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Abstract
The scientific method implies a dynamical relationship between experiment
and theory. Indeed, experimental results are understood through theories,
which themselves are of less value until confronted with experiment. In this
thesis I study this relationship by quantifying two key properties of theories:
theoretical uncertainties and predictive power.

Specifically I investigate chiral effective field theory (χEFT) and the
precision and accuracy by which it reproduces and predicts low-energy
nuclear observables. I estimate both statistical and systematic uncertainties.
The conclusion is that the latter, which in my approximation originates from
omitted higher-order terms in the chiral expansion, are much larger than the
former. In relation to this, I investigate the order-by-order convergence up
to fourth order in the chiral expansion. I find that predictions generally
improve with increasing order, while the additional low-energy constants
(LECs) of the interaction makes it more difficult to fully constrain the theory.
Furthermore, in order to accurately reproduce properties of heavier nuclei I
see indications that it is necessary to include selected experimental data from
such systems directly in the fitting of the interaction.

In order to perform these studies I have developed accurate and efficient
methods as well as computer codes for the calculation of observables.
In particular, the application of automatic differentiation for derivative
calculations is shown to be crucial for the minimization procedure. These
developments open up new avenues for future studies. For example, it is now
possible to do extensive sensitivity analyses of the experimental data and
the model; to investigate the power counting from a data perspective; and
incorporate more experimental data in the fitting procedure.

Keywords: nuclear physics, χEFT, uncertainty quantification, two-nucleon
scattering, few-nucleon physics
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Chapter 1

Introduction

Figure 1.1: The relation between observation and theory. Inspired by observations
one can construct general theories explaining the observations. Through predictions
the theories can in turn provide guidance for future experiments.

The topic of this thesis is chiral effective field theory (χEFT) and its
relation to experimental knowledge. I quantify the precision, accuracy and
convergence of χEFT for the description of string interactions between nucle-
ons, and verify the results by comparing the predictions with experimental
data. By adopting a unique data perspective, and developing state-of-the-art
statistical and computational methods, I have been able to perform new and
important investigations of inherent properties of effective field theories. In
this introduction I will put my work into a broader context. To this end, I
begin in general terms, and gradually zoom in on the relevant physics at the
subatomic scale.

Knowledge of the world around us usually begins with observations. In
physics research, one task is to understand these through theories and models.
From those it is in turn possible to make predictions. It is important to
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Introduction

remember that such descriptions need not be exact, nor able to explain all
phenomena around us. They can instead be regarded as simplifications of the
world. Theories can be said to aim at finding the underlying reason, or truth,
behind the observations. Models on the other hand are used to understand
particular phenomena, not necessarily through first principles. To highlight
their differences, I will here contrast two particular classes of models and
theories encountered in low-energy nuclear physics: phenomenological models
and effective field theories. One example of the former is the liquid-drop
model [1, 2]. This model explains properties of nuclei by treating them as
fluids and the individual nucleons are not resolved. By tuning the parameters
of the model to reproduce experimentally known properties, it is possible to
provide a gross description of, e.g., how the binding energies of nuclei depend
on the number of constituent neutrons and protons. Even though it does not
provide a detailed explanation of how nucleons interact, such a rough model
is well suited for understanding the broad features of nuclei. To provide
more detailed knowledge and to study the behavior of individual nucleons it
is necessary to turn to a more microscopic model or theory.

The currently accepted theory that governs the interaction between
nucleons is quantum chromo dynamics (QCD) [3]. QCD describes the strong
interaction, between quarks and gluons, which in turn are constituents of
the nucleons. Although we should in principle be able to describe system
of nucleons using QCD directly, using e.g. lattice-QCD, the computational
complexity of that approach is so high that it is currently not feasible —
even though increasingly sophisticated attempts are being carried out [4–6].
For now, it is necessary to rely on other models and theories to describe the
interaction between nucleons.

Already in 1935, before the advent of QCD, Yukawa introduced the con-
cept of pion exchanges for describing the nuclear interaction [7]. Since then,
many other models based on meson exchanges have been proposed. One such
successful phenomenological model is CD-Bonn [8]. Here, the interaction is
modeled as exchanges of various mesons between the nucleons. The coupling
strength of the various exchanges are tuned so as to reproduce certain
experimental observables. With CD-Bonn it is possible to reproduce, within
experimental uncertainties, elastic two-nucleon scattering cross sections up to
a laboratory kinetic energy of Tlab = 350 MeV as well as bound-state properties
of the deuteron. There are also other phenomenological models for the two-
nucleon interaction, such as coarse grained delta-shell interactions [9], that
are also able to reproduce the above mentioned observables. At first sight it
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might look like the issue of the nucleon interaction is solved. However, the
phenomenological models lack two crucial properties: predictive power with
quantified model uncertainties.

What is predictive power? A possible benefit of a model or theory is its
ability to predict results of not yet performed or infeasible experiments. If
we trust a model or theory we can use it as a guide for future experiments.
Indeed, a model or theory might be capable to produce a value for an
observable, but do we necessarily trust this result? It seems that reliability
is at the core of predictive power. For example, many models and theories
contain parameters that are tuned in such a way that a set of experimental
data are reproduced, as in the examples above. Does such an agreement
with experiment necessarily imply an expected agreement outside this set
of data? In general, the answer is no. This is particularly not expected
for phenomenological models, which usually are constructed with the goal of
understanding particular phenomena and only contain partial connection to
the underlying theoretical framework. For example, the models mentioned
above — CD-Bonn and delta-shell interactions — have no systematic way of
including a three-nucleon force, which has been determined to be necessary
to describe nuclear observables [10]. It is therefore difficult to determine the
accuracy of the model for other types of observables.

This leads to the second shortcoming of phenomenological models; the
difficulty of quantifying the uncertainties in the model predictions. Non-
zero uncertainties in a prediction does not necessarily make the prediction
unusable. To quote George Box [11], (as quoted in reference [12]),

“Remember that all models are wrong; the practical question is
how wrong do they have to be to not be useful.”

In other words, uncertainties in the model or theory can be accepted as long
as they are known and under control. Uncertainty estimates are crucial
not only for experimental results, but for theories and models as well.
Disagreements between theoretical predictions and experiments can provide
insight into why the model or theory fails to describe the observations only
once all of these uncertainties are estimated.

Effective field theories can be employed to avoid the above mentioned
shortcomings of phenomenological models. One such theory is χEFT.
Knowing the underlying theory, QCD, it is possible to construct a general
interaction with pions and nucleons as degrees of freedom that is consistent
with the symmetries of QCD [13], in particular the broken chiral symmetry.
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Introduction

It is this connection to QCD that elevates χEFT from being just another
model to the status of a theory [14]. The χEFT can be naturally separated
into a long-range part, given by pion-exchanges between the nucleons, and
an unresolved short-range part of the interaction approximated using contact
terms. These are parametrized by a set of low energy constants (LECs),
which in practice need to be determined through a fit to experimental data.
However, χEFT consists of infinitely many terms, or diagrams. Apart from
the practical issue of not being able to calculate all terms, they also involve
infinitely many LECs, which cannot all be fitted to a finite set of experimental
data. To solution is a power counting scheme, by which the contributions
to the interaction can be ordered by their estimated impact at low energies.
A calculation at order ν consists of all diagrams that scale as (Q/Λχ)x with
x ≤ ν. The expansion parameter is the ratio of soft and hard scales in the
problem and should preferably be small for the expansion to be effective. Q is
the soft scale of χEFT, approximately given by the pion masses (∼ 140 MeV).
By moving to higher orders, the theory is expected to become increasingly
precise. This systematic expansion also makes it possible to estimate the
theoretical uncertainty from the expected size of the omitted contributions.
The power counting scheme and the possibility to estimate uncertainties are
precisely the ingredients required to facilitate predictive power.

The main motivation for my thesis work has been to investigate the two
important properties — theoretical uncertainties and predictive power — in
the specific context of χEFT applied to low-energy nuclear physics. Both of
these properties are closely related to the interplay between the theory and
the experimental data. The theory predictions with associated uncertainties
can be validated only by comparing to experimental results. That is the
case also for the predictive power. Furthermore, in the confrontation of
χEFT with data, other properties can also be investigated. Model-dependent
correlations between different observables can be explored, which makes it
possible to determine how dependent an observable is to the values of other
observables. Obtained uncertainties and covariances between LECs can tell
us something about what data that is needed to constrain the interaction.

This thesis contains an extended summary of the four papers that
are described in chapter 6. The outline of the extended summary is
as follows: Chapter 2 consists of a more detailed description of χEFT
together with the methods that are used to calculate various observables.
In chapters 3 I present and analyze the predictions and uncertainties of the
chiral interactions fitted at different orders. I take this one step further in
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chapter 4 where I study families of interactions to find global relationships
and correlations. I present the main conclusions of my work and provide an
outlook to future studies in chapter 5.
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Chapter 2

From theory to prediction

The purpose of this chapter is to provide a general description of the relevant
physics and the methods that have been used in my work to describe the
interactions between nucleons. Compared to chapter 1 I here provide a
more technical introduction and background to the main work and results
presented in this thesis. For more in-depth descriptions, see e.g. reference [14]
and paper B. My aim is to outline how to go from the underlying theory of
QCD to a theoretical prediction using χEFT.

The first step is to define the general χEFT interaction between pions and
nucleons, which is done in section 2.1. In section 2.2 the methods that have
been used to calculate theoretical predictions for few-nucleon observables are
described. These observables include two-nucleon elastic scattering cross
sections as well as bound-state properties of few-nucleon systems. The
experimental data that are used in the fitting of the interaction and for
comparing predictions are presented in section 2.3, while the methodology
for the fitting is described in section 2.4.

2.1 The χEFT framework
In the χEFT employed in my work, nucleons and pions are used as the
effective degrees of freedom instead of the constituent quarks and gluons.
This is a valid approach at low energies, where the nucleons and pions remain
stable. χEFT will obey all the symmetries of the underlying theory, QCD,
by construction.

Of special interest is the explicitly and spontaneously broken chiral
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From theory to prediction

symmetry [14]. The quark field q entering the QCD Lagrangian can be
projected onto a left-handed (qleft) and a right-handed (qright) component
such that q = qleft + qright. It turns out that if the quarks are massless, the
Lagrangian is unchanged by a unitary rotation of either the left-handed
or the right-handed component, which is called chiral symmetry. Due to
the small (compared to nucleons) but non-vanishing quark masses, chiral
symmetry is explicitly broken by QCD. It is still, however, an approximate
symmetry and as a consequence one expects to see almost degenerate isospin
states and parity states in the hadronic spectrum. This is the case for
isospin, e.g. the masses of the neutron and proton are about the same.
However, degenerate parity states are not observed in nature [14], implying a
spontaneous symmetry breaking. The chiral symmetry breaking along with
the other symmetries of the QCD Lagrangian determine, to a large extent,
how the pions and nucleons interact at low energy, which is then incorporated
into χEFT.

