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ABSTRACT

At the time of verifying software one can make use of several verifi-
cation techniques. These techniques mostly fall in one of two categories:
Static Verification and Dynamic Verification. Runtime Verification is a dy-
namic verification technique which is concerned with the monitoring of
software, providing guarantees that observed runs comply with speci-
fied properties. It is strong in analysing systems of a complexity that is
difficult to address by static verification, e.g., systems with numerous
interacting sub-units, real (as opposed to abstract) data, etc. On the other
hand, the major drawbacks of runtime verification are the impossibility
to extrapolate correct observations to all possible executions, and that
the monitoring of a program introduces runtime overheads.

The work presented in this thesis addresses these issues by introduc-
ing a novel approach which combines the use of runtime verification
with static verification, in such a way that: (i) static verification attempts
to ‘resolve’ the parts of the properties which can be confirmed statically;
(ii) the static results, even if only partial, are used to improve the speci-
fied properties such that generated monitors will not check at runtime
what was already verified statically.

In addition, this thesis introduces the specification language ppDATE
(and its semantics), which allows to describe properties suitable for static
and runtime verification within a single formalism; the verification tool
StaRVOOrS, which embodies the previously mentioned approach; and
presents some case studies to demonstrate the effectiveness of using this
new approach.
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CHAPTER

ONE

INTRODUCTION

Technology is getting more and more integrated into our ordinary activ-
ities. Desktop computers, laptops, netbooks, tablets, smart phones, and
smart watches, represent just a short list of devices which are used on
a daily basis all around the globe. Even though these devices may be
really different, all of them have one thing in common: they all operate
by executing programs (i.e., software).

Usually, software developers provide the users with an informal (gen-
eral) description about what their programs are supposed to do. However,
they may not offer any guarantees about the actual behaviour of their
programs. In fact, it is quite a common practice for developers to include
as part of the documentation of their programs a Terms and Conditions
section, where they add disclaimers saying, for instance, that they do not
take any responsibility if the use of their programs lead to a malfunction
of the devices running them.

Unexpected program behaviours may be a real headache for their
users. It is true that if a program which checks the weather forecast fails
during its execution, it may not represent any harm. However, if the
software in a self-driven car fails, it may be catastrophic for their users.

Fortunately, efforts by programmers to avoid unexpected behaviour
on their programs is increasing. For instance, during the last decade de-
velopers (and the software industry) have started considering the use of
Formal Methods to develop and verify their programs.

The main idea behind the use of formal methods is that, given the
specification of the correctness properties of a program, one may use
(formal) verification techniques in order to control whether the program
fulfills its specification. Here, by specification of correctness properties we
refer to a description of the behaviour of the program, e.g., under what
conditions the program is intended to be executed, and which conditions
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are expected to hold once its execution is completed. Such specifications
are usually written in a mathematical-based formalism.

Regarding the verification techniques, they may be divided into two
categories: static verification techniques, and dynamic verification tech-
niques.

On the one hand, static verification techniques deal with the analysis
of either concrete source code, or a model of it. These techniques can
verify properties over all possible executions of a program. However, as
runtime data is not available during the static verification of properties,
it might be necessary to introduce data abstractions to deal with a proof.
This fact may make it difficult to achieved an automatic verification of
the properties involving the use of such abstractions.

On the other hand, dynamic verification techniques are concerned
with the monitoring of software, i.e., the program has to be executed
in order to check the properties. These techniques, which in general are
fully automated, provide guarantees that observed executions of a pro-
gram comply to the specified properties. However, it is impossible to
extrapolate correct observations to all possible executions. In addition,
monitoring introduces runtime overheads which may be prohibitive in
certain systems.

It is quite clear that static and dynamic verification have largely dis-
joint strengths. Therefore, combining both of them can allow the verifica-
tion process to deal with richer properties, with a greater ease. This work
presents a novel approach to address the verification of correctness prop-
erties, by combining the use of runtime verification (dynamic verification
technique), and deductive verification (static verification technique).

The structure of this chapter is as follows: Section 1 introduces sev-
eral verification techniques, including deductive verification and runtime
verification. Section 2 introduces background information associated to
the verification tools used in this thesis. Section 3 presents the project
which was the context of this work, and elaborates on its objectives. Fi-
nally, Section 4 fully describes the contributions of this thesis, which are
properly reflected on its different chapters.

1 Verification Techniques

The main objective behind the use of verification techniques is to check
whether a program satisfies certain properties. Such properties usually
describe the behaviour of the program under scrutiny. In general, these
techniques are divided into either static or dynamic verification tech-
niques, depending on whether the program under scrutiny has to be ex-
ecuted in order to verify it. Below, several of the most widely used static
and dynamic verification techniques are briefly analysed. In addition, we
make a (brief) general comparison between the use of both kind of tech-
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niques, and we discuss the benefits which may be obtained by combining
them.

1.1 Static Verification Techniques

In this section we analyse two of the most widely used static verification
techniques: Deductive Verification, and Model Checking.

Deductive Verification De

Deductive verification [18] focuses on turning the correctness properties
of a program into logical formulae, e.g., first-order logic, high-order logic,
program logic, etc, and then verifying these formulae by deduction in a
(logic) calculus.

In general, there are three main approaches that one may adopt to
perform deductive verification. Let us call these three approaches Proof
Assistants, Program Logic, and Verification Condition Generation.

Proof Assistants are interactive theorem provers which, in general,
target some high-order logic. These provers are not language-oriented.
Instead, they provide a language in which both the syntax and the se-
mantics of the program under scrutiny have to be described. In addition,
the correctness properties have to be modelled within the logic handled
by the proof assistant. Then, one may use the proof assistant to develop
the proof of the properties. Note that, even though proof assistants are
interactive, they may present a certain degree of automation. As an ex-
ample, the Coq [8] proof assistant targets intuitionistic logic, introduces
the language Gallina to describe the syntax and the semantics of the pro-
gram under scrutiny, and uses a sequent calculus to verify the correctness
properties.

In relation to Program Logic, Hoare Logic [24] may be the most well-
known program logic to analyse programs. Hoare logic offers both a clear
notation to describe programs and their properties, and a set of axioms
and inference rules which may be used to verify the properties [31]. In
this logic, properties are described by using Hoare triples. A Hoare triple
is simply an expression of the form {P} S {Q}, where S is the pro-
gram under scrutiny, P is the precondition of the program, and Q is the
postcondition of the program. In addition, one may consider the use of
some language-oriented modal logic, e.g., dynamic logic [21], in order to
reason about the correctness properties of the program under scrutiny.
By using this kind of logic, the verification of the correctness properties
may follow the flow of execution of the program under scrutiny. However,
this may require the addition of some extra auxiliary specifications, e.g.,
loop invariants. As an example, one may refer to KeY [2]. This tool uses
Java dynamic logic to deal with the correctness properties, and a sequent
calculus to verify them.
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On the Verification Condition Generation approach, programs are an-
notated with assertions representing the desired correctness properties.
Then, this assertions may be used to generate first-order logic verifica-
tion conditions which later may be discharged by using some automatic
theorem prover. As an example, one may refer to Dafny [26]. Dafny is a
programming language which natively supports specification constructs
to describe the specification of the methods. Such specifications are used
to generate first-order conditions which are discharged by using Z3 [17].

Model Checking Mod

Model Checking consists in verifying properties about a system by analysing
a finite state abstraction of it, which is usually referred as model [11]. This
technique determines whether a model fulfills the specified property by
performing an exhaustive search over the entire state space of the system,
aiming at finding an execution trace which violates it. If not such a trace
exists, then the property is considered to be satisfied by the model.

As this technique deals with finite state systems, the tools imple-
menting this technique, a.k.a. model checkers, automatically analyse all
of the possible executions of the system, always terminating with a yes
or no answer depending on whether the specification is fulfilled or not (if
enough resources are available of course). However, when dealing with a
real world problem the model checkers may have to deal with the state
explosion problem [12]. In short, when the amount of state variables in the
system increases, the size of the system state space grows exponentially.

Whenever the specification is not fulfilled, i.e., a property is violated,
the model checkers usually return the execution trace which has vio-
lated the property, usually referred as error trace. Such trace serves as a
counter-example for the property.

As an example of a model checker one can refer to SPIN [25]. This
tool is a popular model checker which uses the language PROMELA for
the description of the models, and Temporal Logic as the specification
language for the properties.

1.2 Dynamic Verification Techniques

In this section we analyse, possibly, the main two dynamic verification
techniques: Testing, and Runtime Verification. Note that is this work
we use the term dynamic verification to refer to any of the previous
techniques, and not as a synonym for runtime verification.

Testing Tes

Testing [23] aims at analysing particular executions of a program to de-
termine whether they produce certain expected values, i.e., the program
behaves as expected. Such executions are based on test cases. A test case
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represents a possible initial state of the program under scrutiny, and the
expected state of the program once its execution is completed. It is defined
by assigning particular values to the different variables and parameters
associated to the program.

In general, testing is divided into two categories: Black-box testing
and White-box testing.

Black-box testing focuses on the analysis of the functionality of the
program under scrutiny, treating it as a ’black box ’, i.e., without looking
into its source code. Therefore, it is not necessary for the person testing
the program to know exactly how it is structured, but only to have some
idea of what the program is supposed to do. For instance, if the program is
sorting an array, then one only has to know that the array has to be sorted
after executing the program, without the need to know which sorting
algorithm the program is implementing. In addition, this kind of testing
is quite useful whenever (part of) the source code of the program is not
available. Among the different black-box testing techniques, Input Space
Partitioning is usually one the most highlighted ones. This technique
consists in, first, defining the input space of the program, i.e., the set of
all possible inputs that may be fed to the program. Next, the input space
is divided into several disjoint partitions such that the values on each
partition test different functionalities of the program. Then, test cases
are generated by selecting a value from each partition. Finally, these
test cases are used to execute the program, and the obtained results are
analysed.

Regarding White-box testing, it analyses the structure of a program to
trace possible execution paths through its code. Therefore, one needs to
have access to the complete source code of the program to perform this
kind of testing. There are many criteria which can be followed when using
this kind of testing such as, for instance, Code Coverage criteria. Within
these criteria, one can highlight the Statement Coverage criterion, where
all the test cases are generated in such a way that all the statements of
a program are executed, or Condition Coverage criterion, where all the
test cases are generated in such a way that every boolean expression of
the program is evaluated to both true and false.

Runtime Verification RV

Runtime verification [22, 28] is concerned with the monitoring of software
executions. This technique detects violations of properties which occur
during the execution of the program under scrutiny. Due to this fact,
runtime verification gives the possibility to react to incorrect behaviour
of a program whenever an error is detected.

Properties to be verified using this technique are usually described in
in two possible manners. One possibility is annotating the source code
of the program under scrutiny with assertions. An assertion is a logical
formula which is expected to be true whenever the execution of the an-
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notated program reaches it. The other possibility is using a high level
specification language. For instance, Linear Temporal Logic (LTL) [29] is
one of the most popular formalisms in use. In addition, another approach
which is increasing in popularity is writing properties using automaton-
based specification languages [4, 14].

In order to verify properties, runtime verification introduces the use
of monitors. A monitor is a piece of software which runs in parallel to the
program under scrutiny, controlling that the execution of the program
does not violate any property. In addition, monitors usually create a
log file where they add entries reflecting the results which are obtained
whenever they attempt to verify a property.

In general, monitors are automatically generated from either the an-
notated assertions, or the (high level) specification of the properties. In
the case of the former, literature usually refers to this kind of runtime
verification as Runtime Assertion Checking. As an example on how to ap-
ply runtime assertion checking, one may refer to openJML [13] or jml4c
[32], which are tools that allow to perform runtime assertion checking
over Java programs annotated with assertions written in the Java Mod-
elling Language (JML) [27]. Regarding the latter, one can refer either to
LARVA [15] or MarQ [30] as examples of tools which apply runtime ver-
ification by generating monitors from high level specification languages.

One downside on the use of runtime verification is that it introduces
some overhead to the execution of the system. Thus, one of the main
objectives of the developers of tools which use this technique is to reduce
as much as possible such overhead.

1.3 Comparing Static and Dynamic Verification Techniques

It is quite clear that just by categorising the verification techniques into
either static or dynamic, we are already comparing them with respect to
whether or not the program is executed in a certain concrete state and
environment. In addition, one may also consider their functionality to
elaborate on a comparative analysis.

Static verification techniques are good to analyse the correctness of
programs. These techniques can verify properties over all possible exe-
cutions of a program or a model of it, and as they are used prior to
the deployment of the programs, they do not affect the behaviour of the
programs at runtime. These facts are advantages of the use of static tech-
niques over the dynamic ones due to the fact the two of the major draw-
backs in the use of dynamic verification techniques is that they cannot
extrapolate the results of correct observations to all possible executions
of a program, i.e., they verify only one execution at a time, and that
the monitoring of properties introduces runtime overheads which can be
prohibitive for certain systems, and may affect their execution.
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On the other hand, the application of the static verification tech-
niques usually is not quite straightforward. For instance, depending on
the implementation of the methods, some annotations may have to be
introduced in their source code in order to verify the properties. This
would be the case of a method which has a loop in its implementation.
Here, some loop invariants will have to be annotated in the source code
of the method in order to verify the different properties related to it.
In addition, the techniques working with abstractions from the real code
may loose accuracy when they analyse a property involving the use of the
(real) data of the system. These issues, may make it difficult for these
techniques to achieve an automatic static verification of the properties.
On the other hand, dynamic verification techniques work with the real
data of the system when verifying its executions, and do not require the
introduction of any extra notation in the source code of the programs.

Regarding the dynamic verification techniques, they are lightweight
techniques which are usually strong in analysing programs of a com-
plexity which is difficult to address by the static verification ones, like
programs interacting with several other systems, heavy usage of main-
stream (external) libraries, and real (as opposed to abstract) data. For
instance, dynamic verification techniques can directly access the results
of the calls to methods belonging to them, whereas the manner in which
those results are computed is usually not accessible to the static ones.
Thus, either some data abstractions may have to be introduced in many
of the properties, or some specification has to be provided for the library,
in order to verify the properties using static verification techniques.

Nonetheless, these techniques cannot be used to guarantee the cor-
rectness of a program, mainly due to the fact that, as opposed to the
static verification techniques, they cannot extrapolate the results of cor-
rect observations to all possible executions.

1.4 On the Combination of Static and Dynamic Verification
Techniques

Enhancing verification techniques by combining them with other verifi-
cation techniques is a practice that is getting more and more attention.
In this work we are mainly interested in the combination of static and
dynamic verification techniques.

Combining static and dynamic verification techniques can allow the
verification process to deal with properties with a greater ease. For in-
stance, instead of possibly adding complicated abstractions to a property
in order to statically handle the result of a call to a method belonging to
an external library, one can attempt to verify such properties by using
a dynamic verification technique that directly access the results of such
method calls.



8 2. BACKGROUND

In addition, such combinations can introduce benefits regarding the
verification performance. For instance, by using static verification tech-
niques one could improve the performance of the dynamic ones by ignor-
ing at runtime the verification of all the properties which were proved
correct statically.

There are several possible technique combinations which could be
analysed. The combination of testing and static verification techniques is
one of the most explored ones, e.g. [5, 7, 16, 19, 20, 34]. Here, static verifi-
cation can be used, for instance, to limit the dynamic efforts by filtering
test cases, or to accomplish high coverage of the test cases. Another pos-
sibility would be the combination of runtime verification and static verifi-
cation techniques. For instance, in [9] a static verification technique which
reduces runtime instrumentation is used to improve the efficiency of run-
time monitoring based on tracematches, and in [33] runtime verification
is integrated with static code analysis in order to generate monitors which
will allow to both check for possible faults in the system under scrutiny,
and eliminate false positives obtained statically.

In particular, we will focus on the combination of runtime verifica-
tion and deductive verification. Ideally, before using runtime verification,
one may attempt to prove some of the properties in the specification of
the program under scrutiny by using deductive verification. Then, all the
properties proved correct statically can be removed from the specifica-
tion. This would result in an improvement on the performance of the
runtime monitoring, because the monitor generated using runtime verifi-
cation would only focus on the properties which were not proved correct
statically. In addition, those properties can be analysed with dynamic
verification techniques in an attempt to identify why it was not possible
to prove them, e.g., one can test whether a method is actually returning
the result expected in its specification.

Note that the previous combination can be extended by analysing
partial proofs, i.e., analysing the proofs of the properties which were
not proved correct statically. For instance, the results obtained from the
analysis of the partial proofs can be used to strengthen the properties in
such a way that the dynamic verification techniques will verify at runtime
only the parts of the properties which were not proved correct statically.
This particular approach is addressed on this work. In Sec. 3 we elaborate
on this.

2 Background

This section briefly introduces the different concepts which are used on
this thesis. Sec. 2.1 introduces the selected tool, and its associated spec-
ification language, to perform deductive verification. Sec. 2.2 introduces
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/*@ public normal_behaviour

@ requires n > 0 && y > 0;

@ ensures x == n && y > x;

@*/

public void foo (int n) {

x = n;

y = y + x;

}

Fig. 1. JML specification for a particular Java method.

the selected tool, and its associated specification language, to perform
runtime verification.

2.1 Deductive Verification using KeY

In this thesis we use the deductive verifier KeY [2], which given a Java
program whose specification is annotated using JML, translates such an-
notations into (Java) dynamic logic formulae, and then attempts to verify
them. Below, we briefly elaborate on the previously mentioned concepts.

JML The

The Java Modelling Language (JML) [27] is a specification language
which primarily focuses on the description of pre/post-conditions of meth-
ods and class invariants. This language is compatible with Java expression
syntax, a fact that simplifies its use. Fig. 1 illustrates a JML specification
(from line 1 to 5) for Java a method named foo. Line 1 describes which
one is the behaviour expected for method foo (either normal as in this
example, or exceptional); line 2 describes the precondition of foo; line 3
describes the postcondition of foo; and line 4 lists the variables of the
class which are modified by executing foo.

Dynamic Logic Dy

Dynamic logic [21] is a modal logic which is used to reason about pro-
grams. Due to the many differences between the different programming
languages, it is not possible to have one single version of dynamic logic
to analyse them all. Therefore, each language is usually associated to its
own version of this logic. For instance, the version of dynamic logic used
by KeY to analyse Java programs is referred as Java dynamic logic (or
Java DL).

In particular, dynamic logic includes two modalities [ ] (referred as
box), and 〈〉 (referred as diamond). Given a dynamic logic formula φ and
a program p, [p]φ means that if p terminates its execution, then it is in a
state where φ holds; and 〈p〉φ means that p terminates its execution and
φ holds in the final state reached by p.
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In addition, dynamic logic formulae are written using the traditional
logical operators ∧,∨,→, and ¬, and both universally and existentially
quantifications over logic variables1. Note that as dynamic logic is specific
for the programming language under scrutiny, its syntax to describe the
programs will depend on the programming language in use. For instance,
the following expressions are all examples of Java DL formulae:

(1) [x := x ∗ x ; ]x > 0
(2) 〈x := x+ y ; 〉x > y
(3) ∀l · l > 0→ [x := l; ]x > 0
(4) x > y ∧ y > 0→ [y := y + x ; ]y > x

Note that the dynamic logic formula φ → [p]ψ is valid if whenever
formula φ holds, and the execution of p terminates, the formula ψ is
fulfilled afterwards. Therefore, the previous formula could be regarded as
the Hoare triple {φ}p{ψ}.

KeY KeY

KeY [2] is a deductive verification tool for data-centric functional correct-
ness properties of Java programs which, given a Java program annotated
with JML, generates proof obligations (i.e., formulae) in Java DL, and
attempts to prove them. Fig. 2 roughly illustrates how KeY would gen-
erate the dynamic logic proof obligation in the column of the right, from
the Java method foo which is annotated with JML in the column of the
left.

Similarly to many other verification tools, KeY has a few restrictions:
it does not support concurrency and floating-point arithmetic, and the
generic types are expected to be compiled away. However, it is also worth
mentioning that KeY fully covers Java Card, and that Java integer types,
exceptions, and static initialization are accurately modelled on it [2].

At the core of KeY, a prover uses a sequent calculus to construct
proof trees for the generated proof obligations, by following the symbolic
execution paradigm. Let Γ be a set of formulae. Then, the expression
Γ ` 〈p〉φ represents a sequent which holds if p starts in a state where all
the formulae in Γ hold, and then it terminates in a state where φ holds.
While p is verified, one could arrive at an intermediate proof node. Such
a node will look like as follows: Γ ` σ〈p′〉φ. This sequent means that, if Γ
was fulfilled before p, and σ is the accumulated effect up to now, then φ
will hold after executing the remaining program p′. Note that, in general,
proofs may branch over case distinctions which are mainly triggered by
Boolean decisions in the program. Such branching occurs by applying
rules like the following simplified2 if rule:

1 Logic variables never occur in programs.
2 The simplified rule ignores side effects or exceptions possibly caused by b.
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/*@ public normal_behaviour

@ requires n > 0 && y > 0;

@ ensures x == n && y > x;

@*/

public void foo (int n) {

x = n;

y = y + x;

}

n > 0 ∧ y > 0 →
〈x := n ; y := y + x; 〉 x = n ∧ y > x

Fig. 2. Rough example of a DL proof obligation generated by KeY.

if
Γ, σ(b) ` σ〈s1 ω〉φ Γ, σ(¬b) ` σ〈s2 ω〉φ

Γ ` σ〈if b s1 else s2 ω〉φ

2.2 Runtime Verification using Larva

In this thesis we use the runtime verification tool Larva [15]. This tool
automatically generates a runtime monitor from a property written in
the automaton-based specification language DATE [14]. In order to do
so, Larva transforms the set of properties into monitoring code together
with AspectJ code, to link the system with the monitors.

Regarding DATE, it is a specification language to describe properties
as finite state automata. Transitions in this language are tagged with
labels of the form e | cond 7→ act, where e represents a system event
(primarily either an entry point e↓ or an exit point e↑ of a method), cond
is a condition that must be true in order for the transition to take place,
and act is is a code snippet to be performed when the transition is taken.
Note that this description does not mention many of the features offered
by DATE. One may refer to [14] for a more detail introduction to this
language.

Fig. 3 illustrates an example of DATE describing a property about the
system of a coffee machine. This DATE ensures that whenever the coffee
machine is not active (i.e., is not brewing coffee) and the method brew

starts the coffee brewing process, then it is not possible either to execute
this method again or to execute the method cleanF, which initialises the
task of cleaning the filter, until the current brewing process terminates.

3 StaRVOOrS: Towards the Combination of
Runtime Verification with Static Verification

This thesis has been developed in the context of the research project
Unified Static and Runtime Verification of Object-Oriented Software, or
StaRVOOrS for short. This project, which is funded by The Swedish



12 3. STARVOORS

qstart

q′

bad

brew↓ | cups < limit 7→ skip

cleanF ↓ | true 7→ skip brew↓ | true 7→ skip

brew↑ | true 7→ skip

Fig. 3. A DATE controlling the brew of coffee

Research Council (Vetenskapsrdet), has as a main purpose the devel-
opment of a methodology for specifying and verifying both data- and
control-oriented properties of object-oriented software systems, in a uni-
fied manner.

As a starting point to address this objective, Ahrendt et al. proposed
in [6] a verification framework which combines the use of runtime verifi-
cation with deductive verification. In short,

(i) Deductive verification is used to verify those parts of the properties
which may be confirmed statically;

(ii) the previous results, even if they are only partial, are used to refine
the original specification of the properties such that the monitors
generated by using runtime verification will not have to check at
runtime the statically verified parts of the properties. This reduces
the overhead which the generated monitors add to the system.

In addition, [6] presents initial ideas about an automaton-based speci-
fication language, called ppDATE, which captures both the description
of control-oriented and data-oriented properties. Basically, this language
consists of a transition system alike the DATE formalism, whose states
may include Hoare triples describing properties about the methods of the
program under scrutiny.

One of the main contribution of this thesis consists in the full devel-
opment of the syntax (both abstract and concrete), the grammar, and
the formal semantics of ppDATE. Moreover, as a first approach on the
use of the framework described above, this thesis introduces the combi-
nation of the deductive verifier KeY [2], and the runtime verifier Larva
[15], in order to verify Java programs. Such combination is accomplished
with the implementation of a verification tool which automatically com-
bines the use both of the previous tools. Section 4 elaborates on these
contributions.
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4 Contributions of the Thesis

The contribuitions of this thesis have been disseminated in the follow-
ing documents of two peer reviewed conference papers [4, 10], one peer
reviewed journal paper (under submission) [3], and one user manual [1].
This section presents a brief description of each one of these works, and
outlines the contributions of Mauricio Chimento in all of them.

Note that [3] and [1] correspond to the chapters 1 and 2 of this thesis,
respectively. Regarding [4] and [10], as the content of [3] consists of an
extension of both of them, we decided not to include them as part of
this thesis. Anyhow, below we describe the contribuitions of Mauricio
Chimento in these works. In addition, note that the format of all [1, 3]
were adapted to suit the format of the thesis. However, their content
remains unchanged.

4.1 A Specification Language for Static and Runtime
Verification of Data and Control Properties

Paper [4] presents the development and formalisation of a notation lan-
guage, called ppDATE, as an extension of the control-flow property lan-
guage DATE, which is used in the runtime verification tool Larva, and
shows how specifications written in this notation can be analysed both
using the deductive theorem prover KeY and the runtime verification
tool Larva. In addition, by using ppDATE to describe the correspond-
ing specification, the StaRVOOrS verification framework is applied to
Mondex, an electronic purse application.

Statement of contribution: The contributions of Mauricio Chimento on
this paper are (i) collaborating on the formalisation of the ppDATE no-
tation to describe the Hoare triples associated to the states of a ppDATE;
(ii) formalising the Hoare triples which are part of the ppDATE specifi-
cation for the Mondex case study; (iii) applying the StaRVOOrS veri-
fication framework to the Mondex case study; and (iv) performing some
experiments to analyse (and compare) the overhead added to Mondex
by the monitor generated using StaRVOOrS, and by the monitor that
would be generated without using static verification to analyse the Hoare
triples.

4.2 StaRVOOrS - A Tool for Combined Static and Runtime
Verification of Java

Paper [10] presents the tool StaRVOOrS, which aims at both the spec-
ification and verification of properties by combining the use of runtime
verification and static verification. This tool is fed with a Java program
and a ppDATE specification of the program, and automatically generates
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a monitor in order to runtime verify the provided program. In order to
do so, StaRVOOrS combines the deductive theorem prover KeY and
the runtime verifier Larva. In addition, the effectiveness of this tool is
demonstrated by applying it to Mondex, an electronic purse application.

Statement of contribution: The contributions of Mauricio Chimento on
this paper are (i) a refinement of the original verification framework pro-
posed in [6]; (ii) full development and implementation of the tool StaR-
VOOrS; (iii) and demonstrating the effectiveness of the tool by applying
it to the Mondex case study.

4.3 Verifying Data- and Control-Oriented Properties
Combining Static and Runtime Verification: Theory and
Tools

The journal paper [3], which corresponds to the first chapter of this the-
sis, is basically an extension of the material presented in both [4] and
[10]. In this paper, ppDATE is introduced as a proper specification lan-
guage, and not just a simple notation. This is accomplished by intro-
ducing its syntax, grammar, and formal semantics. In addition, in order
to cover new features of the ppDATE specification language, this paper
introduces minor modifications into the algorithm used to translate a
ppDATE specification into a DATE one, and shows the proof of correct-
ness of such algorithm. Moreover, it shows the advantages of using the
StaRVOOrS tool to verify a case study based on Mondex (electronic
purse application), and a real world case study based on SoftSlate, an
open-source Java shopping cart web application.

Statement of contribution: The contributions of Mauricio Chimento on
this paper are (i) defining the syntax, the grammar (except the grammar
of the templates), and the semantics (except the semantics of actions) of
ppDATE; (ii) upgrading the translation algorithm to cover new features
of the ppDATE specification language; (iii) proving the correctness of
the translation algorithm; (iv) and using the StaRVOOrS tool to verify
the SoftSlate case study. Note that in (i), Mauricio Chimento proposed
initial versions for the definitions, and refined then with input from the
co-authors. In addition, regarding (iii), Mauricio Chimento developed the
whole proof of correctness on his own. However, some high level ideas
related to the formalisation of the correctness theorem and its proof, in
particular the introduction of the coupling invariants, were proposed by
the co-authors.
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4.4 StaRVOOrS User Manual

The StaRVOOrS user manual [1], which corresponds to the second
chapter of this thesis, gives a high level explanation about how the StaR-
VOOrS tool works, provides an intuitive description of the ppDATE
specification language, shows how to write a ppDATE specification in
the input language of this tool by introducing its concrete grammar, and
provides a complete example on how to use the tool.

Statement of contribution: The main contribution of Mauricio Chimento
on this work is the introduction of the concrete grammar to write pp-
DATE specifications as a script, fact which is essential to use the tool
StaRVOOrS.
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33. Hasan Sözer. Integrated static code analysis and runtime verification.
Softw., Pract. Exper., 45(10):1359–1373, 2015.

34. Julian Tschannen, Carlo A. Furia, Martin Nordio, and Bertrand Meyer.
Usable verification of object-oriented programs by combining static and
dynamic techniques. In Gilles Barthe, Alberto Pardo, and Gerardo Schnei-
der, editors, SEFM, volume 7041 of LNCS, pages 382–398. Springer, 2011.





