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Summary. A two-scale model of reinforced concrete is presented. The subscale problem
is derived, and the effective large-scale properties are obtained by computational homoge-
nization. A reinforced deep beam in four-point bending has been analysed using two-scale
formulation and numerical results are presented in this paper.

1 INTRODUCTION

Crack growth in reinforced concrete is of practical importance, since it directly influ-
ences the durability of the structure. In order to obtain reliable results, not only the
cracking of concrete, but also the bond between the reinforcement bars and the concrete
must be considered. If computational multi-scale modelling (CMM) is to be employed
for the analysis of a reinforced concreted structure, it is of interest to develop the cor-
responding format of the large-scale and subscale problems. Furthermore, a suitable
homogenization tool is needed in order to simulate material response at the large-scale
level.

2 PROBLEM FORMULATION

2.1 Variational formulation

For a general two-dimensional reinforced concrete structure, the quasi-static problem
can be characterised as follows: Find the concrete displacement and reinforcement slip
u, ∆ that solves
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∫
Ω

tc [σc (∇⊗ u)]T : [∇⊗ δu] dΩc +∫
Γint

Asσs

(
[el ⊗ el] : [∇⊗ u] +

∂∆

∂l

)
[el ⊗ el] : [∇⊗ δu] dΓint =

∫
Γext

tctp · δu dΓext

(1)∫
Γint

Asσs

(
[el ⊗ el] : [∇⊗ u] +

∂∆

∂l

)
∂δ∆

∂l
dΓint +

∫
Γint

StΓ (∆) δ∆ dΓint = 0 (2)

for suitable test function δu and δ∆. Here, tc is the thickness of the concrete, σc is the
stress tensor present in the concrete. The reinforcement bars occupy the segments Γint

with unit normal direction el. As is the cross-sectional area of the reinforcement, σs is
the stress in steel depending on both the steel strain and its slip, tp are the prescribed
tractions on the Neumann part of boundary, S is rebar’s circumference and tΓ(∆) is the
bond stress as a function of the slip.

2.2 Large-scale problem

A variational multi-scale ansatz1 is employed here, and thus the global displacement
field is split into the ’smooth’ and ’fluctuation’ parts, i.e. u = uM + us. Furthermore, a
prolongation operator A is defined, so that a macroscale variation uM(x) can be obtained
over a region x from a smooth ’generating’ macrofield ū(x), i.e. uM(x) = Aū(x). In
this study, the slip of reinforcement is considered to vary only locally, i.e. ∆s = ∆. The
large-scale problem can be then expressed as: Find ū, ∆ that solves∫

Ω

σ̄T : [∇⊗ δū] dΩ =

∫
Γext

tctp · δū dΓext (3)

where σ̄ is an implicit functional (average stress) of ū, ∆ and (∇⊗ ū) that can be
computed from the subscale problem.

2.3 Subscale problem

The definition of the subscale problem follows directly from (1) and (2) upon restriction
to a so-called Representative Volume Element (RVE) Ω� and choosing approprate bound-
ary conditions. In this study, Dirichlet boundary conditions on both concrete and steel
were used. Hence, the fluctuation us on the boudary of studied subscale region is zero,
i.e. us = 0 and ∆ = 0 on ∂Ω�. The corresponding subscale problem gives expressions for
the average stress functional defined in Section 2.2, i.e.

σ̄ =
1

|Ω�|

[∫
Ω�

tcσcdΩ +

∫
Γint
�

Asσsel ⊗ eldΓ

]
(4)
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3 NUMERICAL EXAMPLE

For the numerical example, a 4 m high, 10.5 m long and 0.2 m thick reinforced deep
beam in four-point bending was chosen. The structure was analysed as a 2D solid in plane
stress using the symmetry line at mid span. For simplicity, a uniform reinforcement layout
across the structure was used. The reinforcement grid comprised rebars in horizontal (φ1 =
20 mm) and vertical (φ2 = 8 mm) direction placed every 200 mm. The subscale unit cell
was modelled as a concrete square with a 400 mm side and two rebars in each direction,
see Figure 1.
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Figure 1: Two-scale model of the reinforced deep beam.

At large-scale the model had a rather coarse mesh consisting of linear strain triangles.
At the subscale, solid quadrilateral elements were used for concrete, while the reinforce-
ment was modelled with beam elements, which resulted in them having a bending stiffness,
but the ends were free to rotate. The interaction between concrete and steel was modelled
with interface elements describing the bond-slip relation. The subscale representative vol-
ume element was analysed with help of the software DIANA using the total strain rotating
crack model (which follows a smeared approach for the fracture energy2) with a Hordijk
tension softening curve3. In compression, the concrete was modelled as elastic-ideally
plastic. Strain hardening elastoplasticity was used to model the constitutive response
of steel. All material parameters for the concrete, steel and the bond-slip relation were
taken from literature4. This two-scale analysis, here denoted FE2, has a nested character
as the constitutive response at the large-scale was obtained with help of computational
homogenization of the subscale response. Since in practice the numerical integration is
carried out at the quadrature points, this is where the subscale unit cells were located.
For comparison, a reference analysis featuring the full-detail model at the large-scale was
also carried out in DIANA. The force-deflection results for both analyses is presented
in Figure 2, as can be seen, they agree well. In Figure 3, an example of results from a
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Figure 2: Applied force versus midspan deflec-
tion for fully-resolved and FE2 analyses.
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Figure 3: Principal strain ε1 in the subscale
unit cell marked in Figure 1 at δ = 12.85 mm.

subscale analysis is presented, namely the principal strain (ε1) pattern for the last load
step (for δ =12.85 mm). This particular unit cell corresponds to the location indicated by
the point in Figure 1.

4 CONCLUSIONS

By employing the variationally consistent multi-scale modelling approach (treated ex-
tensively in1) it was possible to create a two-scale model of reinforced concrete. In this
way, it is possible to study how the subscale composition of the material affects the over-
all large-scale response. The results show a good agreement between the fully-resolved
analysis and the FE2 procedure.
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