With the symmetries of QCD in mind, one constructs the most general
Lagrangian for the interaction between the nucleons and pions [13]. This
effective Lagrangian will contain an infinite amount of terms, or diagrams,
as more and more intermediate states are included. The strengths of most
contributions are not fixed by the underlying symmetries. Instead, these
contributions are proportional to unknown LECs. This means that the more
diagrams we include, the more LECs will have to be determined from data,
which in itself is a reduction of the predictive power of the model. For
practical calculations to be possible, i.e. without having to include all terms,
a power counting (PC) scheme is needed, i.e. a way to order the diagrams
such that the ones that have the largest impact on the low-energy physics
are included first. In this way, it is possible to include the most important
diagrams until the desired accuracy is achieved.

The importance of the PC is hard to overstate. If we cannot predict
that some diagrams will only have a very small impact on the results, we
will have no way to estimate the uncertainty of the model. The ability
to estimate the uncertainty of the model is what sets χEFT apart from
phenomenological models of the nucleon-nucleon interaction such as meson-
exchange models and δ-shell interactions [9]. The PC is also crucial for a
correct renormalization. Effective field theories are renormalized order-by-
order [14]. This implies that appropriate counterterms need to be included
at each order to cancel infinities that arise from the pion-exchange diagrams.
One role of the PC is to make sure that the correct counterterms are included
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2.1. THE χEFT FRAMEWORK

at each order. In my work I have used the standard Weinberg PC [15],
although one should note that the topic of PC in χEFT is under some
debate [16–18].

When nucleons and pions interact with high relative momentum p, there
could be enough energy to create new particles, such as a ρ meson. This can
not be predicted by a χEFT where only pions and nucleons are considered.
Therefore, the breakdown scale Λχ of χEFT— i.e. the energy at which the
effective-field theory becomes invalid — is around the mass of the ρ meson,
Mρ ≈ 800 MeV. This sets an upper energy scale for our χEFT. On the
other hand, the pion masses (∼ 140 MeV) sets the characteristic scale for
pion exchanges. The relative momentum p will then be of the order of the
pion masses in a low-energy interaction. The PC is then the ordering of
the terms in the Lagrangian in powers of Q/Λχ, where Q is the soft scale
given by the pion masses and p, while Λχ is the breakdown scale. Each term
in the Lagrangian scales according to (Q/Λχ)ν , where ν is the order of the
term according to the PC, with ν ≥ 0 for all terms allowed by the underlying
symmetries [14].

In practice there are more scales involved: the ratio between Q and the
nucleon mass, Q/MN , the mass-difference (mu − md)/(mu + md) of the up
and down quarks and the fine-structure constant α which is the expansion
parameter for the EM interaction. The nucleon mass gives rise to relativistic
corrections and the quark mass difference to isospin breaking effects. All
of these scales are combined into an extended PC, allowing an ordering of
all contributions. The combination of the scales into a single PC can be
done in different ways, in particular the relativistic corrections are sometimes
assumed to scale as Q/MN ≈ (Q/Λχ)2 [15, 19, 20] and sometimes as Q/MN ≈
(Q/Λχ) [14]. In the included papers we employ the first variant, although it
is not crucial for the results or the analysis. See paper B for details.

With the PC fixed, the terms, or diagrams, of the strong interaction can
be divided into groups, both depending on the order ν and on the type and
quantities of the exchanged particles.

The lowest order interaction is leading order (LO), and consists of all
ν = 0 terms. There are no terms with ν = 1 due to parity and time-reversal
invariance. Therefore the next-to-leading order (NLO) is constructed from
all terms with ν ≤ 2. From there on it continues with next-to-next-to-leading
order (N2LO or NNLO) being ν ≤ 3 and N3LO (ν ≤ 4).

The diagrams are usually divided into two parts; the contact interaction
(Vct), and the pion exchanges where one or more pions are exchanged (V1π,
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From theory to prediction

V2π, V3π, and so on). The pion exchanges constitute the long-range part of
the nuclear interactions and are partially determined by chiral symmetry.
The contact interaction, on the other hand, is a general parameterization of
the short-range physics, with each term proportional to an LEC.

The contact and pion-exchange diagrams entering the interaction at
the different orders are shown in figure 2.1. The nucleons and pions are
shown with solid and dashed lines, respectively. At LO the leading contact
interaction enters, represented by two crossing nucleon lines, together with
one-pion exchange (1PE). At NLO there are additional contact interactions
and also the leading two-pion exchange (2PE). At N2LO there are corrections
to the 2PE and also the leading three-nucleon force appears, consisting of
contact interactions and pion exchanges. Finally at N3LO there are many
new contributions to the contact interaction and the 2PE. The first four-
nucleon diagrams also enter at this order. The three-pion exchange (3PE)
appears in both the two-, three- and four-nucleon interactions.

The lowest ν allowed when A nucleons interact is ν(min)
A = 2A − 4 [14].

Thus, the two-nucleon force enters at LO and the three-nucleon force at
NLO. However, at NLO all three-nucleon contributions cancel and the first
non-vanishing contribution enters at N2LO [21].

For the calculation of two-nucleon scattering we solve the non-relativistic
Lippmann-Schwinger (LS) equation and for the calculation of nucleon bound-
state observables we employ the non-relativistic Schrödinger equation. In
both cases a non-relativistic potential is needed. For details on how this
potential is constructed from the effective Lagrangian, see e.g. reference [14].

At N2LO the sub-leading 2PE enters with diagrams proportional to the
pion-nucleon LECs c1, c3 and c4. At N3LO the pion-nucleon LECs c2, d1+d2,
d3, d5 and d14 − d15 enter.

The 3PE terms entering at N3LO, see figure 2.1, have been shown to be
rather small [14] and are therefore ignored.

The contact interaction can be parametrized in different ways. In my
calculations I use a partial-wave momentum-basis. A channel in this basis is
denoted as 2S+1LJ , where S is the total spin, L the orbital angular momentum
(with L = 0, 1, 2 denoted by S,P,D and so on) and J the total angular
momentum. I therefore parameterize each partial wave independently. At
a given order, denoted νct, only partial waves up to angular momentum
L + L′ = νct will have a non-zero contribution, where L (L′) is the incoming
(outgoing) orbital angular momentum. Thus, the leading-order contact
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2.1. THE χEFT FRAMEWORK

interaction, V (LO)
ct , affects only S-waves, proportional to the two-nucleon

LECs C̃1S0 and C̃3S1 The terms from the NLO (N3LO) contact interactions
are proportional to the Cx (Dx) two-nucleon LECs. For more details, see e.g.
Ref. [14]. For the NLO (N3LO) contact interactions there are 7 (15) two-
nucleon LECs needed to parametrize the contact interaction, respectively.

To sum up the LEC dependence at the various orders, all terms are either
proportional to or independent of LECs,

V
(LO)

ct ∼ {C̃1S0 , C̃3S1}

V
(NLO)

ct ∼ {C1S0 , C3S1 , C3S1−3D1 , C3P0 , C1P1 , C3P1 , C3P2},

V
(N3LO)

ct ∼ {D1S0 , D̂1S0 , D3S1 , D̂3S1 , D3S1−3D1 , D̂3S1−3D1 , D3P0 , D1P1 ,

D3P1 , D3P2 , D3P2−3F2 , D3D1 , D1D2 , D3D2 , D3D3},

V
(LO)

1π ∼ 1,

V
(NLO)

2π ∼ 1,

V
(N2LO)

2π ∼ {c1, c3, c4},

V
(N3LO)

2π ∼ {1, d1 + d2, d3, d5, d14 − d15, c
2
1, c

2
2, c

2
3, c

2
4, c1c2, c1c3, c2c3},

(2.1)

The various isospin-breaking effects that exist are well described in e.g.
Refs. [14, 21]. Most importantly, at NLO there is a splitting of the C̃1S0

contact into three different contacts, C̃(pp)
1S0

, C̃(np)
1S0

and C̃
(nn)
1S0

.
The electro-magnetic interaction is the part of the nucleon interaction

that only involves the exchange of photons. This is the longest-range part of
the interaction. The long-range effects become increasingly important as the
energy approaches zero, therefore we include long-range effects at all orders
in the chiral expansion. For details, see e.g. paper B.

The three-nucleon interaction, which enters first at N2LO, consists of
a 2PE part proportional to the pion-nucleon LECs c1, c3 and c4, a 1PE
part proportional to the three-nucleon LEC cD and a contact interaction
proportional to the three-nucleon LEC cE [22]. cD and cE do not appear in the
two-nucleon part. At N3LO there are corrections to the N2LO interaction.
However, these corrections do not involve any new LECs. The N2LO and
N3LO parts of the three-nucleon potential in a momentum-space partial-wave
basis are presented in references [22] and [23] respectively.

For a complete N3LO potential the leading four-nucleon interaction is
needed, see figure 2.1. The N3LO four-nucleon diagrams consist of four-pion
exchanges (4PE), 3PE, 2PE with one two-nucleon contact, and 1PE with two
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From theory to prediction

nucleon-nucleon contacts. Due to the difficulty of including it in many-body
calculations, and because it is expected to be small, it is often neglected [14].
This is also what I have done in my work.

One of the advantages of χEFT is that it links two-nucleon physics with
pion-nucleon physics. This means that the pion-nucleon interaction can
constrain the pion-exchange part of the two-nucleon interaction. The lowest
order terms in the pion-nucleon interaction have ν = 1 and do not involve any
LECs. At order ν = 2 the pion-nucleon LECs c1 to c4 enter. Then d1 + d2, d3,
d5 and d14 − d15 enter at ν = 3 and e14 to e18 at ν = 4 summing up to a total of
13 pion-nucleon LECs.

At orders LO and NLO in the two-nucleon interaction none of the pion-
nucleon LECs enter. At N2LO however, a connection between the two-
nucleon and pion-nucleon interactions is established through the pion-nucleon
LECs c1, c3 and c4 as these LECs affect both the two-nucleon, three-nucleon
and pion-nucleon interactions. For more details regarding the pion-nucleon
Lagrangian and the interaction, see e.g. Refs. [24, 25].

When the magnitude of an ingoing or outgoing momentum p approaches
the breakdown scale Λχ of χEFT, the non-relativistic potential V is no longer
accurate and it would cause the LS equation to diverge. Therefore, it is
necessary to cut off high momentum contributions in the potential. In the
included papers, this is done using a non-local regulator function fNN(p),

V (p′,p)↤ V (p′,p)fNN(p′)fNN(p), (2.2)

with

fNN(p) = exp [−( p
Λ
)

2n
] (2.3)

n = 3, (2.4)

where Λ is a regulator parameter. In the papers, n = 3 is used. The parameter
Λ determines at what scattering momentum to cut off the potential. For my
purposes, a reasonable upper limit for Λ is the break-down scale Λχ ≈ 800 MeV,
since it has been argued that no improvements are expected by choosing
larger values for Λ [26]. Furthermore, the regulator parameter Λ should
not be chosen too low. Experimental two-nucleon scattering observables are
evaluated up to energies corresponding to a momentum around 400 MeV and
this value can be considered a lower limit for the regulator parameter.
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2.1. THE χEFT FRAMEWORK

The three-nucleon force, just like the two-nucleon force, needs to be
regulated to cut off unphysical high-momentum states. In our works, this
is done using the non-local regulator

V ↤ V f3N(p′, q′)f3N(p, q), (2.5)

where p and q here are the Jacobi momenta and

f3N(p, q) = exp [−(4p2 + 3q2

4Λ2 )
n

] , (2.6)

where we use the same value n = 3 as for the two-nucleon potential.
As stated above, the purpose of the cutoff functions is to remove the high-

momentum part of the interaction. However, through correlations between
high- and low-momentum states, the predictions for low-energy observables
will depend on the cutoff function. To keep the values of these observables
cutoff independent, i.e. fixed when changing Λ, the values of the LECs must
be refitted in such a way as to keep the low-energy physics unaltered.