CHAPTER

TWO

COMBINED STATIC AND RUNTIME VERIFICATION OF DATA-

AND CONTROL-ORIENTED PROPERTIES

Wolfgang Ahrendt, Jesús Mauricio Chimento, Gordon Pace,
Gerardo Schneider

Abstract. Static verification is used to analyse and prove proper-
ties about programs before they are executed. Many of these tech-
niques work directly on the source code, and are used to verify
data-oriented properties over all possible executions. The analysis
is necessarily an over-approximation as the real executions of the
program are not available at analysis time. In contrast, runtime ver-
ification is usually more suitable for control-oriented properties,
analysing the current execution path of the program in a fully auto-
matic manner. In this article, we present a novel approach in which
data-oriented and control-oriented properties may be stated in a
single formalism amenable to both static and runtime verification.
The specification language we present to achieve this is ppDATE,
which enhances the language of DATE, with pre/postconditions.
For runtime verification of ppDATE specifications, the language is
translated into a DATE. We give a formal semantics to ppDATEs,
using which we prove the correctness of our translation from pp-
DATEs to DATEs. We show how ppDATE specifications can be
analysed using a combination of the deductive theorem prover
KeY and the runtime verifier LARVA. Verification is performed in
two steps: KeY first partially proves the data-oriented part of the
specification, simplifying the specification which is then passed
on to LARVA to check at runtime for the remaining parts of the
specification including the control-oriented aspects. We show the
applicability of our approach on two case studies.
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1 Introduction

Runtime verification has been touted as a practical verification technique,
and although it does not provide program analysis before deployment,
it can check correct behaviour post-deployment by observing whether
actual execution paths at runtime conform to the specification. Runtime
verification scales up much more effectively than static analysis both in
terms of performance and in terms of applicability to diverse contexts
in which a program may interact with various other systems, services,
libraries and be deployed.

Despite the fact that overheads induced by runtime verification might
be small when compared to the computational effort required for static
analysis, the fact that is done while the software is live can be problematic
and prohibitive for certain systems. In this paper we present an approach to
address the issue of runtime overheads through the use of static, deductive
verification — an approach which also has the benefit of being able to
verify parts of the specification a priori for all potential execution paths,
leaving only parts which could not be proved before deployment to be
checked dynamically.

Apart from the computational power required to perform the analysis,
deductive and runtime verification have largely been applied to disjoint
areas in which they are most effective — whereas deductive analysis
excels in properties focusing on a system’s data, runtime verification
handles control-flow properties with substantially lower overheads than
data-oriented ones. Combining the two approaches has the additional
benefit that static analysis would typically be more effective in proving
the parts of a specification which dynamic analysis would struggle most
with. The challenge is thus to design a specification language which allows
the expression of combined data- and control-flow properties in such a
manner that they can be effectively decomposed for the application of
different verification techniques.

The StaRVOOrS framework [8] addresses these issues by identifying
a specification notation for such properties and a verification methodology
combining static and dynamic analysis to verify combined control- and
data-oriented properties. Although one may envisage different ways to
combine static and dynamic analysis tools, a crucial requirement is that
the specification languages used in the tools chosen are either identical,
or can be somehow combined to allow for rich specifications getting the
best of both approaches. Similar to mode automata [29] we have chosen
to adopt an automata-based specification language (for the control-flow
properties) but extended with data-flow properties encoded in the different
states of the formalism.

This article is a significantly extended and revised version of two
papers. In [6] we introduced the formalism ppDATE, where parts of the
syntax where left underspecified, and we gave a high-level description of
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the algorithm to translate ppDATE into DATE [19], the formalism used
in the runtime verification tool Larva [20]. In [17] we presented the tool
StaRVOOrS, a full implementation of the framework introduced in [8,
6].

The novel contributions of this paper, going beyond the results reported
in [6] and [17] are the following: i) We present a complete formal definition
of ppDATE automata, including a formal semantics for the formalism
(Sec. 5); ii) A proof of soundness of the algorithm to translate from
ppDATE specifications into DATE ones (Sec. 7). iii) The application of
our approach to SoftSlate Commerce, an open-source Java shopping cart
web application (Sec. 9); iv) A description of the results of the case study
including an analysis of the verification process providing evidence that
our approach reduces the overhead of the runtime monitoring (Sec. 9).

2 Preliminaries

The work presented in this article is centred around static and runtime
verification of Java systems. To implement these verification techniques,
we use the deductive verifier KeY and the runtime verifier Larva. In this
section, we introduce these tools at a high level of abstraction, but with
sufficient detail to enable the understanding of the rest of the paper.

2.1 The deductive verifier KeY

KeY [5] is a deductive verification tool for data-centric functional cor-
rectness properties of Java source code. KeY generates proof obligations
in dynamic logic (DL), a modal logic for reasoning about programs. DL
extends first-order logic with two modalities, 〈p〉φ and [p]φ, where p is
a program and φ is another DL formula. The formula 〈p〉φ is true in a
state s if there exists a terminating run of p, starting in s, resulting in a
state where φ holds. The formula [p]φ holds in a state s if all terminating
runs of p, starting in s, result in a state in which φ holds. For determin-
istic programs p, the only difference between the two modalities is that
termination is stated in 〈p〉φ, and assumed in [p]φ.

KeY features (static) verification of Java source code annotated with
specifications written in the Java Modelling Language (JML) [28]. JML
allows for the specification of pre- and postconditions of method calls, and
class/interface invariants. The main features of KeY are the translation
of JML annotated Java programs to Java DL, and a theorem prover for
validity of Java DL formulae, using a sequent calculus, covering almost all
features of sequential Java (with the exception of generics and floating-
point types currently). Given a set of formulae Γ , the sequent Γ ` 〈p〉φ
holds if p, when starting in a state fulfilling all formulae in Γ , terminates
in a state fulfilling φ. The calculus uses the symbolic execution paradigm.
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For that, DL is extended by explicit substitutions. During the symbolic
execution of p, the effects of p are gradually, starting from the front, turned
into explicit substitutions. Thereby, after some proof steps, a certain prefix
of p has turned into a substitution σ, representing the effects so far, while
a remaining program p′ is yet to be executed. While verifying p, an
intermediate proof node may look like Γ ` σ〈p′〉φ. It tells us that, if Γ
was true before the original program p, and σ is the accumulated effect
up to now, then φ will be true after executing the remaining program p′.

As an example, consider a proof of the following DL sequent:

x > 0, y > 0 ` 〈x=x+y;y=x-y;x=x-y;if(x%2==0){p1}else{p2};q〉φ
(1)

(where p1, p2, and q are Java fragments and φ is some postcondition). The
sequent says that in each state where x and y are positive, the program
given in the modality (which first swaps x and y using arithmetics) will
terminate and result in a state where φ holds. When proving this sequent,
the KeY prover will first, in a number of steps, turn the three leading
assignments into explicit substitutions, apply the first to the second, the
result to the third, and perform arithmetic simplification, arriving at

x > 0, y > 0 ` (x← x+y ‖ y← x ‖ x← y)〈if(x%2==0){p1}else{p2};q〉φ
where (x← x+y ‖ y← x ‖ x← y) denotes the explicit (parallel) substitu-
tion resulting from symbolic execution of the first three statements. A
‘right-win’ semantics is adopted to resolve clashes in substitutions, such
that the above simplifies to:

x > 0, y > 0 ` (y← x ‖ x← y)〈if(x%2==0){p1}else{p2};q〉φ
In general, most proofs branch over case distinctions, often triggered by
Boolean decisions in the source code. The branching happens by applying
rules like the following, simplified1 if rule:

if
Γ, σ(b) ` σ〈s1 ω〉φ Γ, σ(¬b) ` σ〈s2 ω〉φ

Γ ` σ〈if b s1 else s2 ω〉φ
In our example, applying the if rule to the latest sequent results in splitting
the proof into two branches, with the following sequents, respectively:

x > 0, y > 0, (y← x ‖ x← y)(x%2 = 0) ` (y← x ‖ x← y)〈p1;q〉φ
x > 0, y > 0, (y← x ‖ x← y)(¬(x%2 = 0)) ` (y← x ‖ x← y)〈p2;q〉φ

Applying the substitution on the left side of either sequent results in:

x > 0, y > 0, y%2 = 0 ` (y← x ‖ x← y)〈p1;q〉φ (2)

x > 0, y > 0, ¬(y%2 = 0) ` (y← x ‖ x← y)〈p2;q〉φ (3)

1 The simplified rule ignores side effects or exceptions possibly caused by b.



24 2. PRELIMINARIES

Note that in this step, by applying the swapping substitution, the branch-
ing condition (x being even or odd) on the state after swapping got
translated into a condition on the prestate of the original program p,
before the swapping. The resulting sequents tell us, among other things,
that if y is even (respectively odd) in the prestate of p, then path p1
(respectively p2) is taken in the execution of p. In general, when building
a proof in such a symbolic manner, the left side of sequents accumulate
conditions on the original prestate through a particular execution path.

Once all proof branches are closed, we have a complete proof of the
root sequent. However, a proof attempt may result in a partial proof, only,
where some proof branches are closed and others are not. Such partial
proofs are important for the work presented in this article. In the above
example, consider a partial proof where the left branch, i.e., the sub-proof
for sequent (2), is closed, whereas the right branch, i.e., the sub-proof for
sequent (3), is not closed. From this partial proof, we can conclude that
the following modification of the root sequent (1) is valid:

x > 0, y > 0, y%2 = 0 ` 〈x=x+y;y=x-y;x=x-y;if(x%2==0){p1}else{p2};q〉φ
(4)

(We added y%2 = 0 to the left side of (1), as additional assumption.) This
sequent can be proven by replaying the original proof, where now both
branches would close. The left branch closes as the sub-proof for (2) will
replay identically. The right branch closes because the following variant
of (3) can be closed immediately, due to contradicting assumptions:

x > 0, y > 0, y%2 = 0, ¬(y%2 = 0) ` (y← x ‖ x← y)〈p2;q〉φ

2.2 The runtime verifier Larva

Larva2 [20] is an automata-based runtime verification tool for Java
programs. As with many other runtime verifiers, Larva automatically
generates a runtime monitor from a property written in a formal language,
in its case using Dynamic Automata with Timers and Events (DATEs).
Transitions in a DATE are of the form: event | condition 7→ action, where
event is what triggers the transition, the condition is checked and must
hold in order the transition to take place, and the action is a code snippet
to be performed when taking the transition (after checking the condition).
DATEs are an extension of timed automata — they are effectively finite
state automata, whose transitions are triggered by system events (primarily
entry points f↓ and exit points f↑ of methods) and timers, but augmented
with: (i) A symbolic state which may be used as conditions to guard
transitions and can be modified via actions also specified on the transition;
(ii) replication of automata, through which a new automaton is created
for each discovered instance of an object; (iii) communication between

2 Logical Automata for Runtime Verification and Analysis.
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start

connDrop↓ | c == 5 7→ unreliable!

connDrop↓ | c < 5 7→ c++

foreach transfer :

start bad

start↓(transfer) | true 7→ unreliable? | true 7→

receive↓ | true 7→

end↓(transfer) | true 7→

receive↓ | true 7→

Fig. 1. Example of a DATE specification.

automata using standard CCS-like channels with c! acting as a broadcast
on channel c and which can be read by another automaton matching on
event c?. Full details of the formalisation of DATEs can be found in [20].

The automata illustrated in Fig. 1 represent an example of DATE
automata describing a property which should hold during a connection.
The first automaton ensures that if the connection drops (event connDrop↓)
occurs five times, a message is broadcast (over channel unreliable) to
highlight the fact that the connection port is unreliable. The second
automaton (with the foreach keyword) ensures that every time a file
transfer is initiated, an automaton is created to monitor that transfer. If
during the transfer (i.e. between the events start↓ and end↓) one receives
event unreliable?, no further transfers may occur.

In order to monitor a system using Larva, the user must provide the
system to be monitored (a Java program) and a set of properties in the form
of a Larva script (a textual representation of DATEs). Larva transforms
the set of properties into monitoring code together with AspectJ code
to link the system with the monitors. Since the Java byte code is used
for instrumentation, it is possible to monitor third-party software with
Larva, though knowledge of methods names is still required.

3 ppDATE: A Specification Language for Data- and
Control-oriented Properties

In many cases, verification tools perform more effectively on a particular
styles of specification. In combining two different verification tools which
use very different analysis techniques, one challenge is that if we adopt an
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off-the-shelf language, we cannot expect to derive useful verification results
from both tools. Given that deductive verification tools like KeY perform
much better on data-centric properties, while runtime verification tools
like Larva perform better on control-flow properties, we have defined
a specification language to combine the two types of properties. In real
scenarios, there is often a need to specify both, rich data constraints and
legal execution sequences.

Data-oriented properties are typically written in expressive formalisms
(like first-order logic), but typically give invariants about specific points
in the execution of a system, rather than properties across traces of
execution. The Java Modelling Language (JML) [28] is one such language,
which focuses primarily on pre/postconditions of method calls and class
invariants, but is not well suited for specifying which sequences of events
or states are correct. In contrast, control-oriented specification languages
specialise primarily on identifying legal sequences of events or states, for
instance using automata or temporal logics. Although constraints about
the data are possible, they are usually cumbersome and greatly increase
the computational complexity required to verify them. Dynamic Automata
with Timers and Events (DATE) [19] are one such specification language.

Coding control-flow into data-centric languages, like coding legal ex-
ecution traces via model/ghost fields in JML, or including data-flow
information in control-centric languages, like considering variable up-
dates as events in DATE specification, can lead to substantial increase
in the complexity of the specification from an understandability and/or
verification perspective.

In order to address this, we propose ppDATE, a formalism to deal
with both types of properties ensuring understandability and tractability
of analysis using the StaRVOOrS verification framework. ppDATE [6] is
an automata-based formalism to specify both control- and data-oriented
properties. ppDATEs are basically transition systems with states and
transitions between states. Transitions are labelled by a trigger (tr), a
condition (c), and an action (a). Together, the label is written tr | c 7→ a.
A transition is enabled to be taken whenever its trigger is active and
its condition holds. A trigger is activated by the occurrence of either a
visible system event such as the invocation or termination of a method
execution, or an action event generated by certain actions labelling other
transitions. If a transition is taken, we will say that it fires. The conditions
may depend on the values of system variables (i.e., variables of the system
under scrutiny) and the values of ppDATE variables. The latter can be
modified via actions in the transitions. ppDATE states represent the
status of an observer of a system (rather then, directly, the status of
a system itself). Note that each state essentially represents the set of
observed system traces leading to that state. The language also offers
parallelism on the specification side, in the sense that different ppDATEs



Combined Static and Runtime Verification 27

q :
(i) {cups < limit} brew() {cups == \old(cups)+1}
(ii) {true} cleanF() {cups == 0}start

q′ :
(iii) {cups < limit} brew() {cups == \old(cups)}
(iv) {true} cleanF() {cups == \old(cups)}

bad

t1 : brew↓ | cups < limit 7→ skip

t4 : cleanF↓ | true 7→ skip t3 : brew↓ | true 7→ skip

t2 : brew↑ | true 7→ skip

Fig. 2. A ppDATE controlling the brew of coffee

run in parallel, possibly communicating which each other through events,
and possibly creating new ppDATEs on demand. This parallelism allows
for a strong separation of concerns in the specification.

In addition to the above, a particular feature of the ppDATE is that
states may be tagged with any number of Hoare triples, to specify the
computation of a method in a history-context sensitive way. For instance,
assume that a ppDATE state q is tagged with the Hoare triple {π}foo{π′}.
This means that, if foo is invoked after a system trace which led the
observer to q, and if furthermore π holds at the time of the invocation,
then π′ should be satisfied upon termination of this execution of foo.
This allows for data-centric specification of individual methods’ behaviour
(Hoare triple), however in a control sensitive manner (state).

Compared to usual automata based (or temporal logic based) specifica-
tion approaches, ppDATE is more expressive concerning the computation
on data. Compared to data-centric pre/post-specification (like, e.g., JML),
ppDATE can avoid the coding of some notion of status into additional
data and additional constraints in the pre/postconditions.

In the following examples, we tag transitions with labels of the form
tr | c 7→ a, where tr is the trigger of the transition, c is the condition
which has to hold when tr occurs for the transition to be taken, and a
is an action to be executed upon taking the transition. In addition, tr↓

means that method associated to the trigger tr has just been called, and
tr↑ means that method associated to the trigger tr has terminated its
execution.

Example 1. Let us consider a coffee machine system where after a certain
amount of coffee cups are brewed, its filters have to be cleaned. If the
limit of coffee cups is reached, the machine should not be able to brew
any more coffee. In addition, while the coffee machine is active (a coffee
cup is being brewed), it is not possible to start brewing another coffee, or
to clean the filters.
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Fig. 2 illustrates a ppDATE describing this part of the system. In
other words, whenever the coffee machine is not active, i.e., the machine is
not brewing a cup of coffee, and the method brew starts the coffee brewing
process, then it is not possible either to execute this method again, or
to execute the method cleanF (which initialises the task of cleaning the
filter), until the initialised brewing process finishes.

The previous property can be interpreted as follows: initially being
in state q, state which represents that the coffee machine is not active,
whenever method brew is invoked and it is possible to brew a cup of coffee
(i.e., the limit of coffee cups was not reached yet), then transition t1 shifts
the ppDATE from state q to state q′. While in q′, state which represents
that the coffee machine is active, if either method brew or method cleanF

are invoked, then transitions t3 or transition t4 shift the ppDATE to state
bad, respectively. This indicates that the property was violated. On the
contrary, if method brew terminates its execution, then transition t2 shifts
the ppDATE from state q′ to state q. Note that the names used on the
transitions, e.g. t1, t2, etc, are not part of the specification language. They
are included to simplify the description of how the ppDATE works.

In addition to this, the Hoare triples in state q ensure the properties:
(i) if the amount of brewed coffee cups has not reached its limit yet, then
a coffee cup is brewed; (ii) cleaning the filters sets the amount of brewed
coffee cups to 0. Property (i) has to be verified if, while the ppDATE is
on state q, the method brew is executed and its precondition holds. A
similar situation stands for the property (ii) with respect to the method
cleanF. Regarding state q′, the Hoare triples in this state ensure the
properties: (iii) no coffee cups are brewed; (iv) filters are not cleaned.
Property (iii) and (iv) are verified if either method brew and method
cleanF are executed, and their preconditions hold, respectively. Here,
remember that this state represents that the coffee machine is active.
Thus, if it occurs that either the method brew or the method cleanF are
executed while the ppDATE is on this state, then, as this would move the
ppDATE to state bad, one would expect the value of the variable cup to
remain unchanged. This is precisely what is verified when either property
(iii) or (iv) are analysed.

Note that none of the Hoare triples makes reference to the state of the
coffee machine, i.e. there is no information about whether the machine is
active or not. This is due to fact that the state of the machine is implicitly
defined by the states of the ppDATE. If the ppDATE is in state q, the
coffee machine is not active. However, if it is in state q′, then the machine
is active. Therefore, it is possible to assume that on each state the Hoare
triples are context dependent and thus contain such information. This is
the reason why, we can describe properties with the same precondition,
but with different postconditions depending on the state of the ppDATE
in which they are placed.
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qstart

q′ :
(i) {true} fileTransfer(f) {bytes == \old(bytes) + size(f)}
(ii) {write ∈ rights(f)} rename(f,n) {name(f) == n}

bad

login↑ | sessionIsOpen() 7→ c = 0

transferFile↓ | c > 10 7→ skip
transferFile↓ | c ≤ 10 7→ c++

logout↓ | true 7→ skip

Fig. 3. A ppDATE limiting file transfers

Example 2. In this example let us consider a file system where only 10
file transfers can be performed between a log in and log out of a user.

Fig. 3 illustrates a ppDATE describing part of the behaviour of this
system. This ppDATE ensures the property: no more than 10 file transfers
take place in a single login session. In other words, once a user logs in the
system (login), she can only perform 10 file transfers (transferFile)
before logging out (logout). This fact is tracked using the ppDATE
variable c. This variable keeps count of the number of files transferred in
a single session. Whenever a user logs in, the ppDATE moves to state q′

and c is set to 0 (zero). While in q′, this variable is increased by one every
time a file transfer is performed. If at some point the user transfers a file
but the value of c is bigger than 10, then the ppDATE moves to state
bad, i.e., the property was violated.

In addition to this, the Hoare triples in state q′ ensure the properties:
(i) the number of bytes transferred increases when a file transfer is done; (ii)
renaming a file works as expected if the user has the sufficient rights.

4 The StaRVOOrS Framework

The StaRVOOrS framework (Static and Runtime Verification of Object-
Oriented Software), originally proposed in [8], combines the use of the
deductive source code verifier KeY [5] with that of the runtime mon-
itoring tool Larva [20], to analyse and monitor systems with respect
to a ppDATE specification. Note that the definition of the specification
language ppDATE, which enables the effective combination of the re-
sults from the two verification approaches, is a major contribution of
StaRVOOrS. ppDATE allows our framework to naturally address the
intrinsic differences between the verification tools — whereas one typically
verifies data-centric properties in deductive verifiers like KeY, one typically
focuses on control-flow properties using runtime verifiers like Larva.
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Fig. 4. High-level description of the StaRVOOrS framework workflow

The abstract workflow of the use of StaRVOOrS is given in Fig. 4.
This workflow is applied fully automatically in four consecutive stages:
Deductive Verification, Specification Refinement, Translation and Instru-
mentation, and Monitor Generation.

In the Deductive Verification stage, given a Java program P and a
ppDATE specification S, the module Pre/post-Condition Generator trans-
forms all the Hoare triples—assigned to the various states of S—into
JML contracts, which are textually added to P as annotations of the
respective methods. In this step, the association of pre/postcondition
pairs to ppDATE states in S is lost, which is intentional and natural.
Note that each ppDATE state represents the set of event histories leading
to that state. The deductive verifier, however, offers analysis of the effect
of methods in terms of system data, and has no notion of the history of
events preceding a method call.3 Once all JML contracts are generated,
the Deductive Verifier module uses KeY in an attempt to statically verify
each of them. The result is either a complete proof, or a partial proof
where some branches are closed and others are not (see Sec. 2.1), or an
entirely open proof, where no branches are closed. In our setting, partial
proofs are the most common case. One reason is that we use KeY only
fully automatically, not employing its interactive features. Also, we do
not assume users to provide loop invariants, or similar annotations which
support the prover. Finally, KeY has no knowledge of the context (pp-
DATE state) in which the Hoare triple at hand should hold. To illustrate
this point, consider the Hoare triples (i) and (iii) from our (deliberately
primitive) example in Fig. 2. The implementation of brew() is given by:

public void brew() {

if (!active && cups < limit)

3 There exist approaches to deductive verification which are history-aware,
including a KeY version for the compositional verification of distributed
systems [7]. These approaches are however much more heavyweight, both in
terms of specification as well as verification, than what we are aiming at in
this work. The same holds for approaches based on refinement.
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cups++;

}

KeY will produce partial proofs, only, for (i) and (iii), because the specifi-
cation does not provide information on how q and q′ relate to the field
active. In general, the missing information can be an arbitrary condition
on the system state, more than just a Boolean as is the case here.

In the Specification Refinement stage,4 the Partial Specification
Evaluation module evaluates the results produced by KeY in order to
refine S. This refinement is performed in two steps. In the first step, all
fully verified Hoare triples are deleted, resulting in a ppDATE S’. Any
Hoare triple related to a contract which is not fully verified by KeY is left
in the states of S’ to be verified at runtime. In the second step, S’ is refined
into a ppDATE S” by strengthening the preconditions of those Hoare
triples in S’ which were partially verified by KeY. For that, the partial
KeY proofs are analysed, to extract branch conditions corresponding to
the closed branches of the proof. In the example in Sec. 2.1, that ‘closed
branch condition’ is y%2 = 0 in sequent (4). Note again that the branch
condition is a condition on the prestate of the code being verified. Let
us abbreviate the ‘closed branch(es) condition’ as cbc for now. A Hoare
triple {π}foo{π′} that was partially verified by KeY is clearly equivalent
to having two Hoare triples {π ∧ cbc}foo{π′} and {π ∧ ¬cbc}foo{π′}.
However, as we know that the first one is valid (by the proof replay
argument from Sec. 2.1), only the second one needs to be checked at
runtime. For this reason, every Hoare triple {π}foo{π′} in S’ that was
partially verified by KeY is replaced by {π∧¬cbc}foo{π′}, resulting in S”.
At runtime, checking such an optimised Hoare triple is trivial whenever π
is false or cbc is true, as the postcondition does not need to be checked
then. For instance, analysis of the partial proof of Hoare triple (i) in
Fig. 2 will result in the closed branch condition ¬active. Therefore, (i) is
replaced by {cups < limit∧active} brew() {cups == \old(cups)+1}
(we simplified away double negation). Note that, in cases where the history
context, i.e., ppDATE state, is the only information that was missing to
close a partial proof, cbc actually represents a refinement of the according
ppDATE state to a condition on internal system data, which will always
be true when foo is called in that state. We can remark already here that
this is the phenomenon which made the monitoring speedup particularly
dramatic in the Mondex case study, see Sec. 10.

In the Translation and Instrumentation stage, the Specification
Translation module translates S” into an equivalent specification in DATE
format (D), which can be used by the runtime verifier Larva (see the next
stage). The most significant change of this translation is that the Hoare
triples are translated away, using notions native to DATE (see Sec. 7.2).

4 For readability, we use ∧ and ¬ in this paragraph, instead of the ppDATE
syntax && and !.
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This change also requires to instrument P, through the Code Instrumenta-
tion module, in order to (i) distinguish between different executions of the
same code unit, and to (ii) evaluate Hoare triples in the states of S” at
runtime. Regarding (i), method declarations get a new argument which is
used as a counter for invocations of this method. Regarding (ii), not every
condition in a pre/postcondition of a Hoare triple can be directly written
as a Java Boolean Expression, e.g., quantified expressions. Thus, methods
which operationalise the evaluation of those conditions are added to P.

Finally, in the Monitor Generation stage, the instrumented version
of P (P’) and the DATE specification D are used by the Runtime Verifier
module to generate a monitor M. For this, Larva generates M from D by
using aspect-oriented programming techniques to capture relevant system
events. Such events allow to link P’ with M. Later, once deployed, M and
P’ are executed together. If M identifies any violation at runtime, it will
report an error trace for further analysis.

5 Formal Definition of ppDATEs

5.1 Notation

We will use the following notation to write quantified formulae, based on
the notation used by Gries [27].

∀ x ·R(x) ·B(x)
∃ x ·R(x) ·B(x)

These formulae mean “for all x satisfying R, B is fulfilled” and “there
exists x satisfying R for which B is fulfilled”, respectively. Both R and B
are formulae potentially containing x as a free variable. We will refer to
R and B as the range and body of the quantified formula, respectively.
This notation relates to standard (un-ranged) quantified formulae in the
following way:

∀ x ·R(x) ·B(x) ≡ ∀ x · (R(x)→ B(x))
∃ x ·R(x) ·B(x) ≡ ∃ x · (R(x) ∧B(x))

5.2 ppDATE

In this section we formally define the notion of ppDATE previously
introduced in Sec. 3. In order to do so, we first introduce formal definitions
for triggers, conditions and actions.

Definition 1. Given a set of method names Σ, the syntactic category of
triggers is defined as follows:
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trigger ::= systemtrigger
| actevent?

systemtrigger ::= methodname↓ | methodname↑

where methodname ∈ Σ.

In the previous definition, systemtrigger matches a visible system
event, such as the point of entry into a method or the termination of a
method execution. Given a method name σ ∈ Σ, σ↓ represents entering
method σ and σ↑ represents the termination of the execution of σ.

In addition, actevent represents an event generated by the execution
of an action in a transition of a ppDATE, which we will call action events.
This kind of events can only be generated by bang (“!”) actions (see
Def. 2). An action h! generates the action event h, which in the next step
can activate the trigger h?. This way, action events enable communication
among ppDATEs, where h! and h? mean sending and receiving a message,
respectively.

As we have mentioned before, whenever a transition is fired an action
can be executed. The following shows the definition of actions.

Definition 2. Actions are syntactically defined as follows:

action ::= skip
| v = e
| actevent!
| create(template, args)
| action ; action
| if condSys∪V then action
| Program

skip is the effect-less action. The ‘=’ is an assignment operator, v
is a ppDATE variable and e is a (side-effect free) expression that may
depend on system variables and ppDATE variables; actevent! represents
the generation of action event actevent; create represents the creation of a
ppDATE, where template is a ppDATE template to be instantiated (see
Def. 8), and args are the values which the formal parameters of template
are instantiated with; the ‘;’ is the sequence operator for actions; if-then
is a conditional whose branching condition depends on the valuations of
system variables (Sys) and ppDATE variables (V ); and Program represents
a side-effect free program (see Def. 3), i.e., it is restricted to not have any
effect on the system which could in turn be observed by the (ppDATE
generated) monitor. For instance, a Program could perform logging of
system/monitor behaviour. More powerful Programs, which would for
instance allow error recovery, are relevant, but left for future work.

Definition 3. A side-effect free program has the properties that
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– its execution always terminates,
– the method calls on its body do not generate any observable system

event,
– it does not interfere with the system under scrutiny, i.e., it does not

modify the values of system variables.

Boolean expressions are used in different contexts: (i) conditions (c)
of transitions; (ii) conditions of if-then actions, and (iii) pre- and postcon-
ditions (π, π′) in Hoare triples. As a syntactic category for such Boolean
expressions, we chose Boolean JML expressions. They extend Boolean
Java expressions, and thereby allow Java methods as sub-expressions (like
in ‘m.get(k) == o’). Additional features of Boolean JML expressions
include universal and existential quantification, which are frequently used
in Hoare triples, the ability to refer in a postcondition to a) the return
value (with ‘\result’), and b) the preexecution value of an expression
(like in ‘x == \old(x + y)’).

