the other hand, transitions between two metal sites
lead to photo-induced conductivity. Hubbard U is the metal-
to-metal charge transfer (MMCT) transition [11]. Cuprates
and CuO are brown or black due to a strong absorption at
1.5-2.5 eV. MMCT transitions are charge separation pro-
cesses and therefore strongly depend on the distance for
electron transfer. Increased distance for electron transfer
costs more in energy. In aqueous solutions of Cu(Il), the CT
distance is larger than that in a cuprate and, therefore, the
MMCT transition appears in the UV region. The blue colour
of CuSQyq is due to ligand field transitions. LMCT transi-
tions, on the other hand, are located well above the ligand
field transitions, and there is no distance dependence.

The active orbitals, forming the SC gap and the pseu-
dogap, are of the type Cu3d(x>—y?) [mixed with O2p(x)
and O2p(y)]. If the orbital is called a on site A and » on
site B, the ground state may be written as ab + ba, form-
ing the spin-coupled ground state of the undoped cuprates.
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aa + bb and aa — bb are the charged states at 1.7-2.5 eV.
The adiabatic process, where the nuclear positions adopt to
the different occupancies, is at a much lower energy.

This picture is correlated but is, nevertheless, compara-
ble to the accepted picture, in a review by Damascelli et al.
[12, Fig. 13]. The upper Hubbard band in a cuprate corre-
sponds to the aa + bb and aa — bb states and the lower
Hubbard band to ab 4 ba. The energy difference is vertical
Hubbard transition, Uyerx. The orbitals of the local picture
begin to out-localize themselves on the neighbours, on the
way to become infinitely extended. The almost forbidden
ligand field transitions, on the other hand, are hidden below
the MMCT (Hubbard) transitions.

After sufficient doping, Hubbard U tends to zero. The
ground state in the superconductor is a superposition of
ab + ba and aa + bb [7, 8].

Among the active orbital states, there are two possible
transitions: from the symmetric ground state to the aa — bb
state and from the aa — bb state to the symmetric excited
state when aa — bb becomes thermally occupied. The for-
mer transition constitutes the gap and the latter (very likely)
the pseudogap.

The low energy for MMCT in the cuprates (Hubbard
Uvyert) is consistent with the fact that copper has three stable
oxidation states: Cu(I), Cu(Il) and Cu(III). The nature of the
MMCT transition at 2 eV follows from the polarization in
the CuO» plane (x, y plane). The transition moment may be
written as

M = / (aa — bb)e(x1 + xp)(ab + ba)dxdydz = 2R (2)

where R is the distance between the sites and e is the
electron charge. The same result is obtained for the y-
coordinates while the z-coordinates give no contribution to
M. The polarization vector is thus in the plane.

Mott included on-site electron repulsion but neglected
attractive ionic terms [11]. U ~ 10-20 eV if defined that
way. In cuprates, U is measured spectroscopically as 2 eV
before doping, as a Franck-Condon transition. If the nuclear
positions are allowed to vary to minimize the energy, we
obtain two equilibria separated by adiabatic (U,g). Uy <K
Uyert and only U,g has to become <0 as a condition for SC.

The transfer of spectral density as the doping proceeds
in, for example, Lay_, Sr,CuO4 [10] and can be explained
[7]. In LayCuQOy4, the MMCT transition at 2 eV may be
written as

hvy + Cua(ID) + Cug(ll) — Cup(I) + Cug{Ill) (3)
Doping creates holes in the form of Cu(IIl) sites. MMCT

into these holes certainly has a lower energy than if
transferred to a Cu(Il) site. When Cu(IIl) sites are being
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created at increased doping, another excitation mechanism We first consider the single electron transfer case
takes over Cup(Il) + Cug(Ill) = Cua(Ill) + Cug(I) )

hvy + Cup(Il) + Cug(Il) — Cup(Il) 4+ Cug(l) (4)

where hv; is the vertical transition of Fig. 1 (1) and obvi-
ously vy < vy.

At higher doping levels, the holes are closer to each other
and the energy decreases further. In the spectrum of Uchida
et al. [10] of Lay_, Sty CuQy, the hardly visible absorption at
0.4 eV is increasing in intensity and decreasing in energy for
x >0. The increase in intensity up to 1 eV is roughly propor-
tional to the doping, and this determines when (4) becomes
important for the optical conductivity and (5) for the thermal
conductivity. The Drude peak is much increased in intensity.
All cuprates show this absorption in the near-infrared (NIR)
spectra, and the reason seems to be the intersection between
the Cu(Il) + Cu(II) and Cu(I) + Cu(Il) energy surfaces
[7, 8].

3 Electron Mobility due to Single Electron Transfer

If the left minimum in Fig. 1 corresponds to the system
A™TB, the right minimum corresponds to the system AB™.
The coupling between electronic and nuclear motions lies in
the definition of the reaction coordinate [11]. In a transition
metal system, the highest occupied orbitals are antibonding
orbitals. Hence occupying such an orbital, the bond lengths
are increased and the charge of the metal ion is decreased.
Thus, the site with the largest number of electrons has the
largest bond lengths.