2.1.1 Model uncertainty
It is crucial to include the model error when fitting to data. In particular for
the data where the experimental uncertainties are smaller than the model
error. Otherwise one risks fine tuning, or overfitting, to observables where
the model is not expected to yield accurate predictions. Including both the
model error and the experimental uncertainty in the fitting procedure also
results in more correctly propagated statistical errors, as these should depend
on the total uncertainty.

In paper B I developed a method to quantify the model error and include
it in the fitting procedure. This method is described below and was later
used also in paper D.

At a given order ν, all diagrams up to (Q/Λχ)ν are included, which means
that the impact of the omitted terms should scale as O((Q/Λχ)ν+1). This
scaling knowledge still needs to be converted to an actual number, σmodel.
The experimental data that are used consist mainly of scattering observables
and some bound-state properties. Scattering observables are associated with
a fixed center-of-mass momentum p. The method used to include model
errors is to assume that the real and imaginary parts of each two-nucleon

15



From theory to prediction

and pion-nucleon scattering amplitude have an error

σ
(amp)
model,x = Cx (

p

Λχ
)
ν+1

, x ∈ {NN, πN}, (2.7)

where CNN and CπN are scaling constants to be determined. This assumption
corresponds to a covariance matrix for the scattering amplitudes of the form
(σ(amp)

model,x)2I where I is the unit matrix, and implies that we do not take
correlations between the scattering amplitudes into account. In the papers
we have made the choice Q = p, where p is the scattering momentum, to
capture the trend of an increasing model error as the energy increases. Note
that the size of the error is the same for each scattering amplitude in this
approach. The order of magnitude of the different amplitudes should be
similar for this assumption to make sense. The analysis in paper B shows
that this is indeed the case for both two-nucleon and pion-nucleon scattering.

For bound-state properties it is not straightforward to determine an
energy scale Q, therefore model errors of this type are not estimated for
these observables in the included papers.

So far I have discussed the systematic model error due to omitted
diagrams. In order to define our two-nucleon potential I introduced
regulating functions fNN and f3N, which in my case depend on Λ, the chosen
cutoff value. As stated, the values of low-energy observables should not
depend on the exact form of fNN,3N and this is achieved by making the values
of LECs depend on the chosen regulator function. However, all regulator-
dependence is not removed and as the energy increases this error is expected
to increase also. This is another source of systematic model errors which is
estimated in e.g. reference [20] by varying the value of the cutoff parameter
Λ. In papers B and D we use such an approach to provide a model error
estimate for the bound-state properties. I will return to this in chapter 4.
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2.1. THE χEFT FRAMEWORK

Figure 2.1: Feynman diagrams for the contact and pion-exchange diagrams
entering at different orders. Solid (dashed) lines denotes nucleons (pions). A
circle, diamond, square and triangle represents a vertex of order 0,1,2 and 4
respectively [14]. Three dots implies that there are more diagrams not shown.
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2.2 Methods of calculation
With the two- and many-nucleon potentials as a starting point, I will here
briefly describe the methods used to arrive at predictions for quantities that
can be experimentally measured. I will describe methods for calculating
cross sections for two-nucleon and pion-nucleon scattering as well as the no-
core shell-model (NCSM) for the calculation of bound-state properties of
few-nucleon systems. For a more in-depth description of these methods, see
paper B.

For the calculation of observables, we use the two-nucleon potential in a
partial-wave momentum-basis. Thus, the two-body matrix elements of the
form ⟨p′J ′L′S′T ′T ′z ∣V ∣pJLSTTz⟩ are needed, where p is the relative momen-
tum, J the total angular momentum, L the orbital angular momentum, S the
total spin and T (Tz) the total (projected) isospin. Total angular momentum
conservation gives J ′ = J . Furthermore, for total spin S = 0 and S = 1 we have
L = J and ∣L − J ∣ ≤ 1 respectively. From anti-symmetrization we get T = 0
(1) for L + S odd (even). The two-nucleon interaction is isospin conserving,
T = T ′. It is, however, T - and Tz-dependent.

The chiral two-nucleon potential in a momentum basis is given in
Refs. [20, 27]. The expressions for the partial-wave decomposition are given
in reference [28]. Calculating all necessary matrix elements is a potentially
time-consuming task. To make the fittings to experimental data feasible I
therefore developed code to make the calculation of matrix elements very
efficient.

Two-nucleon elastic scattering observables are calculated from the scat-
tering matrix Ms′s

m′m(p, θ, φ) [29, 30], where s (s′) and m (m′) are initial (final)
total spin and spin projection respectively. For a fixed p the M-matrix will
be a 4 × 4 matrix with the basis states s = 0,m = 0 and s = 1,m = −1, 0, 1. The
scattering matrixM satisfies time reversal invariance and parity conservation.
Therefore, the M-matrix will be symmetric and only matrix elements with
∣L−L′∣ = 0, 2 will be non-zero, leaving only six independent quantities. We use
the Saclay parametrization of theM-matrix [29] with the complex amplitudes
a to f to express the observables,

M(q,k) =1
2
{(a + b) + (a − b)(σ1 ⋅ q̂ × k)(σ2 ⋅ q̂ × k)

+ (c + d)(σ1 ⋅ q̂)(σ2 ⋅ q̂) + (c − d)(σ1 ⋅ k̂)(σ2 ⋅ k̂)
− e(σ1 +σ2) ⋅ q̂ × k − f(σ1 −σ2) ⋅ q̂ × k},

(2.8)
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where q ≡ p′ − p is the momentum transfer and k ≡ (p′ − p)/2 is the
average momentum. σ1 and σ2 are the spin operators for nucleon 1 and
2, respectively. The amplitudes a to f are related to the singlet-triplet
representation through linear combinations [30]. For scattering of identical
particles, as in proton-proton scattering, the amplitude f will be zero.

Expressions for the different scattering observables as functions of the
Saclay parameters can be found in Ref. [29] for identical particles and in
Ref. [30] for the more general case of non-identical particles.

For an exact calculation, partial waves for all total angular momenta J

from zero to infinity need to be included. In practice it is sufficient to use
an upper limit Jmax = 25 to obtain results that are converged, i.e. the size of
the remaining contribution is well below the experimental uncertainty for all
experimental data that I have considered.

In addition to nucleon-nucleon scattering I have also calculated pion-
nucleon scattering observables. As in the nucleon-nucleon case, these
observables are calculated from scattering amplitudes. For a description of
how the pion-nucleon amplitudes are constructed, see reference [25] and for a
more detailed description of the strong and EM amplitudes see references [31–
35].

In addition to scattering observables, I have calculated properties of
bound nuclei with A ≤ 4 in the included papers. The calculated properties are
binding energies and radii for 2H (deuteron), 3H (triton), 3He (helion) and
the 4He (alpha particle), as well as the quadrupole moment of the deuteron,
Q(2H), and the comparative half-life of triton, fT1/2(3H).

These observables are calculated using the no-core shell model (NCSM)
in a harmonic-oscillator (HO) basis using relative coordinates [36]. The
binding energies and wave functions are obtained directly from the eigenvalue
problem H ∣Ψn⟩ = En ∣Ψn⟩, which in a basis representation becomes a matrix
eigenvalue problem that is solved using exact diagonalization with the
LAPACK library [37].

The HO many-body basis needs to be truncated. In the NCSM this is
achieved by an upper limit Nmax on the allowed number of HO excitations.
For the deuteron, N (2)max can be chosen high enough that the uncertainty due
to a limited model space is much smaller than the experimental uncertainty.
For the larger systems, I have employed N (3)max = 40 for three-body calculations
and N

(4)
max = 20 for four-body calculations.

From the obtained wave-functions, the radii, quadrupole moment and
comparative half life can be calculated. The comparative half-life of triton is
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calculated from [38]

⟨EA1 ⟩ ≡ ∣⟨3He∥EA1 ∥3H⟩∣, (2.9)

which is the reduced matrix element for the J = 1 electric multiple of the
axial-vector current.

I have developed routines based on automatic differentiation that enable
to extract the derivatives of the observables with respect to the LECs. These
derivatives are important in the fitting procedure and to extract accurate
statistical uncertainties for the obtained optima.

Starting from an LEC α, the computation of an observable O can be
abstracted to a chain of simple mathematical operations,

O(α) = fN(fN−1(. . . f1(α) . . .)), (2.10)

where the functions fn can be e.g. multiplication with a constant, f(y) =
Ay; raise to a constant power, f(y) = yA; a trigonometric function, f(y) =
sin(y); or other simple operations implemented in the computer. All of these
functions have well-known derivatives. Automatic differentiation relies on
the chain rule; given a value yn ≡ fn(. . . f1(α)) and its derivative ∂yn/∂α, one
can calculate

yn+1 ≡ fn+1(yn) (2.11)
∂yn+1
∂α

= ∂fn+1(yn)
∂yn

∂yn
∂α

. (2.12)

Using this equation the desired derivatives can be calculated alongside the
values, starting with the LECs all the way to O(α) and ∂O(α)/∂α. In my
calculations I need both first- and second-order derivatives of several LECs,
which can all be calculated in the same basic fashion as described above.

Another common method for calculating numerical derivatives is finite
differences. Two issues with that method are the reliance on the correct
estimation of step sizes and the numerical uncertainties due to taking
differences of numbers with a very small relative difference. It is particularly
difficult to avoid both these problems when both first- and second-order
derivatives need to be calculated for several LECs at the same time. This is
illustrated in figure B.4, where several derivatives obtained using automatic
differentiation and finite differences are compared. The derivatives produced
by the latter method sometimes have a large dependence on the step size, with
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the optimal step size being different for different derivatives. Derivatives that
should be zero are seen to be many magnitudes larger than those obtained
by automatic differentiation due to the poor precision of finite differences.

2.3 Experimental data
With the theoretical framework described, I here turn to the experimental
side. Measurements of nuclear observables are important to constrain a
χEFT description of the nuclear interaction. For this I have used bound-state
observables such as binding energies and radii as well as pion-nucleon and
nucleon-nucleon elastic scattering observables. The latter can be measured in
various settings. It is possible to vary the energy of the impinging nucleons,
the type of nucleons, measure the probability of scattering at various angles
and to prepare the initial states of the nucleons in polarized states. This
has made possible a wealth of different experimental measurements that can
be used when comparing or constraining χEFT to experimental values. In
my work, I have considered scattering of a proton on either another proton
or a neutron. The case of neutron-neutron scattering is difficult to measure
experimentally and is therefore not considered.

Experimental scattering observables are usually measured either at
several scattering angles or several energies in the same experiment, referred
to as a dataset. Due to the large amount of scattering datasets from different
experimental groups, there are compilations, or databases, of scattering
observables. Two such databases for two-nucleon scattering are the so called
SM99 database [39] (see references [8, 40, 41] for more details) used in
papers A and B and the so called GR13 database [9, 42, 43] used in paper D.
SM99 consists of 4173 measured scattering observables up to laboratory
kinetic energy Tlab = 290 MeV while the more recent GR13 database includes
an increased number of 4753 observables. A benefit of using such databases
is that they are “self consistent”. This means that flexible models have been
used to find a good fit of all considered datasets together with a subsequent
statistical analysis to find and remove experimental data points that are not
consistent with the other data. Employing such databases is an advantage
when fitting χEFT interactions, which are known to have systematic errors
at each given order. This is discussed more in section 2.4.