Definition 4. Boolean JML expressions (BJMLE) are recursively defined
as follows:

– any side-effect free Boolean Java expression is a BJMLE,
– if a and b are BJMLEs, and x is a variable of type t, the following

expressions are BJMLEs:
• !a, a&&b, and a||b

• a ==> b (“a implies b”)
• a <==> b (“a is equivalent to b”)
• (\forall t x; a)

(“for all x of type t, a holds”)
• (\exists t x; a)

(“there exists x of type t such that a”)
• (\forall t x; a; b)

(“for all x of type t fulfilling a, b holds”)
• (\exists t x; a; b)

(“there exists an x of type t fulfilling a,
such that b”)

– replacing any sub-expression e in a BJMLE with \old(e) gives a
BJMLE,

– replacing any sub-expression in a BJMLE with \result gives a
BJMLE, (well-typedness is context dependent, see Def.5)

We do not give a formal definition of the semantics of BJMLE here,
just the following comments. The meaning of negation, conjunction, dis-
junction, implication, and equivalence are standard. The same is true for
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the first two forms of quantification. Concerning the other two forms, “. . .
a; b)”, they relate to standard quantification in exactly the same way as
was explained in Sec. 5.1. (The only difference is that there we discussed
meta-level notation, whereas BJMLE is part of ppDATE.) The constructs
\old and \result are only allowed in postconditions of Hoare-triples (i.e.,
in π′). \result refers to the return value of a (non-void) method. \old
allows to evaluate sub-expressions not in the post-state (which is the
default), but in the prestate of a method’s execution. For instance, ‘x
== \old(x + y)’ in a postcondition of method m says that the difference
between the values of x before and after the execution of m is the value
which y had before m’s execution.

In order to allow or disallow \old and \result, in the following, we
provide one syntactic category for postconditions, and one for all other
conditions.

Definition 5. The syntactic category of postconditions over variables in
Var, postcondVar, is given by Boolean JML expressions over Var. (Well-
typedness of postconditions is context dependent, assuming that \result
has the same type as the specified method.) The syntactic category condVar

is given by Boolean JML expressions over Var containing neither \result

nor \old.

Now we can formally define ppDATE. As a ppDATE describes prop-
erties about a particular system, we assume that every time we make
reference to the set of system variables, these variables belong to the
system under scrutiny.

Definition 6. Given a set of system variables Sys and a set of ppDATE
variables V , a ppDATE m is a tuple (Q, t,B, q0, Π) such that:

– Q is the finite set of states.
– t is the transition relation among states in Q, where each transition

is tagged with (i) a trigger; (ii) a condition; (iii) an action which
may change the valuation of ppDATE variables: t ⊆ Q× trigger ×
condSys∪V × action×Q.

– B ⊆ Q is the set of bad states.
– q0 ∈ Q is the initial state.
– Π is a function which tags each state of m with Hoare triples for

particular method names in Σ: Π ∈ Q −→ P(condSys × Σ ×
postcondSys).

We will write q
tr|c7→a−−−−→m q′ to mean that, given a ppDATE m whose

transition relation is t, (q, tr, c, a, q′) ∈ t. The subscript m is omitted if it
is clear from the context. In addition, we will use the usual Hoare triple
notation {π}σ {π′} ∈ Π(q) to denote (π, σ, π′) ∈ Π(q).
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Example 3. Consider once again, the ppDATE shown in Fig. 3. It can be
formalised as follows: m = (Q, t,B, q0, Π), where,

– Q = {q, q′, bad },
– V = {c},
– Σ = {fileTransfer, login, logout},
– B = {bad },
– q0 = q.

Furthermore, the transition relation t consists of four elements, including:

q′
fileTransfer↓|c≤107→c++−−−−−−−−−−−−−−−−→ q′ and q′

fileTransfer↓|c>107→skip−−−−−−−−−−−−−−−−→ bad . In addi-
tion, relation Π is defined as follows:

Π(q) = { {true} fileTransfer(f) {bytes == \old(bytes)} }
Π(q′) = { {true} fileTransfer(f) {bytes == \old(bytes) + size(f)},

{write ∈ rights(f)} rename(f,n) {name(f) == n} }

In addition to ppDATEs which exist up-front, and ‘run’ from the
beginning of a system’s execution, new ppDATEs can be created by
existing ones. For instance, one may want to create a separate ‘observer’
for each new user logged into a system. For that, one needs to be able
to define parameterised ppDATEs, which we call templates, and allow
ppDATEs to create new instantiations of templates. Given a ppDATE m,
the creation of a new ppDATE, which will run in parallel to m, can be
achieved by using action create on a transition of m. This action receives
as arguments a ppDATE template describing the ppDATE to be created
and a list of arguments to instantiate the quantified variables on the
template. Below, we formally define ppDATE templates.

Definition 7. ppDATE templates of order n are recursively defined as
follows:

– The set of ppDATE templates of order 0 is exactly the set of pp-
DATEs.

– Assume C is a syntactic sub-category of ppDATE (Def. 6), i.e., a
syntactic (sub-)category of Q, t,B, q0, or Π, respectively. If m is a
ppDATE template of order n, then λX:C.m′ is a ppDATE template
of order n+ 1, where m′ is the result of replacing, in m, some (sub-
)term trm of category C by X. We call X the template variable of
λX:C.m′.

In the above definition, a template of order n + 1 is defined by ‘ab-
stracting’ over templates of order n, annotating the abstracted ‘hole’ X
by the right category, such that template instantiation (see below) can
be guaranteed to result in a well-typed ppDATE. When constructing a
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ppDATE template, the choice of trm in Def. 7 does not matter. Its only
role is to carry well-typedness of ppDATEs over to ppDATE templates.
Informally, the above definition says that, within λX:C.m′, the X can
appear anywhere in m′ where a term of category C is expected.

We will refer to ppDATE templates without referring to an order to
mean templates that are not of order greater than 0. Formally:

Definition 8. The set of ppDATE templates Tppd, is defined as the
union of ppDATE templates of order n ≥ 1.

If X is a vector of template variables X1, . . . , Xn and C is a vector
of syntactic categories C1, . . . , Cn, then we can write λX:C.m to mean
λX1:C1 . . . λXn:Cn.m.

Finally, we define what it means to instantiate a ppDATE template:

Definition 9. Given a term trm of syntactic category C, the instantiation
of a ppDATE template with term trm, denoted inst(m, trm), is defined
by:

inst(λX:C.m, trm) = m[X/trm]

where m[X/trm] denotes the result of substituting all occurrences of X in
m by trm.

We can expand template instantiation to multiple arguments in the
following way. Given n ≥ 2, assume X = X1, . . . , Xn, and C = C1, . . . , Cn,
and trm = trm1, . . . , trmn (with trmi ∈ Ci). We extend the instantiation
function inst to an arbitrary number of arguments in the following way:

inst(λX:C.m, trm)
= (by syntactic convention)

inst(λX1:C1 . . . λXn:Cn.m, trm1, . . . , trmn)
df
=
inst(inst(λX1:C1 . . . λXn:Cn.m, trm1), trm2, . . . , trmn)

Example 4. Fig.5 illustrates a ppDATE template, based on the ppDATE
depicted in Fig. 2. Let us call it one-at-a-time. This template has two
parameters: C, which represents a condition, and S, which represents a
method name. Then, by executing the action create(one-at-a-time, cups <
limit, brew↓), it would instantiate the ppDATE depicted in Fig.6, i.e., C
is instantiated with cups < limit and S is instantiated with brew. This
ppDATE specifies the property: it is not possible to brew one more coffee
cup until the brewing process is done.

In the rest of this work we will only consider the use of deterministic
ppDATEs. Formally:
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one-at-a-time = λ C, S : cond, trigger.

qstart

q′

bad

S↓ | C 7→ skip

S↓ | true 7→ skip

S↑ | true 7→ skip

Fig. 5. ppDATE template example.

inst(one-at-a-time, cups < limit, brew) =

qstart

q′

bad

brew↓ | cups < limit 7→ skip

brew↓ | true 7→ skip

brew↑ | true 7→ skip

Fig. 6. ppDATE created using the template illustrated in Fig. 5.

Definition 10. We say that a ppDATE m is deterministic if, for any
two transitions of m with same trigger tr which go from a state q to a
different state, their conditions are mutually exclusive:

∀ tr, c, c′, a, a′, q, q′, q′′·
q
tr|c7→a−−−−→m q′ and q

tr|c′ 7→a′−−−−−→m q′′ · not(c and c′)

In addition, although determinism on the Hoare triples’ preconditions
is not problematic in itself, we choose to extend the determinism condi-
tion to ensure that for any two Hoare triples in a single state over the
same function have disjoint precondition so as to have a more effective
monitoring algorithm of these triples: for any {π1}σ {π′1} and {π2}σ {π′2}
in Π(q), not(π1 and π2).

After having defined (individual) ppDATEs, we can now define a
network of ppDATEs.

Definition 11. Given a set of system variables Sys, a ppDATE network
pn is represented with a tuple (M,V, ν0, Tppd):
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– M is a set of ppDATEs. If m ∈M , then we say that m = (Qm, tm, Bm,
q0m, Πm).

– V is a set of ppDATE variables.
– ν0 is the initial valuation5 of variables in V .
– Tppd is a set of ppDATE templates.

Note that on a network, whenever a trigger is activated, several pp-
DATEs can have an enabled transition ready to be fired, i.e., a transition
whose trigger is active and whose condition holds. Whenever this happens
all these enabled transitions are fired in parallel. Also note that the set
of ppDATE variables V is global to the network of ppDATEs, rather
than local to individual ppDATEs. Thereby, V is effectively the ‘shared
memory’ of the network.

Finally, we extend the notion of deterministic ppDATE to a ppDATE
network.

Definition 12. A ppDATE network pn = (M,V, ν0, Tppd) is determinis-
tic whenever every ppDATE in M is deterministic and every ppDATE
which can be created when executing action create is deterministic.

6 ppDATE semantics

In this section we present the semantics of a network of ppDATEs by
introducing Structural Operational Semantics (SOS) rules. These rules
will show how a global configuration is shifted to a new one by considering
events and system variables valuations in a system trace.

Informally, a global configuration (L, ν) (of a ppDATE network) con-
sists of a set L of local configurations (one for each ppDATE in the set
of ppDATEs of the network and one for each generated instance of a
ppDATE template), and a valuation ν of the set of ppDATE variables
V (associated to the ppDATE network). The local configurations store
the current state, and record, for each ongoing method execution whose
precondition was fulfilled at call time, the postcondition to be checked on
exit.

Every time the system under scrutiny generates an event, e.g., by
entering or leaving a method, every local configuration in L which has an
enabled transition will, simultaneously, replace its current state value by
the state indicated in the fired transition, and execute the action of this
transition, also simultaneously. For instance, given a ppDATE m whose

current state is q, and with a transition t1 of the form q
tr|c7→a−−−−→m q′, if a

system event that activates trigger tr occurs and condition c holds, then
t1 is fired, state q is replaced by q′ in the appropriate local configuration
in L, and a is executed. Regarding the executed actions, if they contain

5 A valuation is a mapping from variables to values of adequate types.
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ppDATE variables assignments, those assignments change the valuation
ν. In addition, if these executions generate action events, those events will
be stored in a buffer.

Once all the previous enabled transitions are fired, every transition
that become enabled by the events in the buffer will be fired as well. For
instance, let us assume that action a in transition t1 (only) generates the
action event h, i.e., a = h!, and that a ppDATE m′ running in parallel to

m is in state q′′, and has a transition t2 of the form q′′
h?|true7→a′−−−−−−−→m′ q′′′.

Then, whenever t1 is fired, execution of h! will add to the buffer an event
which will enable t2, due to the fact that trigger h? is activated by h and
its condition (trivially) holds. Therefore, after firing t1, t2 will be also
fired.

Note that before firing all the transitions enabled by the events in
the buffer, the buffer will be emptied. Therefore, the buffer only contains
events generated by the recent action executions, and no events from
previous ones. This procedure is repeated until no new action event is
generated, i.e., the buffer is empty.

6.1 Events, Valuations, and Traces

ppDATE networks describe which system behaviours are allowed, and
which are not. Here, we consider as behaviour basically a series of system
events, where each event also comes with a ‘snapshot’ of the values
of (visible) system variables, taken at the time where the event occurs.
Formally, these snapshots are valuations, i.e., mappings from variables to
values (of adequate types). Apart from the observed system, the ppDATE
networks themselves may create new events.

An event may therefore either be a system event (i.e., an event gener-
ated by the system under scrutiny due to entering or leaving a method)
or an action event (i.e., an event generated by the execution of an action
! in a ppDATE transition). Formally:

Definition 13. Given a set of method names Σ, the syntactic category
of events is defined as follows:

ξ ::= systemevent | actevent
systemevent ::= systemtriggerN

A systemevent consists of a systemtrigger which is indexed with a
natural number representing nth execution of the method associated to
the trigger. Such an index will be considered an identifier6 unique to each
execution of the method.

6 These identifiers can be created automatically using techniques as those
presented in [24] or through stack frame references.
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We distinguish the set of system variables valuations ΘSys, with typical
element θ, and the set of ppDATE variable valuations N , with typical
element ν. We represent valuations both as functions and (functional)
relations7, i.e., sets of pairs. This means that the notation β(v) = val
is equivalent to the notation (v, val) ∈ β. The union of valuations is
therefore a set union such that, for any two valuations β and β′, β ∪ β′ =
{(v, val) | (v, val) ∈ β or (v, val) ∈ β′}. In the presentation of examples,
we limit the valuations to those variables which matter for the example
at hand, for simplicity.

In our semantic rules, we will use union over valuations only when the
domain of valuations, the variable sets, do not overlap, like for instance in
θ ∪ ν. Another operation on valuations is the modification of a valuation
β at variable x by value val, written β[x← val]. It is defined as:

β[x← val](v) =

{
val iff v = x
β(v) otherwise

Given a set of variables S, a valuation β for S, and condition c ∈ condS ,
we will write β |= c to denote that c is satisfied by β. This is however
not sufficient for postconditions, as they can refer to two valuations,
after and before (“\old”) a method’s execution. For that, |= will be
overloaded. Given a set of system variables Sys, valuations θ and θ′ for
it, and a postcondition c ∈ postcondSys, we will write θ, θ′ |= c to denote
that c is satisfied by θ and θ′. When this is used, θ′ will be the current
valuation of Sys when exiting a certain method execution, whereas θ holds
the valuation from before that method execution. We only sketch the
definition of |= here, as it mainly follows the standard of first-order logic
semantics. We use the two semantic truth values T and F . For c ∈ condS ,
we define β |= c iff evalβ(c) = T , where evalβ is recursively defined over
the structure of c in the way which is standard in first-order logic8, with
the base case evalβ(x) = β(x) for variables x. In case of postconditions
c ∈ postcondSys, we define θ, θ′ |= c iff evalθ,θ′(c) = T . The definition
of evalθ,θ′ is almost identical to the definition evalβ , with the base case
evalθ,θ′(x) = θ′(x) for program variables x. The only case in the definition
where the other parameter, the prevaluation θ, matters is the evaluation
of \old-expressions: evalθ,θ′(\old(e)) = evalθ(e). This means that, in
postconditions, the post-valuation θ′ acts as the default, however not
inside \old-expressions, where instead the prevaluation θ counts.

A system trace is a sequence of tuples consisting of an event and
‘system snapshot’, i.e., a valuation of the system variables, taken at the
time when that event occurs.

7 A (binary) relation R is functional if {(x, y), (x, y′)} ⊆ R implies y = y′.
8 To be precise, eval has one extra parameter, which is a logical variable

assignment, needed to define the evaluation of quantified formulas. We omit
that parameter, because it is unimportant for our discussion here.
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Definition 14. A system trace w is a sequence of tuples in systemevent×
ΘSys, i.e. w ∈ (systemevent×ΘSys)

∗. The first component of these tuples
consists of a system event and the second one is the valuation of the set
of system variables Sys.

6.2 Configurations

Given a system trace w, each tuple in w will shift a global configuration
of a ppDATE network to another. Global configurations are defined with
the help of local ones, so we start there.

Definition 15. Given a set of method names Σ, a local configuration is
a tuple (m, q, ρ) where m is a ppDATE, q ∈ Qm, and ρ ⊆ P(systemevent×
postcondSys ×ΘSys).

The tuple (m, q, ρ) is a configuration of ppDATE m — where q repre-
sents the current state, and ρ allows to monitor potential violations of
Hoare triples. For that, ρ stores which exit event (∈ systemevent) should
cause a checking of which postcondition (∈ postcond). The semantic rules
described below (Sec. 6.4) will guarantee that only method exit events (of

the form σ↑i ) will appear in ρ. During the processing of a trace, the appear-

ance of (σ↓i , θ) at the same time as the current state has a Hoare-triple
with a fulfilled precondition, θ |= π, the corresponding postcondition π′ is

associated with σ↑i in ρ, together with θ. Later, the appearance of (σ↑i , θ
′)

will cause a look-up of (σ↑i , π
′, θ) in ρ, in order to check θ, θ′ |= π′.

Example 5. Recall the ppDATE illustrated in Fig. 2, here called m. Its
initial local configuration is (m, q, ∅). Then, after firing transition t1
whenever certain system event brew

↓
id (with id ∈ N) occurs, assuming

that the field cups is valuated to zero, the next local configuration is
(m, q′, {(brew↑id, cups == \old(cups) + 1, {(cups, 0)})}).

Definition 16. Given ppDATE network pn = (M,V, ν0, Tppd), a global
configuration for pn is a tuple (L, ν) such that:

– L is a set of local configurations. For each m ∈M , there is exactly one
q and one ρ, such that (m, q, ρ) ∈ L. For each (m, q, ρ) ∈ L, we have
q ∈ Qm and either m ∈M or m = inst(t, args), for some t ∈ Tppd.

– ν is ppDATE variable valuation with domain V .

Before giving an example, we define the notion of initial global config-
uration for a ppDATE network.

Definition 17. Given ppDATE network pn = (M,V, ν0, Tppd) where
m ∈ M is defined as a tuple (Qm, tm, Bm, q0m, Πm), the initial global
configuration Cinit(pn) is defined as the tuple (L0, ν0), where L0 =
{(m, q0m, ∅) | m ∈M} is the set of initial local configurations.
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Example 6. Let us assume that a ppDATE network pn = ({m,m′}, {v},
{(v, 0)}, ∅), such that q0m′

tr|true7→v=v+1−−−−−−−−−−→m′ q1m′ . The initial global config-
uration for pn is Cinit(pn) = (L0, {(v, 0)}), where L0 = {(m, q0m, ∅), (m′,
q0m′ , ∅)}. Then, if the given transition is fired, the new global configuration
is (L′, {(v, 1)}), where L′ = {(m, q0m, ∅), (m′, q1m′ , ∅)}.

The action in Example 6, v = v + 1, does not generate any event. But
in general, actions may generate action events. For storing those (and
ultimately process them in the next step), we introduce the concept of
extended global configuration.

Definition 18. Given a network pn = (M,V, ν0, Tppd), and a set of
system variables Sys, an extended global configuration for pn is a tuple
(L, ν,E, θ) such that:

– (L, ν) is a global configuration for pn,
– E ⊆ P(ξ) is a set of events,
– θ ∈ ΘSys is a system variables valuation.

E contains the events to be processed in the next (small) step. In the
operational semantics to be described below, E will either be a singleton
set containing a system event, or a set of action events generated by the
executions of actions in the latest transition.

Example 7. Let us assume a ppDATE network pn = ({m,m′}, {v}, {(v, 0)},
∅), such that q1

foo↓|true7→h!−−−−−−−−−→m q2, q′1
h?|true7→v=v+1−−−−−−−−−−→m′ q′2, Πm(q1) =

{{π}foo{π′}}, and that q1 and q′1 are the initial states of m and m′,
respectively. In addition, let us assume that C1 = (L1, {(v, 0)}, {foo↓id}, ∅)
is an extended global configuration for pn (for some index id ∈ N),
where L1 = {(m, q1, ∅), (m′, q′1, ∅)}. Then, when the given transition of
m is fired, given that π holds and the current system variables val-
uation is θ, the next extended global configuration for pn is C2 =
(L2, {(v, 0)}, {h}, ∅), where L2 = {(m, q2, {(foo↑id, π′, θ)}), (m′, q′1, ∅)}. Af-
ter that, event h in C1 triggers the given transition of m′, leading
to the extended global configuration C3 = (L3, {(v, 1)}, ∅, ∅), where

L3 = {(m, q2, {(foo↑id, π′, θ)}), (m′, q′2, ∅)}.

The Structural Operational Semantics given in Sec. 6.4 formalises such
behaviour.

6.3 Semantics of Actions

When assigning meaning to actions, there are two levels to consider. One
is the level of the local actions, executed when an individual ppDATE
takes a transition. The semantics of those is sequential, as defined below.
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On top of the assignments changing the ppDATE variable valuation, the
local actions may generate events, and create new instances of ppDATE
templates. Both the events and new ppDATEs are simply accumulated,
in sets of events and ppDATEs, respectively.

The other level is parallel actions, where we compose simultaneous
actions of transitions taken in parallel by different ppDATEs. Here, we
need to devote special care to excluding conflicting writes to, as well as
race conditions between reads and writes from/to, the same variable. Also,
we need to make sure that if one ppDATE writes to x, while the others
do not, that the parallel composition keeps the effect of the first. All this
makes it necessary to keep track of what is written to, and read from,
already in the local actions, prior to parallel composition. However, the
treatment of the local effects and newly created ppDATEs is simper. We
just take the union of those when doing the parallel composition.

Definition 19. For each action a ∈ action, its meaning [[a]]θ,ν (rela-
tive to system/ppDATE variable valuations θ and ν) is given by a tuple
(ν′,W,R,E,New), where:

– ν′ ∈ N is a ppDATE variable valuation computed (locally) in a,
– W ⊆ V is a set of ppDATE variables written to in a,
– R ⊆ V is a set of ppDATE variables read from in a,
– E ⊆ actevent is a set of action events generated in a,
– New ⊆ ppDATE is a set of ppDATEs newly created in a.

Given that pvars returns the ppDATE variables appearing in its argu-
ment(s), [[a]]θ,ν = (ν′,W,R,E,New) is defined as follows

[[skip]]θ,ν = (ν, ∅, ∅, ∅, ∅)
[[v = e]]θ,ν = (ν[v ← evalθ∪ν(e)], {v}, pvars(e), ∅, ∅)

[[h!]]θ,ν = (ν, ∅, ∅, {h}, ∅)
[[create(t, args)]]θ,ν = (ν, ∅, pvars(args), ∅, inst(t, args))

[[a1 ; a2]]θ,ν =





(ν2,W1 ∪W2, R1 ∪R2, E1 ∪ E2,New1 ∪New2)
where
[[a1]]θ,ν = (ν1,W1, R1, E1,New1)

and
[[a2]]θ,ν1 = (ν2,W2, R2, E2,New2)

[[if c then a]]θ,ν =





(ν′,W,R ∪ pvars(c), E,New)
if θ ∪ ν |= c and [[a]]θ,ν = (ν′,W,R,E,New)

(ν, ∅, pvars(c), ∅, ∅)
otherwise

[[prog]]θ,ν = [[skip]]θ,ν

Following the definition of actions (Def. 2), the prog in the last line
above is a side-effect free program, i.e., it has no effect which could be
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noticed in the current formalism, which is why we can simulate it with
skip. prog will have purposes orthogonal to our formalisation, like logging.

We are now in the position to define the parallel composition of actions.
Imagine we have a configuration with 5 parallel ppDATEs, 3 of which have
currently enabled transitions, with actions a1, a2, and a3, respectively.
Assume moreover that the current ppDATE variable valuation is ν. The
parallel composition of the meaning of a1, a2, and a3, i.e., of [[a1]], [[a2]], and
[[a3]], is performed by mergeParalActsν({[[a1]], [[a2]], [[a3]]}) = (ν′, E′,New′).
The function mergeParalActs takes a set of semantic actions as input,
and computes a resulting valuation ν′, a resulting set of events E′, and a
resulting set of newly generated ppDATEs, New ′. The sets E′ and New ′

will simply be the union of the corresponding sets from [[a1]], [[a2]], and
[[a3]]. But the resulting valuation is slightly more involved. Actions may
conflict (e.g., we write to the same variable in different actions), or have
race conditions (i.e., we read from a variable and write to it in different
actions). In those cases, we leave the result of mergeParalActs deliberately
undefined. In all other cases, the different effects of the actions are merged.
The index of the merging function, ν, serves as a fall back for those
variables which have not been written to. In particular, the ν′ = ν in case
the set of actions to be merged is empty.

These explanations are formalised in the following function, merging
a set of action meanings (Def. 19):

Definition 20.
mergeParalActsν({(ν1,W1, R1, E1,New1), . . . , (νn,Wn, Rn, En,Newn)})

=





undefined
if ∃ i, j · (i, j ∈ [1, .., n] and i 6= j) · (Wi ∩Wj 6= ∅ or Wi ∩Rj 6= ∅)

(ν′, E′,New′) otherwise, where

E′ =
⋃n
i=1Ei, New′ =

⋃n
i=1 Newi, ν

′(v) =

{
νi(v) if v ∈Wi

ν(v) if v 6∈ ⋃ni=1Wi

Note that, if there are no actions to merge, we have mergeParalActsν(∅) =
(ν, ∅, ∅).

6.4 Structural Operational Semantics

In this section we give structural operational semantics rules (SOS) for
ppDATEs. These rules will have the following generic form:

name

H1

· · ·
Hn

Goal
where name is a label used to identify the rule, Goal is the property
enforced by the rule and the premises H1, · · · , Hn are assumptions over
the values of the Goal.
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Predicate Definitions In the semantic definitions given below, we use
the following predicates, as abbreviations.
activatedBy Given a (transition) trigger tr and an event e, predicate
activatedBy(tr, e) holds if tr and e match, in the following way:

activatedBy(tr, e)
df
={

∃ i · i ∈ N · e = tri iff e ∈ systemevent
tr = e? iff e ∈ actevent

For instance, the trigger σ↓ is activated by the systemevent σ↓3, and the
trigger h? is activated by actevent h (generated before by the execution
of action h!).

nextState Given a local configuration (m, q, ρ), a state q′, an event
e, a system variables valuation θ and a ppDATE variables valuation ν,
predicate nextState holds whenever there exists an enabled transition on
m going from q to q′. We formally write this as follows,

nextState((m, q, ρ), e, θ, ν, q′)
df
=

∃ tr, c, a · q tr|c7→a−−−−→m q′ and
activatedBy(tr, e) and θ ∪ ν |= c

checkOnExit Given a local configuration (m, q, ρ), a system event

σ↓id, a system variables valuation θ, and a postcondition π′, predicate
checkOnExit holds if there exists a condition π such that the Hoare-triple
{π}σ {π′} is associated to state q, and π holds. We formally write this as
follows,

checkOnExit((m, q, ρ), σ↓id, θ, π
′)

df
=

∃ π · {π}σ {π′} ∈ Πm(q) and θ |= π

enabled Given a local configuration l, an event e, a system variables
valuation θ, and a ppDATE variables valuation ν, predicate enabled holds
if either l has an enabled transition or it has a Hoare triple associated to
q which has to be memorised. Formally,

enabled(l, e, θ, ν)
df
=

∃ q′ · nextState(l, e, θ, ν, q′)
or
∃ π′ · checkOnExit(l, e, θ, π′)

toBeExecuted Given a local configuration (m, q, ρ), an event e, a system
variables valuation θ, a ppDATE variables valuation ν, and an action a,
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predicate toBeExecuted holds if there exists an enabled transition such
that a is its action. Formally,

toBeExecuted((m, q, ρ), e, θ, ν, a)
df
=

∃ tr, c, q′ · activatedBy(tr, e) and

q
tr|c 7→a−−−−→m q′ and θ ∪ ν |= c

Small Steps for Local Configurations The first step to define SOS
rules describing the behaviour of a ppDATE network is to introduce rules
showing how a local configuration performs a small step.

Given an event e, a system variables valuation θ, and a ppDATE
variables valuation ν, a small local configuration step (or simply small

step local), written
(e,θ,ν)
↪−−−−→, takes a local configuration (m, q, ρ) to some

other local configuration (m, q′, ρ′). This step relation is defined by the

rules shown in Fig. 7. If e is an entry event of the form σ↓id, there are
three different possibilities: (i) there is an enabled transition in m going
from state q to state q′, and there is a Hoare triple {π}σ {π′} associated
to q such that π holds (entry1); (ii) there is an enabled transition in m
going from state q to q′, but no Hoare triple {π}σ {π′} associated to q
such that π holds (entry2); or (iii) there are no enabled transitions in m,
but there is a Hoare triple {π}σ {π′} associated to q such that π holds
(entry3).

In case of (entry1), the next state reached by the enabled transition

is q′, and ρ gets extended by the tuple (σ↑id, π
′, θ), in order to track the

information about the postcondition which has to be checked upon the
exit of method σ. Entry event identifiers are assumed to be unique in
traces, and thereby, σ↑id is unique in ρ. In case of (entry2) and (entry3),
only one of these two effects takes place. Then, apart from entry events,
whenever e is either an exit event, i.e., it has the form σ↑id, or an action

event, by the rules exit and act, respectively,
(e,θ,ν)
↪−−−−→ results in the local

configuration (m, q′, ρ), where q′ is the next state reached by the enabled
transition.

