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Abstract. We theoretically and numerically investigate the
problem of assimilating multiwavelength lidar observations
of extinction and backscattering coefficients of aerosols into
a chemical transport model. More specifically, we consider
the inverse problem of determining the chemical composi-
tion of aerosols from these observations. The main questions
are how much information the observations contain to deter-
mine the particles’ chemical composition, and how one can
optimize a chemical data assimilation system to make max-
imum use of the available information. We first quantify the
information content of the measurements by computing the
singular values of the scaled observation operator. From the
singular values we can compute the number of signal degrees
of freedom, Ny, and the reduction in Shannon entropy, H. As
expected, the information content as expressed by either N
or H grows as one increases the number of observational pa-
rameters and/or wavelengths. However, the information con-
tent is strongly sensitive to the observation error. The larger
the observation error variance, the lower the growth rate of
N or H with increasing number of observations. The right
singular vectors of the scaled observation operator can be
employed to transform the model variables into a new ba-
sis in which the components of the state vector can be parti-
tioned into signal-related and noise-related components. We
incorporate these results in a chemical data assimilation algo-
rithm by introducing weak constraints that restrict the assim-
ilation algorithm to acting on the signal-related model vari-
ables only. This ensures that the information contained in the
measurements is fully exploited, but not overused. Numerical
tests show that the constrained data assimilation algorithm

provides a solution to the inverse problem that is consider-
ably less noisy than the corresponding unconstrained algo-
rithm. This suggests that the restriction of the algorithm to
the signal-related model variables suppresses the assimila-
tion of noise in the observations.

1 Introduction

Atmospheric aerosols have a substantial, yet highly uncer-
tain impact on climate, they can cause respiratory health
problems, degrade visibility, and even compromise air-traffic
safety. The physical and chemical properties of aerosols
play a key role in understanding these effects. The aerosol
properties are determined by a complex interplay of differ-
ent chemical, microphysical, and meteorological processes.
These processes are investigated in environmental modelling
by use of chemical transport models (CTMs). However, mod-
elling aerosol processes is plagued by substantial biases and
errors (McKeen et al., 2007). It is, therefore, fundamentally
important to evaluate and constrain CTMs by use of mea-
surements.

Measurements from satellite instruments provide consis-
tent long-term data sets with global coverage. However, it is
notoriously difficult to compare measured radiances to mod-
elled aerosol concentrations. An alternative to using radi-
ances is to make use of satellite retrieval products. For in-
stance, one of the products of the CALIPSO lidar instrument
(Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Ob-
servations) is a rough classification of the aerosol types (i.e.
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dust, smoke, clean/polluted continental, and clean/polluted
marine). This retrieval product is based on lidar depolariza-
tion measurements (Omar et al., 2009). For the evaluation of
aerosol transport models this provides us with a qualitative
check for the chemical composition of aerosols. However,
this is of limited practical use, since what we really need is
quantitative information on the particles’ chemical compo-
sition (which can be size-dependent). The most popular ap-
proach in evaluating and constraining aerosol transport mod-
els is the use of retrieved optical properties, such as aerosol
optical depth, or extinction and backscattering coefficients.
Yet another idea is to provide the particles’ refractive index as
aretrieval product (e.g. Miiller et al., 1999; Veselovskii et al.,
2002). However, the use of such retrieval products still leaves
us with the challenge of solving an ill-posed inverse problem,
namely, of determining the particles’ chemical composition
from their retrieved optical or dielectric properties.

A systematic class of statistical methods for solving this
inverse problem is known as data assimilation. Recent stud-
ies have applied data assimilation to aerosol models with
varying degrees of sophistication, ranging from simple dust
models (Khade et al., 2013) and mass transport models
(Zhang et al., 2014) to microphysical aerosol models based
on modal (Rubin and Collins, 2014) or sectional descrip-
tions (Sandu et al., 2005; Saide et al., 2013) of the aerosol
size distribution. The assimilation techniques that have been
used comprise variational methods, such as 2-D (Zhang et al.,
2014), 3-D (Kahnert, 2008; Liu et al., 2011), and 4-D varia-
tional methods (Benedetti et al., 2009), as well as ensemble
approaches (Sekiyama et al., 2010). Assimilation of satel-
lite products for trace gases is relatively straightforward,
since observed and modelled trace gas concentrations are
almost directly comparable. However, aerosol optical prop-
erties observed from satellites are not directly comparable
to the modelled size distribution and chemical composition
of the aerosols. Solving this problem amounts to regulariz-
ing a severely under-constrained inverse problem. Previous
aerosol assimilation attempts have been mainly based on ed-
ucated guesses about the information content of the obser-
vations. For instance, there have been studies on the assimi-
lation of aerosol optical depth (AOD) in which all chemical
aerosol components in all size classes and at all model layers
were used as independent control variables (Liu et al., 2011).
This approach largely disregards the problems involved in
inverse modelling. By contrast, it has been proposed to only
allow for the total aerosol mass concentration to be corrected
by data assimilation of AOD (Benedetti et al., 2009; Wang
et al., 2014). This is a more prudent approach based on the
plausible assumption that a single optical variable only con-
tains enough information to control a single model variable.
There have also been intermediate approaches in which the
total aerosol mass per size bin have been used as control vari-
ables (Saide et al., 2013).

In all such approaches the choice of control variables is
based on ad hoc assumptions. Numerical assimilation experi-
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ments by Kahnert (2009) suggest that observations of several
aerosol optical properties at multiple wavelengths may allow
us to constrain more than just the total mass concentration,
but certainly not all aerosol parameters. However, it is still
an unsolved mystery how much information a given set of
observations actually contains about the size distribution and
chemical composition of aerosols, and exactly which model
variables are related to the observed signals, and which ones
are related to noise. Thus a prerequisite for assimilating re-
mote sensing observations into aerosol transport models is to
thoroughly understand the information content of the obser-
vations as well as the relation between the model variables
and the signal degrees of freedom.

In numerical weather prediction (NWP) modelling, several
studies have discussed the information content of satellite ob-
servations for meteorological variables. For instance, Joiner
and da Silva (1998) applied a singular-value decomposition
(SVD) approach in order to reduce the effect of prior infor-
mation in the analysis, so that the retrieval and forecast errors
can be assumed to be uncorrelated. Rabier et al. (2002) con-
sidered assimilation of IR sounders, which typically provide
a large number of different channels. They applied methods
of information and retrieval theory in order to decide which
channels contain most information about the vertical varia-
tion of temperature and humidity. Cardinali et al. (2004) em-
ployed the influence matrix to compute diagnostics of the
impact of observations in a global NWP data assimilation
system. Johnson et al. (2005a, b) investigated filtering and
interpolation aspects in a 4DVAR assimilation system by use
of an SVD approach. They also used Tikhonov regularization
theory to optimize the signal-to-noise regularization parame-
ter in order to maximize the information that can be extracted
from observations. Xu (2006) compared different metrics,
namely, the relative entropy and the Shannon-entropy differ-
ence, to measure information contents of radar observations
assimilated into a coupled atmosphere—ocean model. Boc-
quet (2009) used methods of information theory to address
the question how to determine an optimum spatial resolution
of the discretized space of control variables in geophysical
data assimilation.

Burton et al. (2016) have recently investigated the infor-
mation content of “38 + 2« lidar measurements, i.e. obser-
vations of backscattering at three wavelengths and extinction
at two wavelengths, where the information content was anal-
ysed with regard to the refractive index and number distribu-
tion of the aerosol particles. Veselovskii et al. (2004, 2005)
have performed similar analyses of the information content
of multiwavelength Raman lidar measurements with regard
to the complex refractive index and the effective radius of the
aerosol particles. As mentioned earlier, the refractive index
is a very useful retrieval product of remote sensing observa-
tions. However, from the point of view of chemical transport
modelling, the main quantities of interest are the concentra-
tions of the different chemical species of which the aerosol
particles are composed. Although the chemical composition
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determines the refractive index, the inversion of this relation-
ship is still under-determined, hence an ill-posed problem. In
the present paper, we want to investigate the inverse problem
that goes all the way from optical properties to the chemical
composition of particles.

The two main goals of this paper are (i) to apply a system-
atic method for analysing the information content of aerosol
optical properties with regard to the particles’ chemical com-
position, and (ii) to test an algorithm for making an auto-
matic choice of control variables in chemical data assimila-
tion such that all control variables are signal related, while
the noise-related variables remain unchanged by the assimi-
lation procedure. The main hypothesis is that by constraining
the data assimilation algorithm to acting on the signal-related
variables only, the output will be less noisy than in an un-
constrained assimilation. The focus of our study will be on
spectral observations of extinction and backscattering coeffi-
cients, which can be retrieved from lidar observations.! We
will not restrict this analysis to any fixed choice of wave-
lengths, such as 38 + 2«. Instead, we will investigate the in-
formation content for varying combinations of the three main
wavelengths of the commonly used neodymium-doped yt-
trium aluminium garnet (Nd: YAG) laser. However, it should
be mentioned that extinction measurements at the lowest har-
monic of 1064 nm can be difficult and plagued by high errors;
in practice, this will affect the observation error, resulting in
a low information content of this particular measurement.

The paper is organized as follows. Section 2 gives a rather
concise introduction of the modelling tools and of the nu-
merical approach employed to studying the information con-
tent of extinction and backscattering observations. Section 3
presents the main results of this study, and Sect. 4 offers con-
cluding remarks. To make this paper self-contained, we in-
clude an appendix that gives a brief introduction to some es-
sential concepts of data assimilation, and a detailed explana-
tion of the methods we used for quantifying the information
content of aerosol optical observables.