Just as there are databases for two-nucleon scattering, there are databases
for pion-nucleon scattering. The database used in our analyses is from the
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Washington Institute group [44] and here called WI08. Up to the energy
Tlab = 70 MeV this database contains 1347 experimentally measured scattering
cross sections. The data consists mainly of differential cross sections and
some singly-polarized differential cross sections for the processes

π± + p→ π± + p and
π− + p→ π0 + n.

Experimental values for the bound-state properties described in sec-
tion 2.2 together with adopted combined uncertainties from the experiment
and the method of calculation are presented in paper B.

2.4 Fitting of low-energy constants
I have described how to construct χEFT nucleon interactions in section 2.1.
The general interaction depends on a set of LECs that needs to be determined
by finding the “best” agreement with a set of experimental data. In
section 2.2 I described how to calculate theoretical values for observables
given a set of LECs and in section 2.3 I presented the databases of
experimental measurements that have been used in the works I have been
involved in. Now I will show how to put these parts together to form a method
for the fitting of the LECs to experimental data. This is well described also
in papers A and B.

The optimal LECs, i.e. the ones that result in the most accurate
reproduction of the experimental values, are determined by minimizing the
real-valued objective function

χ2(α) =
N

∑
n=1

(Oi,theo.(α) −Oi,exp.

σi,total
)

2

≡
N

∑
n=1

r2
i (α) (2.13)

called the chi-squared function. Here, N is the number of experimental
values, Oi,theo.(α) is the theoretical prediction given the LECs α, Oi,exp. is
the experimental value, σi,total is the combined uncertainty in the theoretical
and experimental value and ri are called the residuals.

This is also called non-linear least-squares minimization, and is what has
been used in the papers A to D. The name of the function derives from that
χ2 is chi-squared distributed with Ndof ≡ N −Npar. degrees of freedom, where
Npar is the number of fitted parameters, under the conditions that,
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2.4. FITTING OF LOW-ENERGY CONSTANTS

1. The experimental uncertainties are correctly estimated.

2. The experimental values can be treated as normally distributed random
variables.

3. The residuals are uncorrelated.

4. The theoretical uncertainties are correctly estimated.

Making sure the first point in the above list is fulfilled is mainly the
responsibility of the experimenter. However, as described in section 2.3 it
is also possible to compile databases of experimental data where irregular
experimental values are removed.

The second and third points are implicitly assumed throughout my
analysis, however a few remarks regarding correlated measurements are
in order. The experimental values are generally uncorrelated — the
measurements do not depend on each other. One important exception is
scattering data in the same dataset. For some of these datasets, there is an
uncertainty σC in the overall scaling of the results given by the experimenter
together with the Nd experimental values O(exp)

d . The full uncertainty in the
experimental results can then be written as

(1 ± σC)(O(exp)
d ± σd,exp), (2.14)

where σd,exp is the experimentally measured statistical uncertainty for that
data point. The common, systematic uncertainty σC in the results implies
that there are correlations between the obtained experimental values, since
σC is present in each experimental value in a given dataset. To avoid these
correlations two steps are taken. First, the model is fitted to the experimental
data without including the systematic part. Second, the uncertainty σC
is accounted for by introducing a fit parameter C, called a normalization
constant, which is used to normalize the theoretical predictions. The
parameter C is constrained by adding a residual (C−1)/σC to the chi-squared
function. All terms in χ2(α) for a given dataset are then given by

(C − 1
σC

)
2
+
Nd

∑
d=1

⎛
⎝
CO

(theo)
d (α) −O(exp)

d

σd,total

⎞
⎠

2

, (2.15)
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For a fixed set of LECs α, the value of C is found by minimizing this sum.
This can be done analytically, with

C =
1
σ2

C
+∑Nd

d=1
O
(theo)
d

O
(exp)
d

(α)

σ2
d,total

1
σ2

C
+∑Nd

d=1
(O
(theo)
d

(α))
2

σ2
d,total

. (2.16)

Even though the normalization factors represent a systematic uncertainty in
the experiment, the uncertainty σC itself is of statistical nature. Therefore,
by fitting the normalization constants C this uncertainty can be treated as a
statistical uncertainty. Some of the scattering datasets are floated, meaning
that the value of the constant C is unconstrained experimentally — i.e. σC →
∞. In these cases, the (C −1)2/σ2

C term is excluded from equation (2.15) and
the corresponding terms in equation (2.16).

The fourth point in the above list, about correctly estimated theoretical
uncertainties, has been a central topic of my work and is discussed also in
papers B and D. One approach, as done in papers B and D, is to decompose
the total uncertainty σtotal,

σ2
total = σ2

exp + σ2
numerical + σ2

method + σ2
model. (2.17)

The experimental uncertainty, σexp, is the one given by the experimenter.
There is also a numerical uncertainty, σnumerical, due to the finite precision
of computers. In addition, the many-body method used to calculate the
theoretical prediction may contain approximations. These are accounted for
in σmethod. Finally, the uncertainty in the model itself is σmodel.

An additional remark regarding correlated residuals is in order here. As
both the experimental value and the theoretical prediction is associated
with uncertainties, they can both be regarded as random variables. The
main difference is that as opposed to the experimental values, the values
produced by the model are correlated through the dependence on the LECs.
As long as the experimental uncertainty dominates, so that σtotal ≈ σexp,
these correlations are not an issue, as the correlations between the residuals
will be negligible. However, if the model uncertainty dominates, so that
σtotal ≈ σmodel, there can be strong correlations. This is most clearly seen if we
assume that we have two experimental measurements of the same observable
included in the chi-squared function. Since it is the same observable, the
model predictions will be identical and fully correlated, and so also the
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residuals. In this case, this results in an over-fitting of this observable, which
is not desired. Hence, for residuals with large model uncertainties this is a
potential issue with the chi-squared function I have employed.

There are various ways to estimate the numerical values of the model
uncertainty. In section 2.1.1 I presented the functional form of the model
uncertainty that was used in papers B and D. The general form needs to be
complemented with a method for estimating the scale of the uncertainties.
One approach is to use the discrepancy between the model and experiment at
lower chiral orders as a guide for the next order [45–47]. Another approach,
which is what we have used in papers B and D, is to use the obtained
discrepancy between the model and experiment from the chi-squared fitting
as a guide for the size of the model uncertainty. As stated, a chi-squared value
around Ndof is expected. A higher value indicates that the total uncertainties
in the chi-squared function are estimated to be too low. Assuming the
experimental, numerical and method uncertainties are correctly estimated,
the too-high value of the chi-squared function is an indication of missing
model uncertainty. The values of CNN and CπN introduced in section 2.1.1 are
therefore chosen such that the chi-squared per datum for the corresponding
scattering data is one. This leads to an iterative process, where a fit of the
LECs is performed assuming fixed Cx constants. Once a minimum is found,
the values of Cx are updated to correct the chi-squared value. This will
slightly alter the location of the minimum, necessitating a new fit. This
procedure is repeated until convergence is reached, usually around three
iterations. One way to avoid having to deal with model uncertainties is
to only include low-energy data in the fitting. Then the model error can be
neglected. This is the approach we used in paper A.

The minimization of equation (2.13) is performed using local minimiza-
tion routines. In paper A we employed POUNDerS [48], which is a derivative-
free non-linear least-squares solver. Improved accuracy and speed was
achieved in paper B by instead using automatic differentiation to calculate
numerically exact derivatives. This enabled us to use e.g. the Levenberg-
Marquardt routine [49] to efficiently find a local minimum, which is described
in detail in paper B.

Finding suitable starting points for the minimizations is a difficult task.
This is further complicated by the fact that the LECs usually are heavily
correlated, meaning that the optimal value of each LEC strongly depends
on the values of the others. It is therefore advantageous to divide the
fitting procedure into smaller steps. One way to do this is to begin with
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an optimization against scattering phase shifts. This procedure is described
in detail in papers B and D.

Once one or more suitable minima have been found the properties of the
model can be studied. This will be discussed in the next two chapters.
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Chapter 3

Local analysis

In chapter 2 I outlined how to use χEFT, starting with the broken chiral
symmetry of QCD, to construct a well-founded theoretical description of
the strong interaction between nucleons. In this chapter I will describe
the quality of the resulting fits in section 3.1, along with the obtained
model uncertainties and propagated statistical uncertainties in sections 3.2
and 3.3, respectively. I will also briefly determine the benefits of calculating
correlations between observables in section 3.4 and of sensitivity analyses
in section 3.5. The obtained uncertainties depend on the value and local
curvature of the particular minimum under consideration, hence a local
analysis. In chapter 4 I will present uncertainties from a global perspective
by considering several minima simultaneously.

3.1 Fitting results
The procedure, methods and algorithms used in the fitting procedure are
described in section 2.4. Here, I will discuss the resulting minima.

In paper A we constructed an N2LO interaction with the LECs fitted to
two-nucleon scattering data with Tlab ≤ 125 MeV. This truncation allowed us
to neglect the model uncertainty, see section 2.1.1. The obtained χ2/Ndatum =
1.15 is close to one, which is a further indication that the model uncertainty
is small compared to experimental uncertainties. Furthermore, figure A.2
shows fairly normally distributed residuals, which also is an indication of a
good fit. The small deviation from a statistically perfect fit is mainly due to
the scattering data with Tlab = 35− 125 MeV, indicating that the uncertainties
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in the model are comparable to experimental uncertainties in this region.
In paper B we presented LO, NLO and N2LO interactions fitted using so-

called separate as well as simultaneous approaches. In the separate approach

Table 3.1: Included experimental data for the various nuclear interactions in
paper B. Included data types are marked with ’X’. For separate optimizations, the
subscript ’i’ indicates at what stage the model is optimized to that data. Excluded
data-types are indicated with ’–’. Effective-range (ER) parameters are used at NLO
to constrain the neutron-neutron part of the interaction.

Scattering data nn ER bound-state data
Potential NN πN parameters 2H 3H, 3He
LOsep X – – – –
LOsim X – – X –
NLOsep X1 – X2 – –
NLOsim X – X X –
NNLOsep X2 X1 – – X3
NNLOsim X X – X X

the pion-nucleon LECs are constrained using only pion-nucleon scattering
observables. Once these LECs are fixed, the ones in the two-nucleon sector
are fitted to two-nucleon observables and finally the three-nucleon LECs are
fitted to three-nucleon observables. See table 3.1 for a more detailed overview.
In the simultaneous approach all LECs are fitted to all observable types at
the same time. This is a much more demanding approach, which had not
been used previously in the field. It was made possible with the help of the
efficient framework and algorithms which I helped develop during my thesis
work. The simultaneous method is expected to produce interactions with
lower total chi-squared values than the separate approach. This is also what
we find. In particular, the proton-proton scattering data are much better
reproduced using the simultaneous approach. The reason for this is that the
pion-nucleon LECs can be tuned to more accurately describe nucleon-nucleon
observables. This is achieved without a significantly worse description of the
pion-nucleon data. It should also be noted that a clear convergence, in terms
of decreasing uncertainties, of the predictions at higher orders is not seen for
the interactions fitted using the separate approach, as shown in figure B.9(a).

