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Abstract

Fingerprint recognition has over the last decade become a natural component in
modern identity management systems. As the commercial use of fingerprint recog-
nition systems increases, the benefits from attacking such systems become greater.
The security of a biometric system is seriously compromised if the system is un-
able to differentiate between a real and a counterfeit fingerprint. From this security
threat, a need for methods to prevent or detect such spoofing attacks has emerged.

This thesis is concerned with so called liveness detection, that is the process of
determining whether a captured fingerprint is fake or not. More precisely, the thesis
explores different ways to assess how difficult it is to correctly classify a set of fake
fingerprint images. Differences in image characteristics between the two classes are
also explored. The purpose of the thesis is to design a quality assessment tool for
fake fingerprint images used in the liveness algorithm development at Fingerprint
Cards. The quality assessment tool aims to give an indication of how difficult a set
of such ’spoof’ images are to classify based on the evaluated liveness characteristics.

In the first part of the thesis, features which differ between images of genuine
and fake fingerprints are designed. Based on these designed liveness features, a
support vector machine classifier is created by identifying the hyperplane model
which best separates the images of living and spoof fingerprints. The quality of a
spoof image data set is defined as the number of spoof images that this hyperplane
model manages to classify correctly. Further, the quality of each individual spoof
image is defined as the liveness probability assigned by the hyperplane model.

Promising results were obtained from the quality assessment tool developed in
the first part of the thesis. The spoof images that were assigned a low quality
by the hyperplane model were images which easily could be differentiated from
their live equivalents in a manual inspection. Conversely, the spoof images that
were assigned a high quality were images in which the fingerprint patterns could
not be differentiated from live fingerprint patterns. Hence, these results indicate
a successfully designed spoof quality assessment. Further, it shows that manually
designed liveness features can be used to estimate the spoof image quality.

In the second part of the thesis, a deep fine-tuned convolutional neural network is
evaluated for quality assessment of spoof images. The utilized network has recently
obtained state-of-the-art results in fingerprint liveness detection. If the deep neural
network cannot differentiate between the live and fake images in a set, the images are
considered very hard to classify. Conversely, if a shallow network easily differentiates
spoof images from live images, these images are considered easy to classify.

The liveness classification results obtained in the second part of the thesis were
far better than expected. The fine-tuned convolutional neural network demonstrated
fantastic liveness classification results by classifying all images in the test set cor-
rectly. These results imply that all the images in the set are possible to classify
properly. However, the fact that the network managed to classify even the most
realistic spoof images correctly with a high degree of certainty makes this network
architecture unsuitable for spoof quality assessment. Differentiation between the
images in the set could however possibly be obtained with a more shallow network.

Keywords: secure identity management, biometric recognition, fingerprints, spoof-
ing attacks, liveness detection, spoof fingerprint image quality, liveness feature ex-
traction, convolutional neural networks.
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1

Introduction

Identity management is an essential element in a large number of societal applica-
tions today. As concerns about the security in many of these applications increase,
so does the need for systems which reliably assess the identity of its users. Examples
of applications in which the demand for secure identity establishment is particularly
high are regulation of international border crossings, access control to important
facilities or privileged information as well as electronic access control and transac-
tions. Since traditional knowledge and token-based credentials such as passwords,
keys, cards and passports can be shared, guessed, misplaced or stolen, they cannot
be fully trusted to establish identities. Thus, these traditional identity management
systems often fail to meet high demands on performance and security [1].

Biometric recognition has over the last decades been increasingly deployed as an
alternative or supplement to traditional systems and has now become a natural
component in authorization and identification systems. Since biometric recognition
systems are based on the premise that all individuals possess distinctive anatomical
and behavioral characteristics from which they uniquely can be associated with an
identity, these systems are generally agreed to be a reliable and powerful tool in
modern identity management. The biometric characteristics most commonly used
today are fingerprints, faces and irises and since biometric identifiers intrinsically
represent the bodily identity of an individual they can neither be misplaced, shared
nor stolen. Consequently, person recognition systems utilizing identifiers that intrin-
sically are linked to the user are considered to be superior to traditional knowledge
or token-based methods, both in terms of security and user convenience [1, 2].

Even though biometric recognition systems are based on identifiers unique for all
users, this fact does not make them immune to fraudulent attacks. In general, there
are two ways to circumvent a biometric system, either by direct or indirect attacks.
Indirect attacks refer to the type of attack performed inside the system, such as
manipulation of the feature extraction or feature matching modules and modifi-
cation of the database containing enrolled feature sets. Since indirect attacks are
performed within the digital limits of the system they can be prevented by digital
protection mechanisms like anti-virus software, encryption, firewalls and intrusion
detection. The type of attacks performed outside the digital limits of the system is
referred to as direct attacks. In such attacks the impostor either modifies its biomet-
ric identifier to evade identification or poses as a valid user by presenting a forged
biometric identifier to the sensor in order to illegitimately be granted access to the
system. The latter of these, the presentation of a counterfeit biometric identifier to
the sensor, is commonly known as spoofing or presentation attacks. The counterfeit
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biometric identifiers used in these attacks are commonly known as spoofs. As spoof-
ing neither require any advanced programming skills nor any remarkable alterations
of the intruders own biometric identifiers, it is considered to be the most potent and
damaging type of system attack [3].

As the commercial use of biometric systems increases, the benefits from attacking
such systems become greater, hence the frequency and intensity of spoofing attacks
are expected to increase in the coming years. The security of a biometric system
is of course seriously compromised if the system is unable to differentiate between
a real and a counterfeit biometric identifier. From this security threat a need for
methods to prevent or detect spoofing attacks has emerged. Our facial images and
voices are constantly captured by cameras and audio recorders and our fingerprints
and DNA are left wherever we touch, hence our biometric identifiers can in no way
be claimed as secret. Consequently, the security of biometric systems cannot rely
on the inaccessibility of our biometric identifiers to potential attackers, but must
instead take the liveness of the presented sample into account. Thus, most biomet-
ric recognition systems now couple their identification or verification process with a
spoofing countermeasure module which evaluates the liveness of the presented sam-
ple and classifies it either as a real, living sample or as a non-live sample [1, 3].

In fingerprint recognition systems, there are both hardware-based and software-
based techniques to evaluate the liveness of a sample. In the hardware-based ap-
proaches, additional devices are added to the system to detect different properties
of the sample that is associated with either live or non-live traits. There are a lot of
ways to measure vital signs with hardware-based techniques, a few of many exam-
ples are measurement of blood flow, oxygenation of the blood, electrical properties
or signals, skin perspiration, spectral characteristics or biochemical assays of human
tissues as well as changes in skin tone when the finger is pressed against the sensor
surface. It is also possible to detect odors and properties associated with different
spoofing materials. While hardware-based approaches operate directly on the fin-
ger, software-based approaches operate on the fingerprint images already obtained
from the sensor and make use of differences in features extracted from live samples
and spoofs. Hardware-based techniques generally have a higher performance com-
pared to software-based approaches and the best classification performance would
probably be obtained by a combination of the two. The additional sensors required
in hardware-based approaches, however, brings considerable and undesirable addi-
tional costs and size to the systems. Thus, software-based approaches are preferable
in applications where low cost and small size are significant factors [3].

1.1 Problem description

Fingerprint Cards is a company developing both software and hardware solutions
for biometric recognition systems based on fingerprint characteristics. One of these
software solutions is an algorithm which evaluates the liveness of fingers presented
to the sensor [4]. Algorithms for liveness detection are often based on feature ex-
traction from the fingerprint image and use different machine learning techniques
to classify the presented finger as either live or spoof based on the resulting feature
vector. The performance of such a classification algorithm is heavily dependent on
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the amount and nature of training data as well as on the characteristics of the data
to be classified [2, 5]. Since the algorithm performance is data dependent, it differs
for different data sets due to variations in the data. In order to obtain compa-
rable algorithm performance measurements for data sets from different sources, a
quantitative quality assessment of the spoof images in the data sets is needed.

1.2 Contribution

This thesis explores different ways to assess how difficult it is to correctly classify
a set of fake fingerprint images. The purpose of the thesis is to design a quality
assessment tool for the fake fingerprint images used in algorithm training and eval-
uation at Fingerprint Cards. The quality assessment tool aims to give an indication
of how difficult a set of spoof fingerprint images are to classify correctly.

1.3 Scope

In this thesis, two different ways to assess how difficult it is to correctly classify a set
of fake fingerprint images are explored. The thesis is thus divided into two parts. In
the first part of the thesis, features which differ between live and spoof fingerprint
images are designed. These differences will be measured quantitatively and used to
estimate the quality of spoof fingerprint images. This part has been limited to only
considering images acquired from one type of sensor, and it has also been limited
to only considering images of spoofs made of wood glue that are fabricated from a
two-dimensional fingerprint capture. In the second part of the thesis, convolutional
neural networks are considered as a possible way of evaluating the spoof fingerprint
image quality. A liveness classifier based on a deep convolutional neural network will
be implemented and the spoof image quality in a given data set will be estimated
from the obtained network classification results.

1.4 Related work

The Fingerprint Liveness Detection Competition is a competition which is held ev-
ery other year and which compares fingerprint liveness classification methodologies
and establishes the current state-of-the-art in liveness classification. The data sets
used in these competitions are publicly available and are used as benchmark data
sets in the liveness classification research community [3]. State-of-the-art results
on these data sets using the software-based liveness detection approach has been
reported in [6-9]. The fingerprint liveness classification algorithm presented in [6] is
a learning-based classifier which uses convolutional neural networks for fingerprint
liveness detection. This algorithm won the last Fingerprint Liveness Detection Com-
petition which took place in 2015. The algorithm which placed second in the last
Fingerprint Liveness Detection Competition was submitted from the research group
behind [7, 8]. In these articles, a liveness detection method based on local descriptors
and support vector machine classification is proposed. The novel local descriptor
proposed in [7] is based on image contrast and phase information extracted locally
from the spatial and frequency domains of the image. One of the descriptors inves-
tigated in [8], is the same as the local descriptor proposed for fingerprint liveness
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classification in [9]. This descriptor encodes the local fingerprint texture to a feature
vector by using automatically learned filters. The classification algorithm in [9] is a
support vector machine classifier based on this feature vector. These four method-
ologies are however designed for optical fingerprint images, which differ much in
characteristics from the capacitive fingerprint images assessed at Fingerprint Cards.

Various fingerprint-specific image quality features have also been proposed for fin-
gerprint liveness classification purposes [10-15]. The fingerprint image quality may
be assessed by measuring the pattern clarity, the pattern continuity, and the pat-
tern strength or directionality [10]. The pattern strength has been assessed both
by measuring the fingerprint orientation certainty level [11] and the energy con-
centration in the power spectrum [12]. The discriminative power of these liveness
features has been found to be high [10]. The pattern clarity has been assessed by
measuring the mean and standard deviation of the fingerprint image intensities [13],
by estimating a local clarity score [14] and by analyzing the amplitude and variance
of the sine waves which form the fingerprint pattern [15]. The pattern continuity
has been assessed both by measuring the local fingerprint orientation quality [14]
and the continuity of the fingerprint orientation field [11]. Both the pattern clarity
and the pattern continuity have been found to have medium discriminative power
[10] in the quality assessment for liveness classification.
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Theory

2.1 Fingerprints

The pattern of the fingertip epidermis is referred to as a fingerprint. The most obvi-
ous structural characteristic of a fingerprint is the pattern of interleaved ridges and
valleys, see Figure 2.1. In most fingerprint representations, the ridges are dark and
the valleys are bright. The fingerprints of an individual have fully formed already
at birth. Except for temporary alterations such as bruises and cuts, the fingerprint
ridge configuration does not change throughout the life of an individual. In addition,
it is generally believed that all fingerprints are unique, even though this is an empir-
ical observation rather than a scientifically established fact. These properties make
fingerprints very attractive as a biometric identifier and identification based on fin-
gerprint recognition has been formally accepted since the early twentieth century [2].

Ridges

Valleys

Figure 2.1: Example of a fingerprint image. In the magnified image, the fingerprint
ridges and valleys are emphasized [2].

2.1.1 Fingerprint formation

Fingerprint patterns are fully formed already when a fetus is seven months old.
The epidermal fingerprint pattern emerges when the skin on the fingertip starts
to differentiate. The non-uniform growth of the basal cell layer in the epidermis
causes a buckling instability in the basal layer which results in the creation of epi-
dermal ridges. The creation of epidermal ridges is also affected by environmental
changes such as changes in the position of the fetus or the flow of amniotic fluids sur-
rounding it. These changes determine the finer details of the fingerprints and even
minor differences in the micro-environment affect the fingerprint formation since
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the changes are amplified by the differentiation process of the cells. Also, since the
micro-environment slightly differs from finger to finger, the cells will grow differ-
ently on all fingers and thus the fingerprints of an individual will become unique
even though the genetic material influencing the differentiation process is identi-
cal. The huge variety in environmental changes and genetic information makes it
virtually impossible for two fingers to get the exact same fingerprint pattern [2, 16].