Small Steps for Extended Global Configurations Given an ex-
tended global configuration EC = (L, ν,E, θ), the relation small step for
extended global configurations (or simply small step global), written as �,
takes EC to some extended global configuration (L′, ν′, E′, θ) by following
rule iter, which is depicted in Fig. 8. On this rule’s premises, first of all, we
define the set Len of all the local configurations (m, q, ρ) ∈ L such that m
has an enabled transition whose triggers are activated by the events in E.
Then, Len is used to define both the set Lnch of local configurations in L
that will not change, and the set Lch of the local configurations obtained
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entry1

checkOnExit((m, q, ρ), σ↓id, θ, π
′)

nextState((m, q, ρ), σ↓id, θ, ν, q
′)

(m, q, ρ)
(σ

↓
id
,θ,ν)

↪−−−−−→ (m, q′, ρ ∪ {(σ↑id, π′, θ)})

entry2

@ π′ · checkOnExit((m, q, ρ), σ↓id, θ, π
′)

nextState((m, q, ρ), σ↓id, θ, ν, q
′)

(m, q, ρ)
(σ

↓
id
,θ,ν)

↪−−−−−→ (m, q′, ρ)

entry3

checkOnExit((m, q, ρ), σ↓id, θ, π
′)

@ q′ · nextState((m, q, ρ), σ↓id, θ, ν, q
′)

(m, q, ρ)
(σ

↓
id
,θ,ν)

↪−−−−−→ (m, q, ρ ∪ {(σ↑id, π′, θ)})

exit
nextState((m, q, ρ), σ↑id, θ, ν, q

′)

(m, q, ρ)
(σ

↑
id
,θ,ν)

↪−−−−−→ (m, q′, ρ)

act

e ∈ actevent
nextState((m, q, ρ), e, θ, ν, q′)

(m, q, ρ)
(e,θ,ν)
↪−−−−→ (m, q′, ρ)

Fig. 7. Small Step Rules for Local Configurations

iter

Len = {l | l ∈ L, enabled(l, e, θ, ν), e ∈ E}
Lnch = L\Len

Lch = {l′ | l ∈ Len, l
(e,θ,ν)
↪−−−−→ l′, e ∈ E}

Acts = {a | l ∈ Len, toBeExecuted(l, e, θ, ν, a), e ∈ E}
mergeParalActsν({[[a]]θ,ν |a ∈ Acts}) = (ν′, E′,New′)

Lnew = {(m, q0m, ∅) | m ∈ New′}
L′ = Lch ∪ Lnch ∪ Lnew

(L, ν,E, θ) � (L′, ν′, E′, θ)

Fig. 8. Small Step Rule for Extended Global Configurations

after performing a small step on the local configurations in Len. We will
use these two sets later to define L′. Next, we define the set Acts of all
the actions which label the ‘firing’ transitions, and merge the meaning
of those actions, which results in the valuation ν′ and events E′ of the
new extended global configuration. We also initialise local configurations
Lnew for the newly created ppDATEs from New′. Finally, L′ is the union
of Lch, Lnch and Lnew.
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shift
(L, ν, {e}, θ) �∗ (L′, ν′, ∅, θ)

(L, ν)
(e,θ)
===⇒ (L′, ν′)

Fig. 9. Big Step Rules for Global Configurations

Note that if mergeParalActs is undefined, due to conflicts in parallel
variable assignments (see Def. 20), then no global small step is defined,
i.e., the execution aborts.

Big Steps for Global Configurations Given a ppDATE network pn =
(M,V, ν0, Tppd), a global configuration (L, ν) such that for all (m, q, ρ) ∈ L,
m ∈ M and q ∈ Qm, and ν a valuation of the ppDATE variables V , a
system event e and the system variables valuation θ, the relation big step

rules for global configurations (or simply big step global), written
(e,θ)
==⇒,

shifts (L, ν) to some global configuration (L′, ν′), written (L, ν)
(e,θ)
==⇒

(L′, ν′), by rule shift given in Fig. 9. Note that, on this level, e and θ are
external to the global configuration of the ppDATE network. Indeed, e
and θ come from the system, and act as input to each step of the global
configuration.

This rule means that whenever e occurs while the current system
variables valuation is θ, (L, ν) shifts to (L′, ν′) if the transitive closure of
relation small step global (�, Fig. 8) takes the extended global configu-
ration (L, ν, {e}, θ) to the extended global configuration (L′, ν′, ∅, θ). We
need the transitive closure because the execution of actions may generate
action events which also have to be consumed, meaning that we iterate
using small step global until the set obtained by applying rule iter is the
empty set. After having reached (L′, ν′, ∅, θ), the small steps are saturated,
because any configuration ( , , ∅, ) is a fixed-point of �.

Lemma 1. For each set of local configurations L, ppDATE variable valu-
ation ν, and system variables valuation θ, the extended global configuration
(L, ν, ∅, θ) is a fixed-point of the relation small step global, i.e.,

(L, ν, ∅, θ) � (L, ν, ∅, θ)

Proof. In rule iter (Fig. 8), if E = ∅, then Len = Lch = Acts = ∅, and
Lnch = L. From the note below Def. 20, we deduce that (ν′, E′,New′) =
(ν, ∅, ∅), such that Lnew = ∅, and L′ = Lnch = L. Therefore, (L′, ν′, E′, θ) =
(L, ν, ∅, θ).

We can now define the semantics of ppDATEs by identifying how a
system trace changes the global configuration associated to a network of
ppDATEs.
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Definition 21. We define how a system trace w ∈ (systemevent×ΘSys)
∗

shifts a ppDATE from the global configuration (L, ν) to the global configu-

ration (L′, ν′), written (L, ν)
w
=⇒ (L′, ν′), by induction over w:

(L, ν)
ε

=⇒ (L′, ν′)
df
= L = L′ and ν = ν′;

(L, ν)
w:(e,θ)
====⇒ (L′, ν′)

df
=

∃ L′′, ν′′ · (L, ν)
w
=⇒ (L′′, ν′′) and (L′′, ν′′)

(e,θ)
==⇒ (L′, ν′);

For this definition we will overload the operator we previously in-
troduced to represent the relation big step global, i.e., ⇒ since it is
straightforward to distinguish between the two from the context.

6.5 Valid Traces and Violating Traces

Before defining violating system traces, we have to introduce the notion
of counter-example.

Definition 22. Given a network of ppDATEs pn = (M,V, ν0, Tppd), a
system trace w ∈ (systemevent × ΘSys)

∗ is called a counter-example if

Cinit(pn)
w
=⇒ (L, ν), and (i) ∃ m, q, ρ · (m, q, ρ) ∈ L · q ∈ Bm; or (ii)

w = w1 ++ 〈(σ↑id, θ′)〉, Cinit (pn)
w1=⇒ (L′, ν′) and ∃ m, q, ρ, π′, θ · ((m, q, ρ) ∈

L′and (σ↑id, π
′, θ) ∈ ρ) · θ, θ′ 6|= π′.

Note that (i) and (ii) are not exclusive, so a counter-example may
have both properties at once.

Example 8. Recall the ppDATE m shown in Fig. 2. If m is in state q and
event cleanF↓1 occurs, the postcondition of {true} cleanF() {cups == 0}
is violated when method cleanF terminates. Thus, both w = 〈(brew↓1, θ),
(brew↓2, θ)〉 and w′ = 〈(brew↓1, θ), (brew↑1, θ), (cleanF↓1, θ), (cleanF↑1, θ),
(brew↓2, θ)〉 are counter-examples.

Definition 23. The set of violating system traces of a ppDATE network
pn, written VT (pn), is defined to be system traces which have a counter-
example of pn as a prefix.

Definition 24. The set of valid system traces of a ppDATE network
pn, written VAT (pn), is defined to be the system traces which are not
violating.

Example 9. The following system traces, for the coffee machine system of
Fig. 2, are all valid:

w = 〈(brew↓1, θ), (brew↑1, θ), (brew↓2, θ), (brew↑2, θ)〉
w′ = 〈(brew↓5, θ), (brew↑5, θ), (cleanF↓2, θ), (cleanF↑2, θ)〉
w′′ = 〈(cleanF↓4, θ), (cleanF↑4, θ), (brew↓2, θ), (brew↑2, θ)〉
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7 From ppDATE to DATE

In our framework (see Sec. 4), KeY first tries to prove all Hoare-triples of
a ppDATE m, and then the partial proofs are used to get an optimised
ppDATE m′. To make the property m′ runtime-checkable, we further
translate away the (remaining/optimised) Hoare triples, to arrive at a set
of parallel (pure) DATEs that can be processed by Larva.

In this section, we formally define DATEs, we present the algorithm
used by StaRVOOrS to translate ppDATEs into DATEs, finally, after
introducing the semantics of DATEs, we prove soundness of the transla-
tion.

7.1 DATE

DATE [19] is a formalism similar to ppDATE, except that the automata
do not include Hoare triples in the states. DATEs also include support
for timers, which are not in ppDATEs. However, since the work we
present here does not use timers, we leave them out from the formalisa-
tion.Formally:9

Definition 25. A DATE is a ppDATE of the form (Q, t,B, q0, Π∅),
where relation Π∅ represents that there are no Hoare triples assigned
to any of the states in Q, i.e., Π∅(q) = ∅, ∀q ∈ Q.

Note that since a DATE is effectively a ppDATE, the semantics for
DATEs are already covered by the semantics of ppDATEs. We will also
refer to a (deterministic) network of ppDATEs where each ppDATE in
the network is a DATE, as a network of DATEs and similarly DATE
templates.

7.2 Translation from ppDATEs to DATEs

Here we present how to translate a ppDATE (network) into a DATE
(network). However, first, let us intuitively analyse how the ppDATE
depicted in Fig. 2, which we will refer to as m, can be translated into a
DATE m′.

For simplicity, we assign the following names to the different Hoare
triples in the states of m.

– h1: {cups < limit} brew() {cups == \old(cups)+1}
– h2: {true} cleanF() {cups == 0}

9 Note that the definition of DATE given here is different from the one given
in [19] as Π∅ was not defined in the original formulation. It is easy to see that
the formulations are equivalent (modulo the differences mentioned above).
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exit cond checker = λ S,A : Σ, cond.

start ok

bad

S↑ | A 7→ skip

S↑ | ¬A 7→ skip

Fig. 10. DATE template for verifying postconditions of Hoare triples.

– h3: {cups < limit} brew() {cups == \old(cups)}
– h4: {true} cleanF() {cups == \old(cups)}

Then, we begin the translation by generating the DATE template
illustrated in Fig. 10, which will be used to create DATEs in charge of
controlling the postconditions of the previous Hoare triples.

Next, we start dealing with the translation of the transitions of m.
m′ will have exactly the same set of states as m, and it will have similar
transitions to the ones of m. The only difference is that the transitions
in m′ will also have to address the verification of the Hoare triples. For
instance, while being in state q, if the method brew() is executed and the
precondition of h1 holds, then its postcondition will have to be verified
whenever method brew() finishes its execution.

Therefore, for every transition of the form q
σ↓|c 7→a−−−−−→m q′, such that

a Hoare triple {π}σ {π′} is in q, m′ will include a modified version of
this transition in such a way that whenever this transition is fired, if π
holds, then the execution of its action will have to create an instance of
template exit cond checker. Thus, transitions t1, t3 and t4 (recall Fig. 2)
are modified as follows:

– t′1 : q
brew↓|cups<limit7→skip ; a1−−−−−−−−−−−−−−−−−→m′ q′

– t′3 : q′
brew↓|true7→skip ; a2−−−−−−−−−−−−−→m′ bad

– t′4 : q′
cleanF↓|true7→skip ; a3−−−−−−−−−−−−−−→m′ bad

where,

– a1 : if (cups < limit)
then create(exit cond checker,brew,part eval(cups==\old(cups)+1))

– a2 : if (cups < limit)
then create(exit cond checker,brew,part eval(cups==\old(cups)))

– a3 : if (true)
then create(exit cond checker,cleanF,part eval(cups == \old(cups)))
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In the previous transitions we have used as the conditions of the
if-expressions in actions a1, a2 and a3, the preconditions of the different
Hoare triples to be verified in each case. Moreover, function part eval par-
tially evaluates its argument, replacing the expressions \old(e) operator
the current value of e. If a postcondition does not include such operator,
then part eval is the identity. Note that even though the if-expression
in transition t′4 may seem unnecessary, we include it anyway in order to
exactly reflect how the translation algorithm works.

In addition, if at a certain state, a Hoare triple has to be verified, but
in that state there are no outgoing transitions with an event related to
the method in the Hoare triple, then a new transition is added to m′ in
order to be able to control such Hoare triple. For instance, in state q the
following self-transition has to be added in order to verify h2 and h3.

– t′5 : q
cleanF↓|true7→a4−−−−−−−−−−−→m′ q

where,

– a4 : create(exit cond checker,cleanF,part eval(cups == 0))

Again, we use the preconditions of the Hoare triples as conditions of the
previous action.

Given a transition q
tr|c7→a−−−−→m q′ such that (i) tr fires upon exiting a

method, or (ii) tr fires upon entering a method but there is no Hoare triple
associated to this method in q, these transitions remain untouched, i.e., it

is translated as q
tr|c7→a−−−−→m′ q′. For instance, transition t2 is translated as

follows.

– t′2 : q′
brew↑|true7→skip−−−−−−−−−−→m′ q

Fig 11 illustrates the DATE obtained when translating m following
the previous steps (i.e., m′). Note that whole translation would consist
on the previous DATE and the generated template exit cond checker.

Translation Algorithm For clarity of presentation we give two algo-
rithms, one for the case when no Hoare triples clashes arise, and one for
the full case. Intuitively, we call it a clash if the behaviour of a method σ,
in a certain ppDATE state q, is defined by both, a Hoare triple in q, and
an outgoing transition from q. Formally, we define a clashing Hoare triple
as follows.

Definition 26. Given a ppDATE network pn = (M,V, ν0, Tppd) such
that every ppDATE m ∈M is defined as the tuple (Qm, tm, Bm, q0m, Πm),
a Hoare triple {π}σ {π′} ∈ Πm(q), for some q ∈ Qm, is called clashing
if an outgoing transition from q is guarded by trigger σ↓ (i.e., ∃ c, a, q′ ·
q

σ↓|c7→a−−−−−→m q′). A clash-free ppDATE is a ppDATE with no clashing
Hoare triples.



54 7. FROM PPDATE TO DATE

qstart

q′

bad

t′1

t′4 t′3

t′2

t′5

Fig. 11. Translation to DATE of the ppDATE illustrated in Fig. 2.

We now present the algorithm to translate a clash-free ppDATE
network into a DATE network. The translation works by replacing each
Hoare triple {π}σ {π′} in a state q of a ppDATE by a new reflexive
transition (from q to q) triggered by an entry into function σ such that
the precondition π holds, and a parallel DATE is created, checking the
postcondition.

We assume a function part eval ∈ postcond 7→ cond, which removes
\old constructs in postconditions. The function performs partial evaluation
— replacing each \old(e) with the current value of e. Our algorithm
syntactically places the part eval function in an action that will be
executed when the according method is entered, i.e., partial evaluation
does not happen during the translation algorithm, but at runtime, when
the method is entered.

Algorithm 1. Given a clash-free ppDATE network pn = (M,V, ν0, Tppd),
such that every ppDATE m ∈M is defined as the tuple (Qm, tm, Bm, q0m,
Πm), we can construct a DATE network equivalent to pn in the following
manner:
1. With each Hoare triple {π}σ {π′} in a ppDATE state, replace in π′

each instance of the \result by the variable ret. This variable will
represent the value returned by the method associated to the Hoare
triple/

2. Generate the following DATE template:
exit cond checker = λ S,A : Σ, cond.

start ok

bad

S↑ | A 7→ skip

S↑ | ¬A 7→ skip
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This template will be used to create DATEs handling the verification
of the postcondition of the method.

3. Transform M , the set of ppDATEs of pn, into the set of DATEs
M ′ = {m′ | m′ = (Qm, t

′
m, Bm, q0m, Π∅),m ∈ M} such that t′m

follows the rules below:

3a. each Hoare triple {π}σ {π′} in Πm(q) is replaced by q
σ↓|π 7→a−−−−−→m′

q, where a = create(exit cond checker, σ,part eval(π′));

3b. each transition q
tr|c 7→a−−−−→m q′ remains unchanged, i.e. q

tr|c7→a−−−−→m′

q′

4. Translate Tppd (the set of ppDATE templates in pn) into a set of
DATE templates Td by repeatedly applying step 3a. and 3b. to the body
of templates.

5. Extend the set Td by including the template generated in step 2. Let
us call this extension T ′d.

6. Finally, the resulting DATE network is defined to be (M ′, V, ν0, T ′d).

This translation works well except that it would introduce non-determinism
when the ppDATE includes clashes. To extend the translation to work
in the presence of clashes, we transform Hoare triples clashing with a
transition into a family of disjoint transitions, each of which performs the
transition but also checks whether the postcondition checker should be
created.

Algorithm 2. Given a (possibly clashing) ppDATE network pn, we
construct a network of DATEs equivalent to pn by using Algorithm 1
except that we replace steps 3.a and 3.b, by the following:
3a1. Each non-clashing Hoare triple: {π}σ {π′} in Πm(q) is turned into

a transition q
σ↓|π 7→create(exit cond checker,σ,part eval(π′))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→m′ q

3a2. For each clashing Hoare triple: {π}σ {π′} ∈ Π(q), clashing with n

outgoing transitions, q
σ↓|ck 7→ak−−−−−−→ qk (0 ≤ k < n):

– Replace q
σ↓|ck 7→ak−−−−−−→m qk with: q

σ↓|ck 7→(ak; ifπ then a)−−−−−−−−−−−−−−→m′ qk;

– Add the following transition: q
σ↓|(!c0&&...&&!cn&&π)7→a−−−−−−−−−−−−−−−−−−→m′ q,

where, in both cases, a = create(exit cond checker, σ,part eval(π′))

3b. each transition q
tr|c7→a−−−−→m q′ such that either Πm(q) = ∅, Πm(q) 6= ∅

but there is no Hoare triple associated to trigger tr, or trigger tr is

activated by an exit event, remains unchanged, i.e. q
tr|c7→a−−−−→m′ q′.

7.3 Proof of Soundness of the translation algorithm

In this section we will show that the translation algorithms introduced in
the previous section are sound.
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7.4 Coupling Invariant Lemmas

Here, we formally introduce two lemmas which together form the coupling
invariant that is used to prove soundness. The proofs of these lemmas can
be found in Appendix A.

Lemma 2 states that given a trace, both a ppDATE network pn and
its translation to DATE will change their initial global configuration to
global configurations (L, ν) and (L̃, ν′), respectively, such that ν = ν′, and
that for every (m, q, ρ) ∈ L where m is in pn, there is a local configuration
(m′, q′, ∅) ∈ L̃ such that m′ is the translation of m and both m and m′

are in the same state, and vice versa.
In this lemma we represent the translation of a single ppDATE to

DATE with the function κ ∈ ppDATE 7→ DATE.

Lemma 2. Given a network of ppDATEs pn = (M,V, ν0, Tppd), its trans-
lation ppd2DATE(pn) = (M ′, V, ν0, T ′d), a trace w ∈ (systemevent ×
ΘSys)

∗, and the global configurations (L, ν) and (L̃, ν′),

Cinit(pn)
w
=⇒M (L, ν) and Cinit(ppd2DATE(pn))

w
=⇒M ′ (L̃, ν′)

implies
ν = ν′

and
∀ m, q, ρ · (m, q, ρ) ∈ L,m ∈M ·

∃ m′, q′ · (m′, q′, ∅) ∈ L̃ · κ(m) = m′ and q = q′

and

∀ m′, q′ · (m′, q′, ∅) ∈ L̃,m′ ∈M ′·
∃ m, q, ρ ·m ∈M,κ(m) = m′, (m, q, ρ) ∈ L · q = q′

and
∀ m, q, ρ · (m, q, ρ) ∈ L,m /∈M ·

∃ m′, q′ · (m′, q′, ∅) ∈ L̃,m′ /∈M ′ · q = q′

and

∀ m′, q′ · (m′, q′, ∅) ∈ L̃,m′ /∈M ′·
∃ m, q, ρ · (m, q, ρ),m /∈M ∈ L · q = q′

Lemma 3 states that given a trace, if this trace shifts a ppDATE
network pn and its DATE translation from their respective initial global
configuration to some global configurations (L, ν) and (L̃, ν′), respectively,

then for each entry (σ↑id, π
′, θ) in a ρ component of a local configuration

in L there is one local configuration in L̃ whose DATE component is an
instance of the template exit cond checker in charge of controlling π′,
and vice versa.

Lemma 3. Given a network of ppDATEs pn = (M,V, ν0, Tppd), its trans-
lation ppd2DATE(pn) = (M ′, V, ν0, T ′d), a trace w ∈ (systemevent ×
ΘSys)

∗, and the global configurations (L, ν) and (L̃, ν′),

Cinit(pn)
w
=⇒M (L, ν) and Cinit(ppd2DATE(pn))

w
=⇒M′ (L̃, ν′) implies ψ(L, L̃)
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where,

ψ(L, L̃) = ∀ m, q, ρ · (m, q, ρ) ∈ L ·
∀ σ↑id, π′, θ · (σ

↑
id, π

′, θ) ∈ ρ ·
∃ m′, q′ · (m′, q′, ∅) ∈ L̃ ·m′ = inst (exit cond checker, σ, π′)

and

∀ m′, q′ · (m′, q′, ∅) ∈ L̃,m′ /∈M ′·
∃ σ↑id, π′ ·m′ = inst (exit cond checker, σ, π′)

implies ∃ m, q, ρ, θ · (m, q, ρ) ∈ L · (σ↑id, π′, θ) ∈ ρ

Proof of Soundness We can now prove the soundness of the translation
algorithm. Below we provide the formalisation of this property and an
intuitive explanation for it. However, a rigorous proof of this theorem can
be found in Appendix B.

Theorem 1. Given a ppDATE network pn = (M,V, ν0, Tppd), and its
translation ppd2DATE(pn) = (M ′, V, ν0, T ′d),

VT (pn) = VT (ppd2DATE(pn))

Proof. To prove the soundness of the translation algorithm we will show
that both a ppDATE network pn and its translation to a DATE network
have the same set of violating traces. Intuitively, we will prove that given
a trace w which is violating for pn, i.e., w ∈ VT (pn), is also violating for
pn’s translation, i.e., w ∈ VT (ppd2DATE(pn)), and vice versa.

In the case when w ∈ VT (pn), by definition of counter-examples of
ppDATEs, w has a prefix w′ such that either (i) w′ takes the initial global
configuration Cinit(pn) to a global configuration (L′, ν′) such that the
state component of L′ is a bad state; (ii) given a method σ and a system

variables valuation θ′, w′ can be written as w1 ++ (σ↑id, θ
′) such that w1

takes Cinit (pn) to a global configuration (L′, ν′) where there exists a local

configuration in L′ whose ρ component contains a tuple (σ↑id, π
′, θ), such

that π′ fails to be satisfied in the ‘moment’ event σ↑id appears.
In the case of (i), we use the fact that (by Lemma 2), if w′ takes the

translation from the initial global configuration Cinit(ppd2DATE(pn)) to
a global configuration (L̃, ν), for every local configuration in L′, there is a
local configuration in L̃ such that its state component is the same. Thus,
there is a local configuration in L̃ whose state component is a bad state,
which means that w′ is a counter-example of the translation as well.

In the case of (ii), due to the fact that a Hoare triple {π}σ {π′} has to
be verified, we know that some local configuration will have a ρ component
such that (σ↑id, π

′, θ) ∈ ρ. We can now use the fact that by Lemma 3, tuple
is handled by a DATE in the translation (which verifies the postcondition).
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Thus, there exists a DATE controlling π′ which fails moving to a bad
state, i.e., w′ is a counter-example of the translation as well.

In order to prove the opposite direction, we proceed to assume that
w ∈ VT (ppd2DATE(pn)). Again, since this is a counter-example and this
is a DATE (and thus cannot fail due to a violated postcondition), it can
be only the case that w has a prefix w′ such that this prefix takes the
initial global configuration Cinit (ppd2DATE(pn)) to a global configuration
(L̃, ν) such that there is a local configuration in L̃ whose state component
is a bad state. Then, assuming that w′ takes pn from the initial global
configuration Cinit(pn) to a global configuration (L′, ν′), we proceed to
do a case analyses depending whether the bad state belongs to a DATE
which was controlling the postcondition of a Hoare triple or not. In the
affirmative case, we will use this fact to show that, given certain method
σ and a system variables valuation θ′, w′ can be selected to be a prefix
which can be written as w1 ++ (σ↑id, θ

′) such that w1 takes Cinit(pn) to a
global configuration (L′, ν′) where the verification of the postcondition

fails whenever event σ↑id occurs. Therefore, w′ is a counter-example of pn.
Finally, (by Lemma 2), there is a local configuration in L′ such that its
state component is the same as the bad state in L̃. Therefore, w′ is a
counter-example of pn.

8 The StaRVOOrS Tool Implementation

In this section we present how the (fully automatic) verification tool
StaRVOOrS [17] implements the framework presented in Sec. 4. To
illustrate this, we use a running example of a bank system in which users log
in to perform transactions10. The set of logged-in users is implemented as
a Hashtable object, whose class represents an open addressing hashtable
with linear probing as collision resolution. Method add, which is used to
add objects into the hashtable, first attempts to put the corresponding
object at the position of its computed hash code. However, if that index
is occupied, then add searches for the nearest following index which is
free. Fig. 12 depicts a code snippet for this method. Within the hashtable
object, users are stored into an array arr. This means that the set of
logged-in users has its capacity limited by the length of arr. In order to
check in a straightforward manner whether the capacity of arr is reached
or not, a field size keeps track of the amount of stored objects and a
field capacity represents the (total) number of objects that can be added
into the hash table. In addition, this system has to fulfil the properties
described with the ppDATE template depicted in Fig. 13. This template
specifies the following properties:

10 Both the source code and the ppDATE specification for this example are
available from [4].
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1 public void add (Object o, int key) {

2 if (size < capacity) {

3 int i = hash_function(key);

4 if (h[i] == null) {

5 h[i] = o;

6 size ++;

7 return;

8 }

9 else {

10 while (h[i] != null) {

11 if (i == capacity -1) i = 0;

12 else {i++;}

13 }

14 h[i] = o;

15 size ++;

16 return;

17 }

18 }

19 }

Fig. 12. Code snippet for method add.

(i) A user has to be logged-in in order to perform a deposit, i.e. a deposit
should happen between a login and a logout.

(ii) Provided there is space in the hashtable, executing method add with
object o and key k should add the object to the table.

Property (i) is verified with the transitions of the ppDATE template,
whereas property (ii) is represented by the Hoare triple in state q1. If
size < capacity, then there is room in the hashtable for one more
element, and if method add places the object o in the hashtable, there
exists an index in the array arr such that o is placed in that index, i.e.,
∃ int i; i>= 0 && i < capacity; arr[i] == o. Note that the given
Hoare triple is only included in state q1 since only a successful login
leads to the execution of the method add, i.e., this Hoare triple is context
dependent; and that login(f)↓ means that method login associated to
the trigger is the one defined within object f . In addition, we assume that
the specification of the system has a ppDATE with a single state q and

single transition of the form q
new(o)↓|true7→create(prop−deposit−temp,o)−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ q,

such that the trigger new(o)↓ is activated by the declaration of an object
o of the class UserInterface. Thus, this ppDATE creates an instance of
the template in Fig. 13 every time an object of the class UserInterface
is declared.
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prop-deposit-temp = λ f : UserInterface.

q1 : {size < capacity} add(o,k) {∃ i. arr[i] == o}start q2

bad

login(f)↑ | true 7→ skip

deposit(f) ↓
| val

>
0 7→

skip

logout(f)↓ | true 7→ skip

deposit(f)↓ | val > 0 7→ skip

Fig. 13. ppDATE specification of properties for a bank system.

8.1 ppDATE Specification as an Input Script for StaRVOOrS

Before describing how StaRVOOrS works, we need to introduce how a
ppDATE specification is written as an input script for this tool. Below,
we show the input script for the ppDATE template illustrated in Fig. 13,
and the ppDATE which creates its instances. In addition, we give a brief
description of each one of the sections this script. For a full description
on how to write ppDATEs as an input script for our tool, one may refer
to the StaRVOOrS User Manual11.