With the separate approach, there are four minima both at NLO and
N2LO. The existence of several minima, i.e. solutions with very different
LEC values but similar chi-squared values, is most likely an indication that
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the interaction is not constrained well enough by the data used in the fitting.
The four minima have an almost identical description of all the scattering
data used to fit the LECs. Since we have estimated the model uncertainty
for scattering observables, the difference between the minima at the two-
nucleon level can be quantified. As I will show below, it turns out that the
difference in chi-squared value between the minima are within the variations
allowed by the model uncertainty. However, at the two-body level they differ
significantly for the A = 3 bound-state observables, as seen in table B.III,
with only one of them producing reasonable results for those properties.
This confirms that more data are needed to obtain a unique solution, which
is achieved with a simultaneous fit to both A = 2 and A = 3 data.

I will now show explicitly that the differences between the obtained in-
teractions are small compared to the estimated model uncertainty. Consider
the general quantity

χ2(X,Y ) = 1
N

N

∑
i

⎛
⎝
Oi,X −Oi,Y
σ2
i,model

⎞
⎠

2

, (3.1)

where the sum is over a set of N nucleon-nucleon scattering observables Oi
and the predictions from models X and Y are compared and weighted using
the estimated model uncertainty σi,model. The size of the model uncertainty
for the two minima are quantitatively the same so it is not important which
one is used in the sum. Both the method errors and the numerical errors are
small compared to the model uncertainty for these observables. It should be
noted that in paper B we assume that the model uncertainty scales as (p/Λ)ν+1

where p is the scattering momentum, Λ the regulator cut-off parameter and
ν is the truncation order in the chiral expansion. As mentioned in that
paper, it would be necessary to replace p by the maximum of p and the
mass of the pion, mπ, to obtain a correct model uncertainty for the lowest
energies. Therefore, I here use only scattering observables with a laboratory
scattering energy above 30 MeV when comparing the models. A value of
χ2(X,Y ) less than one is an indication that the difference in the models is
small compared to the model uncertainties. All comparisons between the
four minima obtained using the separate approach turn out to produce chi-
squared values below 0.32 — well below one.

In paper D we applied the simultaneous fitting procedure to the next
order, N3LO, using the same data. Each new order increases the flexibility
of the interaction, allowing for a more precise description of the experimental
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data at the cost of an increasing number of LECs. It is therefore expected
that more data are needed when optimizing at this order. Already at N2LO
we found that all experimental data included in our simultaneous fitting
procedure were needed to find a unique parameterization. It is therefore not
surprising that at N3LO the same set of data is insufficient to find a unique
solution. Fitting N3LO interactions using the simultaneous approach, we
were able to find around a hundred different sets of LECs that produce
similar chi-squared values. The conclusion is that even more data need to be
included to find a single optimum. In particular, more data to constrain the
three-nucleon force would be needed, such as three-nucleon scattering.

So far I have focused on finding the numerical values of the LECs that
best describe the experimental data. The next question is how much the
model predictions are allowed to vary around these central values while still
giving an acceptable fit, i.e. how large are the various uncertainties in the
predictions.

3.2 Model uncertainties
In this section I will discuss the estimated model uncertainties in more detail.
In section 2.1.1 I presented the functional form of the model uncertainty used
in the included papers and in section 2.4 I showed how numerical values can
be obtained. This is a simple method for estimating the expected uncertainty
of the model as a function of the scattering energy. It is therefore desirable to
somehow check the correctness of the approximation. A benefit of fitting the
chiral interactions using a chi-squared function is that normally distributed
residuals are expected, as stated in section 2.4. If this is not fulfilled it could
be due to an incorrectly estimated model uncertainty. Thus, a comparison
to experimental data is necessary both for obtaining the central values of
the LECs as well as for quantifying these uncertainties in the model. Other
methods for estimating this uncertainty will be demonstrated in chapter 4.

In paper B we analyzed the quality of the estimated model uncertainty
for scattering observables in various ways. Figure B.3 highlights that the
Saclay amplitudes indeed are of comparable sizes. This is important since the
uncertainties introduced to the amplitude are absolute quantities. In figure
B.9 we showed the resulting model uncertainties for some selected scattering
observables. The simultaneously optimized potentials have the expected
behaviors of larger uncertainty with higher kinetic energy and decreasing
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uncertainties with increasing order. This is a promising result hinting at a
convergence of χEFT. Still, there are indications that the estimate of the
model uncertainty has deficiencies and two comments are in order. First,
the small deviations from normality of the residuals shown in figure B.2 is
explained to be due to the model uncertainty. In particular, the high excess
kurtosis is an indication that there are too many small residual values, i.e. the
residual distribution is strongly peaked at zero. Second, in figure B.10(a) we
show the estimated scale of the model uncertainty when fitting to different
amounts of scattering data. The fact that a larger model uncertainty is
needed when only low-energy data are included indicates that the model
uncertainty for the predicted high-energy data is estimated to be too large.

I will now check the correctness of the energy scaling of the model
uncertainty by examining the distribution of residuals in more detail. If
the sizes of the residuals have a non-constant dependence on the scattering
energy p this is an indication that the scaling may need to be modified. This
dependence for the two-nucleon scattering data using the simultaneously
optimized N2LOsim potential from paper B with Λ = 500 MeV and Tmax

lab =
290 MeV as a function of the laboratory scattering energy is visualized
in figure 3.1. The average values of the residuals are closer to zero for
larger energies, indicating a slight overestimation of the model uncertainty.
For comparison, average residual values when not including the model
uncertainty are also shown. This tells us two things. First, above Tlab ≈
125 MeV the model uncertainty starts to dominate over the experimental
uncertainties. This justifies the use of scattering data only up to this energy
in paper A where the model uncertainty was not included in the fitting
procedure. Second, despite that the simple form of the model uncertainty
introduced in section 2.1.1 and employed in papers B and D is not completely
correct, it is a large improvement over not using any model uncertainty.
The conclusion is that this form qualitatively captures the size of the model
uncertainty. With the aid of the various statistical tools presented here and
in paper B, improved functional forms for the model uncertainty may be
found.
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Figure 3.1: Green circles: obtained two-nucleon scattering residuals for the
N2LOsim potential from paper B with Λ = 500 MeV and Tmax

lab = 290 MeV as a
function of the laboratory scattering energy. Blue line with squares: a moving
average of the residual values. Red line with diamonds: a moving average
of only the positive and negative residuals separately. The distance between
the red lines decrease with increased energy, indicating that the uncertainty for
large energies is estimated to be too large. As a comparison, the teal line with
triangles shows average positive and negative residual values when not including
the model uncertainty. In that case the residuals are much larger, demonstrating
the importance of the model uncertainty.
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3.3 Statistical uncertainties
Statistical fluctuations of experimental results give rise to statistical uncer-
tainties in the theoretical predictions. These uncertainties together with the
accompanying statistical analyses is a central topic in my work. In this
section I will briefly describe and derive the basic equations I have used.

The fitted LECs can be treated as random variables, just as the residuals
in equation (2.13). The variances and covariances of the LECs are obtained
by studying the increase of the chi-squared value around the minimum α0 as
a function of the LEC values α, χ2(α)−χ2(α0). The first non-vanishing term
in the Taylor-expansion of this quantity will be the quadratic terms, i.e.,

χ2(α) − χ2(α0) ≈
1
2

∆αTH∆α, (3.2)

where H is the Hessian matrix of χ2 with respect to the LECs at the minimum
α0 and ∆α ≡ α−α0. Assuming the approximation is valid, this expression is
chi-squared distributed with Nα degrees of freedom [50]. Consider now the
rotated LECs, defined from the eigenvalue decomposition of H, H = UDUT ,
where U is a unitary matrix with the eigenvectors of H as column vectors
and D is a diagonal matrix with the eigenvalues of H on the diagonal. In
the minimum the Hessian matrix is positive definite, which guarantees that
this decomposition exists. From this, the rotated LEC vector is defined as
x = UT∆α. The increase in chi-squared value can then be written as

1
2
xTDx = 1

2

Nα

∑
n=1

x2
iDii. (3.3)

Since this is chi-squared distributed, each x will be normally distributed with
variance 2/Dii. The covariance matrix C of the original LEC vector will then
be

C ≡ Cov(α0) = 2UD−1UT = 2H−1. (3.4)

The expected value of χ2(α0) is Ndof . If the model does not agree
well with the data, a larger value could be obtained. In such cases the
statistical uncertainties will be underestimated. To correct this, a simple
procedure is to scale all uncertainties entering equation (2.13) with a so
called Birge factor [51] equal to

√
χ2(α0)/Ndof . Increasing the uncertainties

in the residuals will increase the statistical uncertainties in the LECs, thus
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compensating for the discrepancy between model and experiment. With a
Birge factor the covariance matrix C will be Cov(α0) = 2χ2(α0)N−1

dofH
−1.

In the above derivation, I assumed that the chi-squared surface around
the minimum is quadratic. In paper D we found, through direct evaluations
of the chi-squared function around the minima, that the obtained surfaces are
not quadratic in all directions as a function of the LECs. Instead they display
a fourth-order dependence. To correctly estimate statistical uncertainties in
these cases other methods should be used. One possibility is to use the
Lagrange multiplier method, which makes no assumptions on the shape of
the chi-squared surface. This method is explained and demonstrated in
paper C. In that paper, I compare obtained statistical uncertainties using
both the Lagrange multiplier method and the above mentioned method based
on the covariance matrix of the LECs. I found that when the quadratic
approximation in equation (3.2) is valid, these methods agree. When the
approximation does not hold, the Lagrange multiplier method results in more
correct uncertainties as this method does not assume a quadratic chi-squared
surface.

In my fits up to N2LO the chi-squared surfaces are quadratic and
the covariance matrix for the LECs can be used to propagate statistical
uncertainties to the theoretical predictions. The LECs are assumed to
be distributed according to a multi-variate normal distribution given by
Cov(α0). A straightforward method to obtain statistical uncertainties for
model predictions is to draw N sample points from this distribution, calculate
the model prediction for each sample point and obtain the uncertainty from
the resulting spread of values. The disadvantage of this brute-force approach
is the computational requirements when N is large. For a more efficient
calculation, the value of an observable O around the central value O0 ≡ O(α0)
can be estimated using either a first- or second-order Taylor expansion. This
approximate expression for O can either be used to evaluate the values at
the sample points or inserted into an explicit formula for the variance,

E[O] = O0 +
1
2

tr (Ch0) (3.5)

σ2
O = jT0 Cj0 +

1
2

tr ((Ch0)2) , (3.6)

where E[O] is the expectation value of O and j0 (h0) is the Jacobian (Hessian)
of O at the point α0. See paper C for more details.

Once the statistical uncertainties have been estimated, one can ask how
large they are, compared to other sources of uncertainties such as the
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uncertainty in the model itself. For the chiral interactions studied in paper B
we conclude that systematic uncertainties from the model are generally much
larger than the statistical uncertainties for scattering data, indicating that
the latter can be ignored. However, even though the statistical uncertainties
are small, they can provide useful insights. They can be used to calculate
correlations between observables and performing sensitivity analyses. This
will be discussed in the next two sections.