2.1.2 Fingerprint representation

Fingerprint patterns are generally described at three different feature levels, the
global level, the local level and the fine level. At the global level, fingerprints are
represented by its ridge flow and its ridge frequency. The exact dimensions and
locations of the ridges are however ignored. The global fingerprint pattern is mostly
composed of smooth and parallel lines, but the pattern also contains regions in
which the ridge orientation abruptly changes and the pattern assumes a distinctive
shape. Such regions are termed singularities or singular points and they are broadly
classified into deltas, loops and whorls, see Figure 2.2 [1, 2].

Figure 2.2: Fingerprint singularities. In the left image a delta and a loop are
emphasized and in the right image a whorl singularity is emphasized [17].

At the local level, fingerprints are represented with their ridge skeletons. A ridge
skeleton is created by converting the fingerprint ridges to one-pixel-wide lines using
an iterative ridge width reduction method. By representing fingerprints with their
skeletons, the ridge location information is conserved. The geometrical and dimen-
sional details of the ridges are however still ignored. Another important feature at
the local level are the locations in which the skeleton or the ridges are discontinuous.
These discontinuities are termed as minutiae points. The two minutiae types used to
describe the local ridge pattern are ridge endings and ridge bifurcations, i.e. when a
ridge is abruptly ended or is divided into two ridges. Other examples of minutiae are
lakes, dots, spikes and crossovers. In Figure 2.3, the seven most common minutiae
types are displayed. Minutiae-based fingerprint representations are used extensively
in automatic fingerprint matching since most of the discriminative information or
individuality in a fingerprint is captured by its set of minutiae points. Algorithms
extracting minutiae are though heavily dependent on the fingerprint image quality.
In an ideal fingerprint image, the ridge flow is locally constant and there is a distinct
alternation between ridges and valleys. Minutiae points are quite easily extracted
from ideal fingerprints, but if the image quality for some reason is degraded the ex-
traction of minutiae becomes more problematic. Degraded fingerprint images may,
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for example, contain poorly separated ridges, ridge discontinuities or ridge breaks
and fingerprint imperfections like cuts, creases, and bruises. Thus, when extracting
minutiae points from a degraded image, spurious minutiae are often created while
genuine minutiae might be ignored. Factors affecting fingerprint image quality neg-
atively are incorrect finger pressure, inherently low-quality fingerprints, sensor noise
and skin conditions, like too dry or too wet fingers [1, 2, 15].

rldge bifurcation lake 1ndepende nt 1i°t or
ending ridge island

e _ )= 0= e o =t

spike Crossover

Figure 2.3: The seven most common fingerprint minutiae types. The first two,
ridge endings and bifurcations, are used to represent local fingerprint patterns [2].

At the even finer level, detailed information embedded in the ridges are observed.
Such information includes the contours, shape and width of the ridges as well as ridge
breaks, creases and sweat pores. Also included at the fine level are incipient ridges
and ridge dots. Incipient ridges are thinner ridges which due to their immaturity
do not contain any sweat pores and a dot is a very short ridge. However, a reliable
capture of these fine level features requires both high sensor resolution and good
image quality. To date, most fingerprint sensors are equipped with 500 dpi resolution
while a reliable capture of most fine level features requires a sensor resolution of
1000 dpi [1, 2]. In Figure 2.4, the features at the three different levels are visualized.

Figure 2.4: Fingerprint feature levels. The first image shows the original finger-
print and the consecutive images visualizes the different feature levels. The second
image shows the global level representation as the ridge flow and singularities, the
third image shows the local level representation as the ridge skeleton and minutiae
points and the fourth image shows some of the fine level fingerprint features [1].

2.1.3 Fingerprint sensing

In automated fingerprint identification systems, fingerprints are acquired by sensors
capable of digitizing the prints on contact. There are different types of fingerprint
sensing techniques, some examples are the optical, capacitive, thermal and ultra-
sound sensing techniques. Optical and capacitive sensors are the most commonly
used and while optical sensors have the longest history and highest resolution, ca-
pacitive sensors are cheaper, more compact in size and easier to embed in consumer
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products. In addition to the sensor technology used, fingerprint images are also
characterized by the resolution, sensor area, contrast and by geometric effects [2].

The large variability in impressions of a single finger makes reliable fingerprint recog-
nition a difficult task. The fingerprint area acquired by the sensor is, of course, de-
pendent on the location and rotation of the finger with respect to the sensor. Even
the smallest finger displacement results in a noticeable translation of the acquired
fingerprint area. For example, a displacement of 2mm would be imperceptible to
the user but results in a translation of around 40 pixels if the resolution of the finger-
print sensor is 500 dpi. Due to the plasticity of the skin, the finger is also deformed
when placed on a surface. The deformation of the finger is dependent on the way
it is applied to the sensor. If the contact force contains components non-orthogonal
to the sensor surface, non-linear distortions of the finger such as compression and
stretching are produced. Hence, impression variations most often arise from the
way the finger is presented to the sensor. Other factors responsible for the large
variations in fingerprint impressions of a single finger are changes in skin condition
and variable finger pressure against the sensor. A fingerprint is accurately captured
by the sensor if there is a uniform contact between the finger and the sensor. A
uniform contact is however highly unlikely since it would require a uniform finger
pressure in combination with a perfect skin condition. The non-uniform contact
introduces noise to the acquired fingerprint images and since the contact between
the finger and the sensor varies in successive acquisitions of the same finger, so do
the amount of noise in the fingerprint images. Noise may also be introduced if there
are dust or residues from the previous fingerprint capture on the sensor surface [2].

2.1.4 Fingerprint spoofing

Due to recent advances in fingerprint spoofing, the security of a fingerprint recog-
nition system relies on an accurate liveness evaluation of the finger presented to
the fingerprint sensor. Thus, in modern fingerprint recognition systems the identi-
fication or verification processes is coupled with a spoofing countermeasure module
which evaluates the liveness of the presented finger and classifies the obtained im-
age either as a live or spoof fingerprint in order to prevent system circumvention.
However, if a spoof is similar enough to its live equivalent, the system will interpret
the spoof as a genuine fingerprint, hence accepting the intruder as a valid user [1].

Fingerprint spoofs are thin pieces of gelatin, latex, silicone, wood glue or similar
material carrying a fingerprint. There are two general methods to create spoofs.
In the first method, a negative impression of the finger is created by placing the
finger into dental silicone or a similar plasticine-like material. The spoof is then
created by covering the three-dimensional negative impression with a thin layer of
some spoof material. This method is referred to as the cooperative method since
it typically requires a cooperative subject. In the second method, which is referred
to as the non-cooperative method, the fingerprint is lifted from a surface such as a
mobile phone display or a glass. The lifted, two-dimensional fingerprint is then used
to create a spoof either by printing the fingerprint image with conductive silver ink
or by etching the fingerprint image onto a printed circuit board and cover it with
a thin layer of some spoof material [5]. The characteristics of a spoof fingerprint
image is dependent on the quality of the spoof, the spoof material and also on the
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fingerprint sensor since the material properties of the different spoof materials are
not equally compatible with the different sensor technologies.

2.2 Fingerprint image pre-processing

In the following sections, some background and theory related to the feature design
part of the thesis are presented. Subjects included are fingerprint image segmenta-
tion, fingerprint pattern orientation, fingerprint image binarization, morphological
operations used to analyze the fingerprint patterns as well as minutiae extraction.

2.2.1 Segmentation

If the finger is not in contact with the entire sensor area when the fingerprint image
is captured, the resulting image will also contain some background. For sensors
which create images in which the ridges are dark and the valleys are bright, the
image background will also be bright since no signal is generated in the non-contact
area. The process in which a fingerprint image is separated into foreground and
background is referred to as fingerprint segmentation. The fingerprint area of the
image, which is characterized by the striped and oriented ridge and valley pattern,
is denoted foreground and the bright area caused by deficient finger presentation
is denoted background. By separating the foreground from the background, the
analysis of the fingerprint image can be constrained to the relevant area of the fin-
gerprint image. A segmentation algorithm can be used to assign each pixel in an
image to either the foreground or the background. The output of such an algorithm
is a binary map of the same size as the image in which the pixels belonging to the
foreground are ones and the pixels belonging to the background are zeros [2].

The segmentation algorithm implemented in this thesis is based on three pixel fea-
tures; local gradient coherence, local intensity mean and local intensity variance.
Due to lack of signal in the background, the local mean intensity is generally higher
in the background than in the foreground. The intensity variance is high in the
foreground due to the ridge and valley pattern, whereas only a small variance due
to noise is seen in the background. There can however be some darker clusters in
the background due to dust or grease on the fingerprint sensor, hence an additional
feature is needed to make the segmentation algorithm robust to noise. Gradient
coherence is a pixel feature which can discriminate the oriented pattern in the fore-
ground from the isotropic pattern in the background. It measures to which degree
the squared gradient vectors in a neighborhood share orientation. The gradient
coherence is one if all the squared gradient vectors in a neighborhood are parallel
and the gradient coherence is zero if the squared gradient vectors are equally dis-
tributed over all directions. Since a fingerprint consists of parallel line structures,
the squared gradients in a neighborhood is more likely to point in the same direc-
tion in the foreground. The squared gradients in the background should to a larger
extent be equally distributed due to noise and lack of parallel line structures [2, 18].

2.2.2 Fingerprint orientation

The tangential direction of the ridge or valley lines passing through a pixel is referred
to as the ridge or fingerprint orientation at the given pixel. The orientation of a
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fingerprint image describes the coarse structure of the fingerprint pattern. The
orientation map, which also is referred to as the directional field, of a fingerprint
image is a matrix of the same size as the fingerprint image in which each matrix
element contains the orientation of the corresponding pixel in the fingerprint image.
In principle, the directional field in a fingerprint image is perpendicular to the angle
of the local gradients in the image. Thus, the directional field is often estimated
by averaging the gradients in a local neighborhood. However, since the angles
of the gradients in an image range between 0 and 27 and the orientation only
range between 0 and m, a traditional averaging of the gradients in a neighborhood
is not applicable. This is because gradient vectors pointing in opposite directions
cancel each other out in a conventional averaging operation, although these opposite
pointing gradient vectors imply the same fingerprint orientation. This problem is
often solved by doubling the angles of the gradient vectors before performing the
averaging. The cyclic properties of the angles result in orientation angles in the
range 0 and m when the doubled angles later are converted back. The length of
the gradient vector is often also considered when estimating the orientation in an
image by allowing the angles of the steeper gradients in a neighborhood to affect
the orientation estimation more than the angles of the less steep gradients [1, 19].

2.2.3 Binarization

Binarization is the process in which an intensity image is converted to a binary im-
age by grouping all the pixel values in an image into two modes. The two modes are
separated by assigning the pixels above a certain intensity threshold to the image
foreground and by assigning the pixels below the threshold to the image background.
The intensity threshold is either determined on a global or a local scale and while a
global threshold is constant and applicable to the entire image, a local threshold may
differ in different parts of the image. A global threshold is often determined using
an approach referred to as Otsu’s method. Otsu’s method calculates the optimum
global threshold of an image by maximizing the inter-class variance and minimizing
the intra-class variance with respect to the intensity values in the two modes. A
local threshold is instead based on properties of a neighborhood, for example, the
average pixel intensity in the neighborhood [20].

The success of an intensity-based thresholding is directly related to the intensity
values in the image or in the local neighborhood. If the intensity histogram of
the area of interest contains two well separated peaks, the chance of a successful
separation of the modes in this area is high. However, if the histogram peaks are
poorly separated or if the peaks are too wide, the selection of a threshold which
would result in a successful separation of the modes becomes more problematic [20].

2.2.4 Morphological operations

Mathematical morphology is a technique based on set theory, lattice theory and
integral geometry which is used in the analysis and processing of spatial structures.
By applying morphological operations to an image, structures in the image may be
extracted or modified. The most fundamental morphological operators are dilation
and erosion. Other important concepts in morphology are opening, closing and the
extraction of connected components and image skeletons. When processing an im-
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age with a morphological operator, the image is probed with a structuring element
which is a small set of pixels. The structuring element is shifted over the entire
image and in each pixel, the properties of interest in the morphological operation is
evaluated. Properties of interest might for example be the union or the intersection
of the structuring element and the underlying image pixels [20, 21].

In a morphological dilation, the foreground in the resulting image is an expanded
version of the foreground in the original image since the dilation process assigns a
pixel to the foreground if there is any overlap between the foreground of the original
image and the foreground of the structuring element when it is centered around
said pixel. A morphological erosion, on the other hand, shrinks the foreground in
the original image since the erosion process only assigns a pixel to the foreground if
the foreground of the original image and the foreground of the structuring element
overlap completely [20]. In Figure 2.5, an image is visualized together with the
results from a morphological erosion and a morphological dilation of the same image.
A diamond-shaped structuring element was used in this example.