2 Methods

This study consists of two parts. In the first part we quan-
tify the information content of extinction and backscattering

n addition to lidar measurements from ground-based and
aircraft-carried instruments (e.g. Burton et al., 2015), there are cur-
rently two space-borne lidar instruments in orbit. The CALIOP
instrument on board the CALIPSO satellite has been launched in
April 2006; it has three receiver channels — one at 1064 nm and two
channels at 532 nm to measure orthogonally polarized components.
The CATS instrument on board the International Space Station has
been operational since January 2015. It measures backscattering
at 355, 532, and 1064 nm, where the latter two have two orthog-
onal polarization channels. It is also capable of performing high-
spectral-resolution measurements at 532 nm. A third instrument is
planned to be launched in 2018 (ATLID on board EarthCARE).
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coefficients at multiple wavelengths. In the second part we
perform a numerical test to investigate to what extent the con-
centrations of different chemical aerosol components can be
constrained by observations of extinction and backscattering
coefficients. The modelling tools required for this study are
(1) a chemical transport model, (ii) an aerosol optics model,
and (iii) a data assimilation system.

2.1 Multiple scale Atmospheric Transport and
CHemistry modelling system (MATCH)

We employ the chemical transport model MATCH, which is
an off-line Eulerian CTM with flexible model domain. It has
been previously used from regional to hemispheric scales.
Here we use a model version that contains a photochem-
istry module with 64 chemical species, among them four sec-
ondary inorganic aerosols (SIAs) — namely ammonium sul-
fate, ammonium nitrate, other sulfates, and other nitrates. It
also contains a module with 16 primary aerosol variables —
namely sea salt, elemental carbon (EC), organic carbon (OC),
and dust particles, each emitted in four different size bins.
Thus, the model contains 20 different aerosol variables. The
particle-radius ranges of the four bins are as follows:

size bin 1: 10-50 nm;

size bin 2: 50-500 nm;

size bin 3: 500-1250 nm;
size bin 4: 1250-5000 nm.

The model reads in emission data, meteorological data,
and land use data and computes transport processes, chemi-
cal transformation, and dry and wet deposition of the various
trace gases and aerosols. As output, it provides concentration
fields of gases and aerosols, the deposition of these chemi-
cal species to land and water-covered areas, as well as the
temporal evolution of these variables.

We mention that there exists another model version that in-
cludes aerosol microphysical processes, such as nucleation,
condensational growth, and coagulation. In that model ver-
sion the aerosol size distribution evolves dynamically. The
model has 20 size bins and seven chemical species (EC, OC,
dust, sea salt, particulate sulfate (PSOX), particulate nitrate
(PNOX), and particulate ammonium (PNHX)), although not
all species are encountered in all size bins. The total number
of model variables currently in that version is 82.

More complete information about the mass transport
model can be found in Andersson et al. (2007). The sea salt
module is discussed in Foltescu et al. (2005). The aerosol mi-
crophysics module is described in Andersson et al. (2015).

For the sake of simplicity we here use the mass transport
model without aerosol microphysical processes (see next
section). The model is set up over Europe covering 33° in
the longitudinal and 42° in the latitudinal direction in a ro-
tated lat-long grid with 0.4° x 0.4° horizontal resolution. In
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the vertical direction the model domain extends up to 13 hPa,
using 40 terrain-following coordinates. The meteorological
input data are taken from the numerical weather prediction
model HIRLAM (Undén et al., 2002). For the emissions of
all aerosol components we used EMEP data for the year
2007, where EC and OC emissions were computed from to-
tal primary particle emissions based on the data in Kupiainen
and Klimont (2004, 2007).

2.2 Aerosol optics model

We have two different optics models coupled to MATCH:
one to the mass transport module, and another to the aerosol
microphysics module. The former assumes that all aerosol
species are homogeneous spheres, and that each chemical
species is contained in separate particles. Under these as-
sumptions the optics model is linear, i.e. the optical prop-
erties are linear functions of the concentrations of the chem-
ical aerosol species. The latter model accounts for the fact
that in reality different chemical species can be internally
mixed, i.e. they can be contained in one and the same par-
ticle. That model also accounts for the inhomogeneous inter-
nal structure of black carbon mixed with other aerosol com-
ponents, and for the irregular fractal aggregate morphology
of bare black carbon particles (Kahnert et al., 2012a, 2013).
Under these assumptions the optics model becomes nonlin-
ear, which introduces additional complications in the inverse-
modelling problem. This is the main reason why we chose
to use the simpler mass transport optics model in this study.
Much of the theory explained in the Appendix B relies on
the assumption that the optics model is either linear, or that
it is only mildly nonlinear, so that it can be linearized — see
Eq. (B6).

Table 1 lists the refractive indices in the mass-transport
optics model at the three lidar wavelengths considered in this
study. More information about the aerosol optics models im-
plemented in MATCH can be found in Andersson and Kah-
nert (2016).

2.3 Three-dimensional variational data assimilation
(3DVAR)

Data assimilation is a class of statistical methods for com-
bining model results and observations. The algorithm weighs
these two pieces of information according to their respec-
tive error variances and covariances. As output the assimila-
tion returns a result in model space of which the error vari-
ances are smaller than those of the original model estimate.
In our case the model variables are the mass mixing ratios of
aerosol components in a three-dimensional discretized model
domain. These model variables are summarized in a vector x.
The model provides us with a background (or first guess) es-
timate xp, (with an error €p). The observations, summarized
in a vector y, are related to the model state x by

y=Hx)+eo, (1)

Atmos. Chem. Phys., 17, 3423-3444, 2017

M. Kahnert and E. Andersson: Information content of extinction and backscattering measurements

where H is known as the observation operator, and €, de-
notes the vector of observation errors. The problem is to
determine the most likely state vector x, given xy, and Yy,
and given the background error covariance matrix B = (ey, -
€el), and the observation error covariance matrix R = (€, -
GE). Here (---) denotes the expectation value. In the three-
dimensional variational method (3DVAR), the maximum-
likelihood solution is found by numerically minimizing the

cost function

1 1 -
J=S —xp)" BT (x —xp) + SLH () —y"

RV [Hx) - yl. 2)

Data assimilation is commonly employed for constrain-
ing model results by use of observations. However, one can
also employ data assimilation as an inverse-modelling tool,
i.e. for retrieving a model state from measurements. A sum-
mary of the theoretical basis of variational data assimilation
is given in Appendices B-D.?

The MATCH model contains a 3DVAR data assimilation
module. This model uses a spectral method, i.e. the model
state vector is Fourier transformed in the two horizontal coor-
dinates. All error correlations in the horizontal direction are
assumed to be homogeneous and isotropic. The background
error covariance matrix is modelled with a method that fol-
lows similar principles to the NMC method (Parrish and Der-
ber, 1992). A more complete description of our 3DVAR pro-
gram can be found in Kahnert (2008).

2.4 Analysis of the information content of aerosol
optical parameters

The questions we ask are these:

1. Suppose we have an n dimensional model space. Given
m observations (e.g. m different parameters at m, dif-
ferent wavelengths, so that m| - my = m), how many in-
dependent model variables N < n can we constrain with
the observations? Obviously, the best we can achieve
would be N = min{m, n}, but often we will have N <
min{m,n}.

2. Which are the N model variables (or linear combina-
tions of model variables) that can be constrained by the
measurements?

2M.amy authors distinguish between data assimilation and data
analysis. In data analysis one merely post-processes a model results
by incorporating the information provided by observations. In data
assimilation, the data analysis process is part of the time integration
of the CTM. Thus, in each time step the result of the analysis be-
comes the new initial state for the next model forecast. Our 3DVAR
code can be used in either analysis or assimilation mode. However,
in this study we only perform numerical tests at a fixed point in
time. Thus we use the 3DVAR code as a data analysis tool.
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Table 1. Refractive indices at the three harmonics of the Nd: YAG laser assumed in the MATCH mass-transport optics model.
Wavelength (um)  0.355 0.532 1.064
SIA 1.534-5.0e —3i 1.5345.6e—3i 152+ 1.6e—2i
Dust 1.534+1.7e—2i 153+63e—3i 1534+43e—3i
NaCl 1.514+29e—7i 1.5041.0e —8 1.4742.0e —4i
oC 1.534-5.0e —3i 1.5345.6e—3i 152+ 1.6e—2i
EC 1.66+72¢e—1i 1.7346.0e—1i 1.82+59 —1i
Here we only give a summary of the most essential theoret- a singular-value decomposition (SVD)
ical tools for answering these questions. A more thorough 1 12 T
explanation of these concepts is given in Appendix C. R ‘H-B/"=VL-W- Vg, (6)

First we want to explain what we mean by signal degrees
of freedom and noise degrees of freedom, closely following
an example in Rodgers (2000) (p. 29f). Suppose we have a
direct measurement y of a scalar variable x with error €, i.e.

y=x+é€. 3)

Suppose further that we have a background estimate x}, with
background error variance abZ, and that the error ¢, has vari-
ance 002 The prior variance of y is gin.:n by ay2 = abz + 002,
assuming that background and observation errors are uncor-
related. One can show that the best estimate x, of x will be

abz y+ aosz

Xag = 2—2 (4)

oy +0;

Hence, if o > 02, then the measurement y will provide in-
formation for estimating x,, i.e. the measurement provides a
degree of freedom for signal. However, if sz < 03, then x,
will be close to xp, and y provides little information to esti-
mating x,. The measurement mostly contains information on
€o, 1.€. it provides a degree of freedom for noise.

In a more general case we have to consider a state vector x
and a set of measurements y with errors €,. The number Ng
of signal degrees of freedom is a measure for the informa-
tion content of the set of measurements. It provides us with
an estimate of the number N of model variables that can be
controlled by assimilating measurements.