IMPORTS { main.UserInterface ; main.Hashtable ; }

GLOBAL {

PROPERTY prop-deposit {

PINIT { (prop-deposit-temp, UserInterface) }

}

}

TEMPLATES {

TEMPLATE prop-deposit-temp (UserInterface uf) {

TRIGGERS {

login_exit(String un, int pwd)

= {UserInterface f.login(un, pwd)exit()} where {uf = f}

logout_entry()

= {UserInterface f.logout()entry} where {uf = f}

deposit_entry(int val)

11 This document is available from [4], in the Downloads section.
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= {UserInterface f.deposit(val)entry} where {uf = f}

}

PROPERTY prop_deposit {

STATES {

ACCEPTING { q2 ; }

BAD { bad ; }

STARTING { q1 (add_ok) ; }

}

TRANSITIONS {

q1 -> q2 [login_exit \ f.getUser() != null]

q1 -> bad [deposit_entry]

q2 -> q1 [logout_entry \ f.getUser() != null ]

q2 -> q2 [deposit_entry \ f.getUser() != null]

}

}

}

}

CINVARIANTS {

HashTable {\typeof(h) == \type(Object[])}

HashTable {arr.length == capacity}

HashTable {arr != null}

HashTable {size >= 0 && size <= capacity}

HashTable {capacity >= 1}

}

HTRIPLES {

HT add_ok {

PRE {size < capacity}

METHOD {Hashtable.add}

POST {(\exists int i; i>= 0 && i < capacity; arr[i] == o)}

ASSIGNABLE {size, arr[*]}

}

}

The section IMPORTS lists the Java packages which may be used in any of
the other sections of the script, in this case UserInterface and Hashtable.
The section TEMPLATES contains the description of the ppDATE templates
(tagged by TEMPLATE). Here, the section TRIGGERS is used to declare the
different triggers which may be used in the transitions of the ppDATE, i.e,
login exit, logout entry, deposit entry, and the section PROPERTY

describes the different states, i.e., q1, q2 and bad, and transitions of the
ppDATE. Note that the syntax q1 (add ok) associates the Hoare triple
tagged as add ok to state q1. This means that the Hoare triple add ok

has to be verified if the method associated to it, in this case method add,
is executed whenever the ppDATE is in state q1. The section GLOBAL

contains the description of the ppDATE. Here, ppDATEs are described
in the same manner as in a TEMPLATE section. However, note that it is
also possible, as it is the case in our example, to use the special section
PINIT when describing the section PROPERTY. Section PINIT represents a
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ppDATE with single state, and a looping transition which is fired every
time an object of the class listed within this section (UserInterface in
our example) is declared, leading to the creation of an instance of the listed
template for that object (prop-deposit-temp in our example). We have
included this special case because it is quite common to have ppDATEs
only focus on creating instances of a template upon declaration of a
particular object. Regarding the section CINVARIANTS, class invariants
are described by the syntax class name {invariant}, meaning that
invariant has to be fulfilled by all the methods in the class class name.
These invariants are only meant as a help for the deductive verification
of the Hoare triples (see Sec. 8.2). If no invariants are needed, then this
section can be omitted. Finally, the section HTRIPLES gives a list of named
Hoare triples (tagged by HT). Here, PRE describes the precondition of
the Hoare triple, POST describes the postcondition of the Hoare triple,
METHOD indicates which one is the method associated to the Hoare triple,
and ASSIGNABLE lists the (class) variables that might be modified when
the method associated to the Hoare triple is executed. Note that the
predicates in invariants, pre- and postconditions follows JML-like syntax
and pragmatics. For instance, in the Hoare triple add_ok the second
semicolon separates the range predicate (i>=0 && i<capacity) from the
desired property over integers in that range, (arr[i]==o).

8.2 Running StaRVOOrS

StaRVOOrS is a fully automatic verification tool which takes the Java
source code of the system under scrutiny and a file with the ppDATE
specification for this system and produces (i) a runtime monitor, (ii) an
instrumented version of the system given as input with event generation
and additional code infrastructures required, (iii) a report summarising
the results of the deductive verification of the Hoare triples, and (iv) a
refined version (if any) of the provided ppDATE specification.

This tool implements the framework described in Sec. 4 with each stage
of the framework, i.e., Deductive Verification, Specification Refinement,
Translation and Instrumentation, and Monitor Generation, being per-
formed automatically by the tool. Below, we describe the implementation
of these stages through the use of the working example.

Deductive Verification The first step performed by StaRVOOrS is
the deductive verification of the Hoare triples associated to the states of
the ppDATE (template) using KeY. To accomplish this, StaRVOOrS
extracts the Hoare triples specified in the ppDATE script, converts them
into JML contracts, and then annotates these contracts in the Java sources,
before the corresponding method declaration. For instance, the following
JML contract associated to method add is extracted from the Hoare triple
add_ok:
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requires size < capacity;

ensures (\exists int i; i>= 0 && i < capacity ; arr[i] == o);

assignable size, arr[*];

Note that the requires clause describes the precondition of add, the
ensures clause describes the postcondition of add, and the assignable

clause lists the (class) variables that might be modified when add is
executed.

Once all the JML contracts are in place, i.e., they are annotated in
the code, StaRVOOrS uses KeY to verify them. First, KeY generates
proof obligations in Java Dynamic Logic for each JML contract. Next, it
attempts to prove the contracts automatically. Finally, it stores the results
of all the verification attempts in a XML file. Here, note that even though
it could be possible to allow for user interaction (using KeY’s elaborate
support for interactive theorem proving), we chose to use KeY in automatic
mode, since StaRVOOrS targets users untrained in theorem proving.
StaRVOOrS generates a report summarising the results produced by
KeY in an easy to understand format.

Using our running example, when KeY tries to verify the previous
JML contract, it will result in a partial proof. This analysis is shown in
the following fragment of the generated XML file:

<executionPath

pathCondition="arr[hash_function(key)] = null"

verified="true"/>

<executionPath

pathCondition="!arr[hash_function(key)] = null"

verified="false"/>

This indicates that while KeY was symbolically executing method add,
there was a branching in the condition arr[hash function(key)] =

null, leading to two possible execution paths (depending on its truth
value). Recalling the code snippet in Fig. 12, this condition corresponds
to the condition on the if-expression in line 4. Thus, the execution path
for the condition arr[hash function(key)] = null corresponds to the
case where the array arr has a free slot at the hash code of key, whereas
the execution path for the condition !arr[hash function(key)] = null

corresponds to the case where the program enters the while-loop in line
10, searching for the next free slot in arr. In addition, in the XML, the
component verified represents whether KeY was able to prove the branch
of the proof (verified=true), or not (verified=false). Therefore, from
the previous fragment of the XML file we know that KeY was able to close
the branch where the array arr has a free slot (= null) at the hash code
of key, but it was not able to verify the other case (where the program
enters a loop searching for the next free slot). The main reason why KeY
was not able to prove the latter case is the lack of loop invariants to deal
with the while-loop.
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Specification Refinement The output pf KeY is then used to refine
the Hoare triples in the specification based on what was (partially) proved.
The Hoare triples associated to JML contracts which were fully verified by
KeY are entirely removed from the specification, while the precondition
of the Hoare triples associated to partially proved JML contracts are
refined based on what KeY managed to prove. The new precondition is
the conjunction of the original precondition with the disjunction of new
preconditions corresponding to open proof goals, i.e., the path condition
on each different execution paths. Note that StaRVOOrS generates a
new ppDATE specification script based on such refinements, instead of
modifying the provided ppDATE script.

In the example, the precondition of the Hoare triple add ok will
be refined with the condition for the one goal not closed by KeY, i.e.,
!(arr[hash function(key)] == null). The Hoare triple will thus be
strengthened as follows:

HT add_ok {

PRE {size < capacity && !(h[hash_function(key)] == null)}

METHOD {Hashtable.add}

POST {(\exists int i; i>=0 && i<capacity; arr[i]==o)}

ASSIGNABLE {size, arr[*]}

}

Translation and Instrumentation Once the refined ppDATE specifi-
cation is ready, StaRVOOrS translates it into (pure) DATE formalism
using the algorithm from Sec.7.2. This enables the monitor generation by
Larva (explained in the next stage). In addition, in order to properly
address the refined ppDATE, our tool operationalise the conditions and
instruments the code, as described below.

Pre/Postcondition Operationalisation In this step, the tool syntac-
tically analyses the specification for expressions in pre- and postconditions
of the Hoare triples which may have to be operationalised, i.e., transformed
into algorithmic procedures. For instance, transforming either existential
or universal quantifications into loops.

During the operationalisation process, the tool creates Java code
containing the implementation of all necessary methods for runtime verifi-
cation, including those generated to algorithmically check the pre/post-
conditions.

In our example, as the postcondition of the Hoare triple add ok has an
existential quantifier, it has to be operationalised, producing the following
method:

1 public static boolean add_ok_post_opE_1(Hashtable hasht,

2 Object o, int key) {

3 boolean r = false;
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4 for (int i = 0 ; i < hasht.capacity ; i++) {

5 if (hasht.arr[i] == o) { r = true ; break; }

6 }

7 return r;

8 }

The for-loop declaration in line 3 is created from the conditions in the
range of the existential quantification, i.e., i>=0 && i<capacity, and the
condition of the if-expression in line 4 is created from the condition in
the body of the existential quantification, i.e., arr[i]==o. Thus, if any
value on the range of the existential quantification fulfils its body, then
this method returns true, i.e., exists a value that fulfils the existential
quantification. Otherwise, it returns false, i.e., it does not exist a value
fulfilling the existential quantification.

Code Instrumentation Next, StaRVOOrS instruments the Java
source code of the system adding identifiers to each method associated to
a Hoare triple in the refined ppDATE specification script, and additional
code to get fresh identifiers. As mentioned in Sec. 4, these identifiers will
be used to distinguish different executions of the same method. However,
in order to avoid modifying all the calls to these methods in the entire
system, we have opted to introduce this instrumentation in the form of
auxiliary methods. For instance, in our working example the method add

has to be instrumented, resulting in:

public void add (Object o, int key) {

addAux(o,key,fid.getNewId());

}

public void addAux (Object o, int key, Integer id) {...}

The method addAux implementation corresponds to the body of method
add in Fig. 12. This method represents the instrumentation of method
add with the extra argument Integer id, which is used as identifier. In
addition, method add now simply calls addAux, but generating a fresh
identifier for the call using function fid.getNewId.

Moreover, the previously generated DATE specification is modified
accordingly, to refer to the instrumented version of the methods. In our
example, the DATE specification would be modified to refer to method
addAux instead of method add.

Monitor Generation Finally, StaRVOOrS uses Larva to automat-
ically generate a monitor from the DATE specification obtained in the
previous stage. Larva takes this DATE and generates the monitoring
system and aspects instrumenting the communication between the system
and the monitor [20].
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9 Case Study: SoftSlate Commerce

SoftSlate Commerce (or simply SoftSlate) [3] is an open-source Java
shopping cart web application designed following a Model-View-Controller
architecture. A user of SoftSlate sends a request to a server hosting the
application via a web browser. Then, the server processes the received
request and executes an action associated to it (Controller layer). Such
action may require to interact with and/or modify the information in the
database (Model layer), e.g., information about users, products, orders,
etc. Finally, once the request is fully processed, the server sends back a
response to the user. The information in this response will be reflected on
a web page loaded on the browser (View layer). The administrator of the
application interacts with it in a similar fashion.

SoftSlate offers a basic implementation of a shopping cart web appli-
cation featuring outer space related pictures, whose server is set up by
using Apache Tomcat [1]. This implementation is meant to be used by
developers to start building their own web applications.

In this case study we analyse an extension of the SoftSlate basic
implementation. This extension increases modularity of parts of the im-
plementation, to better link it to the required properties. Basically, we
have created a few helper methods in order to better observe the various
steps performed by a user to checkout a purchase. In addition, we have
modified a few methods to receive an entire object instead of some of its
components, and to properly access the components.

As our main focus is to verify the source code offered by SoftSlate,
in our extension we are not adding any new feature to the ones already
provided in the basic implementation, i.e., the functionality of the basic
implementation and our extension is the same.

Note that when this case study was developed, there was not an
open source version of SoftSlate available online, meaning that we cannot
distribute the sources we have used. However, in [4] one may find the files
for the ppDATE specifications described below.

9.1 ppDATE specification

Here we introduce two ppDATEs specifications, one describing a property
related to the log in and log out of users in the web application, and one
describing a property related to the checkout of the purchases performed by
the users of the application. These properties address basic functionalities
which we consider that a web cart application should offer.

Note that even though we could have either described more properties
or specified more control- and data-oriented behaviour in the properties we
are depicting in this section, the ppDATEs introduced here are sufficient
to highlight the benefits of using StaRVOOrS in a real application. In
addition, for readability reasons, Hoare triples are not going to be included
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start

User.new↑ | true 7→ create(login-logout, \result)

Fig. 14. ppDATE in charge of creating instances of the template login-logout.

login-logout = λ u : User.

logoutstart login

bad

login(u)↑ | Ok 7→ skip

logout(u) ↑
| O
k 7→

skip

orderComplete(u) ↓
| true 7→

skip

login(u)↑ | Fails 7→ skip

login(u)↑ | Ok 7→ skip

logout(u)↑ | Ok 7→ skip

logout(u)↑ | Fails 7→ skip

orderComplete(u)↓ | true 7→ skip

Fig. 15. ppDATE template describing properties about the log in and log out
of users.

on the figures depicting the ppDATEs. Moreover, as the application is
placed in a server, the monitor generated by our tool is placed in the
server as well.

Login — Logout Users can freely browse through the web site of the
application. However, if they want to buy products (i.e., pictures), they
have to be logged in the application, to be able to proceed to the checkout
section.

Fig. 14 and Fig. 15 illustrate the specification. The ppDATE in Fig. 14
creates instances of the ppDATE template login-logout whenever an object
of class User is created, and the ppDATE template login-logout (Fig. 15)
describes the following properties:
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(i) A user has to be logged in the application in order to perform a
purchase, i.e., the checkout of a purchase can only happen between a
login and a logout.

(ii) If a user is logged in, then that user cannot successfully log in again
in the application until she logs out from it.

(iii) If a user is not logged-in, then that user cannot successfully log out
from the application.

(iv) A user can only proceed to the checkout section if her status is a
valid one.

(v) A user who is not a costumer cannot proceed to the checkout section.

The transitions of the ppDATE described by the template control
properties (i)–(iii). Initially, this ppDATE is in state logout. Then, when-
ever there is a successful login, the ppDATE moves to state login. Later,
once the user logs out, the ppDATE returns to state logout. Therefore, if
a purchase is performed (i.e., an order is checkout) while the ppDATE
is in state login, then the ppDATE remains in that state. However, if
a purchase is performed while the ppDATE is in state logout, then it
shifts to state bad.12 In addition, while being at state logout, if an attempt
to log in is not successful, then the ppDATE stays in that state; and if
there is a successful logout, then the ppDATE shifts to state bad due to
the fact the user is considered to be logged out while the ppDATE is in
that particular state. Something similar happens when the ppDATE is in
state login. (In Fig. 15, Fails and Ok are abbreviations, for presentation
purpose, of real Java expression checking the failure or success of the
respective operations.)

Regarding properties (iv) and (v), they are addressed using Hoare
triples. For instance, property (iv) is represented as follows:

{ !baseForm.getUserStatus().equals("Registered")

&& !baseForm.getUserStatus().equals("Unapproved"); }

prepareCheckout(baseForm)

{ \result.equals("success"); }

As the only non valid statuses are “Registered” and “Unapproved”, if
the status of the user is not one of these values, then starting a purchase,
i.e., using method prepareCheckout, should return “success”. Regarding
property (v), a user is only considered to be a costumer if she has logged-in
into the application. Even though this property seems to be similar to
property (i), this similarity is only apparent. Property (i) only addresses
the proper order in which the methods should be executed, whereas
property (v) focuses on controlling how the data related to a user is
modified during such executions. Finally, both properties (iv) and (v)
are only placed in state login because that is the only state in which a
successful purchase can occur, i.e., (iv) and (v) are context dependent
data-oriented properties.

12 Shifting to state bad means that a property was violated.
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start

User.new↑ | true 7→ create(prop-checkout, \result)

Fig. 16. ppDATE in charge of creating instances of the template prop-checkout.

Purchases Checkout We consider that a purchase starts whenever an
item (i.e., a product) is added to the cart. A user can continue either by
adding other items to the cart or by removing some of the items from the
cart. We refer to all the items in a cart as the order.

Once the user finishes the creation of her order, she may proceed to
the checkout page. In SoftSlate, a checkout is realised in four steps. First,
the user enters the contact information and delivery address. Then, the
shipping method is selected (either ground transport or air transport),
after which the user enters her credit card details. Finally, a confirmation
for the order is requested. If accepted, the order is settled. Later, when
the user receives the items, the order is considered to be completed.

Note that a user can modify her order as long as she has not yet
confirmed it. If so, whenever she proceeds to the checkout section again,
all its required steps have to be performed one more time. In addition, if
the user removes all the items in an order, clears the cart or logs out13,
then the order is considered to be removed.

Fig. 16 and Fig. 17 illustrate a ppDATE specification where the
ppDATE in Fig. 16 creates instances of the ppDATE template prop-
checkout whenever an object of class User is created, and the ppDATE
template prop-checkout (Fig. 17) describes the following properties:

(1) The checkout of a purchase should be performed following the four
required steps.

(2) It should not be possible to buy zero or less items.
(3) The expiration date of the credit card should not earlier than the

current date.
(4) The price of a product should be positive.
(5) Before a purchase is completed, taxes should be processed.
(6) The total cost of a purchase should be equal to the sum of the prices

of all the products to be purchased.
(7) If the price of an item changes, then its price in the order of the user

should be updated.

13 Logging out clears the cart.
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prop-checkout = λ u : User.
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Fig. 17. ppDATE template describing properties related to checkout of pur-
chases.

Again, consider the transitions of the ppDATE described by the
template. When the first item is added to the cart, the ppDATE shifts to
state one. In this state, once the first step of the checkout is completed,
the ppDATE shifts to state two, and so on until reaching state four. In
state four, once the order is settled, the ppDATE shifts back to state
start in order to wait for a possible new purchase. Moreover, while being
at either state one, two, three or four, if there is any change in the order,
then the ppDATE shifts to state one, meaning that all the steps of the
checkout have to be performed again. This is enough to control property
(1).

Note that for readability reasons, in states one, two, three and four
we have not included transitions going to state start whenever the user
logs out, the cart is cleared or all the items in the cart are removed. In
addition, we have not included transitions going to state bad from either
state one, two, three or four if a step of the checkout was performed in a
wrong way. For instance, if while being at state one either a second step,
a third step or a fourth step of a purchase occurs instead of the first step,
then the ppDATE shifts to state bad.

Regarding property (7), since the method in charge of updating the
orders whenever the price of an item changes in the database is fully
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implemented using different Java libraries, writing an appropriate Hoare
triple for it would require introducing several work-arounds. Instead, we
implemented a method which compares the prices of the items in the
order with their prices in the database, and include it as part of the
information validation process corresponding to the fourth step of the
purchase. Thereby, in state four there are two transitions controlling the
result of this method. (Most real world applications of this kind would
guarantee prices for some defined duration, and adjust it when that time
has passed. For simplicity, we only model the latter in (7).)

Properties (2)–(6) are addressed with Hoare triples. Properties (2)–(4)
are related to the integrity of the information introduced by either the
users, in the case of (2) and (3), or the administrator, in the case of
(4), on their requests to the server. Property (5) is related to the proper
processing of taxes associated to the items in the current order. Property
(6) enforces that the total amount that the user has to pay for her order
should be equal to the sum of the totals of all the items included in the
order.

As items could be added to the cart at any time during a purchase,
property (2) is included in all the states of the ppDATE, with exception
of the state bad.

On the other hand, property (3) is context dependent. This property
should only be enforced on state three, which represents the step of a
purchase where a user enters her credit card details. Note that, as it is in
this case, a single property might be associated to several Hoare triples.
For instance, below we introduce two of the four Hoare triples which
describe property (3),

{ cardYear > actualYear; }

checkDate(cardMonth,cardYear, actualMonth,actualYear)

{ \result; }

{ cardYear < actualYear; }

checkDate(cardMonth,cardYear, actualMonth,actualYear)

{ !\result; }

Regarding property (4), we assume that initially all the data in the
database is properly set. Therefore, this property should only be enforced
every time that the administrator modifies the price of an item. As this
may happen at any time during a purchase, this property is included in
all the states of the ppDATE, with exception of the state bad.

In relation to property (5), in SoftSlate whenever the taxes of items
are processed, the status of the order changes to “Tax processed”. This
change is done by using the following method,

public void setStatus(String s) { status = s;}

This method might be simply specified as follows:
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{ true; } setStatus(s) { status.equals(s); }

However, due to the fact that taxes are processed while the ppDATE is in
state four, that we know which particular value should be written when
updating the status of the order, i.e., “Tax processed”, and that ppDATE
allows us to write context dependent properties, we include in four the
following Hoare triple:

{ true; } setStatus(s) { status.equals("Tax processed"); }

Regarding property (6), it is represented by the following Hoare triple:

{ true; }

updateOrderAndDeliveryTotals(user,order,item)

{ user.getOrder().getSubtotal().doubleValue() ==

(\old(user).getOrder().getSubtotal().doubleValue()

+ item.getTotal().doubleValue());}

In short, the new total amount is equal to the old total amount plus the
amount of the newly added item.

9.2 Using StaRVOOrS

Since SoftSlate uses many Java libraries, to perform static analysis on
its source code it was necessary to generate stub files for some of these
libraries in order to allow KeY to find information about their method
declarations.

Login — Logout When feeding StaRVOOrS with this property and
the source code of SoftSlate, it automatically generates a runtime moni-
tored version of the application and a report which summarises the results
obtained from the static analysis.

Regarding the result of the translation, it consisted of a DATE specifi-
cation which looks exactly like the original ppDATE specification. The
static analysis and instrumentation process takes 11 seconds on a PC
Pentium Core i7, where most time is used by KeY to statically analyse
the Hoare triples (approximately 7 seconds). By inspecting the report we
notice that KeY successfully verified all the Hoare triples in the ppDATE
specification. Thus, the refined ppDATE specification to be translated
was already a DATE, .i.e, the translation process did not have add any
new transitions to the specification.

Purchases Checkout When feeding StaRVOOrS with this property
and the source code of SoftSlate, it automatically generates a runtime
monitored version of the application and a report which summarises
the results obtained from the static analysis. The static analysis and
instrumentation process takes 23 seconds on a PC Pentium Core i7,
where most time is used by KeY to statically analyse the Hoare triples
(approximately 20 seconds). By inspecting the report we can see that
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properties (2) and (3) are fully proved, properties (4) and (5) are not
proved, and that property (6) and (7) are partially proved.

Regarding property (7), as KeY does not have any information about
the state of purchases, and this property is context dependent, obviously,
it is not able to prove it. However, thanks to the use of StaRVOOrS
we can include this property in an appropriate state of the ppDATE,
fact which guaranties that whenever a purchase reaches such state, this
property is going to be verified at runtime by the generated monitor.

Regarding property (6), the report shows that this property postcondi-
tion is going to be checked upon entering method updateOrderAndDel-

iveryTotals only if the condition user.getOrder() != null holds.
Thereby, this property is refined by StaRVOOrS as follows:

{ user.getOrder() != null; }

updateOrderAndDeliveryTotals(user,order,item)

{ user.getOrder().getSubtotal().doubleValue() ==

(\old(user).getOrder().getSubtotal().doubleValue()

+ item.getTotal().doubleValue());}

This refined version of property (6) is the one verified by the generated
monitor at runtime.

Finally, the result of the translation consisted on one DATE to create
instances of the obtained DATE template prop-checkout (the translation
of its homonymous ppDATE template), and three generated DATE tem-
plates whose instances verify properties (4)–(6). Note that the instances of
the generated DATE templates are created by actions on the transitions
of the DATE template prop-checkout.

9.3 Experimentation

Properties Analysis

Login — Logout Although this property may appear to be simple, by
verifying it we discovered unexpected behaviour in SoftSlate when a user
logs in, performs a purchase, and logs out. In spite of the fact that the
user was logged in the application, the monitor flagged a violation of
property (iii). It turned out that after performing the purchase, SoftSlate
replaced the object representing the logged-in user by a new one.

More concretely, the log file generated by the monitor showed that a
new monitor, corresponding to a new instance of the template login-logout,
was generated for the ‘new’ user. So, we got two different user objects, the
one who originally logged in into the system (let’s call it ulogged ) and the
new generated one (let’s call it unew ). The new monitor (corresponding to
the user unew ) would then be in its initial state, that is in the state logout.
Thus, when the (real) user tried to log out, the monitor corresponding
to user unew shifted to a bad state, while the monitor corresponding to
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login-logout = λ u : User.
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logout(u)↑ | Ok 7→ skip

logout(u)↑ | Fails 7→ skip

orderComplete(u)↓ | active 7→ skip

Fig. 18. Extension on the ppDATE describing properties related to the log in
and log out of users illustrated in Fig. 15.

user ulogged remained in state login. As a consequence, property (iii) was
violated.

In order to understand whether this is an error in the implementation
we inspected the source code to better understand how the login and
purchase were implemented. We found that each instance of class User was
associated to a session, whose information was unique for each different
execution of the application. Though the relation between (real) users and
the session is bijective (for each real user there is a unique session, and
vice versa), there were (at least) two instances of the class User, ulogged
and unew , associated with each session.

We were not sure what were the real reasons behind this design decision,
but the implementation seemed correct, and our specification did not
capture this situation. So, we decided to change our ppDATE template
to capture this by including a Boolean variable reflecting whether the
(real) user was connected or not, which we refer to as active. The updated
ppDATE template is shown in Fig. 18. Further executions of the system
(reproducing the previous executions and providing new ones) did not
violate this property.

Purchases Checkout We also run the system many times in order to
analyse whether the execution of SoftSlate fulfils the properties described
by the provided ppDATE specification.
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First, we performed several purchases to analyse if property (1) was
fulfilled. We added some items to the cart, bought them, and added
and removed items at any stage of the checkout of a purchase, and then
completed the purchase. None of these operations violated this property.
We re-run the system executing the same steps as above to check property
(5), which was not violated.

Next, we continued performing purchases, but this time the admin-
istrator of the application introduced modifications in the price of some
items during the purchases. By doing so we were able to analyse whether
properties (4), (6) and (7) were violated.14

In order to check whether property (4) held, we executed the system
logged in as administrator and as a normal user (in parallel). The user
performed a purchase (and thus the item was added to the cart), and as
administrator we modified the price of the item introducing a negative
value as its new price. At this moment the monitor reported that property
(4) was violated. By inspecting the price of the modified item in the
database, we could confirm that the negative value provided by the
administrator was actually assigned to the item. This clearly was an error.
We corrected this by not allowing to input negative numbers, and thus
property (4) was finally satisfied.

On the other hand, when the administrator modified the price of an
item introducing a positive value as its new price, then property (4) was
fulfilled as expected. However, we noticed that property (7) was violated:
some of the prices of the items in the order did not match with the prices
in the database.15 In particular, the mismatched values were those that
were modified by the administrator: the new prices were propagated to
the database but they were not updated in the visualisation of the cart
(to the user). This was an error, and when inspecting the code we realised
that there was a method implementing the propagation of the update,
but it was not called when the change (done by the administrator) was
performed. We have not yet corrected this error in the original code.

Property (6) was not violated by any of the previous executions.

Runtime Verification Overhead Analysis In this section we analyse
the overhead added to SoftSlate by the monitor generated using StaR-
VOOrS. To perform this analysis, we considered three scenarios: several
users performed one purchase, 10 purchases in a row, and 100 purchases
in a row.

Table 1 shows the average execution time of: (a) an unmonitored
execution of SoftSlate; (b) a monitored execution of SoftSlate using the

14 Remember that properties (2) and (3) were fully proved statically.
15 This also happened when entering negative numbers, but we only found out

this when focusing on checking property (7) after correcting the issue with
negative inputs.
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Purchases (a) no monitoring (b) monitoring S (c) monitoring S′

1 800 ms 1,300 ms 1,100 ms

10 10,500 ms 15,500 ms 13,000 ms

100 120,000 ms 190,000 ms 150,000 ms

Table 1. Performance of different purchases.

original ppDATE specification S, and (c) a monitored execution of Soft-
Slate using specification S’, obtained from S via static (partial) proof
analysis using StaRVOOrS. In all three scenarios, the users and the
server hosting SoftSlate were run in different computers with identical
specifications (a PC Intel Core i7 using a single core). Note that as SoftS-
late is an interactive application, in order to perform these experiments
we have implemented a program which uses url connections to access the
application and perform a purchase16. Therefore, our experiments consist
on executing this program repeatedly and measuring its execution time.

As expected, adding a monitor to SoftSlate introduced overhead on
its execution time. However, when we compared the overhead added
by the monitor which uses the original ppDATE specification (without
optimisations) (b), with the one added by the monitor which was generated
using StaRVOOrS (c), one could notice a reduction in overheads gained
by using our tool.

Through optimisations introduced by StaRVOOrS, we obtained a
version of the monitor which, in relation to the times in (a), introduced
in average a 25% of overhead to the execution time of the system. On
the contrary, the monitor without the optimisations of StaRVOOrS
introduced a 50% of overhead to the execution time.

Even though these results are not as impressive as the one we ob-
tained on the case study analysed in [6] (Mondex, also reported here in
Sec. 10), the monitor generated by our tool for SoftSlate still has a better
performance than the one which uses the original ppDATE specification.
The main difference lies in the amount of Hoare triples which have to be
runtime verified in each case study. Every time an experiment is performed
to analyse SoftSlate, the optimise monitor generated by StaRVOOrS
verifies 3 Hoare triples, whereas the monitor using the original ppDATE
specification (without optimisations) verifies 5. However, each experiment
performed on Mondex requires the verification of 7 Hoare triples when
using the unoptimised version of the monitor, whereas the optimised one
does not have to verify any Hoare triples at all (cf. Sec. 10).

16 The package java.net is used here to handle the communication between our
program and SoftSlate.
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10 Case study: Mondex

Mondex is an electronic purse application which is used by smart cards
products [2], and has been considered as a verification benchmark problem
since 2006, originally appearing as case study as part of the Verified
Software Grand Challenge [36]. Mondex’s original sanitised specification
can be found in [32]. It consists of a Z specification [31], together with
hand-written proofs of several properties.

Mondex essentially provides a financial transaction system supporting
transferring of funds between accounts, or purses. Whenever a person has
to make a transaction, electronic money is taken from their electronic
purse and transferred to the target electronic purse. Such transactions
are performed following a multi-step message exchange protocol: (1) the
source and destination purses should (independently) register with the
central fund transferring manager; (2) await a request to deduct funds from
the source purse; (3) await a request to add the funds to the destination
purse; and finally (4) an acknowledgement is sent to indicate that the
transfer took place before the transaction ends.

In our version of this case study we consider a Java implementation
running on a desktop computer instead of a Java Card implementation
running on smart cards. The principal difference in the implementation is
that in our version some methods return values to indicate whether their
output is normal or erroneous, instead of raising Java Card exceptions.
Our specification is strongly inspired by the JML formalisation presented
in [34]. The full specification and source code of our case study can be
found in [4]. The specification (see Fig. 19) consists of a ppDATE with
10 states, 25 transitions and a total of 26 different Hoare triples. The
implementation consists on 514 lines of code (without comments) which
are distributed over 8 files.