”

Figure 2.5: Morphological erosion and dilation. The middle image visualizes an
erosion of the left image and the right image visualizes a dilation of the left image.

The morphological opening and closing operations both smooths the contours of the
objects in an image. An opening operation is an erosion followed by a dilation and a
closing operation is a dilation followed by an erosion. Morphological opening makes
the contours in the image smoother by breaking narrow isthmuses and by remov-
ing thin protrusions, while closing makes the contours smoother by fusing narrow
breaks. An opening operation also removes small foreground objects in the image
background and a closing operation fills small holes in the image foreground [20].

Another morphological technique used in image analysis applications is the extrac-
tion of connected components in an image. Two adjacent foreground pixels are
considered connected if the foreground of the structuring element, when centered
at the first pixel, overlaps with the second pixel. The foreground of the structuring
element is thus used to define the neighborhood in which the connectivity for a
pixel is evaluated. For a two-dimensional image, the structuring element is either
a 4-connected neighborhood or an 8-connected neighborhood, see Figure 2.6. If
the structuring element is defined by a 4-connected neighborhood, the four pixels
connected vertically and horizontally to the center pixel are considered as possible
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connected pixels. If the structuring element is defined by an 8-connected neighbor-
hood, all the pixels surrounding the center pixel are considered as possible connected
pixels. Non-adjacent pixels in an image are considered to be connected if there exists
an N-connected path between them which entirely consists of connected foreground
pixels. The pixels connected by such a path compose a connected set [20].

Figure 2.6: Structuring elements. The left image displays a structuring element
based on 4-connectivity and the right image displays a structuring element based
on 8-connectivity. The foreground pixels of the structuring elements are colored in
gray and the background pixels of the structuring elements are colored in white.
The black dots indicate the center pixels of the structuring elements.

An important technique for the representation of structural shapes in an image is to
reduce its foreground objects to thin structures called skeletons. This skeletonization
procedure iteratively removes the boundaries of the foreground objects in the image
by morphological erosion until convergence. The erosions are however not allowed
to remove end points or to break 8-connected components [20]. In Figure 2.7, an
example of a skeleton is visualized together with the image of the original object.

Figure 2.7: Morphological skeleton. The right image visualizes the morphological
skeleton of the object in the left image. Note that the skeleton contains short spurs
which are produced due to small irregularities in the boundary of the object.

2.2.5 Minutiae extraction

Once a fingerprint skeleton is obtained, the coordinates of the minutiae points in
an image are easily extracted by calculating the crossing number for each skeleton
pixel. The crossing number of a skeleton pixel is defined as half the sum of the
pixel value differences between each pair of adjacent pixels in the skeleton pixel’s
8-neighborhood. The definition of the crossing number is presented in Equation 2.1
and the indexing of the pixels in the neighborhood is clarified in Figure 2.8 [2].
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Figure 2.8: Crossing number neighborhood. This is a schematic view of the neigh-
borhood indexing around a skeleton pixel when its crossing number is calculated.

The crossing number is zero for isolated dots in the skeleton, one for skeleton end
points, two for intermediate skeleton points, three for skeleton bifurcations and four
for skeleton crossovers [2]. In Figure 2.9, examples of skeleton neighborhoods for
three of these minutiae types are visualized. The crossing number of the center
pixels in these examples are calculated from the pixels inside the marked areas.

Figure 2.9: Examples of minutiae points neighborhoods. The center pixel in the
left neighborhood is a skeleton bifurcation, the center pixel in the middle neighbor-
hood is a skeleton end point and the center pixel in the right neighborhood is a
skeleton crossover. The skeleton foreground pixels are the pixels in black.

2.3 Learning-based feature extraction

This section presents some background to learning-based tools for feature extrac-
tion, that is, neural networks and more specifically convolutional neural networks.

In recent years, deep learning and neural networks has come to provide powerful
solutions to complex computer vision tasks such as recognition and classification.
Deep learning refers to a machine learning technique in which deep network struc-
tures automatically learn appropriate internal representations, i.e. features, of the
observed data and neural networks are such learnable network structures which are
inspired by the human brain and its neural pathways. Convolutional neural net-
works are a specialized form of neural networks in which at least one of the network
layers utilizes convolutional operations (i.e. filtering) [22].
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A typical convolutional neural network consists of three types of layers; convolu-
tional layers, pooling layers and fully connected layers. In a convolutional layer,
convolutional operations are performed on the input to produce a set of linear ac-
tivations, or feature maps, which are processed by non-linear activation functions
such as the rectified linear unit function. Since each convolutional layer consists of
several filters which extract different features, several feature maps are produced in
each convolutional layer. While the first convolutional layers in the network typi-
cally identify edges, corners and extended contours, the higher level convolutional
layers in the network structure encode more abstract features. Pooling layers in the
network modifies the output from the previous convolutional layer by aggregating
the activation information of neighboring pixels. The pooling operations often re-
duce the size of the feature maps by replacing each of the sets of neighboring pixels
in the input feature map with a single pixel value representing the neighborhood
statistics. The max pooling operation, which passes the maximum activation value
in each neighborhood, is the most commonly used pooling operation. The pooling
operations in the network structure produce feature maps which are less sensitive to
local translations in the input image, thus enabling extraction of features which are
more invariant of local translations in the original image higher up in the hierarchi-
cal model. The last few layers in a convolutional network are fully connected layers,
which means that all its neurons are directly connected to all the activations in the
previous layer. Such layers are computationally expensive but are needed at the end
of the network to combine the final feature maps and to reach a final classification
decision. The last fully connected layer is often followed by a softmax function in
order to convert the network output to posterior probabilities [22].

Convolutional neural networks are often trained by combining an optimization al-
gorithm such as stochastic gradient descent with the back-propagation algorithm.
A set of labelled images is needed to train the network and the general practice is
to divide this set into a training set, a validation set and a test set. The training
and validation sets are both used when training the network. The training set is
used to calculate the gradients needed for updating the network parameters in the
back-propagation, while the validation set is only used to monitor the training pro-
cess. The training progress is evaluated after an epoch is completed, i.e. when the
entire set of training images have been processed. During each epoch of training, the
images in the training set are further divided into smaller image sets called batches.
The images in each batch are randomly fed through the network and by comparing
the actual network outputs with the desired network outputs the learning algorithm
updates the network parameters such that the discrepancies in the current batch are
minimized. Once all the batches are processed, the next epoch is initiated [23, 24].
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Methods

In this chapter, the methods used in the thesis are presented. The chapter is divided
into two sections. The first section presents the methods used in the feature design
part of the thesis and the second section presents the methods used in the learning-
based liveness classification part of the thesis. The software used when implementing
the algorithms was MATLAB R2016b. In the second part of the thesis, the publicly
available MATLAB toolbox MatConvNet [25] was also used.

3.1 Feature design for fingerprint liveness classification

In the feature design part of the thesis, a data set provided by Fingerprint Cards was
used. The data set contained around 9000 images of live fingerprints and around
12000 images of wood glue spoofs. The sensor used to acquire these images is the
fingerprint touch sensor FPC1025, which is a capacitive sensor generating normal-
ized images of size 160 x 160 at a resolution of 508 dpi. The fingerprints in the live
images originate from 240 unique fingers and the spoof images originate from the
fake counterparts of these 240 fingers. Since the sensor used is significantly smaller
than a fingerprint, the data set contains several images of each finger as an attempt
to capture the entire fingerprint in the data set. The data set also contained in-
formation about pairs of images of the same fingerprints in which an overlap of
the two prints has been established. The affine transformations needed to align
the images in the pairs were also provided by Fingerprint Cards. There were 186
image pairs in which a spoof image was found to overlap with a live image and 1266
pairs of images in which two live images were found to overlap. The images in the
first set of image pairs were used to identify and detect differences between live and
spoof images and the images in the second set of image pairs were used as a reference.

The first step in the liveness feature design part of the thesis was to identify fea-
tures which frequently differed between live and spoof images in the data set pro-
vided by Fingerprint Cards. By registering, or aligning, the images in each image
pair containing one live image and one spoof image, the comparison was facilitated.
During the visual inspection of the spoof images, the fingerprint valleys were found
to be more discontinuous in the spoof images than in the live images. Such dis-
continuities result in spurious minutiae in the form of skeleton breaks, hence these
discontinuities could be detected by analyzing the skeleton (see Section 3.1.6.1 for
this analysis). Another difference found was that the contours of the ridges and
valleys were somewhat more irregular in the spoof images than in the live images.
Since irregular contours result in spurious minutiae in the form of spikes as well as
in a more jagged skeleton, these can be captured by detecting spikes in the skele-
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ton (Section 3.1.6.2) and by assessing the fingerprint skeleton curvature (Section
3.1.6.3). During the visual inspection of the image pairs, some tendencies related to
the image intensity was also found. Thus, the intensities in the images were studied
(Section 3.1.7.1). Included in these tendencies were that the ridges in the spoof
fingerprint images quite often were found to be more gray than the ridges in their
live equivalents. The valley intensities in the spoof images did also often differ from
the valleys in their live equivalents, but in an inconsistent manner, i.e. the valley
intensities in the spoof images were both brighter and darker than the valley inten-
sities in the live fingerprint images. The spoof fabrication process is also believed
to introduce a sharp shift between the ridges and valleys, hence the steepness of the
intensity profile perpendicular to the ridge and valley pattern was assessed (Section
3.1.7.2). The width of the ridges and valleys were also found to differ between the
live images and the spoof images. The width variations were investigated both by
applying a distance transform to the binarized fingerprint images (Section 3.1.8.1)
and by measuring the relative width of the ridges and valleys in the image pairs
(Section 3.1.8.2). Since the frequencies present in the image relates to the ridge and
valley width, the frequency content of the images was also studied (Section 3.1.8.3).
The different parts of the analysis are explained in detail in the sections below.

3.1.1 Registration

The paired images were spatially aligned by transforming the coordinate system of
one of the images in the pair into the coordinate system of the other image in the
pair. Apart from differences in translation and rotation, two images of the same
fingerprint may also be somewhat scaled due to differences in pressure between
the finger and the sensor. Hence, an affine transformation is needed to align the
images. The affine transformations needed to align the images in the data set were
extracted from the matching algorithm used at Fingerprint Cards. In the image pairs
containing one spoof and one live image, the spoof images were used as targets and
the live images were used as source images. In the image pairs used as references,
both the source and target images were images of live fingerprints. The images in
the pairs were aligned by transforming, i.e. warping, the source images according to
the affine transformations. The registration process is visualized in Figure 3.1.

Figure 3.1: Visualization of the registration process. The left image is a spoof
image used as target, the middle image is a live image used as source and the right
image is the live image transformed to the coordinate system of the spoof image.
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3.1.2 Visual interpretation

To identify differences within the aligned image pairs, the two images in each pair
were compared by placing them in two separate color channels of an RGB-image.
For each image pair, a color image was built by placing the grayscale live fingerprint
image in the blue channel and the grayscale spoof fingerprint image in the green
channel. Since the red channel is kept empty, the colors in the resulting RGB-image
are restricted to different combinations of black, blue and green. The pixels in which
both of the overlapped images have low intensities are displayed in black, while the
pixels in which both of the overlapped images have high intensities are displayed
in turquoise. The pixels in which the intensities in the spoof image differ from the
intensities in the live image will either be more green or more blue. The pixels in
which the live image have higher intensities than the spoof image will be more blue
and the pixels in which the spoof image have higher intensities than the live image
will be more green. Hence, by detecting more green and more blue pixel clusters,
differences between the images were identified. In Figure 3.2, an example overlap
image is shown together with the two grayscale images used to create it. The part of
the image in which the live image lack information due to the affine transformation
will be limited to combinations of green and black.

Figure 3.2: Example of an overlap image. The right image is created by placing
the left and middle image in the green and blue channels of an RGB-image.

3.1.3 Segmentation

Segmentation of the fingerprint images was used to separate the foreground in the
images from the background (see Section 2.2.1). This step was needed both to
constrain the analysis to the fingerprint foreground and since the background pixel
intensities otherwise would have affected the fingerprint binarization process. The
fingerprint images were segmented using the method described in [18]. This method
is based on the pixel features local gradient coherence, local intensity mean and
local intensity variance. A linear classifier is used to assign the pixels to either fore-
ground or background based on the feature vector calculated for each pixel. The
pixel features were calculated by using a sliding neighborhood with block size 3 x 3.
To avoid edge effects when calculating the features, the images were mirror-reflected
across the image borders. By multiplying the calculated feature values in each pixel
with the weights of the linear classifier, a segmentation probability map was created.
The output from the linear classifier was then post-processed by applying morpho-
logical opening and closing on the segmentation probability map to remove small
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clusters and holes in the map. The structuring elements used in the opening and
closing were disc-shaped elements. The diameter of the structuring element used in
the opening operation was 3 pixels, while the diameter of the structuring element
used in the closing operation was 5 pixels. In an additional post-processing step, all
background clusters not connected to an image edge were discarded.