The mapping from model space to observation space given
in Eq. (1) can be Taylor expanded to first order according to

y=H(xp)+H-6x +e,. 5)

where H is the observation operator, H denotes its Jacobian,
and éx = x — xy,. The background or prior estimate xy, is of-
ten obtained from a model run. The (in general non-square)
matrix H is the main quantity we need to investigate in or-
der to address the questions formulated at the beginning of
this section. It is transformed to the so-called observability
matrix H=R~/2.H.BY/ 2, where R is the observation error
covariance matrix, and B denotes the error covariance ma-
trix of the background estimate. Subsequently, one performs
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where the matrices VL and VR contain the left and right sin-
gular vectors, respectively, and W is a matrix that contains
the singular values along the main diagonal, while all other
matrix elements are zero. It turns out that the singular values
w; can be employed to compute the number of signal degrees
of freedom Ny according to

min{n,m}

> wiA+wh. ()

i=1

Ny =

Another useful measure is obtained by expressing our in-
complete knowledge of the atmospheric aerosol state by use
of the Shannon entropy. The use of measurement informa-
tion reduces the entropy, and this entropy reduction H can
be expressed in terms of the singular values:

min{n,m}
log, (1 + w?). )

i=1

Both Ng or H allow us to quantify the information con-
tent of a set of measurements. More detailed explanations of
these concepts are given in Appendix C. A comprehensive
discussion of information aspects and inverse methods for
atmospheric sounding can be found in Rodgers (2000).

By performing the transformation

sx' =VE-B71/2.sx 9)

we go from our physical model space to an abstract phase
space — see Eq. (C16) in Appendix C. In this phase space the
components of x’ can be separated into signal-related and
noise-related variables. The signal-related components can
be controlled by the measurements, the noise-related com-
ponents cannot. We therefore introduce constraints into our
3DVAR program such that only the N signal-related com-
ponents of §x” are allowed to be adjusted in the data anal-
ysis procedure, while the noise-related components are not
altered. This is accomplished by adding an extra term Jg to
the cost function in Eq. (2), where

1

Jg = 58x" B2 Ve B! VR -BTV 6, (10)
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and where B¢ is a diagonal matrix which we assume to have
the form

B; = og diag(wy, wa, ..., ...,wg,c,...,C). (11)

Here K = min{n,m}, and the number ¢ is assumed to be
much smaller than the smallest singular value. We note that
the formulation of the constraint term in Eq. (11) is by no
means unique. Other possible choices of the matrix Bg are
discussed in Appendix D3. However, we performed prelim-
inary tests which indicate that the constrained 3DVAR ap-
proach is not very sensitive to exactly how one chooses to
formulate the matrix B¢, as long as it behaves in such a way
that the noise-related phase-space variables are tightly con-
strained, while the signal-related variables can be varied rel-
atively freely by the analysis. The free parameters o and ¢
should be tuned in such a way that the constrains are neither
too hard nor too soft. In the former case, the analysis will
stay too close to the background estimate. In the latter case,
it will not differ much from the unconstrained analysis.

2.5 Numerical test of the constrained assimilation
algorithm

We study the performance of the 3DVAR system by perform-
ing a numerical test. To this end, we first perform a reference
run by driving the MATCH model with analysed meteoro-
logical data. These reference results are taken as the “true”
chemical state of the atmosphere. We apply the optics model
to the model output to generate synthetic “observations”, i.e.
a vertical profile at a selected observation point of extinction
and backscattering coefficients at three typical lidar wave-
lengths. Next we run the MATCH model again, this time
driven with 48 h forecast meteorological data. The results
are taken as a proxy for a background model-estimate that
is impaired by uncertainties. Finally, we perform a 3DVAR-
analysis of the “observations” and the background estimate
in an attempt to restore the reference results. In this numeri-
cal test we have perfect knowledge of the true state, and we
assume that our optics model is nearly perfect, thus providing
nearly perfect observations (we assumed that the observation
error standard deviation is 10 % of the measurement value).
The only factor that may prevent us from fully restoring the
reference state is a lack of information in the observed pa-
rameters. Thus, comparison of the retrieval and reference re-
sults gives us an indication of how strongly different model
variables can be controlled by the information contained in
the observations.

We perform this test (i) with the unconstrained 3DVAR
algorithm and (ii) with the constrained 3DVAR algorithm.
We compare both runs in order to make a first assessment of
the impact of the constraints. In particular, we are interested
in the prospect of reducing the risk of assimilating noise in
such a highly under-constrained inverse problem.
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3 Results

3.1 Analysis of the information content of aerosol
optical parameters

We consider the set of parameters {kex((A1), Kkext(A2),
Bsca(A1), Bsca(A2), Bsca(A3)}, where kexy and Bsca denote
the extinction and backscattering coefficients, respectively,
and the wavelengths A1 = 1064 nm, A = 532nm, and A3 =
355nm denote the first three Nd:YAG harmonics. Here-
after, we will abbreviate these parameters by kexi(Xi) =
ki, Bsca(lj)=Bj, i=1,2, j=1,2,3. Out of this five-
parameter set we pick different subsets and analyse the singu-
lar values of the corresponding observability matrices. From
those we compute the number of signal degrees of freedom
as well as the change in Shannon entropy for each subset of
measurements. We will focus on those parameter subsets that
are technically relevant in practical lidar applications.

Table 2 shows the number of signal degrees of freedom
N; and the reduction in Shannon entropy H for different val-
ues of the observation standard deviation o,. For low values
of 0,, the number of signal degrees of freedom is identical
to the number of observational parameters. However, as we
increase o, we observe a decrease in Ns. For instance, for
0o = 100 % the five parameters 81 + B2 + B3 + k2 + k3 (last
row) only provide roughly Ny = 3 signal degrees of freedom.
The reduction in Shannon entropy H displays an analogous
behaviour. For instance, for o, = 1 % we see that H consis-
tently increases as one increases the number of observational
parameters. This is much less pronounced for o, = 100 %. In
that case, H does increase as one goes from a single param-
eter to two parameters (compare the first to the second and
fourth rows). However, as one adds more parameters, the in-
crease in H slows down considerably. For five parameters
(last row), H is only about twice as high as for a single pa-
rameter (first row).

This illustrates the pivotal importance of the observation
error for the amount of information that can be obtained from
measurements. It is important to understand that the obser-
vation error €, is not the same as the measurement error €.
Rather, in our case we have €, = €, + €5, where €¢ denotes
the forward-model error (see, e.g., Eq. 1 and accompanying
text in Rabier et al., 2002). Any simplifying assumptions in
the optics model or incomplete knowledge of the particle size
distribution, morphology, chemical composition, or dielec-
tric properties can contribute to €. Such assumptions enter
into our relatively simple optics model.> Note also that in
operational applications there may be other terms contribut-
ing to €,. For instance, if a point measurement is taken at a
location that does not provide a good representation of the

3 A more realistic optics model, such as the one investigated in
Andersson and Kahnert (2016) would help to reduce the observa-
tion standard deviation. For future studies, such a model should be
linearized and investigated in a similar way.
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Table 2. Number of signal degrees of freedom Ng and reduction in entropy H as a function of observation standard deviation, taken from
the lowest model layer (closest to the surface). Results are shown for different subsets of k1, k2, 81, B2, B3, where k; and B; represent the
extinction and backscattering coefficient, respectively, at the wavelengths A1 = 1064 nm, 1> = 532 nm, and A3 = 355 nm.

Obs. SD (%) 1 10 50 100
No. Parameters Ng H Ng H Ng H Ng H Ns H
1. B3 1.00 109 | 1.00 8.58 | 1.00 7.58 | 1.00 5.26 | 1.00 4.26
2. B1+B 2.00 20.6 | 2.00 1599 | 200 1398 | 1.97 936 | 1.90 7.42
3. B1+B+83 3.00 27.3 | 3.00 203 | 2.99 173 | 272 105 | 2.33 8.00
4.  B3+k3 2.00 194 | 2.00 14.8 | 2.00 128 | 1.92 821 | 1.74 6.37
5. B1+pBr+k 3.00 28.0 | 3.00 21.0 | 2.99 180 | 277 112 | 242 8.63
6. PB1+Pr+B3+ky+ks 500 400 | 497 28.4 | 491 23.5 | 3.89 129 | 297 949

grid-cell average, then one would have to add a representa-
tivity error €, to the observation error.

The strong impact of the observation errors on the infor-
mation content of measurements suggests two conclusions.

1. In order to make the forward-model error €y as small
as possible, it is essential to develop accurate and real-
istic aerosol optics models. The most accurate measure-
ments may intrinsically contain a wealth of information
on aerosol properties. But we can only make use of this
information to the extent that our observation operator
is able to accurately describe the relation between the
physical and chemical particle characteristics and their
optical properties.

2. It is equally essential to accurately estimate the contri-
bution of the uncertainties in the aerosol optics model,
i.e. to estimate the forward-model error € ¢. If we un-
derestimate this error, we will rely too much on the mea-
surements than we should, thus assimilating noise. If we
overestimate this error, we will waste information con-
tained in the observations. In practice, one way to esti-
mate € is to compute optical properties while varying
the particles’ size, morphology, and dielectric proper-
ties within typical ranges. The resulting variation in the
optical properties then allows us to estimate € ¢. (For a
review of aerosol optics modelling see Kahnert et al.,
2014, 2016, and references therein).