Note that ppDATE allows us to represent the overall status of the
observer using ppDATE states. In other pre/post-style specification ap-
proaches, one would instead introduce additional data, and corresponding
additional constraints, as is indeed done in [34] when specifying Mondex
with JML. Such additional data implies a certain complexity of the specifi-
cation, which somehow lacks the structure of the problem. We believe that
specifications of this kind are sometimes developed with an automaton
in mind. In ppDATE, we can make that automaton explicit. This being
said, we want to stress again that we took great advantage of the JML
specification of Mondex in [34].

10.1 ppDATE Property

Fig. 19 illustrates a ppDATE describing the top-level specification of
Mondex. To keep the ppDATE readable, the description of the different
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Awaiting both

Money deducted

Money deposited

val / pto.equals(t) && ret == SUCCESS &&

req / pfrom.equals(f) && ret == SUCCESS &&

start_from / pfrom.equals(f) &&

start_to / pto.equals(t) &&
start_from / pfrom.equals(f) &&

start_to / pto.equals(t) &&

req / pfrom.equals(f) &&

BAD STATE

Parties initialised

ack / pfrom.equals(f) && ret == SUCCESS &&

* All states have outgoing transitions for ret == SUCCESS && SENDER!=party (where party is the
In addition:

GOOD STATE

Awaiting end

end_transfer

* All states but 'Awaiting end' have outgoing transitions for end_transfer, going to a bad state.

transfer_initialise (f,t,v,mbox) / f.name != t.name && 

Awaiting from Awaiting to

Initial

/ pfrom = f; pto = t; pvalue = v;

ret == SUCCESS &&
ret == SUCCESS && 

ret == SUCCESS &&

m.id == pto.name

m.id == pfrom.name &&   m.id == pfrom.name && m.paydetails.value == pvalue &&

m.id == pto.name && m.paydetails.value == pvalue

m.id == pfrom.name

m.id == pto.name

m.id == pfrom.name

pvalue > pfrom.balance

ret == SUCCESS &&

ret == SUCCESS

m.id == pfrom.name

ret == SUCCESS &&

party from whom a message is not expected) going to a bad state.

pvalue <= pfrom.balancem.paydetails.value == pvalue &&

Fig. 19. ppDATE to monitor the behaviour of the transaction protocol

Hoare triples are not included in the figure. (We will show some of them
below.)

At the automaton level, the ppDATE specifies the control-oriented
property which indicates how the multi-step message exchange protocol
is suppose to work. For instance, after the parties are initialised (encoded
in state Parties Initialised), a message requesting to transfer more money
than the one available in the source purse should fail. Otherwise, such a
message should take the ppDATE to a state in which the protocol now
allows for the money to be transferred to the destination purse (named
Money deducted). Note that the ppDATE will not take any explicit action
whenever the state BAD STATE is reached. It will stay in this state until
the whole monitor is restarted.

In contrast, the pre/postconditions properties placed on the states
of the ppDATE ensure the well-behaviour of the methods involved in
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the individual steps of the protocol, behaviour which obviously changes
together with the status of the protocol. For instance, once two purses
agree on participating in a money transfer and the destination purse has
requested for certain amount of money, (encoded in state Money Deducted),
method val_operation which transfers money from the source purse
to the destination one should succeed and increase the money of the
destination purse by the sent amount (provided the limit of its account
has not been reached), as shown in the Hoare triple below:

{ checkSameTransaction() == SUCCESS

&& transaction.value <= (ShortMaxValue - balance); }

val_operation

{ \result == SUCCESS

&& (balance == \old(balance) + transaction.value); }

On the other hand, if the same method is accessed after the funds
have already been transferred (encoded in state Money deposit), then
the destination purse content should remain unchanged, and the request
should be ignored:

{ checkSameTransaction() == SUCCESS

&& transaction.value <= (ShortMaxValue - balance); }

val_operation

{ \result == IGNORED; }

Note that both Hoare triples above have the same precondition, but
depending on the state of the ppDATE (i.e., the state of the proto-
col) different behaviours (i.e., postconditions) are expected for method
val_operation.

10.2 Using StaRVOOrS

Running StaRVOOrS on the source code of Mondex and the ppDATE
depicted in Fig. 19 automatically produces a runtime monitored version
of the application and a report summarising the results obtained from the
static analysis. The static analysis and instrumentation process takes 1
minute 20 seconds on a PC Pentium Core i7, where most time is used by
KeY to statically analyse the Hoare triples (approximately 1 minute 15
seconds).

The monitor generated by our tool consists one DATE to control the
main property, and 24 DATEs templates to control the postconditions
which were only partially verified by KeY, with 106 states and 196 tran-
sitions in total. By inspecting the report we can see that the two Hoare
triples associated to the initialisation and termination of a transaction
were fully proved, and that all the other 24 triples about the methods
involved in the transaction protocol were the partially verified ones. For
instance, let us consider the property already discussed in the previous
section about method val_operation, which we will refer here to as
val operation ok :
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{ checkSameTransaction() == SUCCESS

&& transaction.value <= (ShortMaxValue - balance); }

val_operation

{ \result == SUCCESS

&& (balance == \old(balance) + transaction.value); }

The report shows that the postcondition will have to be checked at runtime
only when the condition status != 2 holds upon entering val_operation
(i.e., the destination purse is not waiting for the arrival of the requested
money). Thus, the previous Hoare triple was refined by StaRVOOrS as
follows:

{ checkSameTransaction() == SUCCESS

&& transaction.value <= (ShortMaxValue - balance)

&& !(status == ProtocolStatus.Epv); }

val_operation

{ \result == SUCCESS

&& (balance == \old(balance) + transaction.value); }

This refined version of the property is the one which will be runtime
verified by the generated monitor.

The size of the source code of the original implementation of Mondex
was 23.5kB. After running the tool, the total size of all the generated files
(i.e. instrumented version of the source code and the implementation of
the monitor) grows to 277.4kB.

10.3 Experimentation

We now summarise the experimental results of applying our approach to
the Mondex case study.

Normal Behaviour The table illustrated in Fig. 20 shows the execution
time of: (a) an unmonitored implementation of Mondex; (b) a monitored
implementation using the original ppDATE specification S, and (c) a
monitored implementation using specification S’, obtained from S via
static (partial) proof analysis using StaRVOOrS. In all three scenarios,
the system is run over a numbers of transactions which do not violate
the specification. Note that in case (c), statically analysing all the Hoare
triples took KeY around 1 minute, which however is done once and for all
prior to deployment. These scenarios were analysed on a PC Intel Core i7
using a single core.

As one would expect, the addition of a monitor to the system introduces
execution time overhead (b). However, if we compare this overhead to
the one added by the monitor which was generated by StaRVOOrS (c),
one can see a substantial overhead reduction, gained through the use of
our tool. Through our optimisations we obtain a version which is at least
10 times faster for a low number of transactions, and this factor rises
up to 900 when the number of transactions is increased. This significant
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Transactions (a) no monitoring (b) monitoring S (c) monitoring S′

10 8 ms 120 ms 15 ms

100 50 ms 3500 ms 90 ms

1000 250 ms 330000 ms 375 ms

Fig. 20. Performance of different transactions which do not violate any of the
specified properties

reduction in execution time overheads is mainly due to the fact that
monitoring data-centric properties may be prohibitively expensive. In
fact, using S, each method invocation involved in the transfer protocol
creates an additional DATE that will check the postcondition on exit.
However, the postcondition checker is only created if the precondition
holds on method invocation. In this case study, this causes large overheads
when monitoring the unoptimised specification. Using the results from
static verification, however, strengthens the preconditions by additional
constraints, which in the Mondex case state were always falsified at
invocation time, meaning that no postcondition checker is ever created.
Apparently, in Mondex, the algorithmic complexity of the individual
method implementations is limited enough such that KeY could fully
prove the methods correct (automatically) if only the internal constraints
corresponding to the ppDATE states were provided to KeY. But as they
are not, KeY generates those constraints (closed branch conditions, see
Sec. 4), and adds their negation to the preconditions. With that, the
preconditions are never true at runtime. This phenomenon cannot be fully
generalised to cases where KeY really lacks (automated) proving power
for the code at hand, or where the code is faulty of course.

Faulty Behaviour Usually, it is hard to get full proofs when using a
static verifier like KeY without considering either user interaction with the
prover or the use of special annotations, e.g., loop invariants, to help the
prover on its task. However, it might be the case that the static verifier
does not succeed in closing a branch in the proof due to the fact that
the remaining open goal was generated by an erroneous execution path.
KeY cannot per se determine which one of these situations is dealing
with. Fortunately, Larva can detect the occurrence of the erroneous case
whenever it appears at runtime.

We have intentionally injected errors into Mondex source to verify
that the optimised monitor still detects them. Consider the case of a bug
in the implementation of method val_operation — the value of variable
balance is incremented with a different amount from the one given in the
specification of the method. When analysing property val_operation_ok,
KeY obviously does not manage to prove it. Therefore, the whole property
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will have to be runtime verified. The monitor spots this error reaching a
bad state

In addition, we have also considered incomplete and wrong specifica-
tions. In the case where the specification is too weak, the implementation
may fulfil it for wrong reasons. As in all verification approaches, we may
not catch this kind of problem. When using our verification approach
there lies the possibility that the problem propagates to a state in which
the specification is strong enough to identify it. For example, consider if
the specification does not specify how the variables of a purse should be
initialised by the ConPurse class constructor, and there is an implementa-
tion error where the variable balance is initialised to −1 instead of being
initialised to 0. In spite of the error in the specification, KeY would proceed
normally with the proofs and the previous particular situation would not
be directly controlled on runtime. However, this erroneous initialisation
leads to an erroneous initial charge of money in the purses (performed
using the method chargeMoney in class ConPurse). As balance is neg-
ative, the previous method fails to update it with the new amount of
money. Hence, after applying chargeMoney the value of balance is still
−1. Thereby, whenever a purse tries to begin a transfer, either the method
initialising the sender purse during a transaction or the method initial-
ising the receiver purse during a transaction will fail its execution (the
former due to insufficient funds and the latter due to a value overflow).
This failure leads to an unsuccessful termination of the transfer, which is
detected by the monitor controlling the transaction protocol and takes
it to a bad state. This analysis can be easily conclude by inspecting
the execution trace generated by the monitor. This trace allows one to
backtrack through the execution of the different methods until reaching
which was the problem which was the cause the failure. In this scenario,
it is important to note that in spite of the fact that we have not enforced
any Hoare triple on the constructor of class ConPurse, it was specified
and proved correct using KeY.

On the other hand, if a Hoare triple has an overly weak precondition
or overly strong postcondition, then KeY will fail to prove the Hoare
triple. StaRVOOrS thus ensures that the Hoare triple is checked at
runtime, which allows us to realise when expected results arise. Finally,
another scenario is when the user uses erroneous data, not detected by the
application. For instance, a user might request a transfer exceeding the
amount of money in a purse. In this situation, the method initialising the
sender purse during a transaction will fail its execution due to insufficient
funds and this will lead to an unsuccessful termination of the transfer. This
unsuccessful termination is detected by the runtime monitor controlling
the transaction protocol.



Combined Static and Runtime Verification 83

11 Related Work

The combination of different verification techniques is gaining more and
more popularity. One active area of research is the combination of testing
and static analysis, e.g. [11, 16, 18, 21, 25, 26, 33]. A direct comparison of
our work with those would not be fully fair as we have different objectives.
We are not aiming at generating test cases, but at monitoring the actual
post-deployment runs of the system. What we have in common is that
static analysis/verification is used to limit the dynamic efforts, there by
filtering test cases, here by filtering checks at runtime.

Another line of research is the combination of testing and runtime
verification. Decker et al. in [23] introduce an extension of the testing
framework JUnit, which adds runtime verification artefacts to it. In this
extension, during the execution of a test, a monitor is in charge of checking
whether the actual executed test conforms with the property being moni-
tored. In [10] Artho et al. present a framework where automated test case
generation benefits from the use of runtime verification in a similar way to
[23]. Falzon and Pace [24] study the combination of QuickCheck and Larva
by presenting a technique which extracts monitors from a QuickCheck test-
ing specifications. Even though this line of work have a different objective
compare to ours, it is worth mentioning that the QuickCheck automata
used in [24] are quite similar to ppDATEs. QuickCheck automata employ
pre/postconditions as part of their transitions, as opposed to ppDATEs
which include them in the states of the automata. This similarity may
suggest that it might be possible to extend our approach by also including
the possibility of perform testing.

Another area worth mentioning is the combination of runtime as-
sertion checks with runtime verification. In [22] de Boer et al. present
SAGA, a framework which combines runtime assertion checking with
monitoring. In contrast to our approach which targets general data- and
control-oriented properties, SAGA focuses on the verification of both
data-flow and control-flow properties of Java classes and interfaces, e.g.,
interaction protocol among objects. However, we are mainly interested in
the combination of static verification and runtime verification such that
static verification is used to reduce the overhead introduced to the system
execution by monitoring properties. Wonisch et al. in [35] make use of
program transformations in order to avoid unsafe program executions.
In [14] the efficiency of runtime monitoring based on tracematches is
improved by using a static analysis technique which reduces the runtime
instrumentation needed. The technique consists on three stages: exclu-
sion of some tracematches, elimination of inconsistent instrumentation
points, and additionally refinement of this analysis considering the order
of execution.

Other works use this kind of combination but with different goals. In
[15] Bodden and Lam present CLARA, a framework which uses static
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techniques aiming to improve the monitors themselves, instead of verifying
software. The work by Zee et al. in [37] investigates the combination of
static and runtime verification, but aiming at a specification language
whose specifications may be both statically and runtime checked. With this
goal in mind, they extend the static verifier Jahob by adding techniques to
verify specifications at runtime. In this approach, most of the properties
which can be verified are data-oriented, as opposed to ours where control-
oriented properties are covered as well. In [30] Sözer integrates static code
analysis and runtime verification. On this approach, runtime verification
statements are created from static code analysis alerts, in order to generate
monitors which will allow to both check for possible faults in the system
and eliminate false positives obtained in the static phase.

Many specification approaches, such as SPARK [12], JML [28] and
SPEC# [13] are supported by both static and runtime verification tools.
Nevertheless, to the best of our knowledge, static verification is not used
to optimise the runtime verification of properties.

12 Conclusions

In this paper we have presented StaRVOOrS, a framework for verifying
integrated data- and control-oriented properties for Java programs, using
a combination of static and runtime verification. The StaRVOOrS tool-
chain uses KeY [5] for static verification, and Larva [20] for the verification
performed at runtime.

We have presented the language ppDATE which is based on automata
and pre/post conditions to describe properties of both, the control flow and
the data computations. The basic structuring principle of the language is
the composition of parallel automata, whose transitions fire simultaneously
in reaction to events of the observed system, but also in reaction to events
generated by some automata in the previous step. A distinguishing feature
of the language is the inclusion of functional properties of computation
units into the above, thereby capturing the dependency of functional
properties on the history of previous events, by assigning Hoare triples
to (automata-theoretic) states. Finally, the template concept allows to
parameterise components in a great variety of ways, and create concrete
instantiations dynamically.

We also presented here a semantics of ppDATEs, precisely describing
the interplay of transitions, event consumption and generation, Hoare
triple monitoring, creation of template instances. We then use the se-
mantics to prove soundness of the algorithm our tool uses to translate
ppDATE into DATE, allowing us to employ the DATE tool Larva as a
back-end for runtime verifying ppDATE specifications.

This article also reports on the application of StaRVOOrS to SoftS-
late, an open-source shopping cart web application. In this case study, we
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analyse ppDATEs describing properties about the proper behaviour of
the system while users perform purchases. We also report on application
of StaRVOOrS to the verification benchmark Mondex, an electronic
purse application. We demonstrate how properties can be verified using
combined static and runtime verification.

For SoftSlate, the overhead of pure runtime verification (without
employing static verification) is roughly 50%, a penalty which we get
down to roughly 25% when using StaRVOOrS, by facilitating static
verification (cf. Section 9.3). These differences are much smaller compared
to when we applied StaRVOOrS to the Mondex case study, where
pure runtime verification created a much higher overhead. Compared to
that, the monitor created by StaRVOOrS was 10 times faster for a
low number of transactions, and up to 900 times faster as the number of
transactions increase. ‘When using the monitor generated from the original
specification provided for Mondex, the execution of each method involved
in a transaction (7 in total) creates an additional DATE to be traversed in
parallel, which is in charge of checking the postcondition. This would lead
to the large overheads obtained in that case study. However, when using
the monitor generated by StaRVOOrS, thanks to the optimisations
introduced in the specification by this tool, no additional DATEs are
created when a transaction is performed, because the additional checks in
the preconditions are false at runtime.

As a final remark, note that the efficiency gain for monitoring will
benefit from any improvements in the used static and runtime verifiers.
For instance, if KeY is improved in such a way that more branches are
closed during the static proof, then this will have an immediate effect
in StaRVOOrS thus reducing the runtime overhead. Similarly, any
optimisation performed in Larva will only bring benefits to our tool.

We are currently looking at ways of pushing our techniques further.
On one hand, we are looking at techniques to add control-flow static
analysis to StaRVOOrS, thus benefiting from further optimisation prior
to deployment. We are also looking at extending the framework to deal
with distributed systems [9], which brings in new challenges, and might
require assume-guarantee reasoning to enable us to perform static analysis
based optimisations.
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Peter H. Schmitt, and Mattias Ulbrich, editors. Deductive Software
Verification—The KeY Book, volume 10001 of LNCS. Springer, 2016. to
appear.
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A Proofs of Coupling Invariant Lemmas

In order to prove both Lemma 2 and Lemma 3, we introduce the following
two propositions. Prop. 1 says that the translation algorithm only modifies
the actions of the transitions in the translated ppDATE network. Prop. 2
says that for every transition in the translation either there is a similar
transition in the original ppDATE network, or there is not such a transition,
due to the fact that the transition is a new loop transition (added by the
translation to control Hoare triples).

Remember that we represent the translation of a single ppDATE to
DATE with the function κ ∈ ppDATE 7→ DATE.

Proposition 1. Given a ppDATE network pn = (M,V, ν0, Tppd) and its
translation
ppd2DATE(pn) = (M ′, V, ν0, T ′d),

∀ m, q, q′, tr, c, a ·
q
tr|c7→a−−−−→m q′ and m ∈M and κ(m) ∈M ′·
(∃ a′ · q tr|c 7→a′−−−−−→κ(m) q

′)

Proof. Given a ppDATE m ∈M and a state q ∈ Qm, whenever Πm(q) =
∅, Πm(q) 6= ∅ but there is no Hoare triple associated to the method related
to trigger tr, or the trigger is associated to exiting a method, by Step
3b., transitions remain unchanged in the translation. Therefore, a′ = a in
these cases.

On the other hand, for each clashing Hoare triple {π}σ {π′} ∈ Πm(q),

by step 3a2., the transition q
tr|c7→a−−−−→m q′ is replaced by one of the following

transitions:

q
tr|c7→{a; ifπ then create(post checker,(σ↑

id,π
′)}−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→κ(m) q

′, or

q
tr|c7→{a; ifπ then create(post checker h,(σ↑

id,vali)}−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→κ(m) q
′.

Thereby, either a′ = a; ifπ then create(post checker, (e↑id, π
′)}, or

a′ = a; ifπ then create(post checker h, (e↑id, vali)} .
Finally, as in step 3a1 non-clashing Hoare triples add new transitions

but do not modified existing ones, this case trivially holds.

Proposition 2. Given a ppDATE network pn = (M,V, ν0, Tppd) and its
translation
ppd2DATE(pn) = (M ′, V, ν0, T ′d),

∀ m′, q, q′, tr, c, a ·
q
tr|c 7→a−−−−→m′ q′ and m′ ∈M ′·
(∃ m, a′ ·m ∈M,κ(m) = m′ · q tr|c7→a′−−−−−→m q′)
or

((@ m, a′ ·m ∈M,κ(m) = m′ · q tr|c 7→a′−−−−−→m q′) and (q = q′))
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Proof. Each transition t′ ∈ t′m for any m′ ∈M ′ is obtained by applying
either step 3a1, 3a2 or 4b.

If t′ was obtained by applying step 3a1, then it is a new loop transition
added by the translation, i.e., its origin and destination states are the
same, and given a ppDATE m ∈ M such that κ(m) = m′, there not
exists a transition associated to t′ in m. Therefore, the right side of the
disjunction holds.

If t′ was obtained by applying step 3a2, then, given a ppDATE m ∈M
such that κ(m) = m′, either there exists one transition on m with the
same trigger, same condition, and similar action (but without including
the if-expression checking the precondition), or t′ is a new loop transition
added by the translation. In the first case the left side of the disjunction
holds, whereas in the the second case the right side of the disjunction
holds.

Finally, if t′ was obtained by applying step 3b, then, given a ppDATE
m ∈M such that κ(m) = m′,m has exactly the same transition. Therefore,
the left-hand side of the disjunction holds in these cases.

Now, we proceed to prove the lemmas.

Lemma 2. Given a network of ppDATEs pn = (M,V, ν0, Tppd), its trans-
lation ppd2DATE(pn) = (M ′, V, ν0, T ′d), a trace w ∈ (systemevent ×
ΘSys)

∗, and the global configurations (L, ν) and (L̃, ν′),

Cinit(pn)
w
=⇒M (L, ν) and Cinit(ppd2DATE(pn))

w
=⇒M ′ (L̃, ν′)

implies
∀ m, q, ρ · (m, q, ρ) ∈ L,m ∈M ·

∃ m′, q′ · (m′, q′, ∅) ∈ L̃ · κ(m) = m′ and q = q′

and

∀ m′, q′ · (m′, q′, ∅) ∈ L̃,m′ ∈M ′·
∃ m, q, ρ ·m ∈M,κ(m) = m′, (m, q, ρ) ∈ L · q = q′

and
∀ m, q, ρ · (m, q, ρ) ∈ L,m /∈M ·

∃ m′, q′ · (m′, q′, ∅) ∈ L̃,m′ /∈M ′ · q = q′

and

∀ m′, q′ · (m′, q′, ∅) ∈ L̃,m′ /∈M ′·
∃ m, q, ρ · (m, q, ρ),m /∈M ∈ L · q = q′

and
ν = ν′

Proof. We proceed to prove this lemma by induction on the length of the
trace w.

– Base case: w = ε (empty trace)
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Cinit(pn)
ε

=⇒M (L, ν) and Cinit(ppd2DATE(pn))
ε

=⇒M ′ (L̃, ν′)
implies
∀ m, q, ρ · (m, q, ρ) ∈ L,m ∈M ·

(∃ m′, q′ · (m′, q′, ∅) ∈ L̃ · κ(m) = m′and q = q′)
and

∀ m′, q′ · (m′, q′, ∅) ∈ L̃,m′ ∈M ′·
∃ m, q, ρ ·m ∈M,κ(m) = m′, (m, q, ρ) ∈ L · q = q′

and
∀ m, q, ρ · (m, q, ρ) ∈ L,m /∈M ·

∃ m′, q′ · (m′, q′, ∅) ∈ L̃,m′ /∈M ′ · q = q′

and

∀ m′, q′ · (m′, q′, ∅) ∈ L̃,m′ /∈M ′·
∃ m, q, ρ · (m, q, ρ),m /∈M ∈ L · q = q′

ν = ν′

By Def. 17 and Def. 21, we know that

L0 = L and ν0 = ν and L′0 = L̃ and ν0 = ν′

implies
∀ m, q, ρ · (m, q, ρ) ∈ L,m ∈M ·

(∃ m′, q′ · (m′, q′, ∅) ∈ L̃ · κ(m) = m′and q = q′)
and

∀ m′, q′ · (m′, q′, ∅) ∈ L̃,m′ ∈M ′·
∃ m, q, ρ ·m ∈M,κ(m) = m′, (m, q, ρ) ∈ L · q = q′

∀ m, q, ρ · (m, q, ρ) ∈ L,m /∈M ·
∃ m′, q′ · (m′, q′, ∅) ∈ L̃,m′ /∈M ′ · q = q′

and

∀ m′, q′ · (m′, q′, ∅) ∈ L̃,m′ /∈M ′·
∃ m, q, ρ · (m, q, ρ),m /∈M ∈ L · q = q′

and
ν = ν′

where L0 = {(m, q0m, ∅) | m ∈M}, and L′0 = {(m′, q0m′ , ∅) | m′ ∈M ′}.
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Next, by substitution with the antecedents we have to prove

(1) ∀ m, q, ρ · (m, q, ρ) ∈ L0,m ∈M ·
∃ m′, q′ · (m′, q′, ∅) ∈ L′0 · κ(m) = m′ and q = q′

and
(2) ∀ m′, q′ · (m′, q′, ∅) ∈ L′0,m′ ∈M ′·
∃ m, q, ρ ·m ∈M,κ(m) = m′, (m, q, ρ) ∈ L0 · q = q′

and
(3) ∀ m, q, ρ · (m, q, ρ) ∈ L0,m /∈M ·

∃ m′, q′ · (m′, q′, ∅) ∈ L′0,m′ /∈M ′ · q = q′

and
(4) ∀ m′, q′ · (m′, q′, ∅) ∈ L′0,m′ /∈M ′·

∃ m, q, ρ · (m, q, ρ),m /∈M ∈ L0 · q = q′

and
(5) ν0 = ν0

As in L′0 all the DATE components of the local configurations corre-
spond to the translation of ppDATE in pn, both (1) and (2) are trivially
fulfilled, and the ranges of both (3) and (4) are never fulfilled, meaning
that, as these ranges are empty (i.e., false), both expressions are trivially
evaluated to true. In addition, (5) is trivially fulfilled. Thereby, the base
case holds.

– Inductive case: w = w′ : (e, θ)

IH : ∀ L, L̃, ν, ν′·

Cinit(pn)
w′
=⇒M (L, ν) and Cinit(ppd2DATE(pn))

w′
=⇒M ′ (L̃, ν′)

implies
∀ m, q, ρ · (m, q, ρ) ∈ L,m ∈M ·
∃ m′, q′ · (m′, q′, ∅) ∈ L̃ · κ(m) = m′ and q = q′

and

∀ m′, q′ · (m′, q′, ∅) ∈ L̃,m′ ∈M ′·
∃ m, q, ρ ·m ∈M,κ(m) = m′, (m, q, ρ) ∈ L · q = q′

and
∀ m, q, ρ · (m, q, ρ) ∈ L,m /∈M ·

∃ m′, q′ · (m′, q′, ∅) ∈ L̃,m′ /∈M ′ · q = q′

and
∀ m′, q′ · (m′, q′, ∅) ∈ L′,m′ /∈M ′·

∃ m, q, ρ · (m, q, ρ),m /∈M ∈ L̃ · q = q′

and
ν = ν′
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Given the previous inductive hypothesis IH, we have to prove,

Cinit(pn)
w′:(e,θ)
====⇒M (L, ν) and Cinit(ppd2DATE(pn))

w′:(e,θ)
====⇒M ′ (L̃, ν′)

implies
∀ m, q, ρ · (m, q, ρ) ∈ L,m ∈M ·

∃ m′, q′ · (m′, q′, ∅) ∈ L̃ · κ(m) = m′ and q = q′

and

∀ m′, q′ · (m′, q′, ∅) ∈ L̃,m′ ∈M ′·
∃ m, q, ρ ·m ∈M,κ(m) = m′, (m, q, ρ) ∈ L · q = q′

and
∀ m, q, ρ · (m, q, ρ) ∈ L,m /∈M ·

∃ m′, q′ · (m′, q′, ∅) ∈ L̃,m′ /∈M ′ · q = q′

and
∀ m′, q′ · (m′, q′, ∅) ∈ L′,m′ /∈M ′·

∃ m, q, ρ · (m, q, ρ),m /∈M ∈ L̃ · q = q′

and
ν = ν′

By Def. 21 we have,

(i) ∃ L′′, ν′′ · Cinit(pn)
w′
=⇒ (L′′, ν′′) and (L′′, ν′′)

(e,θ)
==⇒ (L, ν)

and
(ii) ∃ L′′, ν′′·

Cinit(ppd2DATE(pn))
w′
=⇒ (L′′, ν′′) and (L′′, ν′′)

(e,θ)
==⇒ (L̃, ν′)

Then, we proceed with the proof by assuming the antecedent of the
implication. This assumption allows us to remove the existential quantifiers
in the antecedents by introducing the fresh values L′′ and ν′′ in (i), and
the fresh values L̃′′ and ν′′′ in (ii). Therefore, we have

(i′) Cinit(pn)
w′
=⇒ (L′′, ν′′) and (L′′, ν′′)

(e,θ)
==⇒ (L, ν)

and

(ii′) Cinit(ppd2DATE(pn))
w′
=⇒ (L̃′′, ν′′′) and (L̃′′, ν′′′)

(e,θ)
==⇒ (L̃, ν′)
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Next, by IH we know

(iii) ∀ m, q, ρ · (m, q, ρ) ∈ L′′,m ∈M ·
∃ m′, q′ · (m′, q′, ∅) ∈ L̃′′ · κ(m) = m′ and q = q′

and

(iv) ∀ m′, q′ · (m′, q′, ∅) ∈ L̃′′,m′ ∈M ′·
∃ m, q, ρ ·m ∈M,κ(m) = m′, (m, q, ρ) ∈ L′′ · q = q′

and
(v) ∀ m, q, ρ · (m, q, ρ) ∈ L,m /∈M ·

∃ m′, q′ · (m′, q′, ∅) ∈ L̃,m′ /∈M ′ · q = q′

and
(vi) ∀ m′, q′ · (m′, q′, ∅) ∈ L′,m′ /∈M ′·

∃ m, q, ρ · (m, q, ρ),m /∈M ∈ L̃ · q = q′

and
(vii) ν′′ = ν′′′

In relation to L, by (i) we know it is obtained from L′′ after performing
a big step with (e, θ). Thereby, the local configurations on L are either
the same as in L′′, a modified version of the ones in L′′, or new local
configurations added to control a DATE which is a new instance of a
template.