Segmentation masks were created for all the images analyzed in the liveness feature
design part of the thesis. Since one of the images in each pair was transformed
into the coordinate system of the other image in the pair during the analysis, the
corresponding segmentation masks were transformed in the same manner. A joint
segmentation mask was then created for each image pair by calculating the intersec-
tion of the aligned segmentation masks for each image pair. In order to avoid edge
effects in the analysis of the images, reduced versions of the segmentation masks
were also created by filtering the joint masks with a minimum filter of size 7 x 7.
Since zero-padding was used during filtering, this operation removed a three-pixel
wide segment around the entire foreground of each mask.

The segmentation of the fingerprint images was evaluated both by manual inspection
and by calculating the Dice similarity coefficient for fingerprint images segmented
with the implemented algorithm and the gold standard, which in this case are fin-
gerprint images that are segmented manually. The Dice coefficient is a commonly
used measure to evaluate the similarity between image sets and it is defined by
Equation 3.1. This coefficient ranges between zero and one and a Dice coefficient
of zero indicates that there is no similarity between the two images while a Dice
coeflicient of one indicates that the two images are identical. In Equation 3.1, X
and Y corresponds to automatic and manual (i.e. gold standard) segmentations.

21X NY|

X[+ ¥ (3.1)

Dice coeflicient =

The gold standard used when calculating the Dice coefficient was obtained by man-
ually labelling 30 fingerprint images in the data set. All 30 images contained reason-
ably large background areas and none of them belonged to any of the image pairs
used in the feature design analysis.

3.1.4 Fingerprint orientation

The orientation in the fingerprint images (see Section 2.2.2) was estimated by im-
plementing the method proposed in [19]. In this method, the directional field is
estimated by calculating the dominant gradient direction in the neighborhood sur-
rounding each pixel. Since the directional field is perpendicular to the dominant
gradient direction, the conversion between the two is trivial. The implemented al-
gorithm followed the general concepts of this method, but some alterations were
made to the proposed filtering steps. First, the gradients in each image were ob-
tained by filtering the fingerprint images with a Gaussian derivative filter of size 7x7
with standard deviation 1. The principal gradient directions were then estimated
by applying Principal Component Analysis (PCA) to the covariance matrix of the
gradient components as proposed in [19]. The traditional averaging proposed for
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this step was however replaced with a smoothing operation using a Gaussian filter
of size 19 x 19 with standard deviation 3. The components of the directional vector
field were then calculated and after an additional smoothing of the vector field com-
ponents, again using a Gaussian filter of size 19 x 19 with standard deviation 3, the
dominant gradient directions was calculated from the smoothed vector components.
Finally, the fingerprint orientation was calculated by adding 7/2 to the dominant
gradient direction estimations in each pixel since the orientation and the dominant
gradient direction are orthogonal.

3.1.5 Fingerprint binarization

The fingerprint images were converted to binary images by replacing all pixel values
above an image specific threshold with ones and by replacing all the other pixel
values with zeros. The thresholds were calculated using Otsu’s method (see Section
2.2.3) in order to maximize the inter-class variations between the ridges and valleys
in each image. Only the values of the pixels assigned to the image foreground in the
segmentation process were used to calculate the thresholds. A global threshold was
preferred over a local threshold since local thresholds may introduce artifacts to the
binary images. Since the fingerprint valleys are the brighter pixels in the fingerprint
pattern, the foreground of the resulting binary image mostly contained fingerprint
valleys. The complement of each image was also produced in order to obtain images
in which the foreground contained the ridges of the fingerprint patterns.

3.1.6 Fingerprint skeletons

Fingerprint skeletons were produced by performing a morphological skeletonization
of the binary fingerprint images (see Section 2.2.4). Ridge skeletons were produced
from the binary images in which the foreground consisted of ridges and valley skele-
tons were produced from the binary images in which the foreground consisted of
valleys. In order to constrain the analysis of the images in an image pair to the
same part of the fingerprint, the skeleton foreground pixels which coincided with
background pixels of their joint segmentation mask were converted to the skeleton
image background.

3.1.6.1 Detection of skeleton breaks

Breaks in the fingerprint skeletons were detected by identifying end points in the
skeleton and by finding pairs of end points in close proximity to each other. The
number of skeleton breaks in the ridge skeletons and the valley skeletons were calcu-
lated for both images in each image pair. The end points in an image were identified
by finding the pixels with crossing number one. Isolated islands in the skeletons were
also considered as end points, hence the pixels for which the crossing number was
zero were also considered as end points. Any end points outside the foreground of
the corresponding joint and reduced segmentation mask were however ignored in
order to avoid detection of false skeleton end points. All pairs of end points which
were closer than 20 pixels apart were considered as possible skeleton breaks. The
number of possible breaks in an image was then narrowed down by removing all
pairs of end points which were connected by the skeleton. In order to prevent im-
proper break detections due to incorrect fingerprint orientation estimations like the
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ones shown in Figure 3.3, an assessment of the skeleton image patch in between the
two end points in each pair was also necessary. If there were any skeleton pixels in
the skeleton image patch between the two end points in a pair the possible break
was discarded. Since each identified end point only was allowed to be part of one
skeleton break, the remaining point pairs were assessed to ensure that all end points
in the final pairs were unique. In order to grade the possible breaks, the absolute
difference between the angle of the vector connecting the two points in each pair
and the estimated fingerprint orientation in each neighborhood was calculated. The
possible breaks were sorted in ascending order based on how well the angle of the
point vector and the estimated fingerprint orientation agreed. The remaining point
pairs were assessed one by one and a point pair was only accepted as a skeleton
break if the points in it did not belong to a pair in which the angle of the point
vector and the estimated fingerprint orientation better coincided. All point pairs in
which the difference between the angle of the point vector and the estimated orien-
tation were larger than 7/5 were discarded. Since the size of the analyzed area in
the different image pairs varies widely due to differences in the overlap between the
two original images, the number of detected skeleton breaks found in an image had
to be normalized with respect to the analyzed area in order to obtain comparable
results. Hence, the normalization was performed by dividing the number of breaks
found in an image with its total number of skeleton pixels in the analyzed area.

—
> o

Figure 3.3: Incorrect skeleton breaks. This image is an example showing two skele-
ton breaks which are improperly detected due to incorrect fingerprint orientation
estimations. The points in one of the detected skeleton breaks are marked in green
and the points in the other detected skeleton break are marked in orange.

3.1.6.2 Detection of skeleton spikes

Spikes in the fingerprint skeletons were detected by identifying bifurcations and end
points in the skeleton and by finding pairs of the two types of points in close prox-
imity to each other. The number of skeleton breaks in the ridge skeletons and the
valley skeletons were calculated for both images in each image pair. Bifurcations and
end points in an image were identified by finding the pixels with crossing number
three and one respectively. The end points in an image already counted in a skeleton
break were not allowed to be part of a skeleton spike, hence these were removed from
the list of identified end points. Bifurcations and end points outside the foreground
of the corresponding reduced joint segmentation mask were also ignored in order to
avoid detection of false minutiae points. All pairs of bifurcations and end points
which were closer than 10 pixels apart were considered as possible skeleton spikes.
By removing all point pairs not connected by the skeleton, the number of possible
spikes in an image were narrowed down. Since each bifurcation and end point only
were allowed to be part of a single skeleton spike, the remaining point pairs were
assessed to ensure that all points in the final spikes were unique. If a bifurcation
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was connected to more than one end point, the pair with the shortest Fuclidean
distance between the points was considered as most probable to be a skeleton spike.
Just as when grading the possible skeleton breaks, the possible spikes were graded
by calculating the absolute difference between the angle of the vector connecting the
two points in each pair and the estimated fingerprint orientation in each neighbor-
hood. However, since the angle between the bifurcation and the end point defining
a skeleton spike should be somewhat orthogonal, the possible spikes were sorted in
ascending order based on how close the difference between vector angle and esti-
mated neighborhood orientation came to /2. The remaining point pairs were then
assessed one by one and a point pair was only accepted as a skeleton spike if the
points in it were not already part of a pair in which the angle of the point vector
and the estimated orientation better coincided with 7/2. All point pairs in which
the difference between the angle of the point vector and the estimated fingerprint
orientation were further away than 7 /5 from 7/2 were discarded. Since the number
of skeleton bifurcations also was found to be a feature which differed between live
skeletons and spoof skeletons, the number of detected bifurcations in a fingerprint
skeleton that were not already part of a detected spike was also saved for each image.
Both the number of detected spikes and the number of detected bifurcations in an
image were normalized by dividing with its total number of skeleton pixels.

3.1.6.3 Skeleton curvature

The curvature of a two-dimensional curve is a measure of how sharply the curve
bends. It is defined as the magnitude of the rate of change of the unit tangent
vector with respect to the curve length. The curvature at a point on a parametric
curve given by (z(s),y(s)) is often calculated from the first and second derivatives
of the curve at the point with respect to the parameter s using Equation 3.2 [26].
2 — 2"
= (|x/éy+ y/y2 )2/’3 (3.2)
If a curve is discrete, as in the segments of a fingerprint skeleton, a slight modifica-
tion of the curvature definition is needed to compensate for sampling differences of
the discrete points on the curve. In order to calculate the curvature at a point on
a discrete curve, the relative positions of its predecessor and successor are needed.
The derivatives in Equation 3.2 are first calculated by fitting the three sequential
points to two polynomials and then the curvature at the points is estimated [26, 27].

The jaggedness of a fingerprint skeleton was evaluated by estimating the mean cur-
vature for all its curve segments. The skeleton curvature was calculated for both
images in each image pair. As in the previous sections, the analysis of the finger-
print skeletons of an image pair was constrained to the pixels corresponding to the
foreground area of the joint segmentation mask. Since the curvature at skeleton
bifurcations and skeleton crossovers would shadow the smaller curvature variations
originating from skeleton jaggedness, the skeleton pixels in a patch of size 3 x 3
around each bifurcation and crossover were removed from the skeleton before the
curve segments were extracted from the skeleton image. Groups of connected pixels
were extracted by identifying all 8-connections in the skeleton. The curvature was
calculated for each curve segment of connected skeleton pixels containing at least
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three connected pixels. The absolute curvature values in all the points along each
curve segment were summed up and divided by the number of estimated curvature
values in the same segment. At last, a measure of the curvature in an entire fin-
gerprint skeleton was obtained by taking the mean of the curvature values of all its
skeleton curve segments.

3.1.7 Fingerprint intensities

The intensity of the fingerprint images was studied in three different ways. The
intensity distributions of the fingerprint images were studied both by evaluating all
intensity values in the ridges and valleys and by evaluating the image intensity values
in the pixels along the fingerprint skeletons. Since the spoof fabrication process is
believed to introduce a sharper shift between the ridges and valleys, the steepness of
the intensity profile perpendicular to the ridge and valley pattern was also assessed.

3.1.7.1 Intensity distributions

The intensity distribution analysis was performed both by calculating the mean
of the intensities along the ridges and valleys in each fingerprint image and by
calculating the mean of the intensities along the ridge and valley skeletons of each
fingerprint image. The mean intensity values were calculated for both images in
each image pair and the analysis was constrained to the pixel values corresponding
to the foreground area of the joint segmentation mask.

3.1.7.2 Intensity profiles

The intensity steepness in the transition between ridges and valleys in the fingerprint
images was evaluated by studying the intensity along a line perpendicular to the
ridges and valleys in the fingerprint pattern. The intensity profile analysis was
performed on both images in each pair and for each image both the ridge-valley-
ridge intensity profiles and the valley-ridge-valley intensity profiles was evaluated. In
order to evaluate the intensity profiles in an image, observation lines perpendicular
to the ridges and valleys had to be created. When the ridge-valley-ridge intensity
profiles in an image were evaluated, the intensity profiles were extracted by creating
lines which passed through each foreground pixel in the valley skeleton. In the same
manner, when the valley-ridge-valley intensity profiles in an image were evaluated,
the intensity profiles were extracted by creating lines which passed through each
foreground pixel in the ridge skeleton. Each observation line was perpendicular
to the fingerprint orientation estimated in the skeleton pixel it intersected. If the
obtained line was too sparsely sampled, it was discarded since such lines would result
in too imprecise measurements. The pixels in an intensity profile were defined as
the segment of the line between the mid points of the two adjacent ridges or valleys
of the skeleton pixel. Such a line segment is visualized in Figure 3.4. These two
end points were identified by studying the binary version of the fingerprint image.
The pixel values along the line in the binary image were grouped into connected
elements and from this information the mid pixels of the adjacent ridges or valleys
were identified. If any of the ridges and valleys which were transversed by the line
segment were wider than a certain threshold, the ridges or valleys were however
assumed to be accreted. Such measurements were also discarded. The width of
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a fingerprint ridge is seldom larger than 300 um [2], but the threshold was set to
425 pm since the observed width of the ridges and valleys in the fingerprint images
also is affected by the pressure between the finger and the sensor during capture.
In a fingerprint image obtained from a fingerprint sensor with 508 dpi resolution,
425 pm correspond to 8.5 pixels. The intensities along the line segment between the
two end points were then extracted from the original fingerprint image and from
these intensity values the intensity gradient along the line segment was calculated.
The gradient values were normalized with respect to the Euclidean distance between
the points on the line. The steepness of the intensity transition was evaluated by
integrating the gradients, i.e. squaring the gradient values along the line segment
and dividing the sum of the squared values with the amount of points in the line
segment. The mean value of all the integrated intensity profile gradients was then
calculated for each fingerprint image.