In Table 2 we sorted the results for Ny and H by differ-
ent values of the observation standard deviation. However,
it is important to realize that the results also depend on the
background error standard deviation, or, more precisely, on
how large the background error standard deviations are com-
pared to the observation error standard deviations. Johnson
et al. (2005a) made this point very explicit. They discussed
an idealized case with diagonal background error covari-
ance matrix B = 051 and observation error covariance ma-
trix R= 0021. They considered the case of direct measure-
ments, i.e. the model variables and the observed parameters
are the same type of variables. Under such idealized con-
ditions, they showed that one can maximize the amount of
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information that can be obtained from the observations by
optimizing the regularization parameter oy,/0, (or, equiva-
lently, the regularization parameter 002 / abz). In our more gen-
eral case, instead of o, we need to consider the full matrix
B!/2, instead of oy ! we need to consider R™1/2, and in or-
der to compare the two matrices we need to first transform
B'/? from model to observation space according to H-B!/2,
Thus, in place of oy /0, we need to consider the more gen-
eral quantity R™1/2. H-B'/2, and we need to diagonalize it
by a singular value decomposition according to Eq. (6). Thus
the singular values w; generalize the parameter oy,/0,. The
latter applies to the case of direct observations and error co-
variance matrices that are proportional to unit matrices. The
former apply to the general case of non-diagonal error co-
variance matrices and indirect observations.

From this we learn that the singular values w; provide us
with a (however abstract) means to quantify how the back-
ground standard deviations compare to the observation stan-
dard deviations. We pick one of the columns in Table 2,
namely the one for o, = 50 %, and expand it in Table 3. We
show the singular values w;, as well as their contributions
NI =w?/(1+w?) and H; = 0.5log,(1 + w?) to the sums in
Egs. (7) and (8), respectively. The results reveal that the sin-
gular values w; can decrease quite rapidly from the largest
to the smallest value (see, e.g., case no. 6 in the table). How-
ever, the corresponding contribution Ni to the number of sig-
nal degrees of freedom changes rather smoothly. Even those
singular values that are only slightly larger than 1 make con-
tributions N; that lie close to 1 (see, e.g., i = 4 in case no. 6).
However, once w; falls below 1, the corresponding contri-
bution N/ becomes much smaller than 1 (see i =5 in case
no. 6).

Let us now compare the different subsets of parameters in
Tables 2 and 3. In case no. 1 we observe a single parame-
ter that provides a single degree of freedom. In cases no. 2
and 4 we observe two parameters, which nearly doubles Ng.
Comparison of these two cases shows that it does not make
a significant difference whether we observe backscattering
coefficients at different wavelengths, or both extinction and
backscattering coefficients each at a single wavelength. In ei-
ther case the measurements provide roughly the same amount
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Table 3. Signal degrees of freedom N and change in entropy H for
the lowest model layer (closest to the surface). Also shown are the
singular values w; and their contributions N; and H; to Ng and H,
respectively. The results have been obtained by assuming an obser-
vation standard deviation of 50 %.

No. Parameters i w; N f H; Ng H
1. B3 1 382 1.00 526 1.00 5.26
2. B1, B 1 108 1.00 6.76 197 9.36
2 6.00 097 261

3. B1, B2, B3 1 115 1.00 6.84 271 10.5
2 654 098 273
3 1.68 0.74 097

4. B3, k3 1 833 1.00 638 192 8.22
2 343 092 1.84

5. B1, B2, ky 1 128 1.00 7.00 277 11.24
2 871 099 3.3
3 190 0.78 1.10

6. B1, B2, B3, ko, k3 1 153 1.00 7.26 3.89 12.9
2 952 099 326
3 194 079 1.13
4 163 073 093
5 079 038 0.35

of information (in terms of Ny or H). The same is true when
considering three observational parameters (compare case
nos. 3 and 5). The 38 4+ 2« case (no. 6) clearly provides
the largest amount of information in comparison to the other
cases. However, as we saw in Table 2, observation errors that
are large in comparison to the background errors can signif-
icantly reduce the effective information that can assimilated
into a model.

3.2 Numerical inverse-modelling test

We integrated the findings of Sect. 3.1 into our 3DVAR
program by constraining the algorithm to varying only the
signal-related model variables. To illustrate the method we
conduct a numerical test as described in Sect. 2.5. We per-
form a 3DVAR analysis by assimilating “38 + 2« profiles,
i.e. synthetic lidar measurements of Bgc, at the three wave-
lengths 1064, 532, and 355 nm together with kex; at the two
wavelengths 532 and 355 nm. Thus in our case the number
of singular values in each vertical layer is K = 5. We assume
an idealized situation in which the observation standard de-
viation is only 10 %. As we see in Table 2 (case no. 6), the
number of signal degrees of freedom is Ny = 4.9 in this case.
Thus, we roughly have as many signal degrees of freedom as
we have measurements.

Figure 1 shows vertical profiles of selected aerosol com-
ponents, namely (from top to bottom): organic carbon (OC)
in the third size bin (OC-3), OC in the fourth size bin (OC-4),
elemental carbon (EC) in the third size bin (EC-3), and min-
eral dust in the first size bin (DUST-1). The reference and
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Figure 1. Vertical profiles of selected aerosol components in differ-
ent size bins. From top to bottom: organic carbon in the third size
bin (OC-3), OC in the fourth size bin (OC-4), elemental carbon in
the third size bin (EC-3), and dust in the first size bin (DUST-1).
The reference results are shown in black, and the background (first
guess) estimate is shown in green. The unconstrained 3DVAR anal-
ysis results are presented in the left panels in blue, the constrained
3DVAR analysis results are shown in the right panels in red.

background mixing ratios are shown in black and green, re-
spectively. The 3DVAR analysis was first performed without
any constraints; the results are shown in the left column by
the blue line. Then the 3DVAR analysis was repeated with the
constraints in Egs. (10) and (11); the results are represented
in the right column by the red line. Clearly, the unconstrained
analysis (blue lines in the left panels) yields results that os-
cillate quite erratically in the vertical direction. Also, the un-
constrained analysis can yield conspicuously high values at
higher altitudes, even though the reference and background
values are both close to zero. By contrast, the constrained
analysis (red lines in the right panels) yields results that bet-
ter agree with the reference results. The noisiness in the verti-
cal direction is significantly reduced, and the results at higher
altitudes are generally lower than those obtained with the un-
constrained analysis.

Figure 2 shows analogous results for the mass mixing ra-
tios of different aerosol components, each summed over all
size bins. The aerosol components are (from top to bottom):
elemental carbon (EC), organic carbon (OC), mineral dust
(DUST), sea salt (NaCl), secondary inorganic aerosols (SIA,
i.e. the sum over all sulfate, nitrate, and ammonium species),
and PM 1 (i.e. the sum over all aerosol components). Clearly,
the constrained analysis faithfully retrieves both PMjy and
SIA. The unconstrained analysis performs almost equally
well for these two variables. Sea salt and mineral dust are
not well retrieved from the measurements in either the con-
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Figure 2. As Fig. 1, but for the total mass mixing ratio (summed
over all size bins). The components are (from top to bottom): EC,
OC, mineral dust, sea salt, secondary inorganic aerosols (sum of
all sulfate, nitrate, and ammonium species), and PMq (sum of all
aerosol components).

strained or unconstrained approach. EC and OC are very well
retrieved by the constrained analysis. For these components,
the unconstrained analysis has a very small bias compared
to the reference results, but it is considerably more noisy (i.e.
oscillating in the vertical direction) than the constrained anal-
ysis. We also see, again, that the mixing ratios at higher al-
titudes obtained with the unconstrained analysis can be un-
reasonably high. This is especially pronounced for OC. In
general, however, the problems we encounter in the uncon-
strained analysis are less pronounced in Fig. 2 than in Fig. 1.
A possible explanation is that SIA may be most strongly re-
lated to the measurement signal, and SIA is dominating the
aerosol mass in this case. We will return to this point shortly.
Another possible factor is that the noise in the analysis can
be damped by summing up results over several size bins.
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Figure 3. Observations (black solid line), and observation-
equivalents of the background estimate (green), and of the uncon-
strained (blue) and constrained (red) 3DVAR analysis. The optical
parameters and wavelengths are indicated above each panel.

Figure 3 shows the observations (black) as well as the
observation-equivalents of the background estimate (green)
and the unconstrained (blue) and constrained (red) 3DVAR
analysis for all five observations. We learn from this fig-
ure that the analysis follows the observations faithfully. The
reason for this is that we assumed that the observations
were highly accurate with an error standard deviation of
only 10 %. In fact, the difference between the observation-
equivalent analysis and the observations deviate by even less
than 10 %. However, our tests confirmed that an increase in
the observation error eventually results in analysis results of
which the observation-equivalent increasingly deviates from
the observations (not shown).

We have seen that the analysis provides a reasonable, but,
as expected, not a perfect answer to the inverse problem. We
have further seen that at the observation site it relies more
on the observations than on the background estimate. Most
importantly, we have seen that the constraints introduced in
the 3DVAR algorithm suppress noise in the analysis, espe-
cially in EC and OC. However, the previous figures do not
provide us with any direct insight of how exactly the con-
straints accomplish this. To learn more about that we need to
inspect the analysis in the abstract phase space of the trans-
formed model variables 8x’. (Recall that we defined this vari-
able in Eq. 9 as §x’ = V{ -B~1/2. (x — xp)). Figure 4 shows
vertical profiles of a selection of the, in total, 20 variables
8x. The background estimate corresponds to 8x; =0 and
is represented by the green line. The unconstrained 3DVAR
analysis increment is represented by the blue line, the con-
strained 3DVAR analysis increment is shown by the red line.
The first five phase space elements in the top row are the
signal-related control variables. Generally, the magnitude of
the constrained increments (red) is larger than that of the un-
constrained increments (blue). The noise-related phase space
elements, five of which are shown in the bottom row, dis-
play the opposite behaviour. The constrained increments are
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Figure 4. Vertical profiles of the transformed model variables 8x’, defined in Eq. (9). The figure shows results obtained with the constrained

(red) and unconstrained (blue) 3DVAR analysis.

close to zero, as they should be. The unconstrained elements
consistently show higher magnitudes than the constrained el-
ements. However, we also see that the unconstrained analysis
does produce increments that are largest for the two elements
8x) and 8x), which most strongly relate to the measurement
signal. Based on our single test case we cannot say if this is
a lucky coincidence or a consistent property. If the latter, it
may indicate that we are using rather reasonable background
error statistics, so that the analysis increment in observation
space is distributed to the different variables in model space
in a sensible way. If the former, it could be the case that the
success of the unconstrained analysis is largely dependent on
whether or not those aerosol components dominate the total
aerosol mass that most strongly relate to the signal degrees
of freedom. (In our case the total mass is dominated by SIA,
which is very well retrieved by the analysis).