Let us introduce the sets Lnc, Lc and Lnew, to represent the local
configurations in each one of the previous categories, respectively. Then,
we know that

(viii) L = Lnc ∪ Lc ∪ Lnew
In addition, by using a similar approach with L̃ and (ii), we introduce

the following sets.

(ix) L̃ = L̃nc ∪ L̃c ∪ L̃new

Let us come back now to the expression we want to prove.

(x) ∀ m, q, ρ · (m, q, ρ) ∈ L,m ∈M ·
∃ m′, q′ · (m′, q′, ∅) ∈ L̃ · κ(m) = m′ and q = q′

and

(xi) ∀ m′, q′ · (m′, q′, ∅) ∈ L̃,m′ ∈M ′·
∃ m, q, ρ ·m ∈M,κ(m) = m′, (m, q, ρ) ∈ L · q = q′

and
(xii) ∀ m, q, ρ · (m, q, ρ) ∈ L,m /∈M ·

∃ m′, q′ · (m′, q′, ∅) ∈ L̃,m′ /∈M ′ · q = q′

and
(xiii) ∀ m′, q′ · (m′, q′, ∅) ∈ L′,m′ /∈M ′·

∃ m, q, ρ · (m, q, ρ),m /∈M ∈ L̃ · q = q′

and
(xiv) ν = ν′
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By (iii) and (iv), as the values in both Lnc and L̃nc are the same as in
L′′ and L̃′′, respectively, we know that these values fulfil all the previous
expressions. Thereby, we can reduce (viii) and (ix) to

(viii′) L = Lc ∪ Lnew (ix′) L̃ = L̃c ∪ L̃new

Regarding the newly created local configurations in both Lnew and
L̃new, they do not fulfil the ranges of the universal quantifications in
neither (x) nor (xi). In addition, by Prop. 1 and Prop. 2, we know that
the only difference in the executed actions in the ppDATEs in pn and their
translation is that the actions in the DATEs may include the creation
of an instance of template exit cond checker. Besides, by step 4 in the
translation algorithm, we now that both the ppDATEs templates and
their translations have similar transitions and are initialised in the same
state. Thus, (xii) and (xii) are fulfilled for these values, and we can reduce
(viii) and (ix) to

(viii′′) L = Lc (ix′′) L̃ = L̃c

Therefore, we have to prove,

(x′) ∀ m, q, ρ · (m, q, ρ) ∈ Lc,m ∈M ·
∃ m′, q′ · (m′, q′, ∅) ∈ L̃c · κ(m) = m′ and q = q′

and

(xi′) ∀ m′, q′ · (m′, q′, ∅) ∈ L̃c,m′ ∈M ′·
∃ m, q, ρ ·m ∈M,κ(m) = m′, (m, q, ρ) ∈ Lc · q = q′

and
(xii′) ∀ m, q, ρ · (m, q, ρ) ∈ L,m /∈M ·

∃ m′, q′ · (m′, q′, ∅) ∈ L̃c,m′ /∈M ′ · q = q′

and
(xiii′) ∀ m′, q′ · (m′, q′, ∅) ∈ Lc,m′ /∈M ′·

∃ m, q, ρ · (m, q, ρ),m /∈M ∈ L̃c · q = q′

and
(xiv) ν = ν′

By (iii) and Prop. 1 we know that for every enabled transition of a
ppDATE m ∈M , there is one enabled transition in κ(m) ∈M ′ performing
the same change of state and, if any, generating the same action events.
Thereby, both pn and its translation will shift the local configurations in
Lc and L̃c, respectively, in the same manner, i.e., (x′) holds.

In addition, by (iv) and Prop. 2 we know that for every enabled
transition in a DATE m′ ∈M ′, there is either an enabled transition in a
ppDATE m ∈M , where κ(m) = m′, such that this transition performs
the same change of state and, if any, generates the same action events, or
the transition enabled in m′ is a loop transition.
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In the first case, both pn and its translation will shift the local con-
figurations in Lc and L̃c, respectively, in the same manner. Thus, (xi′)
holds.

In the second case, the local configuration obtained after the shift is
in the same state as before the shift. Thus, by (iv), this (xi′) holds.

Moreover, by IH, Prop. 1, Prop. 2 we know that whenever a ppDATE
in pn creates an instance of a template, its translation will create an
instance of the translation of such template, and vice versa. Besides, by
the step 4 in the translation algorithm, as such instances have similar
transitions, they will shift the local configuration associated to them in
the same manner. Therefore, both (xii′) and (xiii′) are fulfilled.

Finally, in relation to (xiv), by Prop. 1 and Prop. 2 we know that
only difference in the executed actions in pn and its translation is that
the actions of the latter may include the creation of an instance of tem-
plate exit cond checker (whose actions do not modify ppDATE variables
valuations). In addition, by step 4 in the translation algorithm we know
that both an instance of a ppDATE template and a similar instance of
the translation of the template will fire similar transitions (with the same
actions). Therefore, they perform the same modifications in the valuations
ν′′ and ν′′′. Thus, by (vii), (xiv) holds.

Lemma 3. Given a network of ppDATEs pn = (M,V, ν0, Tppd), its trans-
lation ppd2DATE(pn) = (M ′, V, ν0, T ′d), a trace w ∈ (systemevent ×
ΘSys)

∗, and the global configurations (L, ν) and (L̃, ν′),

Cinit(pn)
w
=⇒M (L, ν) and Cinit(ppd2DATE(pn))

w
=⇒M′ (L̃, ν′) implies ψ(L, L̃)

where,

ψ(L, L̃) = ∀ m, q, ρ · (m, q, ρ) ∈ L ·
∀ σ↑id, π′, θ · (σ

↑
id, π

′, θ) ∈ ρ ·
∃ m′, q′ · (m′, q′, ∅) ∈ L̃ · inst (exit cond checker, σ, π′) = m′

and

∀ m′, q′ · (m′, q′, ∅) ∈ L̃,m′ /∈M ′·
∃ σ↑id, π′ · inst (exit cond checker, σ, π′) = m′

implies ∃ m, q, ρ, θ · (m, q, ρ) ∈ L · (σ↑id, π′, θ) ∈ ρ

Proof. We proceed to prove this lemma by induction on the length of the
trace w.

– Base case: w = ε (empty trace)

Cinit(pn)
ε

=⇒M (L, ν) and Cinit(ppd2DATE(pn))
ε

=⇒M′ (L̃, ν′) implies ψ(L, L̃)
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By Def. 17 and Def. 21 we know that

L0 = L and ν0 = ν and L′0 = L̃ and ν0 = ν′ implies ψ(L, L̃)

where L0 = {(m, q0m, ∅) | m ∈M}, and L′0 = {(m′, q0m′ , ∅) | m′ ∈M ′}.

Next, by substitution with the antecedents,

L0 = L and ν0 = ν and L′0 = L̃ and ν0 = ν′ implies ψ(L0, L
′
0)

Thus, by the definition of ψ we have to prove that,

∀ m, q, ρ · (m, q, ρ) ∈ {(m, q0m, ∅) | m ∈M} ·
∀ σ↑id, π′, θ · (σ

↑
id, π

′, θ) ∈ ρ ·
∃ m′, q′ · (m′, q′, ∅) ∈ {(m′, q0m′ , ∅) | m′ ∈M ′}·

inst (exit cond checker, σ, π′) = m′

and
∀ m′, q′ · (m′, q′, ∅) ∈ {(m′, q0m′ , ∅) | m′ ∈M ′},m′ /∈M ′·
∃ σ↑id, π′ · inst (exit cond checker, σ, π′) = m′

implies ∃ m, q, ρ, θ · (m, q, ρ) ∈ {(m, q0m, ∅) | m ∈M}·
(σ↑id, π

′, θ) ∈ ρ

First, let us analyse the expression,

∀ m, q, ρ · (m, q, ρ) ∈ {(m, q0m, ∅) | m ∈M} ·
∀ σ↑id, π′, θ · (σ

↑
id, π

′, θ) ∈ ρ ·
∃ m′, q′ · (m′, q′, ∅) ∈ {(m′, q0m′ , ∅) | m′ ∈M ′}·

inst (exit cond checker, σ, π′) = m′

As ρ is always the empty set, the condition (σ↑id, π
′, θ) ∈ ρ will always

evaluate to false. Therefore,

∀ m, q, ρ · (m, q, ρ) ∈ {(m, q0m, ∅) | m ∈M} ·
∀ σ↑id, π′, θ · false·

∃ m′, q′ · (m′, q′, ∅) ∈ {(m′, q0m′ , ∅) | m′ ∈M ′}·
inst (exit cond checker, σ, π′) = m′

Then, as the range of the inner universal quantification is empty (i.e.,
false), it is trivially evaluated to true.

∀ m, q, ρ · (m, q, ρ) ∈ {(m, q0m, ∅) | m ∈M} · true

Finally, as the body of the previous universal quantification is simply
the value true and its range is not empty, the whole expression is trivially
evaluated to true.



98 12. CONCLUSIONS

Now, let us analyse the expression,

∀ m′, q′ · (m′, q′, ∅) ∈ {(m′, q0m′ , ∅) | m′ ∈M ′},m′ /∈M ′·
∃ σ↑id, π′ · inst (exit cond checker, σ, π′) = m′

implies ∃ m, q, ρ, θ · (m, q, ρ) ∈ {(m, q0m, ∅) | m ∈M}·
(σ↑id, π

′, θ) ∈ ρ
As in the initial configuration of the translation of pn there are no

instances of DATE templates, the range of the universal quantification is
always evaluated to false. Therefore,

∀ m′, q′ · false·
∃ σ↑id, π′ · inst (exit cond checker, σ, π′) = m′

implies ∃ m, q, ρ, θ · (m, q, ρ) ∈ {(m, q0m, ∅) | m ∈M}·
(σ↑id, π

′, θ) ∈ ρ

Thus, as the range of the universal quantification is empty (i.e., false),
the whole expression is trivially evaluated to true. Thereby, the base case
holds.

– Inductive case: w = w′ : (e, θ)

IH : ∀ L, L̃, ν, ν′ ·

Cinit(pn)
w′
=⇒M (L, ν) and Cinit(ppd2DATE(pn))

w′
=⇒M ′ (L̃, ν′)

implies ψ(L, L̃)

Given the previous inductive hypothesis IH, we have to prove,

Cinit(pn)
w′:(e,θ)
====⇒M (L, ν) and Cinit(ppd2DATE(pn))

w′:(e,θ)
====⇒M ′ (L̃, ν′)

implies ψ(L, L̃)

By Def. 21 we have,

(i) ∃ L′′, ν′′ · Cinit(pn)
w′
=⇒ (L′′, ν′′) and (L′′, ν′′)

(e,θ)
==⇒ (L, ν)

and

(ii) ∃ L′′, ν′′ · Cinit(ppd2DATE(pn))
w′
=⇒ (L′′, ν′′)

and (L′′, ν′′)
(e,θ)
==⇒ (L̃, ν′) implies ψ(L, L̃)

Then, we proceed with the proof by assuming the antecedent of the
implication. This assumption allows us to remove the existential quantifiers
in the antecedents by introducing the fresh values L′′ and ν′′ in (i), and
the fresh values L̃′′ and ν′′′ in (ii). Therefore, we have

(i′) Cinit(pn)
w′
=⇒ (L′′, ν′′) and (L′′, ν′′)

(e,θ)
==⇒ (L, ν)

and

(ii′) Cinit(ppd2DATE(pn))
w′
=⇒ (L̃′′, ν′′′) and (L̃′′, ν′′′)

(e,θ)
==⇒ (L̃, ν′)
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Next, by IH we know that ψ(L′′, L̃′′). Thus, we have

(iii) ψ(L′′, L̃′′)

In relation to L, by (i′) we know it is obtained from L′′ after performing
a big step with (e, θ). Thereby, the local configurations on L are either
the same as in L′′, a modified version of the ones in L′′, or new local
configurations added to control a DATE which is a new instance of a
template.

Let us introduce the sets Lnc, Lc and Lnew, to represent the local
configurations in each one of the previous categories, respectively. Then,
we know that

(iv) L = Lnc ∪ Lc ∪ Lnew
In addition, by using a similar approach with L̃ and (ii′), we introduce

the following sets.

(v) L̃ = L̃nc ∪ L̃c ∪ L̃new
As in the translation the set L̃new contains both the instances of

ordinary templates and the instances of the templates about Hoare triples,
we split L̃new into the sets L̃′new and L̃h, to represent each one of the
previous categories, respectively. Thus,

(v′) L̃ = L̃nc ∪ L̃c ∪ L̃′new ∪ L̃h
Now, let us come back to the expression ψ(L, L̃). By (iv) and (v′), we

replace it by

ψ(Lnc ∪ Lc ∪ Lnew, L̃nc ∪ L̃c ∪ L̃′new ∪ L̃h)

By (iii), as the values in both Lnc and L̃nc are the same as in L′′ and
L̃′′, respectively, we know that the former fulfil ψ. Thereby, we can reduce
the previous expression to

ψ(Lc ∪ Lnew, L̃c ∪ L̃′new ∪ L̃h)

In addition, newly created local configurations in both Lnew and L̃′new
do not fulfil the ranges of the quantified expressions in ψ. Then, we can
discard them.

ψ(Lc, L̃c ∪ L̃h)

Next, by the definition of ψ, we have

(vi) ∀ m, q, ρ · (m, q, ρ) ∈ Lc ·
∀ σ↑id, π′, θ · (σ

↑
id, π

′, θ) ∈ ρ ·
∃ m′, q′ · (m′, q′, ∅) ∈ L̃c ∪ L̃h · inst (exit cond checker, σ, π′) = m′

and

(vii) ∀ m′, q′ · (m′, q′, ∅) ∈ L̃c ∪ L̃h,m′ /∈M ′·
∃ σ↑id, π′ · inst (exit cond checker, σ, π′) = m′

implies ∃ m, q, ρ, θ · (m, q, ρ) ∈ Lc · (σ↑id, π′, θ) ∈ ρ
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In relation to the configurations in L̃c, as they were obtained from
configurations in L̃′′, by (iii) we know they fulfil (vii) (same DATE
component). Thereby, we only need to prove that

(vi) ∀ m, q, ρ · (m, q, ρ) ∈ Lc ·
∀ σ↑id, π′, θ · (σ

↑
id, π

′, θ) ∈ ρ ·
∃ m′, q′ · (m′, q′, ∅) ∈ L̃c ∪ L̃h · inst (exit cond checker, σ, π′) = m′

and

(vii′) ∀ m′, q′ · (m′, q′, ∅) ∈ L̃h,m′ /∈M ′·
∃ σ↑id, π′ · inst (exit cond checker, σ, π′) = m′

implies ∃ m, q, ρ, θ · (m, q, ρ) ∈ Lc · (σ↑id, π′, θ) ∈ ρ

Now, let us focus on (vi). If event e is either an exit event, or an entry
event which does not require to verify any Hoare triple, then it does not
introduce any new values in ρ components of the local configurations in
Lc. Thus, by (iii), (vi) is fulfilled in both cases.

If event e is an entry event which requires the check of Hoare triples,
then by Lemma 2 and Prop. 1, we know that for every enabled transition
which requires the verification of a Hoare triple in pn, a similar transition
will be fired in its translation whose action will create a DATE in charge of
controlling such Hoare triple. Thus, for every new entry in a ρ component
in Lc, a new local configuration is added in L̃h. Thereby, (vi) holds.

Regarding (vii′), if event e is either an exit event, or an entry event
which does not require to verify any Hoare triple, then L̃h = ∅. Thus, as
the range of universal quantification is empty, (vii′) is trivially fulfilled in
both cases.

If event e is an entry event which requires the check of Hoare triples,
then by the rules entry1 and entry3 in the relation small step local, we
know that a new tuple is going to be added to the ρ component of the local
configuration in Lc which are associated to the ppDATEs whose current
state possess a Hoare triple that has to be verified. In addition, a local
configuration is going to be included in L̃h for the DATE instantiated to
control the corresponding Hoare triple. Thereby, (vii′) holds.

B Proof of Soundness

Theorem 1. Given a ppDATE network pn = (M,V, ν0, Tppd), and its
translation ppd2DATE(pn) = (M ′, V, ν0, T ′d),

VT (pn) = VT (ppd2DATE(pn))

Proof. To prove this theorem we will show that,

∀w · w ∈ (systemevent×ΘSys)
∗ · w ∈ VT (pn) iff w ∈ VT (ppd2DATE(pn))

In the following, we abbreviate ppd2DATE(pn) by dn.
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– w ∈ VT (pn) implies w ∈ VT (dn)

As w ∈ VT (pn), by Def. 22 we know that it has a prefix w′ such that
either,

(i) Cinit(pn)
w′
=⇒M (L′, ν′) and ∃ (m, q, ρ) · (m, q, ρ) ∈ L′ · q ∈ Bm, or

(ii) w′ = w1 ++ 〈(σ↑id, θ′)〉, Cinit(pn)
w1=⇒ (L′, ν′) and ∃ m, q, ρ, π′, θ ·

((m, q, ρ) ∈ L′and (σ↑id, π
′, θ) ∈ ρ) · θ, θ′ 6|= π′.

In relation to (i), let us assume that exists (L̃, ν) such that Cinit (dn)
w′
=⇒M ′

(L̃, ν). Then, by Lemma 2 we know that for every local configuration in
L′, there is a local configuration in L̃ such that its state component is the
same. Therefore, as in L′ there is a local configuration in a bad state, there
is a local configuration in L̃ in a bad state, i.e. w′ is a counter-example of
dn. Thereby, w ∈ VT (dn).

Regarding (ii), it corresponds to the case where (at least) one Hoare

triple is not fulfilled when event σ↑id occurs. Here, by Lemma 3 we have

ψ(L′, L̃)

Therefore, by (ii) and ψ(L′, L̃) we know that

∃ m′, q′ · (m′, q′, ∅) ∈ L̃ · inst(exit cond checker, σ, part eval(π′)) = m′

Let us assume that the local configuration (m′, q′, ∅) is the one satis-
fying the previous existential quantification. In addition, let us assume
(L̃, ν) to be given by Cinit(dn)

w1=⇒M ′ (L̃, ν). Then, once σ↑id occurs, as
by (ii) we know that the π′ is not fulfilled, m′ will shift to a bad state.
Thereby, w′ is a counter-example of dn, i.e. w ∈ VT (dn).

– w ∈ VT (dn) implies w ∈ VT (pn).

As w ∈ VT (dn), by Def. 22 and the fact that every DATE in dn has
no Hoare triples associated to its states, we know that it has a prefix w′

such that,

Cinit(dn)
w′
=⇒M ′ (L̃, ν) and ∃ (m, q, ρ) · (m, q, ρ) ∈ L̃ · q ∈ Bm

Now let us assume that exists (L′, ν′) such that Cinit (pn)
w′
=⇒M (L′, ν′).

In addition, let us assume that the bad state in L̃ belongs to a local
configuration associated to a DATE m′, which is an instance of the
template exit cond checker, i.e., m′ was created to control a Hoare triple.
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Let us represent this Hoare triple as {π}σ {π′}. Then, by Lemma 3 we
know that,

(1) ∃ m, q, ρ, θ · (m, q, ρ) ∈ L′ · (σ↑id, π′, θ) ∈ ρ

We will assume that the ppDATE m and the valuation θ are the ones
fulfilling (1). Note that the index id is introduced by Lemma 3. Next, as m′

is in a bad state we know that whenever σ↑id occurs, π′ is not fulfilled. Thus,

let us assume that the selected prefix is of the form w′ = w1 ++ 〈(σ↑id, θ′)〉.
Thereby, by Def. 22, w′ is a counter-example of pn, i.e. w ∈ VT (pn).

On the other hand, if the bad state in L̃ does not belongs to a
local configuration associated to a DATE m′ which is an instance of the
template exit cond checker, then by Lemma 2 we know that there is
a local configuration in L′ such that its state component is the same
as the bad state in L̃. Therefore, w′ is a counter-example of pn, i.e.
w ∈ VT (pn).
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1 Introduction

Day by day the use of formal verification techniques to verify the cor-
rectness of programs is increasing. In general, verification tools use either
static verification techniques (i.e., the verification is performed prior to
program execution), or dynamic verification techniques (i.e., the verifica-
tion is performed during program execution), in order to verify whether a
program fulfills certain properties.

Nowadays, a new trend focused on the combination of static and dy-
namic verification techniques is starting to emerge. StaRVOOrS (Static
and Runtime Verification of Object-Oriented Software) is a tool which
aims at both the specification and verification of properties by combining
the use of Static Verification and Runtime Verification. On the whole,
StaRVOOrS is fed with a Java program and a ppDATE specification [5]
describing properties which the program under scrutiny must fulfill, and it
automatically generates a runtime monitor which will verify the specified
properties (at runtime) whenever the provided program is executed.

This document is the user manual of StaRVOOrS. Its structure is
as follows. Section 2 provides an intuitive description of the ppDATE
specification language used by this tool. Section 3 gives a high level
explanation about how this tool works. Section 4 shows how to write a
ppDATE specification in the input language of the tool. Finally, section 5
provides a complete example on how to run this tool.

2 ppDATE Specification Language

Here, we briefly introduce the ppDATE specification language. However,
its complete description can be found in [5].

ppDATE is an automaton-based formalism which, basically, consists
of a transition system whose states may include Hoare triples describing
properties about the methods of the system under scrutiny.

Transitions in a ppDATE are labelled by a trigger (tr), a condition (c)
and an action (a). Together, the label is written tr | c 7→ a. A transition
is enabled to be taken whenever its trigger is active and the condition
guarding it holds. In addition, if a transition is taken, we say that it is
fired. Whenever a transition is fired, its action is executed.

Regarding the triggers, they are activated by the occurrence of either
a visible system event such as entering or exiting a method, or an action
event generated by certain actions labelling other transitions. We use the
notation foo↓, foo↑, e?, to represent the trigger which is activated when-
ever the method foo is entered, the trigger which is activated whenever
the method foo is exited, and the trigger which is activated whenever the
action event e occurs, respectively.

Regarding the conditions, they are expressions written using JML
boolean expression syntax [9]. Conditions may depend on the values of
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q :
(i) {cups < limit} brew() {cups == \old(cups)+1}
(ii) {true} cleanF() {cups == 0}start

q′ :
(iii) {cups < limit} brew() {cups == \old(cups)}
(iv) {true} cleanF() {cups == \old(cups)}

bad

t1 : brew↓ | cups < limit 7→ skip

t4 : cleanF↓ | true 7→ skip t3 : brew↓ | true 7→ skip

t2 : brew↑ | true 7→ skip

Fig. 1. A ppDATE controlling the brew of coffee

system variables (i.e., of the system under scrutiny) and the values of
ppDATE variables (i.e., variables which belong to the ppDATE). The
latter can be modified via actions in the transitions.

Regarding the actions, they consist on any number of the following:
(i) assignments of the form v = exp, where v is a ppDATE variable and
exp is an expression that may depend on system variables and ppDATE
variables; (ii) an action ! such that e! represents the generation of the
action event e; (iii) an action create, used to generate instances of a
ppDATE template (see Sec. 4.3); (iv) IF-THEN conditional expressions
whose branching condition depends on the valuations of system variables
and ppDATE variables; (v) an action log such that log(string) adds string
into the log file generated by the monitor; (vi) and (Java) programs. All
the actions should end in a semicolon.

In relation to the Hoare triples on the states of a ppDATE, intuitively,
if a Hoare triple {π} foo() {π′} is included in some state q, this property
ensures that: if method foo is entered while the monitor is in state q,
and pre-condition π holds, then upon reaching the corresponding exit
from foo, post-condition π′ should hold. Both pre-/post-conditions in the
Hoare triples are expressed using JML Boolean Expressions syntax (see
Sec. 4.5 for details about this syntax).

Now, let us introduce an example in order to give a better intuition
on how a ppDATE is described.

ppDATE Specification Example

Let us consider a coffee machine system where, after a certain amount
of coffee cups are brewed, its filters have to be cleaned. If the limit of
coffee cups is reached, the machine should not be able to brew any more
coffee. In addition, while the coffee machine is active (a coffee cup is being
brewed), it is not possible to start brewing another coffee, or to clean the
filters.
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Fig. 1 illustrates a ppDATE describing this part of the system. In
other words, whenever the coffee machine is not active, i.e., the machine is
not brewing a cup of coffee, and the method brew starts the coffee brewing
process, then it is not possible either to execute this method again, or
to execute the method cleanF (which initialises the task of cleaning the
filter), until the initialised brewing process finishes.

The previous property can be interpreted as follows: initially being in
state q, the state which represents that the coffee machine is not active,
whenever method brew is invoked and it is possible to brew a cup of
coffee (i.e., the limit of coffee cups was not reached yet), then transition
t1 shifts the ppDATE from state q to state q’. While in q’, the state
which represents that the coffee machine is active, if either method brew

or method cleanF are invoked, then transitions t3 or transition t4 shift
the ppDATE to state bad, respectively. This indicates that the property
was violated. On the contrary, if method brew terminates its execution,
then transition t2 shifts the ppDATE from state q’ to state q. Note that
the names used on the transitions, e.g. t1, t2, etc, are not part of the
specification language. They are included to simplify the description of
how the ppDATE works.

In addition to this, the Hoare triples in state q ensure the properties:
(i) if the amount of brewed coffee cups has not reached its limit yet, then
a coffee cup is brewed; (ii) cleaning the filters sets the amount of brewed
coffee cups to 0. Property (i) has to be verified if, while the ppDATE is
on state q, the method brew is executed and its precondition holds; and
property (ii) has to be verified if, while the ppDATE is on state q, the
method cleanF is executed and its precondition holds. Regarding state
q’, the Hoare triples in this state ensure the properties: (iii) no coffee
cups are brewed; (iv) filters are not cleaned. Property (iii) and (iv) are
verified if either method brew and method cleanF are executed, and their
preconditions hold, respectively. Here, remember that this state represents
that the coffee machine is active. Thus, if it occurs that either the method
brew or the method cleanF are executed while the ppDATE is on this
state, then, as this would move the ppDATE to state bad, one would
expect the value of the variable cup to remain unchanged. This is precisely
what is verified when either property (iii) or (iv) are analysed.

Note that none of the Hoare triples makes reference to the state of the
coffee machine, i.e., there is no information about whether the machine is
active or not. This is due to fact that the state of the machine is implicitly
defined by the states of the ppDATE. If the ppDATE is in state q, the
coffee machine is not active. However, if it is in state q’, then the machine
is active. Therefore, the Hoare triples are context dependent. This is the
reason why, we can describe properties with the same precondition, but
with different postconditions depending on the state of the ppDATE in
which they are placed.
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3 High-level Description of StaRVOOrS

StaRVOOrS takes three arguments: (i) the path to the main folder of
the Java files to be verified; (ii) a description (as input language) of the
ppDATE specification for the provided program; and (iii) the path of
the output folder (the generated files are stored in this folder). Then,
it automatically generates (1) a runtime monitor; (2) an instrumented
version of the Java files in (i); (3) a report summarising the results obtained
by statically verifying the Hoare triples described in (ii); (4) and a refined
version of (ii), when possible.

To generate such output, StaRVOOrS combines the use of the de-
ductive source code verifier KeY [4] with the runtime monitoring tool
Larva [7]. KeY is a deductive verification system for data-centric func-
tional correctness properties of Java programs, which generates, from
JML [9] and Java, proof obligations in Dynamic Logic (a modal logic for
reasoning about programs) [8], and attempts to prove them by using a
sequent calculus which follows the symbolic execution paradigm. Larva is
an automata-based Runtime Verification tool for Java programs which
automatically generates a runtime monitor from a property using the
automaton-based specification language DATE [6]. Larva transforms
such specification into monitoring code together with AspectJ code to
link the system under scrutiny with the generated monitor.

In a nutshell, StaRVOOrS output is generated by following the steps
enumerated below.

(a) The Hoare triples described in (ii) are translated into JML contracts,
which are textually added to to the Java files in (i) as annotations of
the respective methods;

(b) KeY attempts to (statically) verify all the JML contracts automatically.
The result obtained for each contract is either a complete proof, or a
partial proof where some parts of the contract are proved and others
are not, or that KeY cannot prove any of the parts the contract. These
results are stored in a XML file. In addition, a report summarising
the content of this file, i.e., (3), is generated. Here, note that our tool
does not support user interaction with KeY. It uses this prover in
fully automatic mode;

(c) The ppDATE specification is refined based on the XML file, i.e.,
(4). Fully verified Hoare triples are removed from the specification,
but those Hoare triples which are not fully verified, are left in the
specification to be verified at runtime. However, the original pre-
conditions of the remaining Hoare triples may be strengthen with
the (path) conditions resulting from partial proofs, thus covering at
runtime only executions that are not closed in the static verification
step;
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(d) The refined ppDATE specification is encoded into a DATE specifica-
tion. In particular, the DATE specification language does not support
pre/post-conditions which thus have to be translated to use notions
native to this specification language. This also requires a number of
changes to the system (through code instrumentation), in order to be
able to distinguish different executions of the same code unit, and to
evaluate the Hoare triples in the states of the refinded ppDATE at
runtime. i.e, (2). Regarding the former, method declarations get a new
argument which is used as a counter for invocations of this method.
Regarding the latter, not every condition in a pre/postcondition of
a Hoare triple can be directly written as a Java Boolean Expression,
e.g., quantified expressions. Thus, methods which operationalise the
evaluation of those conditions are added to the Java files in (i);

(e) The Larva compiler generates a runtime monitor using aspect-
oriented programming techniques, i.e., (1).