Figure 3.4: Intensity profile example. This figure visualizes the points along the
line segment from which an example intensity profile is calculated. The left image
visualizes the line segment in green together with the binary version of the intensity
profile neighborhood, while the right image visualizes the line segment in green
together with the original version of the neighborhood.

3.1.8 Ridge and valley width

The valleys in the spoof images were often found to be thinner than the valleys
in the live images in the initial visual inspection. Equivalently, the ridges in the
spoof images were often found to be wider than the ridges in the live images. The
variations in ridge and valley width were investigated in three different ways. First,
the average ridge and valley distance from all the valley and ridge pixels in the
images were calculated with a distance transform. The average ridge and valley
distances provide information about the width since they for an ideal fingerprint
pattern correspond to one fourth of the ridge and valley width respectively. Second,
a relative comparison of the ridge and valley width in the two images in each pair
was made. Third, the magnitude of the frequency spectrum of each image was
studied since the frequencies present in the image relates to the appearance of the
fingerprint ridges and valleys. The methods used to evaluate the ridge and valley
width are described in more detail below.

3.1.8.1 Distance transforms

By applying a distance transform to the binary versions of the fingerprint images
the Euclidean distance to the closest ridge or valley in each pixel was obtained.
The distance transform was applied on both images in each pair and again, the
analysis of the images in each image pair was constrained to their foreground area
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of the joint segmentation mask. A distance transform of a binary image returns a
distance map in which the value of each pixel corresponds to the distance to the
closest foreground pixel in the image. Hence, the distance to the closest ridge for
each valley pixel in an image was evaluated by applying the distance transform to
the binary image in which the ridges belong to the foreground. Conversely, the
distance to the closest valley for each ridge pixel in an image was evaluated by
applying the distance transform to the binary image in which the valleys belong to
the foreground. The average distance to the closest ridge in all the valley pixels in
each image and the average distance to the closest valley in all the ridge pixels in an
image was then calculated. Distances exceeding a certain threshold, which was set
slightly higher than half the largest acceptable ridge and valley width (4.25 pixels),
were however discarded before the averaging since such measurements originated
from areas in the fingerprint images where the ridges or valleys in the binary images
were not represented correctly.

3.1.8.2 Relative ridge and valley width

The relative width of the ridges and valleys in an image pair was estimated by
pairwise comparisons of the ridge and valley widths. For each image pair, the
overlapping foreground pixels in their skeletons determined the locations for which
the width was assessed in. The ridge skeletons were used to find joint skeleton
pixels to assess the ridge width in and the valley skeletons were used to find joint
skeleton pixels to assess the valley width in. In order to evaluate the ridge or valley
width in these joint pixels, lines which passed through each joint skeleton pixel with
an angle perpendicular to the fingerprint orientation estimated in the same pixels
were created. By extracting the values of the line pixels from the corresponding
binary images and by grouping these values into connected components, the first
and last line pixel within the current ridge or valley was identified. The Euclidean
distance between these two pixels on the line was calculated and then the ratio
between the distances calculated for the same skeleton pixel in the two images of an
image pair was determined. If an estimated ridge or valley width was wider than a
certain threshold (set to 8.5 pixels), the measurement was however discarded since
the ridge or valley then was assumed to be accreted with adjacent ridges or valleys.
Other constraints put on the measurements were that the angles of the two lines
intersecting the same joint skeleton pixel in an image pair were not allowed to differ
more than 7/12 and that the lines were not allowed to be too sparsely sampled.
The relative width for each joint ridge skeleton pixel was calculated as the ratio
between the estimated ridge width in the image used as target and the estimated
ridge width in the warped image. The relative width for each joint valley skeleton
pixel was calculated as the ratio between the estimated valley width in the warped
image and the estimated valley width in the image used as target.

3.1.8.3 Frequency spectrum analysis

The frequency content of the fingerprint images was evaluated by studying the mag-
nitude of their frequency spectra. The edge effects in the frequency spectra were
minimized by mirror reflecting the fingerprint images before converting them to the
frequency domain. In order to compare the frequency spectra of the live and spoof
images, the two-dimensional magnitudes of the frequency spectra were converted to a
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one-dimensional signal representing the radial average of the frequency magnitudes.
Since the one-dimensional signal is created by computing the frequency content av-
erage along the radius, the frequency content in the corners of the frequency spectra
magnitudes is ignored. The corners of the frequency spectra magnitudes for the fin-
gerprint images do however only contain noise, thus no important information will
be lost in this conversion. The radial averages of the frequency spectra magnitudes
were calculated for all source and target images in the image pairs. An average
one-dimensional frequency spectrum magnitude signal was then calculated for all
the source and target fingerprint images for both the image pairs containing one live
and one spoof image and the image pairs in the reference data.

3.1.9 Statistical significance

The statistical significance of the detected features was evaluated by performing
statistical t-tests on the feature value distributions obtained for the image pairs
which contained both live and spoof fingerprint images. Paired-sample t-tests were
used for the skeleton-based features, the intensity distributions and the distributions
obtained from the distance transform analyses, while a two-sample t-test was used
for the relative ridge and valley width analyses. All distributions were assumed to be
normal distributions, but no assumptions regarding the variances were made. The
significance level used was 1% for all the features except for the relative valley width
where a significance level of 2.5% was used instead. The higher significance level was
used since the relative valley width result was not significant at the 1% significance
level. One sided t-tests were used in most cases, but since the obtained results
for the skeleton curvature and the intensity profile analyses were opposite to the
expected, the significance of the difference between the live and spoof distributions
from these analyses was evaluated with a two-sided t-test. The null hypothesis in
the t-tests was that the mean of the spoof distribution equals the mean of the live
distribution. The alternative hypothesis in the one-sided t-tests was that the mean
of the spoof distribution was greater than the mean of the live distribution. Theses
hypotheses are specified in Equation 3.3. The difference between the distributions
was only considered significant if the null hypothesis could be rejected.

Hy : Hspoof = Mlive (3 3)
Hy - Hspoof = Mlive

3.1.10 Spoof image quality

The quality of the spoof images was estimated using a binary support vector ma-
chine model in which ten of the designed liveness features were used as predictors.
These predictors were chosen by manually identifying the ten features which best
separated the investigated live and spoof images. Features which did not show a
statistically significant difference between the live and spoof images were not consid-
ered to be relevant to include in the quality assessment model. The features chosen
as predictors in the model are given in the list below. The fact that some of these
features were correlated was ignored when they were selected as model predictors.

e breaks in the valley skeleton
o spikes in the ridge skeleton
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o spikes in the valley skeleton

o bifurcations in the ridge skeleton

e bifurcations in the valley skeleton
o ridge skeleton curvature

o ridge skeleton intensity

o valley-ridge-valley intensity profiles
e ridge-valley-ridge intensity profiles
o distance to the closest valley

The binary support vector machine model aims to find a hyperplane that successfully
separates the ten-dimensional predictor vectors in an optimal sense. The hyperplane
equation is given by Equation 3.4. In this equation, f(x) is the classification score, x
is the feature vector consisting of the chosen predictors, 8 is a vector containing the
model weights and b is a bias term. The separating hyperplane corresponds to the
feature vector which satisfies f(x) = 0. A feature vector is classified as belonging to
one of the two classes depending on the sign of its classification score, i.e. f(x) >0
implies a live classification and f(x) < 0 implies a spoof classification.

fx) = xX'B+b (3.4)

The support vector machine model was trained on the standardized feature vectors
obtained for all the images used for feature design (i.e. the pairs containing both
live and spoof images) in order to obtain the separating hyperplane which best sep-
arated the live and spoof images based on the ten predictors. When the model was
estimated, the spoof images in the set were classified with the model. The relative
quality of the spoof images was then estimated from their classification scores. The
support vector machine classification score is defined as the signed distance from
the decision boundary of the separating hyperplane. These scores were mapped into
posterior probabilities by an optimal score-to-posterior-probability transformation
function. For inseparable classes, as in this case, this transformation is a sigmoid
function. The quality of a spoof image is regarded as high if the posterior proba-
bility of the live class is high and the quality of a spoof image is regarded as low if
the posterior probability of the spoof class is high. The quality of an entire set of
spoof images may be defined as the percentage of these images that the separating
hyperplane model manages to classify correctly. The separating hyperplane model
could of course also estimate the quality of the live images in a similar manner, but
such an evaluation is outside the scope of this thesis.

3.2 Learning-based fingerprint liveness classification

In the second part of the thesis, convolutional neural networks for fingerprint live-
ness detection was implemented since the spoof quality in a data set also can be
estimated from how well a state-of-the-art fingerprint liveness classifier performs on
the spoof images in the set. A set of fingerprint images is considered to be very hard
to classify if the state-of-the-art network cannot differentiate between the live and
fake images in the set. Conversely, if a shallow network easily differentiates spoof
images from live images, these images are considered easy to classify.
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The first implemented network was an imitation of the network which won the last
Fingerprint Liveness Detection Competition in 2015 [6, 28]. However, since the im-
ages in the data sets used to train this model differed a lot from the images in the
data set provided by Fingerprint Cards due to differences in sensor technology, the
state-of-the-art network did not perform well on the images which were assessed
in the feature design part of the thesis. A second network was thus trained and
evaluated on the data provided by Fingerprint Cards. The idea was to estimate the
spoof quality in a data set by evaluating the number of correctly classified spoof
images in the set and to estimate the quality of the individual images in the set by
evaluating the degree of liveness assigned to the spoof images by the neural network.

The data sets which were used to train the network in [6] were provided by the
Liveness Detection Competition. These data sets were the training and testing sets
used in the competitions in 2009 [29], 2011 [30] and 2013 [31]. In total, these data
sets contained more than 50000 live and spoof fingerprint images obtained from
eight different optical fingerprint sensors. The spoof fingerprint images were ob-
tained from spoofs of eight different spoof materials. Of these images, around 40%
belonged to the training set and the remaining 60% belonged to the test set. In
both the training set and the test set, there were an equal amount of live and spoof
fingerprint images. The sensors used came from Biometrika, Crossmatch, Digital,
Identix, Italdata, Sagem and Swipe and the different spoof materials were body dou-
ble, ecoflex, gelatin, latex, modasil, Play-Doh, silicone and wood glue. The spoofs
used to create the spoof fingerprint images in the data sets were fabricated using
both the cooperative and the non-cooperative method.

The data set which was used to train the second network was the same data set
as the one used in the liveness feature design part of the thesis. This data set was
provided by Fingerprint Cards and contained around 9000 images of live fingerprints
and around 12000 images of wood glue spoofs. The spoofs used to create the images
in the data set were fabricated using the non-cooperative method. Around 3000
randomly chosen spoof images were removed from the data set in order to obtain
a balanced training set. The images in the data set which belonged to any of the
live-spoof image pairs analyzed in the first part of the thesis were assigned to the
test set and the remaining images were assigned to the training set. Among the
image pairs, there were 162 unique live images and 172 unique spoof images, hence
the test set for the second network contained 334 fingerprint images.

The networks were trained by fine-tuning the 19-layer deep pre-trained convolutional
neural network developed by [32] for image classification. Their model, denoted as
VGG, achieved second place in the classification task of the ImageNet Large Scale
Visual Recognition Competition in 2014. The network was trained on 1.3 million
images of 1000 different classes. Even though none of these classes were related
to fingerprints or liveness detection, a fine-tuning of this pre-trained network on
live and spoof fingerprint images has been proven to be an efficient approach to
obtain a liveness detection classifier [6]. Of the 19 layers in the pre-trained network,
the first 16 of them were 3 x 3 convolutional layers and the last three were fully
connected layers. Each convolutional layer was followed by a rectified linear unit
(ReLU). There were also five 2x2 pooling layers in between some of the convolutional
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layers. The pre-trained network was trained for 1000 different classes, hence the last
layer of the network had to be converted from a 1000-unit softmax layer to a 2-unit
softmax layer. The number of classes available in the network was consequently
reduced to two, one for live fingerprint images and one for spoof fingerprint images.
The softmax layer was during training converted to a softmax loss layer, which is a
combination of a loss function and a softmax. These were the only changes made to
the pre-trained network before fine-tuning it with fingerprint images. A schematic
view of the network architecture is presented in Figure 3.5.

two four four
convolutional convolutional convolutional
layers with filter layers with filter layers with filter
size 3x3 size 3x3 size 3x3

input - o
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max
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layer with 4096
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Figure 3.5: Network architecture. In this image, the architecture of the utilized
convolutional neural network is presented. The input to the network is the image
to be classified and the output of the network is its prediction. The green building
blocks correspond to the convolutional layers, while the green arrows in between
these blocks represent the pooling operations. Each green building block contains
at least two convolutional layers. The blue building blocks correspond to the fully
connected layers and the orange building block corresponds to the softmax layer.