Finally, we want to obtain a better understanding of how
the aerosol components x in model space, or their incre-
ments §x, are linked with the signal-related phase-space ele-
ments §x’. To this end we inspect the first five row vectors of
the transformation matrix V{ -B~1/2 in Eq. (9). The magni-
tude of these elements can be taken as a measure for how
much each aerosol component of §x in model space con-
tributes to the signal-related elements of §x’. Figure 5 shows
| (VE-B~1/2);; [fori=1,...,5,and for j = 1,..., 20, where
5 is the number of signal-related phase-space elements, and
20 is the number of aerosol components in model space. Re-
sults are shown for model layers 2 (left column) and 22 (right
column), which correspond to altitudes of about 100 m and
6 km, respectively. The x axis shows sea salt (NaCl), EC,
OC, and dust, each in four size bins, as well as the four SIA
components, i.e. sulfates (SO,) other than (NH4)>,SO4, am-
monium sulfate (AS), ammonium nitrate (AN), and nitrates
(NO,) other than NH4NO3.
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Comparison of the two columns clearly demonstrates that
the elements of the transformation matrix can vary consid-
erably with vertical layer (or, more generally, with location).
This is because the error covariance matrix B varies with lo-
cation, and the matrix R varies from one observation site to
another (in our case, from one altitude to another). Hence the
matrix VR is also dependent on location — see Eq. (6). Conse-
quently, it is very difficult to draw general conclusions about
which aerosol components make a dominant contribution to
the signal-related phase-space variables; this can vary with
location, and it can vary for different data sets.

However, in our case the SIA components consistently
make a strong contribution to the first signal-related element
8x}. Since SIA is dominating the aerosol mass mixing ratio
in this test case, the analysis was able to retrieve PM1o. We
also see that the dust components make only a weak contri-
bution to most of the signal-related elements 8x;, especially
to the first one. This is a likely explanation for the difficulties
encountered in retrieving the dust mass mixing ratio. Sea salt
is more complicated. Size bins 3 and 4 do contribute consid-
erably to Sx{, and also to some of the other four increments,
while size bins 1 and 2 do not make a significant contribution
to most of the five signal-related control variables. In our case
the sea salt mass is strongly dominated by the second size bin
(not shown). This explains the difficulties we encountered in
the retrieval of sea salt.

4 Summary and conclusions

We have quantified the information content of multiwave-
length lidar measurements with regard to the chemical com-
position of aerosol particles. Different combinations of ex-
tinction and backscattering observations at several wave-
lengths have been investigated by determining the singular
values of the scaled observation operator, by computing the
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number of signal degrees of freedom Ns, and by calculating
the reduction in Shannon entropy H caused by taking mea-
surements. We first quantified Ny and H as a function of ob-
servation standard deviation o,. The information content of
the observations, as expressed by Ng and H, decreased as o,
was increased. This became the more pronounced the larger
the number of simultaneously observed parameters was.
The observation error depends not only on the measure-
ment error, but also on the forward-model error. The latter
depends on the uncertainties in the aerosol optics model. This
highlights the importance of developing accurate aerosol op-
tics models and of obtaining an accurate estimate of the ob-
servation error, especially of the uncertainty in the aerosol
optics model. This is a prerequisite for extracting as much
information as possible from the measurements, while avoid-
ing to extract noise rather than signal. More often than not,
computational limitations and lack of knowledge force us to
introduce simplifying assumptions about the particles’ mor-
phologies. However, we know that aerosol optical proper-
ties can be highly sensitive to the shape (Mishchenko et al.,
1997; Kahnert, 2004), small-scale surface roughness (Kahn-
ert et al., 2012b), inhomogeneity (Mishchenko et al., 2014;
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Kahnert, 2015), aggregation (Fuller and Mackowski, 2000;
Liu and Mishchenko, 2007; Kahnert and Devasthale, 2011),
irregularity (Muinonen, 2000; Bi et al., 2010), porosity (Vila-
plana et al., 2006; Lindqvist et al., 2011; Kylling et al., 2014),
and combinations thereof (Lindqvist et al., 2009, 2014; Kah-
nert et al., 2013). We need to know how much these sources
of uncertainty contribute to the observation standard devia-
tion. One way of estimating this is to compare aerosol optical
properties computed with simple shape models to either mea-
surements or to computations based on more realistic particle
shape models — see Kahnert et al. (2014) for a recent review
and a more detailed discussion.

The singular values of the scaled observation operator pro-
vide us with an abstract measure to compare the standard de-
viations of the background (prior) estimate to those of the ob-
servations. The reason why this is a rather abstract measure
is because background and observation errors are, in general,
in different spaces and cannot be directly compared. How-
ever, we constructed a mapping that transforms the state vec-
tor in physical (model) space to an abstract phase space in
which the components of the state vector can be partitioned
into signal-related and noise-related components. The singu-
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lar values indicate to what extent the signal-related phase-
space variables can be constrained by the measurements.
We exploited this fact by constructing weak constraints in
a 3DVAR data assimilation code, which limited the assimi-
lation algorithm to acting on the signal-related phase-space
variables only (hereafter referred to as the constrained anal-
ysis). The idea was to maximize the use of information,
while avoiding the risk of assimilating noise by overusing the
measurements. Thus, our main hypothesis was that the con-
strained analysis will yield less noisy results than the uncon-
strained analysis. Numerical tests confirmed this hypothesis.
Notably in the case of elemental carbon (EC) and organic
carbon (OC) the unconstrained analysis gave mixing ratios
that oscillated considerably in the vertical direction. The con-
strained analysis results were considerably less noisy.

When mapped into observation space, the analysis result
closely reproduced the measurements. When viewed in the
abstract phase space, we found that the constrained anal-
ysis did, indeed, yield noise-related components that were
close to zero, as they should be. This was not so in the
unconstrained analysis. Also, the magnitude of the signal-
related phase-space components was generally larger in the
constrained analysis than in the unconstrained analysis. This
confirms that the constraints we introduced work as intended.

In our specific test case secondary inorganic aerosol com-
ponents were most faithfully retrieved by the inverse mod-
elling solution, followed by organic and black carbon. Dust
and sea salt mass mixing ratios were more challenging to
retrieve. We could explain this by inspecting the linear co-
efficients in the transformation from physical space to the
abstract phase space. We found that those aerosol compo-
nents that had the largest weight in the transformation were
most faithfully retrieved by the analysis. However, these lin-
ear coefficients depend on the background error covariances
(which can change with location), and on the observation er-
ror variances. Therefore, it is difficult to draw general con-
clusions about which aerosol components are most easily re-
trieved by a given set of measurements.

The results presented here suggest further questions for
future studies. We have performed this investigation with a
mass transport model, thus focusing on the information con-
tent of optical measurements with respect to the chemical
composition of aerosols. When we include aerosol micro-
physical processes, then the model delivers the aerosols’ size
distribution, as well as their size-resolved chemical compo-
sition. This makes the problem quite different from that we
investigated here. First, the dimension of the model space
is considerably larger for an aerosol microphysics transport
model. Constraining such a model with limited information
from measurements becomes even more challenging than
in the case of a mass transport model. On the other hand,
an aerosol microphysics model delivers information on the
particles’ size distribution and mixing state. Therefore, this
would require us to make fewer assumptions in the aerosol
optics model, which may reduce the observation error. The
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present study could be extended to investigate the infor-
mation contained in extinction and backscattering measure-
ments for simultaneously constraining the chemical compo-
sition and the size of aerosol particles.

Another important issue concerns the choice of the aerosol
optics model. In the present study we employed a simple
homogeneous-sphere model in which all chemical compo-
nents were assumed to be externally mixed. There is little
one can put forward in defence of this model other than
pure convenience. (Regarding the applicability of simplified
model particles in atmospheric optics see the review by Kah-
nert et al., 2014). As a result of the external-mixture assump-
tion, the observation operator is linear, which is a prerequisite
for much of the theoretical foundations of this study — see
Appendices B-D for details. However, it has been demon-
strated that drastically simplifying assumptions, such as the
external-mixture approximation, can give model results for
aerosol optical properties that differ substantially from those
obtained with more realistic nonlinear optics models (Ander-
sson and Kahnert, 2016). It would therefore be important to
extend the present study to include more accurate and real-
istic optics models. A first step could be to analyse the de-
gree of nonlinearity of optics models that account for inter-
nal mixing of different aerosol species. If they turn out to be
only mildly nonlinear, then one can linearize them and work
with the Jacobian of the nonlinear observation operator. Oth-
erwise the theoretical methods employed in this paper would
have to be extended in order to accommodate nonlinear ob-
servation operators.