Once deployed, the runtime monitor and the instrumented version of
the Java files are executed together, thus effectively running the monitor
in parallel with the program. The runtime monitor identifies violations at
runtime, reporting error traces to be analysed.

4 Composing a ppDATE Specification in the Input
Language of StaRVOOrS

In this section we explain in detail how to write a ppDATE specification
using the input language of StaRVOOrS. The files written in such
language have extention .ppd, and their content may consist on 6 sections
which are ordered as follows: IMPORTS, GLOBAL, TEMPLATES, CINVARIANTS,
HTRIPLES and METHODS. Below, we describe the content of each one of
these sections, show their syntax, and provide examples illustrating how
to write them.

4.1 IMPORTS

Section IMPORTS lists the packages included in the sytem under scrutiny
which are related to the properties to be verified (both the Hoare triples
and the automata). Its syntax is described as follows:

IMPORTS { import package ; }

Each package listed in this section follows the usual Java syntax for
imports. For instance,

IMPORTS {

import main.Foo ;

import other.sub.Goo ;

import other.Hoo ;

}
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4.2 GLOBAL

Section GLOBAL contains the description of the ppDATE specification. Its
syntax, which is described below, is written as follows:

GLOBAL {

VARIABLES { -- definition of the variables -- }

ACTEVENTS { -- definition of the action events -- }

TRIGGERS { -- definition of the triggers -- }

PROPERTY property_name1 {

STATES { -- definition of the states of the ppDATE -- }

TRANSITIONS { -- definition of the transitions of the ppDATE -- }

}

PROPERTY property_name2 {

-- definition of states and transitions --

}

...

}

Note that one may describe more than one PROPERTY. This would be the
case when one is describing several ppDATEs in one single specification
file, i.e., each property represents a ppDATE.

VARIABLES Subsection VARIABLES allows to include as part of the
specification the declaration of variables. These variables, which are re-
ferred to as ppDATE variables, may be freely used in the transitions of
a ppDATE, both in their conditions and actions. For instance, one may
use an integer variable as a counter to keep track of how many times a
method is executed. Below, we illustrate how variables may be defined
within this subsection.

VARIABLES {

type var ;

type var = initial_value ;

}

Such syntax follows the usual Java syntax for the declaration of variables.
For instance,

VARIABLES {

String s;

int i = 0;

}
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Note that whenever a variable is not initialised when it is defined, its
initialisation has to be performed by the execution of an action. Otherwise,
there is going to be an exception at runtime whenever the monitor attempts
to manipulate such variable.

ACTEVENTS Subsection ACTEVENTS includes the declaration of the
different action events which may be generated by using the action !.
Here, it is only necessary to list the names of these events, as illustrated
in the example below for the action events e1, e2, and e3.

ACTEVENTS {

e1 ; e2 ; e3 ;

}

TRIGGERS Subsection TRIGGERS includes the declaration of the dif-
ferent triggers which may be used in the transitions of a ppDATE.

Triggers Associated to System Events The triggers which are acti-
vated by the occurrence of a visible system event, i.e., entering or exiting
a method, have the following signature:

name(args) = {Class obj.method(args’)sysevent }

Here, name is a label which works as an identifier for the trigger; method
is the name of the method generating the system event which activates
the trigger; obj is the target object (instance of the class Class) on which
method is being called1; and sysevent represents whether the trigger is
activated by a system event produced by entering or exiting a method,
represented with the notation entry or exit, respectivily. In addition,
each trigger may have a number of arguments args which act as binds for
args’ (i.e., args’ are the arguments in args, but without their types).
This allows the access at runtime to the arguments which are being
provided to the method, and to the value returned by a method (see
examples below). Note that one may use obj to access at runtime the
target object as well.

Below, by considering the Java classes depicted in Fig. 2, we give
several examples illustrating the different manners in which this kind of
triggers might be defined.

TRIGGERS {

foo1() = {Foo f.foo()entry}

foo2() = {*.foo()entry}

goo1(int x, boolean b) = {Goo g.goo(x,b)entry}

goo2(int x) = {Goo g.goo(x,*)entry}

foo3() = {*.foo()exit()}

1 We assume that obj is universally quantified.
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public class Foo {

public void foo();

}

public class Goo {

public void goo(int x,boolean b);

public int hoo(int x, int y, int z);

}

Fig. 2. Example of Java classes.

goo4(int x,boolean b) = {Goo g.goo(x,b)exit()}

hoo(int x, int ret) = {Goo g.hoo(x,*)exit(int ret)}

}

On these definitions, whenever either the target object of the method or
any of the arguments of the method are not necessary for the definition
of a trigger, e.g., the definition of a trigger which is activated by the
execution of a method foo where several classes have an implementation
for this method, they can simply be omitted by replacing them with the
symbol ‘∗’, which is used as a placeholder. Triggers foo2, goo2, foo3,
and hoo are examples illustrating these situations. In addition, in the
definition of a trigger which is activated by a system event produced by
exiting a method, it is possible to refer (and later to access) to the value
(or object) returned by the method, by including in the arguments of the
trigger an argument with an appropiate type to represent such value, and
then including this argument in the notation exit, as it is illustrated in
the definition of trigger hoo.

PROPERTY The core of this section is the subsection PROPERTY. It
consists of the actual description of a ppDATE. This subsection is divided
in two parts: STATES and TRANSITIONS. Note that there should be defined
at least one property here.

STATES STATES lists all of the states in a ppDATE. There are four
kind of states: starting states, accepting states, bad states, and normal
states. STARTING list the intial state of the ppDATE. There should be
only one starting state listed. The accepting states, which are listed in
ACCEPTING, represent the states in which it is desirable for the monitor
to be in whenever the program under scrutiny terminates its execution.
The bad states, which are listed in BAD, represent states which a monitor
reaches whenever a property which is described with the transitions of the
ppDATE is violated at runtime. Finally, normal states, which are listed in
NORMAL, are neither accepting nor bad states, but simply possible states
where a monitor may be in during the execution of a program.

In relation to the list of states, each entry consists on the name of
a state, and a list of the names of the Hoare triples which have to be
verified in that state (this is properly explained in Sec. 4.5). Entries in a
list of states terminate in a semicolon.

Below you can see an example of a STATES subsection.
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STATES {

STARTING { q0 ; }

ACCEPTING { q4 (h1,h4) ; q5 ; q6 (h2); }

BAD { bad ; }

NORMAL { q1 ; q2 (h2,h3) ; q3; }

}

Note that the order previously illustrated in the syntax (starting, accepting,
bad, normal) should be preserved. In addition, it is mandatory to always
include a starting state on a ppDATE. Otherwise, the monitor will not
know from which state it should start.

TRANSITIONS Section TRANSITIONS contains the description of all
the transitions in the ppDATE. For each ppDATE transition going from
state q to state q’ with trigger tr, condition c, and action a, this section
includes a line of the form

q -> q’ [tr \ c \ a]

However, the conditions and the actions are optional. Below we list all
the syntactically valid expressions which may be used within this section.

(1) q -> q’ [tr\c\a]
(2) q -> q’ [tr\\]
(3) q -> q’ [tr\]
(4) q -> q’ [tr]

(5) q -> q’ [tr\c\]
(6) q -> q’ [tr\c ]

(7) q -> q’ [tr\\a]

Note that the expressions (2), (3), and (4) are equivalent. Similarly,
expressions (5) and (6) are equivalent as well. In addition, when using a
trigger in a transition it is not necessary to write their arguments in the
trigger component of the transition. This does not affect the possibility
of using such arguments in both the conditions, and the actions. For
instance, given the trigger t(int x) = {Goo g.goo(x)entry}, one may
define the transition q0 -> q1 [t\x == 8], where x is the argument of
the trigger t.

Now, let us illustrate some of the previous expressions with the follow-
ing example.

TRANSITIONS {

q0 -> q1 [tn \ c == 8 \ v = 0 ; inc(v) ;]

q0 -> q2 [f \ c == 2 \ ]

q1 -> q3 [g \ \ v=2 ; \gen(e) ; ]

q2 -> q2 [e?]

}



114 4. COMPOSING A PPDATE IN THE INPUT LANGUAGE

login-logout = λ u : User.

logoutstart login

bad

login(u)↑

deposit(u) ↓

logout(u)↑

deposit(u)↓

Fig. 3. ppDATE template describing properties about the log in and log out of
users.

Note that the action of the third transition includes the execution of the
action \gen(e). In the input language, this is the action which generates
the action event e. However, in the theory [5], like it was introduced in
Sec. 2, this action is represented with the symbol !, i.e., e! generates the
action event e. The main reason why we decided not to use the same
notation in our input language as the one used in the theory is that
both JML and Java use the symbol ! as the boolean negation. Thus, we
consider that by introducing action \gen instead, we are avoiding the
possible confusion which may arise in relation to whether v! refers to the
negation of the boolean variable v, or the generation of the action event v.
In addition, the trigger e? in the fourth transition represents the trigger
which is activated whenever the action event e occurs.

Regarding the use of (Java) programs in the actions, the tool only
supports the use of method calls, e.g., inc(v) in the first transition.
However, it is possible to use the section METHODS (see Sec. 4.6) to
define programs as (Java) methods. Then, one simply has to make a
method call to them.

4.3 TEMPLATES

In addition to ppDATEs which exist up-front, and ‘run’ from the beginning
of a program’s execution, new ppDATEs can be created by existing ones.
For instance, one may want to create a separate ‘observer’ for each new
user logging into a system. For that, one needs to be able to define
parameterised ppDATEs, which we call templates, and allow ppDATEs
to create new instantiations of them. Fig. 3 illustrates an example of a
ppDATE template called login-logout which, given a user u, describes the
property “the user has to log in to perform a deposit”.

Section TEMPLATES lists tagged ppDATE templates. Below, we show
the syntax of this section.
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TEMPLATES {

TEMPLATE id_template (args) {

VARIABLES { -- definition of the variables -- }

TRIGGERS { -- definition of the triggers -- }

PROPERTY name { -- definition of the property -- }

}

}

Each template is described within a subsection TEMPLATE, whose header is
followed by a (unique) name id template assigned to the template, and a
list of parameters args used to generalise the definition of the templates.
Note that as a template describes a ppDATE, the subsections VARIABLES,
TRIGGERS, and PROPERTY are defined just like it is decribed in Sec. 4.2.
Below, we illustrate how the ppDATE template in Fig. 3 could be written
using this syntax.

TEMPLATES {

TEMPLATE login-logout (User u) {

TRIGGERS {

login_exit(String username, int pwd)

= {User u1.login(username, pwd)exit()} where {u = u1}

logout_exit() = {User u1.logout()exit()} where {u = u1}

deposit_entry(int money)

= {User u1.deposit(money)entry} where {u = u1}

}

PROPERTY deposit {

STATES {

STARTING { logout ; }

ACCEPTING { login ; }

BAD { bad ; }

}

TRANSITIONS {

logout -> login [login_exit]

logout -> bad [deposit_entry]

login -> logout [logout_exit]

login -> login [deposit_entry]

}

}

}

}

Note that as on the definition of the triggers one has to describe the
target object (with its type) on which the methods are called, we have
introduced a where clause to express that the target object used in such
a definition is actually the parameter of the template. This is not the only
use for this clause. See Sec. 4.7 for more details about this.

Regarding the instantiation of a template, it is accomplished by using
the action create on the transition of a ppDATE. This action receives as
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start

User.new↑ | true 7→ create(login-logout,\result)

Fig. 4. ppDATE in charge of creating instances of the template login-logout.

arguments the name of the ppDATE template to be instantiated and a list
of values to instantiate the parameterised arguments of the template, and
it generates the instance of the template. For example, Fig.4 illustrates a
ppDATE which creates an instance of the template login-logout (Fig. 3)
upon declaration of an object of class User. Here, \result represents the
(concrete) object of class User which was created. In addition, the trigger
User.new↑ is activated when such a creation occurs.

4.4 CINVARIANTS

Section CINVARIANTS lists the definitions of class invariants which may
need to be considered during the verification of the properties. Its syntax
is describided as follows:

CINVARIANTS {

class { invariant }

}

Here, class represents a Java class in the program under scrutiny whose
implementation has to preserve the invariant definition described by
invariant. Such invariants follow JML-like syntax and pragmatics. Below
we illustrate an example of this section.

CINVARIANTS {

Foo { v <= 10 }

Foo { count >= 0 }

}

Note that if no class invariants are needed on a specification, then this
section may be omitted. In addition, the actual version of the tool only
uses the class invariants during the static verification of the Hoare triples.
However, we are currently working to include the verification of class
invariants at runtime as well.

4.5 HTRIPLES

Section HTRIPLES lists tagged Hoare triples. Its syntax is described as
follows:
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HTRIPLES {

HT hoare_triple_name {

PRE { -- precondition -- }

METHOD { -- method to verify -- }

POST { -- postcondition -- }

ASSIGNABLE { -- variables modified -- }

}

}

Each Hoare triple is described within a subsection HT, whose header is
followed by the name assigned to the Hoare triple. This name is unique
for each Hoare triple, and it is used to associate the Hoare triples with the
states of a ppDATE. Subsection HT is composed by four parts: PRE, which
describes the pre-condition of the Hoare triple; POST, which describes the
post-condition of the Hoare triple; METHOD, which describes which is the
method that has to fulfil the Hoare triple; and ASSIGNABLE, which lists
the variables that might be modified when the method under scrutiny on
the Hoare triple is executed. Here, PRE, POST, and ASSIGNABLE follow
JML-like syntax and pragmatics. Regarding METHOD, its content is an
expression of the form file.method, where method is the name of the
method related to the Hoare triple, and file is the Java file where the
previous method is implemented. Let us illustrate this with following
example.

HTRIPLES {

HT add_ok {

PRE { v }

METHOD { Foo.inc }

POST { count == \old(count)+1 }

ASSIGNABLE { count }

}

HT add_err {

PRE { !v }

METHOD { Foo.inc }

POST { count == \old(count) }

ASSIGNABLE { \nothing }

}

}

Note that this section may contain several subsections HT, one per each
Hoare triple. In addition, if no Hoare triples are included as part of a
ppDATE specification, then this section may be omitted.

4.6 METHODS

Section METHODS is an optional section which allows to include method
declarations as part of a specification. These methods will be included
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start

U.new↑ | true 7→ create(prop-temp,\result)

Fig. 5. ppDATE in charge of creating instances of the template prop-temp.

as part of the implementation of the monitor generated by the tool. Its
syntax is described as follows:

METHODS {

type method(arguments) { -- method implementation -- }

}

Methods are declared following standard Java notation. However, access
modifiers (i.e., public, protected, private) are not necessary when declaring
these methods. If a method is declared as static method, then monitor
variables will not be accessible within that particular method. Below, we
illustrate an example of this section.

METHODS {

boolean compare (int x, int y) { return (x == y); }

int four() { return 4 ; }

}

4.7 Extra Features

This section describes some extra features added to the tool and its input
language which are not covered by the theory in [5].

PINIT Definition in Section PROPERTY When describing a pp-
DATE specification, it is quite common to have some ppDATEs only
focus on creating instances of a template upon declaration of an object.
Such ppDATEs would look like the ppDATE illustrated in Fig. 5, which
creates an instance of the template prop-temp every time an object of
the class U is created. Here, \result represents the (concrete) object of
class U which was created. In addition, the trigger U.new↑ is activated
when such a creation occurs.

Therefore, we decided to include a special subsection PINIT as part of
the section PROPERTY, which can be used to specify these kind of ppDATEs
in a simple manner. The syntax of this subsection is as follows:

PROPERTY property_name {

PINIT { (template_name,Class) }

}
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where property name is the name of the property (as described in Sec.4.2),
template name is the name of a ppDATE template defined in section
TEMPLATE, and Class is the name of the class associated to the declared
object. Below, we illustrate how the ppDATE from Fig.5 is described
using this special subsection.

PROPERTY example {

PINIT { (prop-temp,U) }

}

Like in Fig. 5, property example describes a ppDATE which has a single
state with only a loop transition which is fired every time an object of the
class U is created, leading to an instantiation of the template prop-temp

using the created object as argument.

Where clause When declaring a trigger, any of its arguments can be
bound to a variable which is not directly related to the method arguments.
For instance, let us assume that we have to perform some processing
on a particular value, and that we want that depending on its result, a
ppDATE fires a transition (or not). Then, by using a where clause right
after a trigger definition one can use one argument of the trigger to as a
bound for that particular value. Consider the next example:

TRIGGERS {

goo(boolean y) = {Goo g.foo()entry} where {y = g.IsValid();}

}

Here, we do not have any interest in the whole object g, but we simply
need to know if its a valid object or not, fact which can be computed
using the method IsValid(), in order to send the ppDATE to either the
state q2, or bad, respectively. Then, one can use the boolean argument y
of the trigger for binding the result of that method. This would allow us
to write transitions like the following ones:

TRANSITIONS {

q1 -> q2 [goo\ y]

q1 -> bad [goo\ !y]

}

Here, remember that it is not necessary to write the arguments of a trigger
in the trigger component of a transition, but one can refer to them in
both the conditions and the actions.

Furthermore, any variable which is not directly bound to the method
arguments is initialized in the where clause. This is done by checking that
there is at least one assignment statement with the unbound variable on
the left-hand side.

Note that the statements in the where clause can be any valid JAVA
statements and these can call any relevant method from imported packages,
and that the use of curly brackets in this clause is compulsory.
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Foreach Construct The FOREACH construct can be used as a simplistic
alternative to the use of ppDATE templates. Consider the following
ppDATE:

GLOBAL {

TRIGGERS {

log(User user) = {Interface f.login(User user)entry}

out(User user) = {Interface f.logout(User user)entry}

}

PROPERTY example {

STATES {

ACCEPTING { logout ; }

BAD { bad ; }

STARTING { login ; }

}

TRANSITIONS {

logout -> login [log\\create(deposit-temp,user)]

logout -> bad [out]

login -> logout [out]

login -> bad [log]

}

}

}

TEMPLATES {

TEMPLATE deposit-temp (User u) {

TRIGGERS {

dep(int val) = {User u1.deposit(val)entry} where {u = u1;}

}

PROPERTY deposit { --- }

}

}

On this ppDATE, every time a user logs in the interface, an instance
of the template deposit-temp is created in order to runtime verify the
property deposit for that user.

Now, let us introduce a similar ppDATE to the one described above,
but written using the foreach construct:

GLOBAL {

TRIGGERS {

log(User user) = {Interface f.login(User user)entry}

out(User user) = {Interface f.logout(User user)entry}

}

PROPERTY example {

STATES {

ACCEPTING { logout ; }

BAD { bad ; }

STARTING { login ; }
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}

TRANSITIONS {

logout -> login [log]

logout -> bad [out]

login -> logout [out]

login -> bad [log]

}

}

FOREACH (User u) {

TRIGGERS {

dep(int val) = {User u1.deposit(val)entry} where {u = u1;}

}

PROPERTY deposit { --- }

}

}

In this version of the ppDATE, as soon as an object of the class User is
created, a ppDATE verifying the property deposit is generated. Here,
remember that this is not what happen the template version of the
ppDATE, where the ppDATE verifying property deposit is only created
when a user logs in.

Using a foreach construct may seem simpler than using a ppDATE
template. However, one have to consider the following points when using it:
(i) this construct introduces a context to the ppDATE, i.e., the triggers,
variables and transitions will now be in a particular context. Hence, each
trigger should specify its context so that the ppDATE which will be
affected will only be the one belonging to that particular context. This is
done by using the where clause associated to each trigger; (ii) ppDATEs for
verifying the properties within a foreach are always going to be generated
upon creation of an object, even if the execution of the program does not
require to verify them; (iii) ppDATE templates are much more expressive
than this construct.

5 Using StaRVOOrS

In this section we depict how StaRVOOrS works by running the tool
on the coffee machine example described in Sec. 2. Both the ppDATE
specification written in the input language of the tool, and a simplistic
implementation of the coffee machine system, together with two big case
studies based on Mondex [1] and SoftSlate (a real Java cart application)
[2], can be found in [3], under the section Downloads. In addition, we have
included the content of the files of the running example in the appendix
A.
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5.1 Running StaRVOOrS

In order to run StaRVOOrS, as it is illustrated in Fig. 6, the following
input should be provided:

(i) the path to the main directory of the Java files to be verified, e.g.,
Example/CoffeeBrew.

(ii) a ppDATE specification for the provided program written in the
input language of the tool, e.g., Example/prop brew.ppd.

(iii) the path of the output directory where the files generated by the
tool are going to be placed, e.g., Example.

Fig. 6. Runnig StaRVOOrS

5.2 StaRVOOrS ouput

Fig.7 illustrates all the files generated by StaRVOOrS when it is used
to analise the running example. This output consists of: the monitor files
generated by Larva (folder aspects and folder larva), the files gener-
ated by StaRVOOrS to runtime verify partially proven Hoare triples
(folder ppArtifacts), an instrumented version of the source code (folder
CoffeMachine), the xml file used by StaRVOOrS to optimise the pp-
DATE specification (out.xml), a report explaining the content of the .xml
file (report.txt), the optimised version (if any) of the provided ppDATE
specification (prop brew optimised.ppd), and the DATE specification ob-
tained as a result of translating the (optimised) ppDATE (prop brew.lrv).
Note that StaRVOOrS does not modify the provided source code, it
creates an instrumented version of it. Thus, at the time of monitoring the
code, the instrumented version of the source code is the one which should
be used.
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Fig. 7. StaRVOOrS output

5.3 StaRVOOrS execution insights

StaRVOOrS is a fully automated tool. However, in order to have a better
understanding of its execution, below we will explain it in three stages.
Note that during each one of this stages, StaRVOOrS will produced
some output on the terminal. We will illustrate such an output through
figures.

The first stage corresponds to the static verification of the Hoare
triples using KeY. Fig. 8 shows the output produced by the tool on the
terminal during this stage. At first, KeY (taclet) options are set. This
options are parameters which, for instance, indicate KeY which rules of
its sequent calculus it is able to use during the verification of a property.
For the time being, we are just using the standard options. Then, KeY is
ran.

While KeY analyses all the Hoare triples, every time a proof attempt
is saturated, some information related to this analysis is given as output
in the terminal. Fig. 9 illustrates this. Once that KeY is done verifying all
the Hoare triples, it generates a out.xml describing its results. This file
is not intended for the user, it is used by StaRVOOrS to optimise the
ppDATE specification for runtime checking. However, in order to give to
the user some understandable feedback about what happened during the
static verification of the contracts, StaRVOOrS generates a file report.txt
which briefly explains the content of the .xml file.

The second stage corresponds to the refinement of the specification. In
this stage, all the Hoare triples which were fully proven are removed from
the ppDATE, and those which were only partially proven are modified
by strengthening their pre-conditions including the conditions which lead



124 5. USING STARVOORS

Fig. 8. Initiating Static Verification

Fig. 9. Output shown on the terminal during static verification
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Fig. 10. Optimization and files generation after static verification

to an unclosed path on a proof. For instance, as it can be read on the
report file (see appendix B), the pre-condition of the Hoare triple brew ok
is strengthen with the addition of the condition active == TRUE.

Whenever it is necessary to runtime verify partially proven Hoare
triples, StaRVOOrS instruments the provided Java files by adding a
new parameter to the method(s) associated to the Hoare triple(s). This
new parameter is used to distinguish different calls to the same method.
This change is introduced in the refined ppDATE specification as well (see
appendix B). Besides, StaRVOOrS generates several files within folder
the ppArtifacts which are used to runtime verify the Hoare triples. For
instance, the file HoareTriplesPPD.java contains the implementation of
the methods which are used to verify the pre- and post-conditions of the
Hoare triples. In addition, file IdPPD.java will be used to generate the
value of the new parameter added to the methods. Once this stage is over,
the terminal will look like Fig. 10.

The third stage corresponds to the generation of the runtime monitor.
In order to do so, the refined ppDATE specification is translated by
StaRVOOrS to a DATE specification (file prop brew.lrv in our running
example). Then, Larva is used to generate the monitor files from the
DATE. After the execution of Larva is completed, leading to the genera-
tion of the files in the folders aspects and larva, StaRVOOrS execution
is completed as well. The terminal will reflect this, as it is illustrated in
Fig. 11.

5.4 Running the application with the generated monitor

To run the (generated) instrumented version of the program, let us call
it P, together with the monitor, one can generated an executable jar file,
and then run it on a Java virtual machine. We will use Java 1.7 to compile
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Fig. 11. Monitor Generation

the Java files. However, due to compatibility issues with Larva, when
compiling the aspects one has to use the version 1.5. Note that the aspects
have to be compiled using an AspectJ compiler. We recommend the ajc
compiler. In addition, to run the jar file one has to use aj5 (like command
java, but with support for AspectJ), or similar. Below, we provide a short
script explaining how to create such a jar file.

First, go inside the output directory.

cd Example/out

Second, copy the folders larva and ppArtifacts into the main folder of P.

cp -r larva CoffeeBrew
cp -r ppArtifacts CoffeeBrew

Third, create a directory named Build, and compile P using the option
-target 1.7 in such a way that the compiled files are placed within Build.

mkdir Build
javac -target 1.7 $(find CoffeeBrew -name *.java) -d Build

Next, create an executable jar file from the files in Build.

jar cfe coffeeM.jar main.CMachine -C Build .

Now, one has to weave the aspects into the jar file. In order to do so,
the files in folder aspects have to be compiled using an AspectJ compiler.
Here, we use ajc. Note that it is usually recommend to generate a new jar
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file when the aspects are weaved.

ajc -1.5 -sourceroots aspects/ -inpath coffeeM.jar -outjar coffeeM asp.jar

Finally, this weaved executable jar file corresponds to the compilation of
P together with the monitor. Therefore, running it would mean the one
is running a monitored version of P. To execute the weaved jar file one
can use aj5 as follows:

aj5 -jar coffeeM asp.jar
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A Running Example Files

A.1 Coffee Machine Implementation

public class CMachine {

public int cups;

public int limit;

public boolean active;

CMachine(int limit) {
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this.limit = limit;

cups = 0;

active = false;

}

public void cleanF() {

if (!active)

cups = 0;

}

public void brew() {

if (!active && cups < limit)

cups++;

}

}

A.2 ppDATE Specification for the Coffee Machine

IMPORTS { import main.CMachine; }

GLOBAL {

EVENTS {

brew_entry() = {CMachine cm.brew()}

brew_exit() = {CMachine cm.brew()uponReturning()}

cleanF_entry() = {CMachine cm.cleanF()}

}

PROPERTY prop {

STATES {

BAD { bad ; }

NORMAL { q2 (brew_error,clean_filter_error) ;}

STARTING { q (brew_ok,clean_filter_ok) ; }

}

TRANSITIONS {

q -> q2 [brew_entry \ cm.cups < cm.limit ]

q2 -> q [brew_exit ]

q2 -> bad [ brew_entry ]

q2 -> bad [ cleanF_entry ] }

}

}

HTRIPLES {

HT brew_ok {

PRE {cups < limit}

METHOD {CMachine.brew}

POST {cups == \old(cups)+1}

ASSIGNABLE {cups} }

HT brew_error {

PRE {cups < limit}

METHOD {CMachine.brew}

POST {cups == \old(cups)}
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ASSIGNABLE {cups} }

HT clean_filter_ok {

PRE {true}

METHOD {CMachine.cleanF}

POST {cups == 0}

ASSIGNABLE {cups} }

HT clean_filter_error {

PRE {true}

METHOD {CMachine.cleanF}

POST {cups == \old(cups)}

ASSIGNABLE {cups} }

}

B Files Produced by StaRVOOrS

B.1 report.txt

Results of the Static Verification of Hoare triples

4 contract(s) were analysed:

* No contract(s) were fully proved.

* 4 contract(s) were partially proved:
clean filter error −→ New condition added to its precondition is
!(active == true)
clean filter ok −→ New condition added to its precondition is
active == true
brew error −→ New condition added to its precondition is
!(active == true)
brew ok −→ New condition added to its precondition is
active == true

B.2 Refined Version of the ppDATE Specification for the
Coffee Machine

IMPORTS { import main.CMachine; }

GLOBAL {

TRIGGERS {

brew_entry(Integer id) = {CMachine cm.brewAux(id)entry}

brew_exit(Integer id) = {CMachine cm.brewAux(id)exit()}

cleanF_entry(Integer id) = {CMachine cm.cleanFAux(id)entry}

cleanF_ex(Integer id) = {CMachine cv.cleanFAux(id)exit()}

}
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PROPERTY prop {

STATES {

BAD { bad ; }

NORMAL { q2 (brew_error,clean_filter_error) ;}

STARTING { q (brew_ok,clean_filter_ok) ; }

}

TRANSITIONS {

q -> q2 [brew_entry \ cm.cups < cm.limit ]

q2 -> q [brew_exit ]

q2 -> bad [ brew_entry ]

q2 -> bad [ cleanF_entry ] }

}

}

HTRIPLES {

HT brew_ok {

PRE {cups < limit && active== true}

METHOD {CMachine.brew}

POST {cups == \old(cups)+1}

ASSIGNABLE {cups} }

HT brew_error {

PRE {cups < limit && !(active== true)}

METHOD {CMachine.brew}

POST {cups == \old(cups)}

ASSIGNABLE {cups} }

HT clean_filter_ok {

PRE {true && active== true}

METHOD {CMachine.cleanF}

POST {cups == 0}

ASSIGNABLE {cups} }

HT clean_filter_error {

PRE {true && !(active== true)}

METHOD {CMachine.cleanF}

POST {cups == \old(cups)}

ASSIGNABLE {cups} }

}
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