The fingerprint images in the data sets were all grayscale images and their size
ranged between 160 x 160 to 700 x 800 pixels depending on the used sensor. Since
the input to the pre-trained model was required to be of size 224 x 224 x 3, the first
two dimensions of the images in the data sets were resized accordingly and the third
dimension requirement was fulfilled by placing copies of the resized grayscale image
in all three RGB-channels. The intensity mean of all the images in the training set
was removed from the images in the set before the training was initialized. The
intensity mean of the training set was also removed from the test set before test-
ing. The data set augmentation proposed by [6] could however not be implemented
since the training and testing variables used as input to the network, in that case,
exceeded the allowed variable size in MATLAB (8 GB).

During the training of the convolutional neural network, stochastic gradient de-
scent with momentum was used to optimize the network parameters using the back-
propagation algorithm. As specified in [6], the learning rate and momentum used
was 1075 and 0.9 and the batch size used was 5. The training of the network was
continued until the network ceased to learn, i.e. when the training error stopped
decreasing. The network was however saved after each completed epoch, so when
the training was done the final network could be chosen such that its validation error
was low at the same time as the number of epochs was kept to a minimum. The
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training of the first network was ran for 35 epochs and the final network was the
network obtained after 30 epochs. The training of the second network was ran for
15 epochs and the final network was the network obtained after 11 epochs. When
the final network was identified, the network performance was evaluated on the test
set. The classification performance of the obtained networks was evaluated by cal-
culating the spoof false positive rate (SFPR), the spoof false negative rate (SFNR)
and the average classification error (ACE) of the test sets. The spoof false positive
rate is defined as the percentage of misclassified live images, the spoof false nega-
tive rate is defined as the percentage of misclassified spoof images and the average
classification error is defined as the average of the two.
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4

Experimental results and
analysis

4.1 Feature design for fingerprint liveness classification

In the following sections, the experimental results of the liveness feature design
part of the thesis are presented and analyzed. In the first section below, a visual
motivation of the performed analyses is presented. This section is followed by a
section in which the segmentation results are presented and by the sections in which
the results from the designed fingerprint liveness features are presented.

4.1.1 Visual interpretation

During the visual inspection of the pairs of live and spoof fingerprint images, several
detectable features were identified. Some of these features can be seen in the three
overlap images presented in Figure 4.1. The most frequent feature found was valley
discontinuities in the spoof images. This feature can be seen as blue interruptions
of the turquoise valleys in all three images in Figure 4.1. By studying these images,
it can also be seen that the ridge and valley edges in the spoof images are somewhat
more irregular than the ridge and valley edges in the live images.

Figure 4.1: Visualization result examples. The overlap images from three image
pairs are presented in order to visualize some of the features detected when com-
paring images obtained from live fingers and images obtained from spoofs. Recall
that blue and green colors originate from the live and spoof images respectively.

Some tendencies regarding the fingerprint image intensities were also noticed. Since
the ridge color in the overlap images often was a mixture of black and green, the
ridges in the spoof fingerprint images were, in general, brighter than the ridges in
the live fingerprint images. The color of the valleys in the overlap images was quite
often a more blue shade of turquoise which implied that the valley intensity in the
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spoof images often was lower than the valley intensity in the live images. The green-
ish ridge color can be seen in all three images in Figure 4.1, while the bluer shade
of turquoise is especially apparent in the right image.

Thinner valleys, or equivalently wider ridges, in the spoof images were another quite
frequently observed feature in the image pairs. At first glance, the blue appearance
of the valleys in the left image in Figure 4.1 might seem only to be due to a significant
difference in valley intensities between the live and the spoof image. However, from
a closer inspection of Figure 4.2, in which this overlap image is displayed again
together with the live and spoof images used to create it, it becomes clear that the
blue appearance of the valleys in the overlap image is mostly due to the significant
difference in valley width between the live image and the spoof image, even though
there are intensity differences which also affect the appearance.

Figure 4.2: Visualization of an image pair in which there is a significant difference
in ridge and valley width between the spoof image and the live image. The left
image is the spoof image, the middle image is the live image and the right image is
the overlap image created from the two.

4.1.2 Segmentation

This section presents the results of the fingerprint segmentation. In Figure 4.3, three
example segmentation results are presented by displaying the fingerprint images
together with the foreground borders in the corresponding segmentation masks.
The Dice coefficient calculated for the test set containing 30 images ranged between
0.9763 and 0.9995 and the mean Dice coefficient for the set was 0.9921.

Figure 4.3: Segmentation result examples. Three fingerprint images are displayed
together with green lines representing the borders of their segmentation masks.
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From the results presented in Figure 4.3 and from the high Dice coefficients obtained
in the evaluation of the test set, it is clear that the results provided by the imple-
mented algorithm are most satisfactory. Since the algorithm extracts the foreground
of the fingerprint images with an accuracy comparable to manual segmentation of
the fingerprint images, the analysis is reliably constrained to the foreground area.

4.1.3 Skeleton-based features

In the following sections, the results from the detection of skeleton breaks, skeleton
spikes and skeleton bifurcations are presented together with the results from the
skeleton curvature analysis. In each section, the results are accompanied by an
analysis of the obtained results. The skeletons of the fingerprint images turned out
to contain several features which differed for live and spoof images, the most obvious
differences are the amount of ridge skeleton bifurcations and valley skeleton breaks.
The skeletons in Figure 4.4 and 4.5 clearly illustrates these significant differences.

T

Figure 4.4: Ridge skeleton examples. The left image is a typical example of a ridge
skeleton obtained from a spoof image and the right image is its live equivalent.

Figure 4.5: Valley skeleton examples. The left image is a typical example of a valley
skeleton obtained from a spoof image and the right image is its live equivalent.

The analyses presented in the sections below were performed both on the set of
image pairs containing one live and one spoof image and also on the set of image
pairs containing two live images. The first set of image pairs were analyzed in order
to study the differences between live and spoof fingerprint images, while the second
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set of image pairs were only used as reference. For each of the analyses presented
below, the results for the two image sets are presented in the same figure but in
separate histograms. Hence, each histogram figure contains two histograms and the
left histogram visualizes the results obtained from the first set of image pairs, while
the right histogram visualizes the results obtained from the second set of image pairs.
In the left histograms, the distribution in green originates from the spoof images
and the distributions in blue originates from the live images. Both distributions in
the right histograms originate from live fingerprint images, the pink distributions
originate from the live images used as targets in the registration process while the
gray distributions originate from the warped images.

4.1.3.1 Skeleton break detection

The results from the skeleton break detection are presented in Figure 4.6 and 4.7. As
previously stated, the left histogram visualizes the results obtained from the image
pairs containing both live and spoof images, while the right histogram visualizes the
results obtained from the image pairs containing two live images.
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Figure 4.6: Histograms of detected ridge skeleton breaks. The left histogram
visualizes the result from the analysis of the image pairs containing both a live and
a spoof image and the right histogram visualizes the result from the analysis of the
reference image pairs which instead contained two live images.
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Figure 4.7: Histograms of detected valley skeleton breaks. The left histogram
visualizes the result from the analysis of the image pairs containing both a live and
a spoof image and the right histogram visualizes the result from the analysis of the
reference image pairs which instead contained two live images.

In Figure 4.8 and Figure 4.9, the example skeletons previously presented in Figure
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4.4 and 4.5 are displayed together with the detected breaks in each skeleton. From
a closer inspection of these images, it can be noted that the break detection is
not completely flawless. Even though the detected breaks are correct in most cases,
there are a few examples of incorrect end point matches. These are probably a result
of minor deficiencies in the estimated fingerprint orientation. Since the incorrect
matches make up such a small proportion of the total number of detected breaks in
an image, their effect on the final result is however considered to be small.

//%&

Figure 4.8: Detected ridge skeleton breaks. The left image visualizes the breaks
detected in the skeleton obtained from a spoof image and the right image visualizes
the breaks detected in the skeleton obtained from the corresponding live image. The
two end points in each break are emphasized with markers of the same color.

Figure 4.9: Detected valley skeleton breaks. The left image visualizes the breaks
detected in the skeleton obtained from a spoof image and the right image visualizes
the breaks detected in the skeleton obtained from the corresponding live image. The
two end points in each break are emphasized with markers of the same color.

As anticipated, it is evident from the result presented in Figure 4.6 and 4.7 that
there is a significant difference in the number of detected valley breaks between
the live and spoof images but no significant difference in the number of detected
ridge breaks. The difference in distribution seen in the left image in Figure 4.7 is
significant at the p = 0.01 level. Hence, the number of valley breaks in an image is
considered to be a valuable feature in the quality assessment of fingerprint images
obtained from spoofs. The small differences in distribution seen in the reference
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data are most probably due to the natural sources of variation in fingerprint images
such as the pressure against the sensor and the moisture level of the finger.

4.1.3.2 Skeleton spike detection

The results from the skeleton spike detection are presented in Figure 4.10 and 4.11.
Recall that the results presented in the left histograms originate from the first set of
image pairs, while the results presented in the right histograms originate from the
second set of image pairs. In Figure 4.12 and 4.13, the example skeletons previously
presented are displayed again together with the detected spikes in each skeleton.
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Figure 4.10: Histograms of detected ridge skeleton spikes. The left histogram
visualizes the result from the analysis of the image pairs containing both a live and
a spoof image and the right histogram visualizes the result from the analysis of the
reference image pairs which instead contained two live images.
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Figure 4.11: Histograms of detected valley skeleton spikes. The left histogram
visualizes the result from the analysis of the image pairs containing both a live and
a spoof image and the right histogram visualizes the result from the analysis of the
reference image pairs which instead contained two live images.

From Figure 4.10 and 4.11, it is clear that there is a difference in the amount of
skeleton spikes detected in the live and spoof skeletons. The differences in distribu-
tion seen in both left histograms are significant at the p = 0.01 level. The number
of spikes in both fingerprint skeletons are thus considered as features which can
contribute to the assessment of fingerprint images obtained from spoofs. The sim-
ilar shift between the live and spoof distributions seen in these images is expected
since irregularities in the ridge and valley interfaces in fingerprint images reason-
ably would generate spikes in both the ridge and valley skeletons. The correlation
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between the number of spikes in the spoof ridge and valley skeletons are however
only 0.52, thus these features are both considered as valuable features in the spoof

quality assessment.

Figure 4.12: Detected ridge skeleton spikes. The left image visualizes the spikes
detected in the skeleton obtained from a spoof image and the right image visualizes
the spikes detected in the skeleton obtained from the corresponding live image.
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Figure 4.13: Detected valley skeleton spikes. The left image visualizes the spikes
detected in the skeleton obtained from a spoof image and the right image visualizes
the spikes detected in the skeleton obtained from the corresponding live image.

4.1.3.3 Skeleton bifurcations

In Figure 4.14 and 4.15 the histograms of the number of skeleton bifurcations not
already part of a skeleton spike are presented. Recall that the results presented
in the left histograms originate from the first set of image pairs, while the results
presented in the right histograms originate from the second set of image pairs. By
studying Figure 4.14 and 4.15, it is evident that there is an increase in the number
of bifurcations in the spoof skeletons compared to the live skeletons. The differences
in distribution seen in the left image are significant at the p = 0.01 level. Hence, the
number of bifurcations in both skeletons are also considered as valuable features in
the quality assessment of fingerprint images obtained from spoofs.
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Figure 4.14: Histograms of the ridge skeleton bifurcations. The left histogram
visualizes the result from the analysis of the image pairs containing both a live and
a spoof image and the right histogram visualizes the result from the analysis of the
reference image pairs which instead contained two live images.

[ live [ live (warped)
[ spoof [live (target)
0.1+ ] :2*
=
©
S
0.05¢ 5
0 0
0 0.02 0.04 0.06 0.08 0.1 0 0.02 0.04 0.06 0.08 0.1

normalized number of bifurcations normalized number of bifurcations

Figure 4.15: Histograms of the valley skeleton bifurcations. The left histogram
visualizes the result from the analysis of the image pairs containing both a live and
a spoof image and the right histogram visualizes the result from the analysis of the
reference image pairs which instead contained two live images.