Data availability. The data used in this study are included in the
Supplement.
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Appendix A: Inverse problems

Suppose we have a system described by a set of variables
X1, ..., Xp, sSummarized in a vector x. Suppose also that we
have an operator H:R'—>R" x+—> y= H (x) that al-
lows us to compute a set of variables y, ..., y,,, summarized
in a vector y. To take a specific example, we may think of x
as a vector of mass mixing ratios of chemical aerosol species,
y as a set of aerosol optical properties, and H as an aerosol
optics model. The operator H maps from model space into
observation space, which allows us to compare model output
and observations. We consider the following two problems:

1. Direct problem: given x and H, calculate y= H(x).

2. Inverse problem: given y and H, solve y= H (x) for x.

A pair of such problems is inverse fo each other; it is,
therefore, somewhat arbitrary which problem we choose to
call the direct problem, and which one we call the inverse
problem. However, one of the problems is usually well posed,
while the other one is ill-posed. Such is also the case in
aerosol optics modelling. It is customary to call the well-
posed problem the direct problem, and the ill-posed one the
inverse problem.

An equation y = H (x) is called well posed if it has the
following properties:

1. Existence: for every y € R™, there is at least one x € R”
for which y = H (x).

2. Uniqueness: for every y € R™, there is at most one x €
R” for which y = H (x).

3. Stability: the solution x depends continuously on y.

If any of these properties is not fulfilled, then the problem is
called ill-posed.

Appendix B: Three-dimensional variational data
assimilation

Data assimilation is usually employed for constraining mod-
els by use of measurements, but it can also be used to solve
inverse problems. Here we focus on one specific data assim-
ilation method known as three-dimensional variational data
assimilation, or 3DVAR.

In a CTM we discretize the geographic domain of interest
into a three-dimensional grid. In each grid cell, the aerosol
particles are characterized by the mass mixing ratio of each
chemical component in the aerosol phase, such as sulfate,
nitrate, ammonium, mineral dust, black carbon, organic car-
bon, and sea salt. Suppose we summarize all these mass mix-
ing ratios from all grid cells into one large vector x € R".
The model provides us with a first guess of the atmospheric
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aerosol state, known as a background estimate xb.4 Sup-
pose also that we have m observations, which we summarize
in a vector y € R™. We further have an observation opera-
tor H: R" > R" x—> H (x) that maps the state vector
x from model space to observation space.” We further de-
note by x the true state of the atmosphere, by €, = x; — xp
the error of the background estimate, and by €, = A (x)—y
the observation error.® The background and observation er-
rors are assumed to be unbiased and uncorrelated with each
other. Then their joint probability distribution becomes sepa-
rable, i.e.

P(ep, €0) = Py(€p) Po(e€o). (BD)

The true state of the atmosphere is, of course, unknown.
Therefore, our definition of the errors and their probability
distribution is only of conceptual use, but not of any practi-
cal value. However, we can reinterpret the probability distri-
butions by replacing €y in the argument of P, with x — xp,
and by replacing €, in the argument of P, with H(x)— y. We
further assume that both the background and the observation
errors are normally distributed. Thus we may write

Po(x) = (Qr |B|)!/?
1 T —1
exp (—E(x —xp) ‘BT - (x — xb)) (B2)
Po(x) = (2 |R|)71/2

1 - A
exp (—5<H<x> -»n"RT(HE) - y)) - (B3

Here B and R denote the covariance matrices of the back-
ground and observation errors, respectively, and | - | denotes
the matrix determinant. In this form, P,(x) represents the
probability that the atmospheric aerosol particles are found
in state x, given a background estimate xy, with error covari-
ance matrix B. Similarly, P,(x) is the probability that the

“In the remote sensing and inverse modelling community, the
background estimate is more commonly referred to as the a priori
estimate.

SThe optics model H usually has to invoke assumptions about
physical aerosol properties that are relevant for the optical proper-
ties, but not provided by the CTM output, e.g. assumptions about the
morphology of the particles. If the CTM is a simple mass-transport
model without aerosol microphysics, then it is also necessary to in-
voke assumptions about the size distribution of the aerosols.

OWe stress, once more, that the observation error must not be
confused with the measurement error €;,. The latter contributes to
the former, but the observation error also contains other sources of
error. For instance, if we deal with morphologically complex parti-
cles, but our lack of knowledge forces us to make assumptions and
invoke approximations about the particle shapes, then this forward-
model error €¢ contributes to the observation error. The same is the
case if we lack information about the particles’ size distribution. In
operational applications the representativity error €, can also make
a substantial contribution to €.
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system is found in state x, given measurements y with error
covariances R. 7
Equations (B1)-(B3) can be summarized in the form

P(x) = exp(—J(x)) (B4)

1
2n(|B[-[R)P
1 n
J@) =5 [@—xp)T- BT x —xp) + (HE@) — )"
R (@) - ), (BS)

where J is suggestively called the cost function, since it can
be interpreted as a measure for how “costly” it is for a state x
to simultaneously deviate from the background estimate and
the measurements within the permitted error bounds. The de-
viations are weighted with the inverse error covariance ma-
trices. For instance, this means that for measurements with a
small error variance, a deviation H (x) — y becomes “more
costly”.

We are interested in the most probable aerosol state of
the atmosphere, i.e. in that state x, for which the probability
distribution attains its maximum. This is obviously the case
when the argument of the exponential in Eq. (B4) assumes
a minimum. Thus we seek to minimize the cost function J.
The variational method is based on computing the gradient of
the cost function, V, J, and to use this in a descent algorithm
to iteratively search for the minimum of J.

In practice it is common to introduce the variable §x =
x — xy,, and use the first-order Taylor expansion of the obser-
vation operator,

H(x)= H(xp)+H-dx, (B6)

where the (m x n) matrix H denotes the Jacobian of H at
x=xp. If His only mildly nonlinear, and if the components
of §x are sufficiently small, then we can substitute this first-
order approximation into Eq. (B5), which yields

J=Jy+Jo (B7)
1 T —1
Jp(6x) = 56xT B! x (BS)
Jo(8x) = l(H(xb) 1H-5x— y)T R
2
: (ﬁ(xb) +H.8x —y). (B9)

The components of the vector x are the control variables
that are iteratively varied by the algorithm until the minimum
of the cost function is found.

The solution to the equation V,J =0, is a solution to
the inverse problem (where 0,, denotes the null vector in n-
dimensional model space); we input the observations y into
the algorithm, and as output we obtain a result in model space

"The observation errors are often assumed to be uncorrelated
(this is not always true). In such a case the matrix R is diagonal,
where the diagonal elements are the observation error variances.
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that is consistent with the measurements (within the given er-
ror bounds).® What if the measurements contain insufficient
information about the state x? The algorithm will still pro-
vide an answer to the inverse problem, but the missing infor-
mation will be supplemented by the background estimate xp.
The weighting of the two pieces of information, x1, and y, is
controlled by the respective error covariance matrices. Thus
data assimilation is a statistical approach, which can be ex-
pected to give good results on average, but not in every single
time step of the model run. This can become highly prob-
lematic if we only have very few observations, i.e. m < n,
where 7 is the dimension of the model space. If we allow all
model variables to be freely adjusted by the assimilation al-
gorithm in such a severely under-constrained case, then the
algorithm may just assimilate noise from the measurements
rather than signal, resulting in unreasonable solutions to the
inverse problem (e.g. Kahnert, 2009). To avoid such prob-
lems, one needs to systematically analyse the information
content of the observations and constrain the assimilation al-
gorithm to only operate on the signal degrees of freedom.

Appendix C: Information content of measurements

Our ultimate goal is to formulate the data assimilation prob-
lem in such a way that the information contained in the mea-
surements is fully exploited, but not overused. To this end,
we first need to know how many independent quantities can
be determined from a specific set of measurements. We in-
vestigate this question by borrowing ideas from retrieval and
information theory — see Rodgers (2000) for more detailed
explanations.

The main idea is to compare the variances of the model
variables to those of the observations. Only those model vari-
ables whose variance is larger than those of the observations
can be constrained by measurements. However, to actually
make such a comparison poses two problems. The first prob-
lem is that one cannot readily compare error covariance ma-
trices. The second problem is that model variables and mea-
surements are in different spaces. We first address the second
problem.

When we account for observation errors €, then the basic
relation between model variables and observations is, to first
order

y=H(xp) +H-8x +¢,. (C1)

8By solving the equation VJ|x=x, = 0, for the analysed state
X5 it can be shown that the solution to the inverse problem is given
by xa = xp+K-(y— H(xp)), where K=B-HT-(H-B-HT +R)~!
is known as the gain matrix. This illustrates that the analysis updates
the background estimate xy, by mapping the increment (y — H (xp))
from observation space to model space by use of the gain matrix.
The correlations among the model variables enter into the gain ma-
trix through the matrix B. In our case the vertical correlations are
rather weak in comparison to correlations among different aerosol
species.
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The error covariance matrices are given by the expectation
values B = (5x - 8xT), and R = (e, - ez), where the dot de-
notes a dyadic product.” From Eq. (C1) we see that the co-
variance matrix of §y =y — H(xyp) is given by (8y-8yT)
=H.B-HT + R, where we assumed that background and ob-
servation errors are uncorrelated. This last equation suggests
that we can compare model and observation errors in the
same space by transforming the background error covariance
matrix from the space of (n x n) matrices to the space of
(m x m) matrices, namely H- B - HT.