3.4 Correlations
Statistical correlations measure the relationship, if any, between different
quantities. For example, the average outside temperature on the earth is
correlated with the latitude, with higher temperatures closer to the equator.
However, the temperature is much less correlated with the longitude. There
exist different methods for measuring correlation. The Pearson linear
correlation coefficient is a quantity that is commonly used and is also the
type of correlation I will focus on here. It measures the amount of linear
dependence between two random variables X and Y . It is defined directly
from the variances and covariance of the two quantities,

Corr(X,Y ) ≡ Cov(X,Y )√
Cov(X,X)Cov(Y, Y )

. (3.7)

With this definition, −1 ≤ Corr(X,Y ) ≤ 1. A value of +1 signifies an exact
linear dependence where an increase in X always means an increase in Y ,
while for −1 an increase in X means a decrease in Y . It is important to note
that this quantity only measures the linear dependence between X and Y . In
paper B we noted that, with the separate minimization scheme, we obtained
large statistical uncertainties that resulted in a non-linear dependence
between observables. Such dependencies are not accurately captured by the
Pearson linear correlation coefficient. With the simultaneous minimization
scheme the statistical uncertainties are small and the dependence between
variables was found to be linear. The covariance between two observables is
obtained in the same fashion as their variances, described in section 3.3,

Cov(X,Y ) = jTXCjY +
1
2

tr (ChXChY ) , (3.8)
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where C is the covariance matrix for the LECs, and jX,Y and hX,Y denotes
the Jacobian and Hessian of observable X and Y with respect to the LECs
at the minimum α0.

When fitting the chiral interactions, it is important to constrain all
directions in the space of LECs. It is therefore desirable to include
observables that are uncorrelated in the fitting process, since this means
they constrain different directions. For example, the deuteron binding
energy has very small experimental, method and numerical uncertainties.
Including other observables with larger uncertainties that correlate strongly
with the deuteron binding energy is therefore not expected to improve the
model much. On the other hand, an observable that is difficult to compute
theoretically can be replaced by an “easier” observable to the same effect, if
they are strongly correlated. However, correlations between observables are
local properties, meaning that the correlations can in principle be different for
different minima. I will discuss global trends and correlations in section 4.2.

As an example of how obtained correlations can be used to gain
insights into the model, I will study the neutron-proton total elastic
scattering cross section as a function of the laboratory kinetic energy,
σtot

np (Tlab). In papers B and D we presented results for the values and model
uncertainties of this quantity up to order N3LO. Here I will instead study the
statistical correlations between the cross section at different energies, denoted
Corr(Tlab,1, Tlab,2) for the correlation at kinetic energies Tlab,1 and Tlab,2. The
goal of this is to investigate the size of the correlations as a function of
the difference in scattering energy. χEFT is a low-energy expansion, with
higher orders primarily correcting the high-energy physics. Therefore, LECs
entering at different orders should have their primary impact at different
energies. One way to check this assumption is with the aid of correlations.
It would be expected that the correlation between two scattering observables
with a large energy difference should have a low correlation, indicating that
different LECs affect the two cross sections. Note that I here focus on the
LECs directly. One can also ask the question of whether the low-energy
observables are sensitive to high-energy features of the interaction. This is
done in e.g. reference [52], with the conclusion that there exists a decoupling
between low- and high-energy regions.

The squared correlations, Corr2(Tlab,1, Tlab,2), for an N3LOsim potential,
is shown in figure 3.2. The expected trend of weaker correlations with larger
differences in energies is clearly seen. To study this more systematically, I
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Figure 3.2: Correlation matrix for the neutron-proton total elastic scattering cross
section as a function of the laboratory kinetic energy for the N3LOsim potential
with Λ = 500 MeV and Tmax

lab = 290 MeV. Shown as a gradient is the correlation
squared, with darker tones signifying stronger correlations. Moving away from the
diagonal, i.e. with larger energy differences, a trend of decreasing correlation is
seen, indicating a “decoupling” of the energy scales. The correlation matrices for
the other N3LOsim potentials show a similar behavior.

construct an auto-correlation function,

a2(∆Tlab) =
∫

max(Tlab)
∆Tlab

w(T )Corr2(T −∆Tlab, T )dT

∫
Tlab,max

∆Tlab
w(T )dT

(3.9)

where w is a weighting factor. I will use w(T ) = 1 for simplicity and for the
integration I use max(Tlab) = 350 MeV. The function a is the squared average
correlation along the diagonals of the correlation matrix. It estimates the
average correlation between scattering observables at an energy difference of
∆Tlab.

It is instructive to compare the autocorrelation function a for different
orders. This is done in figure 3.3. For the LO potential the correlation is
close to 1 for all energy differences. This is not surprising as there are only
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Figure 3.3: Autocorrelation function a for the neutron-proton total elastic
scattering cross section as a function of the laboratory kinetic energy for the
NxLOsim potentials with Λ = 500 MeV and Tmax

lab = 290 MeV. The correlation is
seen to generally decrease with increased energy difference and decreases faster for
higher orders.

two LECs at this order. These LECs thus determine the cross section at all
energies, and the values will then be highly correlated. At each new order,
more LECs are added that determine increasingly higher-energy physics. The
result is that different energies are determined by different LECs, making the
correlations weaker. In the next section I will look at methods to determine
which energies that are sensitive to which LECs.

3.5 Sensitivity analysis
A sensitivity analysis tries to answer the question of how sensitive the model
predictions are to variations in the model parameters. It is also possible to
turn this question around and ask how sensitive the model parameters are
to changes in the data used to constrain the model. I will here present these
two ways of performing a sensitivity analysis.
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I will here start with the second method and gauge the amount of change
in the LECs when the value of one or more fit observables are slightly
perturbed. Let the experimental value of a single observable in the chi-
squared function (c.f. equation (2.13)) be slightly perturbed,

Oi,exp → Oi,exp +∆Oi. (3.10)

The modified chi-squared function will then be

χ2
mod.(α) = χ2(α) − 2ri(α)∆ri + (∆ri)2, (3.11)

where ∆ri ≡ ∆Oi/σi. The last term in the equation is independent of the
LECS and can therefore be ignored. The question is how much do the
LECs change when fitting to χ2

mod.. Already here it is interesting to note
the similarities between this modified chi-squared function and the Lagrange
multiplier-equation f(α,O, λ) defined in equation (17) in paper C. Apart from
irrelevant constants, and with λ = −2∆ri/σi, it is the same equation. We can
therefore immediately arrive at the desired expression for the approximate
change in the LECs,

∆α
∆ri

= 2 (H − 2hr,i∆ri)−1 jr,i, (3.12)

where jr,i and hr,i are the Jacobian and Hessian of the residual ri and H

is the Hessian matrix of χ2, all with respect to the LECs at the minimum
α0 of the original chi-squared function. Now, let ∆ri → 0 and use that the
covariance matrix C = 2H−1 (assuming H has already been scaled with the
Birge factor [51]), the equation becomes

∂α

∂ri
= Cjr,i. (3.13)

This is the the same equation as for the sensitivity matrix presented in
reference [12], if jr,i is extended to a matrix, Jr with one column for each
residual. Note also that although I initially assumed that the residual
is included in the original chi-squared function, it is evident from the
correspondence to the Lagrange multiplier equation that this must not be
the case since the latter equation is valid for any observable. This means
that the sensitivity of the model to new observables can be probed.

Equation (3.13) can be used in several different ways. The residuals of
the chi-square function can be divided into groups. The sensitivity vector S,

39



Local analysis

measuring the sensitivity of the LECs to a global change of the residuals in
group Mn, is then

S(Mn) = C ∑
i∈Mn

jr,i. (3.14)

The grouping can be done e.g. by observable type or by energy scale. Note
that this sum can induce cancellations between residuals. This is beneficial
when probing the model response to a change in a group of observables
included in the chi-squared function. If one is more interested in the average
sensitivity of LECs to certain groups of data, an averaging of the absolute
values of the Jacobians can be used instead.

One potential pitfall is that LECs can be sensitive to observables both
directly but also through correlations. For example, a change in one
observable might cause a direct change in LEC a. However, that change
in a necessitates a change in b to correct other parts of the model. That
is, sensitivity arises both from the diagonal and the off-diagonal elements of
the covariance matrix C. If one wants to measure only direct sensitivity, or
sensitivity within groups of LECs without correlations between the groups,
this is possible by assuming from the start that all other LECs are fixed.
This will result in a reduced Hessian Hred, which then results in a reduced
correlation matrix Cred.

There are many other ways in which equations (3.12) and (3.13) can be
used. For example, from the obtained ∆α one can probe the impact on the
values of the LECs with the quantity [12]

¿
ÁÁÀ∑

i

(∆αi)2

Cii
. (3.15)

This measures how much the LECs change in relation to their statistical
uncertainties. One could also use the change in the original chi-squared
function as a measure, to also include correlations,

∆χ2 = 1
2
(∆α)TH∆α. (3.16)

This measures how sensitive the chi-squared value is to a change in the value
of the residual ri.

With the aid of the sensitivity measure S, defined in equation (3.14), I
will now investigate the sensitivity of groups of observables included in the
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fitting of the N3LOsim potential with Λ = 500 MeV and Tmax
lab = 290 MeV. I

divide all experimental data into the four groups: neutron-proton scattering,
proton-proton scattering, pion-nucleon scattering, and properties of bound
nuclei. For each LEC α I calculate the relative sensitivities ζ(α,Mn) for the
groups of observables,

ζ(α,Mn) ≡
∣Sα(Mn)∣

∑4
j=1 ∣Sα(Mj)∣

. (3.17)

The result is presented in figure 3.4. The two-nucleon contact LECs have

Figure 3.4: For each LEC or group of LECs on the x-axis, the relative sensitivities
ζ(α,Mn) (c.f. equation (3.17)) of the LEC values to a global change in the values of
the residuals in four groups of observables are presented along the y-axis. The three
first groups are two-body scattering observables for neutron-proton, proton-proton
and pion-nucleon scattering respectively. The last group consists of the bound-
state properties. NN signifies an average of all the two-nucleon contact interaction
LECs, while di and ei are averages of the corresponding pion-nucleon LECs.

been averaged together in one column, since their sensitivities are similar.
The same is true for the pion-nucleon di and ei LECs. There are many
interesting aspects of this figure: For the two-nucleon contact LECs the
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sensitivity is well spread out. There are only eight observables for the bound
states, whereas there are thousands of scattering observables, making the
sensitivity to the bound-state observables relatively large. Note that the
sensitivity of the two-nucleon contact LECs to the pion-nucleon data arises
through correlations. The three-nucleon LECs cD and cE have a direct
effect only on bound-state observables. Despite this, the value of cE is
most sensitive to a global change in the pp scattering data. This highlights
the necessity to perform a simultaneous fit of all LECs. In contrast, cD is
sensitive mainly to the triton half life. It is not surprising that the ei are
mainly sensitive to the pion-nucleon scattering data, as these LECs enter
only in the pion-nucleon scattering amplitudes. The di, which enters first
at N3LO in the two-nucleon scattering amplitude, mainly affects the pion-
nucleon scattering also. The ci vary more in their sensitivities; c1 and c3
enter at N2LO and affect mainly the central part of the potential; c4 also
enters at N2LO in the isospin-dependent part of the potential, affecting
mainly the tensor and spin parts of the potential; c2 enters the two-nucleon
interaction first at N3LO leading to a weaker impact on the two-nucleon
scattering observables. The high relative sensitivity of c4 to the proton-proton
scattering data is mainly due to low sensitivities to other types of data. This,
in turn, is due to large cancellations in the sum in (3.14) for these types of
data. Overall the pion-nucleon scattering has a large influence, despite that
the experimental uncertainties generally are large. This indicates that more
precise measurements of pion-nucleon scattering cross sections could have a
large impact on the two-nucleon interaction.