(n,n+1)

(n+1,n)

(n,n+1) (n+1,n)

lotal free energy

Nuclear coordinate

Fig. 1 Potential free energy surfaces in the Marcus model for one
electron transfer. A is the reorganization energy, A = 2H), the cou-
pling and E, the activation energy. (1, n + 1), etc., refers to site orbital
occupation

where A and B are adjacent sites. The barrier between the
minima in Fig. 1 (E,) has to be passed. The rate constant is
proportional to exp(—E, / kgT). The barrier arises when a
single electron or hole passes from one site to the next and
the bond lengths change. The system is then passing from
one minimum to the other in Fig. 1. We notice that without
coupling, (A =0) E, = A /4.1f |A] is large enough, the
barrier will disappear. If the barrier disappears, the system
is delocalized.

The energy gap (A) is due to the electronic interac-
tion between the two states of the energy surfaces. If A
is very small, the presence of the other energy parabola
will pass unnoticed, and the electron remains in its site.
A = Uyen, i.e. the barrier height, subtracted by the zero-
point vibrational energy, is equal to the activation energy
(Ea).

The electron mobility is derived as a diffusion problem
[5, 8] where the probability in each step is the reaction rate
(k) in the Marcus or Jortner models [1-3].

Figure 1 is independent of doping since the overwhelm-
ing majority of leaps are to the neighbouring copper site.
A = Uyer is the vertical excitation energy and U,g the
energy difference between the minima.

The Drude model may be used to calculate the conduc-
tivity in an infinite ET system, provided that the electrons
do not interact with each other as in a real metal. The dif-
ference between forward and backward ETs is calculated in
an infinitesimal field. The current is the product of carrier
mobility and carrier concentration () in the case v, >> Ve

A2 /3N 1 10\3? A
o =n-const..—— | — A = exp|———=) (6)
4w h \ Mkp T 4kgT

The activation energy is A / 4, and the resistivity
(p=1/0)

1 4nh Mk A
1 B 3/2
t. _— _ 7
£ = cons . 3 ( 3 > 1 exp <4kB ) 7)

In the low-doping region, we may associate the carrier con-
centration with the molar fraction of Cu(IIl) carriers, thus
n~p =x.

E, may be calculated as

A A2
Ea=—-<1—x> (®)

E, = A /4forA =0and E, =0forA = A.If|A] KA,
the activation energy depends only on A and is equal to A / 4.

If |A] = X, on the other hand, the barrier disappears
(E, =0):
-1 o 1
p=v, const.” - — T ©)]

p
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Equation (9) holds only in the case of very strong coupling.
p is then proportional to 7 (Einstein case). In the Einstein
case, the power on 1/ T disappears in (6) (the electrons are
always hopping if the barrier is overcome). This is the case
in (9). If the particles move fast, on the other hand, there
is a slowdown originating from the Landau probability for
hopping rate. The electrons have to “collect probability” for
the hopping event. Therefore, there is an additional factor
T-121n (6).

Oxidative doping of a cuprate leads to a Cu(II)/Cu(II)
mixed-valence system and possible exchange of electrons
and hence conductivity. The conductivity is activated like in
semiconductors, but due to structural relaxation rather than
a band gap. We may calculate a minimum (ppi,) in

E,
=T™" a 10
P eXp(kBT> (10)

1 E,

for Tpjin = — - — 11
m kB

where m is the power of T in the expression for the conduc-
tivity. m = 3 / 2 in the present case if the Marcus model
holds, as in (7). In the case of semiconductors, m = 0,
and hence, there is no minimum. In the plain Einstein case
[13], m = 1, and in the case of (7) above, m = 3/ 2. In
the case of electron pair transfer, there are two successive
Landau-Zener avoided crossings (Fig. 3) and hence m = 2.
The existence of a minimum in the results of Takagi et al.
[9] is an ample proof that the activation is not due to a
semiconductor gap.

Activation due to structural relaxation [m = 3/2 (rather
than m = 0) in (11)] leads to a minimum in the resistivity
as a function of temperature. The simulation based on Egs.
(5) and (7) is shown in Fig. 2. The visible agreement with
the results of Takagi et al. [9] below 400 K suggests that
one-electron exchange is in operation.

The more than linear raise in resistivity for higher tem-
peratures is due to larger kinetic energy through the Landau-
Zener crossing. For low temperatures, the classical Marcus
model has to be replaced by the Jortner model, due to
nuclear tunnelling.

In Fig. 2, the activation energy is 0.035 eV [7], which
corresponds to Cu(III)/Cu(Il) exchange, since in agreement
with the Marcus model, there is a photo-induced conducti-
vity peak at4x0.035 = 0.014 eV [14]. The coupling param-
eter between two Cu ions, through an oxygen ion, has quite
arbitrarily been chosen as Hj; = 0.0065 eV which gives
the gap A = 0.013 eV. We obtain Fig. 2. Incidentally, the
activation energy for the Hall factor is also 0.035 eV [15].