The considerable shift in distribution seen in the left histogram in Figure 4.14 is
much expected since an increased number of breaks in the valley skeleton implies
that there is an increased number of bridges between adjacent ridges. Each bridge
between adjacent ridges result in two additional bifurcations in the ridge skeleton,
hence an increased number of breaks in the valley skeleton is analogous to an in-
creased number of bifurcations in the ridge skeleton. The correlation between the
number of breaks in the spoof valley skeletons and the number of bifurcations in the
spoof ridge skeleton is 0.86, thus a combination of these two features in the quality
assessment of the fingerprint images will not yield an additive effect in the evaluation
even though both features are considered valuable. The shift in distribution seen in
the left histogram in Figure 4.15 is however not as expected. A possible explanation
for this might be that the skeletonization process tends to split ridge and valley
endings into two spikes. Since such spikes do not originate from irregular ridge and
valley edges, they should not be detected as spikes and hence the bifurcation in a
split ending is included in the bifurcation statistics. The correlation between the
number of bifurcations in the valley skeleton and the number of end points in the
valley skeleton is however only 0.14, which suggests that the increased number of
bifurcations in the spoof valley skeletons is caused by other factors too.
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4.1.3.4 Skeleton curvature

The results from the skeleton curvature analysis are presented in Figure 4.16 and
4.17. Again, the results presented in the left histograms originate from the first set
of image pairs, while the results presented in the right histograms originate from
the second set of image pairs.

0.2+ [ live 0.2 [live (warped)|
[ spoof [live (target)
0.15 ] £0.15
2
0.1 .8
o}
0.05+
0
0 0.1 0.2 03 04 05 0 0.1 02 03 04 05

normalized curvature normalized curvature

Figure 4.16: Histograms of the ridge skeleton curvature. The left histogram visu-
alizes the result from the analysis of the image pairs containing both a live and a
spoof image and the right histogram visualizes the result from the analysis of the
reference image pairs which instead contained two live images.
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Figure 4.17: Histograms of the valley skeleton curvature. The left histogram
visualizes the result from the analysis of the image pairs containing both a live and
a spoof image and the right histogram visualizes the result from the analysis of the
reference image pairs which instead contained two live images.

The curvature analysis was first performed without removing all the bifurcations
and crossovers from the skeletons. The obtained result showed a significant increase
in the curvature of the spoof ridge skeletons compared to the live ridge skeletons.
This result was however believed to be strongly influenced by the large amount of bi-
furcations in the ridge skeletons since the skeletons bend sharply in these points. In
order to minimize the correlation between the skeleton point detection and the skele-
ton curvature analysis, all crossovers and bifurcations and their 8-neighbors were
removed from the skeletons before the curvature of the skeletons were evaluated.
The results in Figure 4.16 and 4.17 are the results obtained after this correction.
Interestingly, the obtained result still showed a significant difference in the curva-
ture between live and spoof ridge skeletons, but the shift of the spoof distribution
now implied a decrease in curvature in the spoof ridge skeletons compared to the
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live ridge skeletons. This result implies that the large amount of bifurcations and
crossovers removed from the ridge spoof skeletons actually did influence the previous
result strongly. A probable explanation for the significant decrease in curvature for
the spoof ridge skeletons is that their additional skeleton bifurcations and crossovers
often coincide with skeletons pixels in which the larger scale curvature is higher. If
this is the case, the curvature analysis might however not measure the jaggedness
of the skeletons as intended, but instead measure the larger scale curvature of the
ridges and valleys. This explanation however still implies that the results are influ-
enced by the amount of bifurcations in the spoof skeletons.

The difference in curvature between the live and spoof distributions in Figure 4.16
is significant at the p = 0.01 level. The correlation between the number of detected
bifurcations and the skeleton curvature in the spoof ridge skeletons is —0.54. The
influence from the amount of detected skeleton bifurcations is thus considered not to
be large enough to exclude this feature from the final quality assessment model. Even
though the curvature analysis probably did not manage to measure the jaggedness
of the skeletons and instead is believed to measure the larger scale curvature of the
ridges and valleys, this feature is still considered valuable in the quality assessment
since the larger scale curvature of the images in each pair should be the same.

4.1.4 Intensity distributions

In the following sections, the results from the intensity distribution analyses and
the intensity profile analysis are presented and discussed. These analyses were per-
formed both on the set of image pairs containing one live and one spoof image
and also on the reference image pairs. For each of the analyses presented below,
the results for the two image sets are presented in the same figure but in separate
histograms. Hence, each histogram figure contains two histograms and the left his-
togram visualizes the results obtained from the first set of image pairs, while the
right histogram visualizes the results obtained from the second set of image pairs.
In the left histograms, the distribution in green originates from the spoof images
and the distributions in blue originates from the live images. Both distributions in
the right histograms originate from live fingerprint images, the pink distributions
originate from the live images used as targets in the registration process while the
gray distributions originate from the warped images.

4.1.4.1 Intensity distribution in fingerprint ridges and valleys

The results from the intensity distribution analysis of the ridges and valleys in the
fingerprint images are presented in Figure 4.18 and 4.19. As previously stated, the
left histogram visualizes the results obtained from the image pairs containing both
live and spoof fingerprint images, while the right histogram visualizes the results
obtained from the image pairs containing two live fingerprint images.

As can be seen in Figure 4.18 and 4.19, no significant differences in the mean ridge
and valley intensity were found. This analysis relies heavily on the separation of
the ridges and valleys in the binarization process. But since the binarization of the
images is based on global thresholds, the intensity variations in the ridges and valleys
are naturally limited by the calculated thresholds. If the intensity in the ridges and
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valleys varies past this threshold the ridges and valleys are disrupted during the
binarization. Thus, the intensity variations seen along the ridges and valleys in the
spoof images are not captured by this analysis. In order to capture the intensity
variations along the spoof fingerprint ridges and valleys, the ridges and valleys in
the binary images need to be intact. There are complex image processing methods
capable of repairing the fingerprint ridges and valleys, but an implementation of
such methods was not feasible within the time frame of this thesis.
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Figure 4.18: Histograms of the average ridge intensity. The left histogram visu-
alizes the result from the analysis of the image pairs containing both a live and a
spoof image and the right histogram visualizes the result from the analysis of the
reference image pairs which instead contained two live images.
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Figure 4.19: Histograms of the average valley intensity. The left histogram visu-
alizes the result from the analysis of the image pairs containing both a live and a
spoof image and the right histogram visualizes the result from the analysis of the
reference image pairs which instead contained two live images.

4.1.4.2 Intensity distribution along fingerprint skeletons

The results from the intensity distribution analysis along the ridge skeletons and
valley skeletons of the fingerprint images are presented in Figure 4.20 and 4.21. The
results presented in the left histograms originate from the first set of image pairs,
while the results in the right histograms originate from the second set of image pairs.

Just as in the analysis of the intensity distribution of the fingerprint ridges and
valleys, the intensity distribution along the valley skeletons are naturally limited by

the threshold used in the binarization process. However, by studying the histograms
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in Figure 4.20 it is clear that there actually is a significant difference in the mean
intensity along the ridge skeletons. The difference in mean intensity along the ridge
skeletons is significant at the p = 0.01 level. This difference is probably partially
due to the fact that the ridges in the spoof images often are brighter than the ridges
in the live images. However, since a similar difference is not seen in the intensity
distribution in the entire spoof fingerprint ridges (see Figure 4.18), additional factors
probably also affected the result. For example, the intensity distribution along the
spoof ridge skeletons is most likely affected by the large amount of bridges in the
spoof ridge skeletons since the intensity along the skeleton bridges is higher than
the intensity along the ridges. The correlation between the spoof ridge skeleton
intensity mean and the number of valley breaks and ridge bifurcations in the spoof
skeletons is however low, 0.16 and 0.18 respectively. Thus, the intensity mean along
the ridge skeletons is considered as a feature which can contribute to the assessment
of spoof fingerprint images.
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Figure 4.20: Histograms of the average intensity along the ridge skeletons. The
left histogram visualizes the result from the analysis of the image pairs containing
both a live and a spoof image and the right histogram visualizes the result from the
analysis of the reference image pairs which instead contained two live images.
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Figure 4.21: Histograms of the average intensity along the valley skeletons. The
left histogram visualizes the result from the analysis of the image pairs containing
both a live and a spoof image and the right histogram visualizes the result from the
analysis of the reference image pairs which instead contained two live images.
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4.1.4.3 Intensity profiles

The results from the intensity profile analysis are presented in Figure 4.22 and 4.23.
The results presented in the left histograms originate from the first set of image
pairs, while the right histograms originate from the second set of image pairs.
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Figure 4.22: Histograms of the average steepness of the valley-ridge-valley inten-
sity profiles. The left histogram visualizes the result from the analysis of the image
pairs containing both live and spoof images and the right histogram visualizes the
result from the analysis of the reference image pairs.
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Figure 4.23: Histograms of the average steepness of the ridge-valley-ridge intensity
profiles. The left histogram visualizes the result from the analysis of the image pairs
containing both live and spoof images and the right histogram visualizes the result
from the analysis of the reference image pairs.

The similar shift between the live and spoof distributions seen in Figure 4.22 and
4.23 is most expected since a steep valley-ridge-valley intensity profiles should im-
ply that there is also a steep ridge-valley-ridge intensity profile. The correlation
between the valley-ridge-valley intensity profiles and the ridge-valley-ridge inten-
sity profiles is 0.97, hence there is a strong positive correlation between the two.
Since the spoof fabrication process is believed to introduce a sharp shift between
the ridges and valleys, the steepness of the intensity profile perpendicular to the
ridge and valley pattern is expected to be larger in the spoof images than in the live
images. However, the obtained results presented in Figure 4.22 and 4.23 suggest
the opposite. From these figures, it is clear that the intensity profile is steeper in
the live images than in the spoof images. The distribution differences between the
live and spoof images seen in these figures are both significant at the p = 0.01 level.
Since the obtained results were opposite to the expected, two-sided t-tests were
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used to evaluate the significance. However, this hypothesis was not formed from
visual inspection but rather from knowledge about the spoof fabrication process.
Actually, a steeper intensity profile in the spoof fingerprint images compared to the
live fingerprint images could not be established during the visual inspection. The
original hypothesis might thus be incorrect. Another possible explanation for this
contradictory result could have been that the steepness of the intensity profile is
affected by the slight differences in ridge and valley intensities often seen in the live
and spoof images. Since the ridges often are slightly brighter in the spoof fingerprint
images compared to the live fingerprints, the steepness of the intensity difference
along the intensity profile might have become less steep in the fingerprint images.
However, if the intensities values along the profile were normalized before the steep-
ness was calculated, no difference was seen in the result. Thus, this explanation is
not probable. Either way, the intensity profile steepness evidently detects some kind
of significant difference in the image pairs and is thus considered to be a relevant
feature to include in the quality assessment of the fingerprint images. Even though
the valley-ridge-valley intensity profiles and the ridge-valley-ridge intensity profiles
are highly correlated, both of them are included in the spoof quality assessment.

4.1.5 Ridge and valley width

In the following sections, the results from the analyses regarding the ridge and
valley width are presented and discussed. These analyses are the distance transform
analysis, the relative width analysis and the frequency spectrum analysis.

4.1.5.1 Distance transforms

The results from the distance transform analysis are presented in Figure 4.24 and
4.25. In both of these figures, the left histograms visualize the results from the
analysis of the image pairs containing both live and spoof images while the right
histograms visualize the results obtained when performing the same analysis on the
reference data. The distributions in green in the left histograms shows the average
distance to the closest ridge or valley in each spoof image and the distributions in
blue in the left histograms shows the average distance to the closest ridge or valley
in each live image. In the right histograms, both distributions are from live images,
but the pink distributions originate from the live images used as targets in the reg-
istration process while the gray distributions originate from the warped images.

By studying the histograms in Figure 4.24 and 4.25, it is clear that there is a
significant difference in the average distance to the closest valley between the live
and spoof images. This difference is significant at the p = 0.01 level. However, if
this difference were due to thinner valleys in the spoof images compared to the live
images, an opposite shift of the spoof distribution would have been seen in Figure
4.24 since the ridges in the spoof images then conversely would be thicker. Hence,
the large shift in distribution seen in Figure 4.25 is probably not caused by thinner
valleys in the spoof images. The large shift is again probably caused by the large
amount of valley breaks in the spoof images since the average distance to the closest
valley in an image increases if the valley breaks are longer than the average ridge
width. The correlation between the average distance to the closest valley and the
number of valley breaks is 0.71, thus a combination of these two features in the

44



probability

probability

4. Experimental results and analysis

quality assessment of the fingerprint images will not yield an additive effect in the
evaluation even though both features are considered valuable. The smaller shifts
in distribution seen in the right images in Figure 4.24 and 4.25 are most probably
due to variations in the fingerprint images caused by differences in finger pressure
against the sensor between the two sets.
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Figure 4.24: Histograms of the average distance from the valley pixels in an image
to their closest ridge. The left histogram visualizes the result from the analysis
of the image pairs containing both live and spoof images and the right histogram
visualizes the result from the analysis of the reference image pairs.
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Figure 4.25: Histograms of the average distance from the ridge pixels in an image
to their closest valley. The left histogram visualizes the result from the analysis
of the image pairs containing both live and spoof images and the right histogram
visualizes the result from the analysis of the reference image pairs.