The other method for probing sensitivities that I want to introduce can
be used to study the obtained statistical uncertainties directly. If we, for a
moment, ignore correlations, the linear expression for the statistical variance
of an observable O can be written as

σ2
O =

Nα

∑
i=1

(∂O(α)
∂αi

)
2

Cii ≡
Nα

∑
i=1
σ2
O,i. (3.18)

Here it is evident that the statistical variance of the observable can be
decomposed into contributions from individual LECs or groups of LECs.
Strictly speaking, with a non-linear expression for the statistical uncertainty
such as equation (3.6), together with strong correlations, equation (3.18) is
not valid. However, it is still desirable to define a partial variance due to a
subset Gm of the LECs. To define the partial variances, consider an obtained
minimum with LECs α and assume that only the LECs in Gm are allowed
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to vary. The other LECs remain fixed at the values at the minimum. The
variance of O obtained from only these variations is denoted σ2

O,Gm
and is the

definition of the partial variance. Dividing the LECs into M groups, I define
the normalized partial variance for group Gm as

η(Gm) ≡
σ2
O,Gm

∑Mi=1 σ
2
O,Gi

. (3.19)

A large value of η(Gm) signifies that the observable is sensitive to changes in
that group of LECs.

As an example of partial variances, I will return to the neutron-proton
total elastic cross section already studied in section 3.4. I will here consider
the same N3LOsim potential and group the LECs according to the chiral
order to which they belong. I calculate the partial variances as a function
of the scattering energy, η(Gm, Tlab), for these groups. To more clearly show
the energy dependence, I have normalized the partial variances as

η̂(Gm, Tlab) ≡
η(Gm, Tlab)

∫
Tmax

lab
0 η(Gm, t)dt

, (3.20)

where Tmax
lab = 350 MeV. The result is shown in figure 3.5. The LO LECs of

the N3LOsim interaction show a strongly decreasing sensitivity as a function
of increasing energy. This indicates that those LECs have a larger relative
impact at low energies. The NLO LECs have a mostly constant relative
impact with a small peak around 120 MeV. Also the N3LO LECs display a
mostly flat behavior with a small increase at the highest energies. N2LO,
consisting only of pion-nucleon and three-nucleon LECs, have a more complex
form. Overall, there are only small tendencies that higher order LECs have
a larger impact at higher energies, in contrast to what was indicated by the
auto-correlation analysis presented in section 3.4.

The two examples on sensitivity analyses presented in this section
highlights what kind of information that can be gained from studying
statistical properties of the interactions. Further work on sensitivities could
yield additional valuable insights.
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Figure 3.5: Normalized partial variances of LECs as a function of laboratory
kinetic energy for the total cross section for neutron-proton elastic scattering. The
data shown in the figure is for the N3LOsim interaction presented in paper D. The
sensitivity is shown separately for LECs entering at different orders in the chiral
expansion. The curves indicates what energies the different groups of LECs are
sensitive to. As expected, the LO LECs are most sensitive to the low-energy region.
For the other orders there is no clear indication that higher-order LECs are more
sensitive to high-energy observables.
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Chapter 4

Global analysis

In chapter 3, I described the quality of individual interactions as well as their
statistical and systematic uncertainties. Another way to estimate systematic
uncertainties and to also find general correlations between predictions, is to
look at a set of chiral interactions that are fitted in slightly different manners.
With such an approach, it is possible to see which results are accidental and
which results that are robust to changes in the model. In section 4.1 I
describe how we construct such families of interactions while in section 4.2 I
show some results.

4.1 Family of potentials
As mentioned in chapter 2, the interactions are regulated using a cut-off
parameter Λ. This is necessary to cut off the high-momentum part of the
interaction. In principle, the predictions of the model should be independent
of the choice of Λ within a reasonable range, with the values of the LECs
changing to keep theoretical values of observables independent of Λ. However,
theoretical predictions do exhibit a dependence on Λ The obtained spread
in predictions can be interpreted as an indication of the uncertainty in the
model.

Furthermore, there is no single correct set of experimental data to use
for fitting chiral interactions. Interactions optimized to different sets of
experimental data will generally yield slightly different predictions. As long
as all sets of data are enough to constrain all directions in the space of LECs,
this spread in predictions is also an indication of the model uncertainty.
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In papers B and D we combine the two above mentioned methods for
varying the interaction slightly — different values of Λ and different sets
of experimental data — to construct families of interactions at order LO
through N3LO. The value of Λ is varied in seven steps between 450 and
600 MeV. The lower limit was chosen such that only the high-energy part
of the interaction is affected. An upper limit of Λ = 600 MeV was chosen to
stay well below the break-down scale of χEFT. Fitting to different sets of
experimental data was achieved by varying the upper limit for the kinetic
energy for included nucleon-nucleon scattering data, Tmax

lab . This value was
varied between 125 and 290 MeV. In total, the family at each order consists
of 42 interactions.

In paper B we employ this family of interactions at N2LO to approximate
the model uncertainty in the ground-state binding energies of helium-4 and
oxygen-16, as shown in figure B.11. For helium-4 the spread is almost 2 MeV,
or 0.5 MeV per nucleon, which is significantly larger than all other sources
of uncertainty. This indicates that it would be beneficial to include an
estimate for the model uncertainty for the bound-state properties in the
fitting procedure, as is done for the scattering observables. For oxygen-16 the
spread is instead 35 MeV, or around 2 MeV per nucleon. This is a considerable
increase, indicating that heavier systems are not well constrained by our
interactions, which are fitted only to experimental data for two- and three-
nucleon systems. The issue is not primarily that the interactions need
to be better constrained in a statistical sense, i.e. smaller experimental
uncertainties for the included data would not help, as the model uncertainties
seem to be much larger. Also, for oxygen-16 the interactions consistently
produce too weak binding. In fact, the energies of oxygen-16 as provided by
the coupled cluster calculations are below the 4α breakup. This can be either
due to an underestimation of the model uncertainty, or it could be that the
minima we have found are incompatible with a proper description of heavier
systems. If the first explanation would be the correct one, it would imply that
the model uncertainties for heavy systems are so large that the theory has
essentially no predictive power for such systems. If the discrepancy in oxygen-
16 instead is due to incompatible minima, i.e. that important experimental
observables are missing from the fit, then the predictions should be able to
improve. This was investigated in reference [53], where a chiral interaction at
N2LO was constructed with binding energies and radii from oxygen isotopes
and carbon-14 included in the fitting procedure. This resulted in a much
improved description of heavier systems [54], indicating that such observables
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are needed to inform the model of such physics. However, the systematic
uncertainties are difficult to assess.

As a side note, it should be pointed out that if the interactions I have
developed in papers B and D would be refitted with experimental data for
heavier systems added to the chi-squared function, that would result in a
worse description of the A = 2, 3 data already included. This is true for any
new data added to the fitting procedure. The explanation is that the minima
I have found are the ones that best describe the already included A = 2, 3 data.
The addition of new data will result in new values for the LECs — values
that are not optimal when considering only the A = 2, 3 data. This in turn
implies that we have underestimated the model uncertainty for the scattering
data, since the size of this uncertainty was tuned so as to obtain a chi-squared
per datum value of one. I.e., an increased chi-squared value would force the
estimated model uncertainty to be larger.

When constructing a family of interactions at N3LO, it turns out that
varying the included experimental data by lowering Tmax

lab results in poorly
fitted interactions. The reason is that without all the scattering data up
to 290 MeV the interaction at this order is not well enough constrained.
With more LECs, more data are required for a well-constrained fit. As
demonstrated already in figure 3.3, experimental scattering data are less and
less correlated at higher orders. This indicates that the scattering data at
different energies help constrain different directions in the space of LECs.

The lack of data for the fits at N3LO is also the reason to why we were able
to find around a hundred different local minima, as mentioned in section 3.1.
Since all these minima describe the included data well, they can also be used
as a family of interactions to study uncertainties in the model. For example,
it is possible to gauge what range of values for observables not included in the
fit that are compatible with a good description of all the data included in the
fitting. For example, employing the 104 interactions obtained in optimization
step (V) in paper D I obtain an alarming range of values already for the
helium-4 binding energy. It should be noted, however, that some of these
interactions could be discarded due to other considerations. In paper B we
mention that the Wigner symmetry should be fulfilled [55], which is not the
case for all of the N3LO interactions. This symmetry implies that C̃1S0 should
be approximately equal to C̃3S1 .
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4.2 Global correlations
With the families of interactions at all orders up to N3LO, it is possible
to study uncertainties in the model, as I did in the previous section, and
also correlations. Instead of starting with the statistical variations as in
section 3.4, a correlation is here obtained from a linear regression of the
predictions of two observables. This is a method for exploring correlations
that are valid globally across different LEC values and different values of the
regulator cutoff Λ.

The Tjon line [56] describes a linear relation between the theoretical
predictions of the binding energies of triton and helium-4 when excluding
the three-body force from the calculations. This relation can be investigated
with the families of potentials described in section 4.1. The predictions are
shown in figure 4.1 and are seen to approximately fall on a line. With the

Figure 4.1: Theoretical predictions for the binding energies of triton and helium-4
using only the two-nucleon force, i.e. excluding the three-nucleon force. The results
are for the families of interactions presented in section 4.1. A linear relationship
is obtained, called the Tjon line.

three-nucleon force included, all interactions at the orders N2LO and N3LO
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reproduce the triton binding energy within the employed uncertainty. From
the figure it is then clear that for our fits at N3LO the three-nucleon force
needs to contribute more to the binding energy compared to at N2LO. This
contradicts that the three-nucleon force at N3LO should be a small correction
to N2LO.

It is also instructive to study the correlation matrix and autocorrelation
function presented in section 3.4 from a global perspective. With such an
analysis one can gauge the flexibility of the interactions at various orders. I
will here examine the total elastic cross section for neutron-proton scattering,
the same observable as in section 3.4. The correlations obtained from the
family of 42 N3LO interactions, where both Λ and Tmax

lab are varied, are shown
in figure 4.2 and can be compared with figure 3.2. The correlation matrices

Figure 4.2: Global correlations for the theoretical predictions of the neutron-proton
total elastic scattering cross section as a function of the laboratory kinetic energy
for a family of 42 N3LOsim potentials. Shown as a gradient is the correlation
squared, with darker tones signifying stronger correlations.

are similar, although the global case contain some isolated regions of high
correlation that are not present in the statistical case. However, the general
trend of decreasing correlation with increasing energy difference is seen also
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in the global case.
The autocorrelation function, defined in section 3.4, applied to the

correlations for the theoretical predictions of the family of interactions, is
shown in figure 4.3. The figure can be compared with figure 3.3, where
statistical correlations are shown. Similar trends are seen in the global case as

Figure 4.3: Autocorrelation function (see (3.9)) for the global correlations of the
theoretical predictions of the neutron-proton total elastic scattering cross section as
a function of the laboratory kinetic energy for the families of potentials presented
in section 4.1. The correlation is seen to generally decrease with increased energy
difference.

in the statistical correlations, although the NLO and N2LO autocorrelations
are more similar in the former case. Overall, the autocorrelation for this
observable indicates that the model has a larger degree of flexibility at higher
orders.