To address the first problem, we diagonalize the covari-
ance matrices by making the following change of variables:

¥ =B 12 .sx (C2)
8y =R7Y2.(y— H(xp)) (C3)
H=R 2.H.BY2 (C4)

Here B!/2 denotes the positive square root'? of the matrix B,
andli_l/ 2 denotes its inverse. The scaled observation opera-
tor H is sometimes referred to as the observability matrix. In
the new basis, the cost function in Eqgs. (B7)—(B9) becomes

J:%SET-8f+%(fI~8§—8})T-(ﬁ-Sf—(S}). (C5)

The covariance matrices are now unit matrices. This can
also be seen by considering the transformed errors, e.g. €, =
R~!/2.¢, and computing (ZO%E) =R 2. (e,-€) R71/2 =
1, %m, since (€ - eg) = R. (Here, 1,,«,, denotes the unit ma-
trix in m-dimensional observation space.) Similarly, we find
(8% - 8% )= 1,,x,. The covariance matrix of the transformed
measurement vector 8y is given by (85-6y 1) = H-H +1,,, 5.
The first term is the model error covariance term transformed
into observation space, while the second term (the unit ma-
trix) is the diagonalized observation error covariance matrix.

We are still not in a position to make a meaningful com-
Rarigon of model and observation errors, since the first term,
H-HT, is still not diagonal. To make it so we need to per-
form one more transformation. To this end, we consider the
singular value decomposition of the matrix H:

H=R'2.H.-B'/2=V_-W.V}. (C6)

Here H is a (m x n) matrix, the matrix of the left-singular
vectors Vi, is a (m x m) matrix, the matrix VR containing
the right-singular vectors is a (n x n) matrix, and the (m x
n) matrix W consists of two blocks. If m < n, then the left

9The expectation value of a discrete variable a that assumes val-
ues ay, as, ..., an with corresponding probabilities py, p3, ..., pn is
given by (a) =37 pia;.

10A matrix A is called a square root of a matrix B if AT. A=
B. The positive square root of B, which is denoted by BY/2, has
the property xT - B!Y/2.x >0 for all x. If B is itself positive and
symmetric, as is the case for covariance matrices, then the positive
square root exists and is unique.
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block of W is a (m x m)-diagonal matrix containing the m
singular values wi, ..., w, on the diagonal; the right block
is a (m x (n — m))-null matrix. Similarly, if m > n, then the
upper block of W is a (n x n)-diagonal matrix containing the
n singular values on the diagonal, while the lower block is a
((m — n) x n)-null matrix.

We now make another change of variables:

8x' =V§-8% (C7)
8y =Vi -8y (C8)
H =V H Vg (C9)

The matrices Vi and VR are orthogonal, i.e. VE~VL =1, xm,»
and similarly for Vgr. Thus, substitution of Egs. (C7)—(C9)
into (C5) yields

J= %Sx’T-Sx’+%(H’~3x’ —Sy/)T~(H’~8x’ —3y'). (C10)
Evidently, the transformation given in Egs. (C7)—(C9) pre-
serves the diagonality of the background and observation er-
ror covariance matrices. What about the covariance matrix
(8y'-8y'T) in the new basis? Using €, =VI.€=VI.R71/2.
€,, as well as Egs. (C1), (C2)—(C4), and (C6)—(C9), we ob-
tain (8y’ -8y’ )= H - H'T + 1,4,n. The contribution of the
background error covariances in this coordinate system is
H ~H’T, which is a diagonal matrix. This becomes clear from
Egs. (C6) and (C9), which yields

H-H =W.WT, (C11)

which is a (m x m) diagonal matrix. Thus in this coordinate
system we can readily compare the diagonal elements of the
transformed background error covariance matrix H' - H’ Tto
the diagonal (unit) elements of the observation error covari-
ance matrix 1,,,,. Roughly, those singular values w; on the
diagonal of W that are larger than unity correspond to model
variables 8x; that can be controlled by the measurements.
Those singular values smaller than unity correspond to model
variables that are only related to noise.

In the above discussion we relied on plausibility argu-
ments. We mention that there are more systematic ways of
approaching the problem. Here we merely state some key
results without going into details. The interested reader is re-
ferred to chapter 2 in Rodgers (2000). However, in all ap-
proaches the main quantities of interest are always the singu-
lar values of the observability matrix R='/2 . H-B!/2,

One can compute the number of signal degrees of freedom
N from the expectation value of Jy, in Eq. (B8). The result
can be expressed in terms of the singular values w; of the
observability matrix:

min{m,n}

Ne= > w}/(1+uw}),

i=1

(C12)

where n is the dimension of model space, and m is the di-
mension of observation space.
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Another approach is based on information theory. Given a
system described by a probability distribution function P (x),
one defines the Shannon entropy

S _ P(x)
(P)=—[ P(x)log, m dx,

where Py is a normalization factor needed to make the argu-
ment of the logarithm dimensionless. A decrease in entropy
expresses an increase in our knowledge of the system. For
instance, if we initially describe the system by P;(x), and,
after taking measurements, by Py (x), then the measurement
process has changed the entropy by an amount

(C13)

H = §8(P;)— S(Py). (C14)

In our case, we assume that all errors are normally dis-
tributed. In that case, one can show that

min{m,n}

Z log, (1 + wl-z).

i=1

H=-
2

(C15)
H can be interpreted as a measure for the information content
of a set of measurements.

Our findings so far suggest a general strategy for how to
optimize the amount of information that can be extracted
from measurements. First, we need to compute the singular
value decomposition in Eq. (C6), as well as the transforma-
tion given in Egs. (C2) and (C7), which we can summarize
as

sx' =V B2 . sx. (C16)

Then we want to formulate the minimization of the cost func-
tion in such a way that only those components of §x’ are ad-
justed by the assimilation algorithm that correspond to the
largest singular values of the matrix W in Eq. (C6). All other
elements of §x’ should be left alone. In other words, we want
to constrain the minimization of the cost function to the sub-
space of the signal degrees of freedom of the state vector.
Thus, in order to implement this idea, we first need to dis-
cuss how to incorporate constraints into the theory.

Appendix D: Minimization of the cost function with
constraints

In the minimization of the cost function all elements of the
control vector dx are independently adjusted until the mini-
mum of J is found. This may not be a prudent approach if
the information contained in the observations is insufficient
to constrain all model variables. In such a case one should
introduce constraints that reduce the number of independent
control variables. However, this needs to be done in a clever
way; the goal is to neither underuse the measurements (thus
wasting available information), nor to overuse them (thus as-
similating noise).
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For reasons we will explain later we formulate the con-
straints as weak conditions. However, for didactic reasons as
well as for the sake of completeness, we will also mention
how to formulate constraints as strong conditions.

D1 Minimization of the cost function with strong
constraints

Given k constraints in the form g;(6x) =0,i =1,...,k, the
most general way of finding the minimum of J (§x) under the
constraints g; is the method of Lagrange multipliers. More
specifically, one introduces k Lagrange multipliers A, ..., Ag
and defines the function

L(6x1,...,0xn,A1,..., ) =J(6x1,...,8%y)

k
+ D higi (X1, 8x,); (D1)
i=1

then one solves the minimization problem

VL(X1,. s 0Xn, A1y eney Ak) = Oppi, (D2)

where V = Vsy,  sx,.00,...0 18 NOW a (n + k)-dimensional
gradient operator, and where 0,4 denotes the null vector in
an (n+k)-dimensional space. Note that in this general formu-
lation of the problem the constraints can even be nonlinear.
We are specifically interested in linear constraints, which can
be expressed in the form G - §x = 0. Then the constrained
minimization problem becomes

L(Sx,A) = J(x)+AT-G-sx (D3)
Vsx J(8x) +AT- G
Vax,xL(5x,)~)=( BN )=0n+k. (D4)

Compared to the unconstrained minimization problem, the
introduction of k constraints has increased the dimension of
the problem from n to n + k. Naively, one may have expected
that the dimension would, on the contrary, be reduced to n —
k. This is indeed the case if the constraints are linear, and if
the function J is quadratic, as is the case in Egs. (B7)—(B9).
To see this, let us first write those equations more concisely
in the form

1
J=5(x7-Qu-dx+Q sx+5xT-Q+Q3) (D)

Q=B"'+H".R"H (D6)
Q=H"-R7'-(H(xp)—y) (D7)
Q3= (Hxp) — TR (H@xp) —y). (D8)

Note that the covariance matrices and their inverses are sym-
metric (i.e. RT =R, etc.) The unconstrained minimization
problem requires us to solve the equation Vs, J = Qg - éx +
Q> =0,,. Now we want to minimize the cost function subject
to the linear constraints

G- 5x = 0y, (DY)
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where G is a (k x n) matrix, §x is an n-vector, and 0 is the
null-vector in R, Let us denote the kernel'! of G by ker(G).
Let further z1, ..., z,—x denote a basis of ker(G). We define
the (n x (n — k)) matrix

Z=(z Zn—k») (D10)

the column vectors of which are just the basis vectors of
ker(G). Obviously, G-Z = Ok x (1—k), Where O x (,—k) denotes
the ((k x (n—k))-null matrix. If §x is a vector in R” for which
there exists a vector & € R~ such that Z - £ = 8x, then we
automatically have G-6x = O, i.e. §x satisfies the linear con-
straints. Thus we can formulate the constrained minimization
problem by substitution of dx =Z- & into Eq. (D5), which
yields

)= 32T Q 254 Q) 2ok g

ZT Q2+ Qs3)
0 =VeJ=2"-Qi-Z-§+Z"-Qu.

(D11)
(D12)

Thus we have reduced the (n + k)-dimensional constrained
minimization problem given in Eq. (D4) to a problem con-
sisting of the following two steps:

1. Determine a basis of the null space ker(G); this yields
the matrix Z.

2. Solve the unconstrained (n — k)-dimensional optimiza-
tion problem given in Eq. (D12). From the (n —k)-vector
& that minimizes the cost function in Eq. (D11), we then
obtain the solution §x = Z - £ that minimizes the cost
function in Eq. (D5) subject to the constraint Eq. (D9).