Above T = 400 K, the resistivity bends down [9], sig-
nalling a novel conductivity mechanism. This bending down
for higher temperatures seems to be caused by the pseudo-
gap [8]. The activation energy for thermal excitation is hard
to approximate, since it depends on both U,g and the cou-
pling. If it is set to 0.175 eV, there is good agreement with
the experiments [8].

Increasing the doping above x >0.05 leads to SC (Fig. 2,
right figure). As discussed in papers by the present author
[16, 17], this depends on the increased doping level which

Fig. 2 Left figure: calculated
resistivity for Lay_, Sr, CuOy.
Right figure: experimental

results, taken from ref. [9] 9t
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puts the spin-coupled and charged states on equal energy,
or with Uyqg slightly smaller than zero. If there is strong
interaction between these states and with a half-breathing
vibrational mode, the resulting states have a SC gap. The
ground state is SC, and the higher state, the so-called
Bogoliubov state, prevents SC. When excitations across the
gap become thermally possible, SC disappears.

4 Resistivity for T —0

The calculated results of Fig. 2 do not agree with the exper-
imental ones for low temperatures. In the Marcus model,
the nuclei move by classical mechanics. If the temperature
is low so that kg7 is smaller than the vibrational energies,
the classical model does not behave satisfactorily and the
nuclear vibrations have to be included in quantized form. In
chemical physics, this is done using the Jortner model [3].
The logarithm of the conductivity tends to linearly decrease
as a function of 1 / T [4]. The Jortner model includes
“nuclear tunnelling” which means a slower decrease than
linear for low temperatures [3]. The resistivity tends to have
finite values as 7 — 0 in the Jortner model, and this agrees
with experimental observation [18]. In the “variable range
hopping” model, on the other hand, the resistivity tends to
infinity as 1/ T!/* as T tends to zero, against experimental
trends [18].

5 Electron Pair Mobility

In the electron pair transfer problem, the two energy parabo-
las are energies for states with an even number of electrons
(Fig. 3). In such a state, there are two additional electrons,

Fig. 3 Potential energy surfaces |
(PESs) for electron pair transfer \
according to the Marcus model
Cu(I)+Cu(II)
(Charged state)

\

called active electrons, on one of the sites. The direct cou-
pling between states where both electrons are on either one
or the other site (aa and bb below) is very small. The main
coupling is indirect via the spin-coupled state (ab + ba
below). We thus introduce the parabola corresponding to
the spin-coupled state with one active electron on each site
(Fig. 3).

We assume two sites. On the x-axis of Fig. 3, there
are plotted collective nuclear coordinates for a breathing
or half-breathing motion. In other words, when the ligand
coordinates around one site shrink, they open up on the other
site. The active electrons are highly sensitive to the nuclear
positions and localize in regions with the lowest energy.

The leftmost minimum in total free energy is the equi-
librium point if there are two additional electrons on one
of the metal ions. If there was no interaction with the other
metal site, the energy curves may be approximated as per-
fect parabolas, meaning that the electrons would remain on
one of the sites for ever. When we move to the right on
the x-axis, we will reach the minimum for the Cu(II)/Cu(II)
state, corresponding to the spin-coupled ground-state wave
function with one electron on each site.

SC requires that aa + bb is the major part of the ground-
state wave function, since the superconducting gap is
between aa + bb and aa — bb. Thus, U,q < 0 is a condition
for SC. Another condition is that the coupling is so large that
the barrier disappears. If Uyq is very negative, this cannot
happen and the system will be locked in the charged state.
In pure La; CuQy, the ground state is dominated by the spin-
coupled state (Uyq >0) represented by the right parabola.

In the spectra of Uchida et al. [10], there is photo-induced
conductivity between 0 and 1 eV already at 2 % doping, with
a maximum of 0.6 eV. The constant background, probably

2Cu(IN)
(Spin coupled state)
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due to one electron transfer, is not changing very much for
higher doping, but the maxima increase in size and move to
lower energies, before it goes over to Drude absorption. It is
believed [8] that this is the pseudogap (ab + ba—aa — bb).

6 Conclusion

The results obtained are encouraging and confirm that SC
appears for Hubbard U < 0, provided that some other con-
ditions are satisfied, for example that the reaction barriers
disappear in Fig. 3, which is favoured by the equal free
energy between spin-coupled and charged states and the
strong interaction between the metal sites.

An important observation is that the activation energy
for one electron transport is to a large extent independent
of doping. The states induced by one electron transfer are
due to single electrons moving between two adjacent sites.
As for CuO, there always remains activation energy. This
means that Cu(IIl) is, in fact, localized, quite consistent with
the appearance of stripes [19].

SC in the cuprates appears after 5 % doping. We interpret
that there is equal energy for the spin-coupled and charged
sites (U,g = 0) and, therefore, there is quantum mechani-
cal configuration interaction forming a new SC phase. The
SC gap and the pseudogap are formed, always involving
two electrons. This means that the Bose-Einstein statistics
becomes “visible”, for example, in the heat capacity.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http:/
creativecommons.org/licenses/by/4.0/), which permits unrestricted
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