With the families of interactions in place, many other global trends and
correlations should be studied also, which is an important point in my
outlook.
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Chapter 5

Conclusion and outlook

Two important aspects of a physical model — uncertainty estimations and
predictive power — were mentioned already in the introduction to this
extended summary. Having these aspects in mind a comprehensive analysis
of how to quantify such uncertainties in the theoretical calculations using
χEFT was presented and discussed in chapters 3 and 4. Here, in this final
chapter, I point out the most important conclusions of my work and also
discuss possible future avenues to pursue.

My thesis work can be divided into the following three areas:

1. Development of algorithms and code for numerical calculations:
• My implementation for evaluating potential matrix elements for

the two-nucleon interaction currently handles χEFT potentials up
to and including N3LO; is flexible and easy to extend; is fast
compared to other steps in the calculations, and also provides
accurate derivatives with respect to the LECs.

• I have improved the efficiency of the calculation of nuclear two-
body scattering observables and NCSM observables.

• For the evaluation of derivatives using automatic differentiation
I have implemented efficient algorithms for the inversion and
diagonalization of a matrix.

• My methods for statistical error propagation are capable of
utilizing both first- and second-order derivatives for improved
uncertainty estimations.
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2. Optimization of χEFT interactions:
• I have used both phase shifts, which are inferred and model-

dependent quantities, and experimental observables to constrain
the LECs of χEFT interactions up to and including the fourth
order in the chiral expansion.

• In particular, I have been leading the development of a simultane-
ous fitting procedure, in which all the LECs of the interaction
are determined in one single fit to experimental data. This
is a demanding approach, involving a non-linear least-squares
minimization of up to 41 parameters to a heterogeneous set of data
consisting of two-nucleon and pion-nucleon scattering observables
as well as bound-state energies, radii and half-life for two-, three-
and sometimes also four-nucleon systems.

• For two-body scattering observables I developed a method to
estimate the model uncertainty, which can be included directly in
the chi-squared minimization. This improves the fitting procedure
and removes an ambiguity in the choice of fit data.

3. Analysis of the resulting interactions:
• I examined the quality of the resulting interactions by inspecting

properties of the chi-squared function, for example distribution of
residuals and partial chi-squared values to probe the accuracy of
the model as a function of scattering energy.

• I calculated statistical and systematic uncertainties as a means to
probe the expected precision and accuracy of the model as well as
to determine the convergence of χEFT with respect to different
chiral orders.

• To further check the correctness of the statistical uncertainties
I implemented and tested the Lagrange multiplier method for
obtaining uncertainties. I found that such a method is superior
when the quadratic approximation of the chi-squared surface
around the minimum does not hold.

• I studied local and global correlations to further analyze the
interaction and the data.

The computational implementation is flexible and allows for arbitrary
diagrams up to N3LO in the chiral expansion to be included in the
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calculations. This makes it possible to perform calculations at mixed
orders, e.g. including only some diagrams from a higher order or excluding
a particular diagram. At the same time, different regulators and different
schemes for defining the non-relativistic potential can be employed. With
the developed implementation I was able to perform extensive searches in
the space of LECs for good fits to experimental data. This is an important
step in non-linear minimizations as sometimes there are several local minima,
as demonstrated in section 3.1. The efficiency of the implementation also
enabled me to include computationally intensive observables such as the
binding energy and radius of helium-4 in the chi-squared function.

By including an estimate of the model uncertainty already in the fitting
procedure I was able to fit to a larger set of experimental data with a reduced
risk of overfitting. Without the model uncertainty, the minimization routine
will fine tune the interaction to reproduce data that are not expected to
be accurately described by the theory. On the other hand, as discussed
in section 2.4, when the model uncertainty is the dominant source of
uncertainty, correlations are induced between the residuals in the chi-squared
function. These correlations could also cause overfitting since the chi-squared
function I use assumes uncorrelated residuals.

I was also able to perform simultaneous fits of all LECs up to a given order.
This was seen to improve the description of experimental data in the sense of
a lower obtained chi-squared value, and reduced the number of local minima.
This approach was made possible through my development of an efficient
framework for theoretical calculations. The simultaneous minimization also
improved the subsequent statistical analysis since correlations between all
LECs are obtained.

When interactions had been fitted to experimental data, I could begin
the investigation of the central themes; uncertainties and predictive power,
as well as the convergence of χEFT. With the developed simultaneous
fitting procedure, statistical uncertainties were seen to be small compared to
systematic uncertainties in the model. The convergence of χEFT is clearly
seen in the scattering data. For example, figure B.9 show that the predictions
at higher orders have smaller uncertainties than at lower orders. The
correlations and sensitivity analyses presented in sections 3.4 and 3.5 make
it possible to probe statistical properties of χEFT. I examined in particular
the correlations between scattering observables at different kinetic energies.
I found that the correlation decreases with increasing energy difference and
also with increasing order. This indicates that as the order increases, the
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different energy regions become sensitive to different parts of the interaction.
This is consistent with the expectation that higher-order contributions should
mainly affect the higher-energy observables. I also outlined possible methods
for performing sensitivity analyses. With such analyses it is possible to
investigate which data that affect which LECs and to define partial variances
to find the contribution to the statistical uncertainty from different LECs.

In section 4.1 I presented families of chiral interactions, whose members
were fitted using different values for the regulator cut-off parameter Λ
and/or different truncations of the experimental data. This allowed to probe
systematic uncertainties and global correlations in the model. In section 4.2
I used these families to estimate the model uncertainty for bound-state
observables and to study correlations such as the Tjon line. For the bound-
state observables the spread in predictions was seen to be significantly larger
than other sources of uncertainties, see e.g. figure B.11. This indicates that
the model uncertainty is large for these observables.

The computational and statistical tools that I have developed pave the
way for research in many other directions. As indicated in section 3.2, it is
possible to further investigate an improved form of the model uncertainty
with the help of the chi-squared function and its properties. For example,
in section 3.1 I concluded that the low-energy form of the model uncertainty
can be improved and in figure 3.1 I illustrated that the model uncertainty
for the high-energy nucleon-nucleon scattering data is estimated to be
too large. A related issue is the model uncertainty for the bound-state
observables. I have not included this uncertainty in the minimization due
to the difficulty of estimating it. However, in papers B and D it was
indicated that the model uncertainty for these observables are larger than
both the experimental uncertainty and the uncertainty in the method of
calculation. It would therefore be desirable to include the model uncertainty
in the fitting procedure. There are also ongoing efforts to use a Bayesian
framework to calculate statistical and systematic uncertainties [57, 58], which
has the potential to further improve the uncertainty estimates. The success
of the method is contingent on an efficient implementation for calculating
observables. Therefore, the framework I have helped develop can serve as a
key component in the implementation of a Bayesian analysis.

With my efficient implementation for two-nucleon matrix element calcu-
lations, moving to higher orders in the chiral expansion for the two-nucleon
force is not an issue from a computational point of view. In fact, terms in
the chiral expansion for the two-nucleon sector have already been derived
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up to N5LO [27, 59]. However, many-nucleon forces such as the four-
body forces are still computationally challenging to include in theoretical
calculations. The effective field theory I have used includes only pions and
nucleons. Instead of moving to higher orders, it is possible to improve the
theory by including more explicit degrees of freedom. The ∆-excitation of the
nucleon has been identified as the most salient feature to include and work
in deriving expressions for the diagrams is under way [60]. Implementing
the ∆-full theory is possible in our computing framework. Another avenue
made possible by the flexible and efficient implementation is to investigate
the correctness of the power counting. It has been argued that additional
counter terms, i.e. contact interaction terms, are needed at lower orders [16–
18]. This can be investigated in a non-perturbative setting using our tool
set.

In section 3.3 I highlighted that improved statistical methods need to be
employed in the analysis of the N3LOsim potentials since the chi-squared
surface around the minimum is not quadratic. Instead, fourth-order terms
dominate in some directions, which is due to large uncertainties in the LECs.
To avoid these large uncertainties, experimental data that are sensitive to
the corresponding directions need to be included in the fitting procedure.
There are two natural directions, or philosophies, that could be followed:
Either one can include more experimental data for systems with A ≲ 4 —
i.e. adopting a bottom-up approach with respect to the number of nucleons
— or one can include observables for larger systems — i.e. embracing low-
energy observables regardless of system size. The first direction is motivated
by that in χEFT up to N3LO, only two-, three- and four-nucleon forces
exist and therefore such observables should be sufficient for constraining the
theory. In this approach, the inclusion of three-body scattering data would
be a natural step forward. Methods for calculating such observables have
been developed [61–63]. Just as for two-nucleon scattering there are many
experimental results for three-nucleon scattering, see e.g. reference [64] and
references therein. A possible benefit of the second direction is that heavy
systems could contain physics that cannot be captured by the lighter systems,
such as the nuclear saturation density [53, 65].

To conclude, the simultaneous fitting method for constraining χEFT
has produced improved interactions with better known properties and the
developed framework is a valuable tool for future research.
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Chapter 6

Summary of papers

In paper A we constructed an N2LO χEFT potential where the LECs were
fitted to two-nucleon scattering data using the POUNDerS algorithm [66].
We then performed a statistical analysis to obtain uncertainties for the LECs.
These uncertainties were propagated to other observables such as deuteron
properties. A sensitivity analysis for selected deuteron properties was also
performed.

In paper B we improved upon the results presented in paper A. We
constructed LO, NLO and N2LO potentials using a simultaneous fit to pion-
nucleon, two-nucleon and few-nucleon experimental data. We also included
an estimate of the inherent model uncertainty, which improved the fitting
procedure and allowed us to include more data. We performed a subsequent
statistical analysis where we propagated statistical errors to selected bound-
state properties in nuclei up to 4He and 16O. The systematic uncertainty
in the model was further investigated using a family of 42 interactions
constructed in slightly different ways. The spread in the predictions of this
family was used to estimate the uncertainty in the model for bound states.
It was found that the spread increases rapidly with increasing number of
nucleons.

In paper D we extended the analysis performed in paper B to N3LO. We
use the same experimental data to constrain the model and the same form
for the model uncertainty. With the additional diagrams in the interaction
at N3LO and a total of 41 LECs, we find that the experimental data used
is insufficient to uniquely determine the values of the LECs. We also find
that the statistical variations in the LECs are not well reproduced using
the approximations from paper B. Instead we adopted some of the methods
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described in paper C.
In paper C the statistical uncertainties were analyzed further in order

to verify their soundness. Several methods for calculating and propagating
statistical uncertainties were compared, with a focus on the Lagrange
multiplier method. I compared approximations used in these methods and
their impact on the statistical uncertainties. One of the conclusions is that
with large statistical uncertainties the Lagrange multiplier method provides
more accurate results.
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