D2 Minimization of the cost function with weak
constraints

In the approach described in the previous section the solution
satisfies the constraints exactly. Therefore, this approach is
known as the minimization of the cost function with strong
constraints. In the weak-constraint approach the constraints
only need to be satisfied within specified error bounds.

The formulation of the weak-constraint approach is con-
ceptually quite simple. One incorporates the constraints by
adding an extra term to the cost function Eq. (B7), i.e.

J=h+Jo+Jc (D13)

1
JG = EaxT.GT ‘B;'-G-éx, (D14)

which also gives an extra term in the gradient of the cost
function,

VseJg =GT-B;! - G- x. (D15)

UThe kernel or nuil space of a matrix is the set of all vectors z
such that G - z = 0. The kernel is a subspace of the full vector space
R with dim ker(G)=n — k.
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We will assume that the matrix B = diag(alc sy okG ) is di-
agonal, where k is the number of constraints. The “error vari-
ances” o*iG along the diagonal of B allow us to fine-tune the
influence of each constraint on the solution. If ol.G is small,
then the ith constraint is relatively strong, and vice versa.
Typically, if the ol.G are made too large, then there is a risk
that the minimization algorithm ignores the constraints all to-
gether. In that case the solution will be very similar to the un-
constrained solution. On the other hand, if the O'iG are made
too small, then J; can make the dominant contribution to
J. In that case, there is a risk that the minimization routine
largely ignores the observations and returns a solution that
lies quite close to the background estimate.

D3 Constraints designed for making optimum use of
the information contained in the observations

We now want to incorporate the results of Appendix C into
the variational data assimilation method. More specifically,
we want to formulate weak constraints, Eq. (D14), based on
the singular values of the observation operator in Eq. (C6). To
this end, we make the change of variables given in Eq. (C16).
We assume, without loss of generality, that the first £ singu-
lar values are greater than unity. Thus we only want to use
the corresponding components 8x},...,8x, as independent
control variables in the 3DVAR algorithm, while the remain-
ing components remain unchanged, at least approximately,
within specified error bounds. If we were to formulate this
requirement as a strong constraint, as in Eq. (D9), then it
would take the form

!
dx;

I
dx,

ox'=Vg-BV2ox=| 7

(D16)

Thus the matrix expressing the constraints is given by G =
VI -B~!/2, which is a (n x n) matrix.

The weak constraint approach is, arguably, more suitable
in our case. We have, in the preceding text, frequently used
the terms signal degrees of freedom and noise degrees of
freedom. Although it was conceptually useful to make this
distinction, it is important to stress that there is no sharp
boundary between the two. Rather, there is a smooth transi-
tion from singular values wy > wy > --- > wy > 1 to singu-
lar values 1> wyy1 > weyn > ... > wg (K = min{n, m}).
For this reason we choose to formulate the constraints as
weak constraints. This allows us to make a smooth transition
from free to constrained control variables, where the transi-
tion from one regime to the other can be controlled by the
singular values.

In order to apply the weak-constraint approach, we
need to substitute the constraint matrix G = V& -B~/2 into
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Eq. (D14), which yields

1

Jo = E(SxT-B’l/z -Vr-BZ'- VR B2 6x, (D17)
where Bg is a (n x n) matrix. We want to set up this matrix
in such a way that we obtain a smooth transition from freely
adaptable control variables 8x{,...8x; to increasingly con-
strained variables 8x;, e .8xp, ..., 8x,. One possible choice
of the matrix B would be
Bg = og diag(wy, wa, ..., we, ..., Wk, C, ..., C), (D18)
where o is a free scaling factor, and where the last n — k
diagonal elements are equal to a constant ¢ << wy chosen to
be much smaller than the smallest singular value wy.

Clearly, how we set up the matrix B¢ is not unique. For
instance, a more general choice would be

P

Bg :Ugdiag(wf,wf,...,wg,...,w,f,c,...,c), (D19)

where ¢ K w,f , and where the exponent p would be another
parameter that can be employed to tune how steeply the tran-
sition from unconstrained to constrained control variables
takes place. Yet another choice would be

L0, (D20)
(D21)

Bg = o¢ - diag(uy, 2, ..
i =w?/(1+w?),

Ml ey Uk Cy e

where ¢ < pui. This ansatz is suggested by Eq. (C12), i.e.
each of the elements 8xj,...8x; is weighted with its cor-
responding contribution to the number of signal degrees of
freedom. We tested all three approaches (the one in Eq. D19
for p = 2). These tests showed that the different approaches
often yield analysis results that are quite similar. However,
in each approach the free parameters o and c are tuned to
different values. If they are not well tuned, then the analysis
tends either toward the background estimate or toward the
unconstrained analysis, as explained earlier in the text fol-
lowing Eq. (D15).

Appendix E: Practical aspects of the implementation

We will here discuss some practical aspects that are mainly
interesting for model developers.

One of the main practical problems is the dimension n
of the model space. The grid-size is typically on the order
Ny x Ny x N; ~ 100 x 100 x 10, and the number of aerosol
components is of the order of N~ 10-100. Hence the di-
mension of the model space is n ~ 10°~107. In our case, the
matrix H in Eq. (C6) is a (m x n) matrix. To numerically per-
form a singular value decomposition of such a large matrix
would be a formidable task.

In variational data assimilation we encounter a similar
problem in the inversion of the matrix B. In our 3DVAR code
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this problem is alleviated by using a so-called spectral for-
mulation. The idea is to make a Fourier transformation in the
horizontal coordinates and to assume that all horizontal error
correlations are homogeneous and isotropic. Under these as-
sumptions one obtains one background error covariance ma-
trix for each horizontal wavenumber; each of these matrices
has dimension N, x N, ~ 103-10*. This can further be re-
duced to about 10 by making a reduced eigenvalue diago-
nalization. The details are explained in Kahnert (2008).

In our case we are primarily interested in constraining the
aerosol components. Therefore, we formulate our weak con-
straints in a suitable subspace of the physical space. Suppose,
for simplicity, that we have reduced all data to the vertical
resolution of our model. Let v; = 1, ..., m; label all measure-
ments that lie within model layer /. Suppose further than
(i, jo) is the horizontal grid point belonging to observation
vy (so that the index « depends on the layer / and the ob-
servation v;). Consider the reduced background error covari-
ance matrix with elements B,Eak,l) = Bi, juikiq, julk'> K k' =
1,..., N, and N, is the number of aerosol components. Con-

sider further the reduced observability matrix with elements
() Ne p—172

HYY, = S0 Rl Hi i (B@D) 2 g, where m =
m(l,v;) labels the v;th observation in model layer /. Anal-
ogous to Eq. (C6), we now perform a singular value decom-

position in the reduced space

min{m;, N}

> Vs Vi) (E1)

s=1

The dimension of this SVD problem is now considerably
reduced. The number of singular values is equal to K =

min{N,, m;}. The constraint matrix G = V;g -B~1/2 reduces
to
N, ;
Gsk= D (Vi (B2 4. (E2)
k'=1

We now invoke the assumption that the constraints com-
puted at the observation site are also valid at neighbouring
points, i.e. we apply the constraint matrix given in Eq. (E2)
in Eq. (D17) according to

1 -1
Jo =3 z Sxijik Gy i (Bg s Gs k8Xijik, (E3)
ijIkK's

where (Bg)s denotes the diagonal elements of the matrix
given in Eq. (D18).1

12For those readers interested in spectral formulations of 3DVAR
we refer to Egs. (28)—(30) in Kahnert (2008). Expressed by the spec-
tral control vector x = U - §x, the weak constraint in the cost func-
tion takes the spectral form Jg = % xFuT.GT -Bal .G-U1.y,
and its contribution to the gradient of the cost function becomes
VyJg=U"T.GT -BE;] -G-U~L. x. We see that these expressions
involve the computation of the variable éx = Ul xin physical
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Another aspect concerns the positive square root of the
background error covariance matrix, which appears in essen-
tial parts of the theory, namely in Egs. (C6) and (D16). In
theoretical developments it is, arguably, didactically expedi-
ent to work with the matrix B'/2. But in practice there are
numerically more efficient formulations. One such approach
is discussed in Kahnert (2008) in the context of a spectral
formulation of the variational method. The spectral formu-
lation is applied to the full B matrix in order to reduce the
dimension of the problem of diagonalizing this matrix. This
method is our method of choice in the formulation of the
background and observation terms in the cost function given
in Egs. (B8) and (B9), respectively. However, in the formula-
tion of the constraint term given in Eq. (D17) we can substan-
tially reduce the dimension of the matrix B by working in the
reduced space in which only the covariances B*" among

space. Thus, even when using a spectral formulation of the 3DVAR
method, one can still compute the constraints in physical space and
add their contributions to J and VJ. The advantage of this is, as
explained above, that the SVD of the observability matrix can be
computed in the reduced subspace, which substantially reduces the
dimension of the numerical SVD problem.

www.atmos-chem-phys.net/17/3423/2017/

aerosol components are considered. One could compute the
matrix (B®")~1/2 in Eq. (D17) by diagonalizing the matrix
B) However, a numerically much more efficient approach
is to not work with positive square root, but with the so-called
Cholesky decomposition'? of the B matrix,

B« =cT.c,, (E4)

where C,, is an upper triangular matrix. Thus the actual algo-
rithm we used for formulating the constrained minimization
of the cost function is obtained by replacing in the preceding
formulas all incidences of the matrix B!/2 with the matrix CT
(and, similarly, by replacing the inverse matrix B~!/2 by the
inverse of the Cholesky factor, C;T).

13The Cholesky decomposition is, essentially, a special case of a
LU decomposition, which applies to symmetric real (or Hermitian
complex), positive definite matrices.
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