4.1.5.2 Relative ridge and valley width

The results from the relative ridge and valley width analysis are presented in Figure
4.26. In the left histogram, the average relative ridge width for the image pairs
is visualized and in the right histogram, the average relative valley width for the
image pairs is visualized. The relative ridge width is defined as the ridge width
estimated in the image used as target divided by the ridge width estimated in the
warped image. The relative valley width is defined as the valley width estimated
in the warped image divided with the valley width estimated in the image used as
target. The distributions in green show the average relative ridge or valley width
in the image pairs containing both live and spoof images while the distributions in
blue shows the average relative ridge or valley width in the reference data. If there
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is a pairwise difference in relative width among the image pairs, the mean of the
green distributions will be larger than one, while the mean of the reference data
distributions showed in blue should be centered around one.
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Figure 4.26: Relative ridge and valley width. The left histogram visualizes the
relative ridge width in the image pairs and the right histogram visualizes the relative
valley width in the image pairs. The green distributions shows the average ridge
and valley width ratio in the image pairs containing one live image and one spoof
image. The distributions in blue shows the average ridge and valley width ratio in
the image pairs containing two live images.

As can be seen in Figure 4.26, there are small differences in relative width between
the image pairs containing both live and spoof images and the reference image pairs.
The difference in relative ridge width is significant at the p = 0.01 level and the dif-
ference in relative valley width is significant at the p = 0.025 level. Even though the
obtained differences are significant, there are a few limitations of this method which
are believed to have affected the results. First, the resolution of the investigated
fingerprint images is believed to have limited the accuracy of the results obtained in
this analysis. A higher image resolution would have resulted in more precise mea-
surements of the ridge and valley widths. Second, noise in the fingerprint pattern
such as spikes, holes and incipient ridges might affect the individual measurements
considerably. Third, the irregular ridge and valley interfaces seen in the spoof fin-
gerprint images is also believed to limit the accuracy of this analysis. Hence, the
reliability of the final statistics might be impaired by these limitations. The relative
ridge and valley width was thus not included in the quality assessment model.

Interestingly, it may also be noticed that the mean of the blue distributions origi-
nating from the reference image pairs in Figure 4.26 are not centered around one as
expected. This result is however in agreement with the small distribution shifts seen
in the right images of Figure 4.24 and 4.25 and is most probably due to variations
in finger pressure against the sensor between the two sets.

4.1.5.3 Frequency spectrum analysis

In Figure 4.27, the average of the radial frequency signals of the source and target
images in the image pairs are visualized. The plot on the left shows the results from
the images in the pairs containing one live and one spoof image and the plot on the
right shows the results from the reference image pairs. In Figure 4.28, the frequency
spectra magnitudes for an example image pair containing a live and a spoof image
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are displayed and in Figure 4.29 their radial frequency signals are presented. The
left image in Figure 4.28 visualizes the frequency spectrum of the spoof image in
the pair and the right image visualizes the frequency spectrum of the live image.
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Figure 4.27: Average radial frequency. The left plot visualizes the average radial
frequency of the live and spoof images in the data. The right plot visualizes the
average radial frequency of the reference data.

Figure 4.28: Frequency spectra magnitude examples. The left image is a typical
example of the frequency spectrum magnitude of a spoof image and the right image
is a typical example of the frequency spectrum magnitude of a live image. The
magnitude is presented in logarithmic scale in both images.

oo

—live

(o]

N

magnitude (log scale)
5

0 ' L ' L
0 0.2 0.4 0.6 0.8 1
normalized frequency

Figure 4.29: Radial frequency example. The plot visualizes an example of the
difference in radial average frequency often seen between live and spoof images.

As can be seen in Figure 4.27, there is a difference between the average radial

frequency magnitude for the all the live images and the average radial frequency
magnitude for the all the spoof images, compare to the right plot in the same figure
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in which there is a perfect overlap between the average radial frequency magnitude
signals for the source and target images. The difference between the live and spoof
frequency spectra magnitudes becomes even more apparent when studying each pair
separately. The magnitudes of the spoof frequency spectra are in general blurrier
than their live equivalents. In addition to the blurriness, the lobe corresponding
to the ridge and valley frequencies are more concentrated in the frequency spectra
of the live fingerprint images than in the frequency spectra of the spoof images.
These trends can clearly be seen in the example image pair in Figure 4.28. Figure
4.29 shows that the difference in the radial frequency obtained from these frequency
spectra magnitudes also is more evident than the average of the radial frequency
signals for all the image pairs. Due to time constraint, this feature was however not
included in the spoof fingerprint image quality assessment.

4.1.6 Spoof image quality

The predictors used in the hyperplane model and their respective weights are pre-
sented in Table 4.1. From the magnitude of the weights presented in this table, it is
clear that the intensity profiles are the predictors which have the largest impact in
the hyperplane model. The number of breaks in the valley skeleton and the number
of bifurcations in the ridge skeleton are also given a large impact in the model.

Table 4.1: Hyperplane model predictors and their respective weights. In this table
the ten features used as predictors in the separating hyperplane model are presented
together with their respective weights. The bias term in the model is —0.1086.

hyperplane model predictors B
ridge-valley-ridge intensity profile 1.9123
valley-ridge-valley intensity profile -1.5150
number of bifurcations in the ridge skeleton -0.6933
number of breaks in the valley skeleton -0.6806
ridge skeleton intensity -0.4656
number of spikes in the ridge skeleton -0.3147
distance to closest valley 0.2613
number of bifurcations in the valley skeleton 0.1668
number of spikes in the valley skeleton -0.1631
ridge skeleton curvature 0.1402

In the 186 image pairs containing both live and spoof images, 162 of the live images
and 172 of the spoof images are unique. When these unique images are classified
with the separating hyperplane model, 66% of the live images and 86% of the spoof
images are classified correctly. Hence, the separating hyperplane model classifies
76% of the images in the investigated set correctly. The probability outputs from
the separating hyperplane model are used as an indication of the spoof image quality.
Low quality images are identified by extracting the spoof images with a high spoof
probability while high quality images are identified by extracting the spoof images
with a low spoof probability. In Figure 4.30 and 4.31, examples of the spoof images
which obtained the highest and lowest spoof probability are presented together with
their live equivalents. The spoof probability of the low quality spoofs displayed in
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Figure 4.30 are 0.99 while the spoof probability of the high quality spoofs displayed
in Figure 4.31 range between 0.06 and 0.16.

Figure 4.30: Examples of low quality spoof images. In the top row of this figure
three of the spoof images with the lowest quality are presented. In the lower row
their live equivalents are displayed.

Figure 4.31: Examples of high quality spoof images. In the top row of this figure
three of the spoof images with the highest quality are presented. In the lower row
their live equivalents are displayed.
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The spoof image examples presented in Figure 4.30 and 4.31 clearly demonstrates
the success of the quality assessment. The spoof images in Figure 4.30 are typical
examples of spoof images which are considered to be easy to differentiate from live
images, while the images in Figure 4.31 are typical examples of spoofs images in
which the ridge and valley pattern cannot be differentiated from live ridge and
valley patterns. Hence, the spoof image quality can successfully be estimated from
the features designed in this thesis. Important to mention is that the low quality
images presented in Figure 4.30 are not the worst images in the entire data set,
since such images did not pass the matching algorithm and thus did not end up in
any of the analyzed image pairs. The quality of the spoof images in Figure 4.30
is thus low compared to the spoof images in the 186 image pairs, but is still high
enough to pass the used matching algorithm. During a manual inspection of the
spoof images in Figure 4.31, the circular shapes with high intensity in the left and
middle spoof image should, however, raise a warning flag. Such circular shapes may
originate from dirt on the sensor or from a blister on a live finger, but do often
originate from an air bubble in the spoof material. However, since a realistic ridge
and valley pattern is considered to be the most important feature to assess when
estimating the spoof image quality, the quality of the spoof images in Figure 4.31
are still considered as high even though they possess a fairly discriminative feature.

4.2 Learning-based fingerprint liveness classification

In the following sections, the results from the learning-based liveness detection part
of the thesis are presented and discussed. Initially, the purpose of the neural network
part of the thesis was to implement a state-of-the-art liveness detection method for
which the performance on different data sets could be used as an indication of their
spoof quality. But since the characteristics of fingerprint images are heavily depen-
dent on sensor technology, the first network, which was trained on images obtained
with optical fingerprint sensors, did not manage to generalize to the images obtained
with the capacitive fingerprint sensing technology used at Fingerprint Cards. The
first network could thus not be used to estimate the quality of the spoof images
provided by Fingerprint Cards and a second network had to be trained on capaci-
tive fingerprint images. Hence, the results obtained from the first network is instead
used as an assurance that the network is successfully implemented.

4.2.1 Network trained on benchmark data

The classification results for each of the test sets used in the Fingerprint Liveness
Detection Competition in 2009, 2011 and 2013 are given in Table 4.2. The spoof
false positive rate, the spoof false negative rate and the average classification errors
obtained for the test sets after 30 epochs are given for each of the data sets. The
average classification errors previously obtained for the same testing data sets using
a network which had the exact same architecture and which had been trained on the
same data sets are presented within brackets [6] in order to facilitate a comparison
between the state-of-the-art results and the results obtained in this thesis.

By studying the average classification errors in Table 4.2, it is clear that the obtained
results are not quite as impressive as the results presented in [6]. The obtained re-
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sults are however good enough to be sure that the network has been implemented
successfully. There are many possible reasons to why two networks of a given ar-
chitecture do not obtain the same performance, even though both are trained and
evaluated on the same data sets. First, the data augmentation proposed by [6] is
reported to improve their average ACE from 4.2 to 2.9. Hence, the higher average
ACE compared to the previously reported results is probably due to the lack of
data augmentation in the implementation in this thesis. Other factors which affect
the results and that were not specified in [6] are how the training sets were divided
into training and validation sets, how the grayscale images in the data sets were
converted to three-channel images, what loss function to use for training and the
number of epochs the training was run.

Table 4.2: Classification results of the test data sets created for the Liveness
Detection Competition in the years of 2009, 2011 and 2013. The obtained spoof
false positive rate, spoof false negative rate and average classification rate for each
of the test data sets are presented. The average classification rates for each data
sets previously obtained with the same network architecture [6] are presented in
brackets. The average spoof false positive rate, spoof false negative rate and average
classification rate for all the test data sets are presented in the bottom of the table.

data sets classification errors

year sensor SFPR SFNR ACE
biometrika 19.9 1.8 10.8 (1.8)
2013 crossmatch 2.2 44 3.3 (3.4)
italdata 7.7 1.4 45 (0.4)
swipe 5.5 5.7 56 (3.7)
biometrika 1.2 14.1 7.6 (5.2)
2011 digital 3.1 5.5 43 (3.2)
italdata 0.6 9.2 4.9 (8.0)
sagem 2.7 5.3 4.0 (1.7)
biometrika 19.9 2.2 11.1 (4.1)
2009 crossmatch 1.6 3.4 2.5 (0.6)
identix 0.9 1.2 1.0 (0.2)
average | 5.9 4.9 5.4 (2.9)

4.2.2 Network trained on Fingerprint Cards data

In Figure 4.32, the network learning progress is reported with help of the classi-
fication error and the network objective (i.e. loss function) versus the number of
completed epochs. Already after five epochs of training, the network classified all of
the 334 test images correctly. Recall that the test set contained 162 live fingerprint
images and 172 spoof images. Both the training and validation classification error
continued to decrease and thus the network obtained after eleven epochs is chosen
as the final network. After having completed eleven epochs of training, there were
only three spoof images in the test set for which the assigned spoof probability was
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below 0.975. These images are presented in Figure 4.33. The spoof classification
scores of the left, middle and right image are 0.67, 0.87 and 0.97 respectively.

By studying the network learning process in Figure 4.32, it is clear that both the
classification error and the network objective decreases rapidly during the first few
epochs. While the classification accuracy of the test images reaches 100% after
five epochs, the classification accuracy of the training and validation images is only
marginally increased from their classification accuracies of 99.95% and 99.50% which
are reached after eleven epochs.
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Figure 4.32: Classification error and objective during network training. The left
plot displays the learning progress with help of the classification error both for the
training and validation set and the right image displays the learning progress with
help of the network objective for both for the training and validation set.

Figure 4.33: The three best spoofs according to the neural network. These three
spoof images yielded the lowest spoof scores. Their spoof scores are however higher
than their liveness scores, hence they are still classified as spoof images.

The fine-tuned network performed far better than expected and classified all the

images in the test set correctly. These results imply that all the images are possible
to classify correctly, regardless of the spoof image quality in the set. However, since
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the network managed to classify even the most realistic spoof images correctly with
a high degree of certainty, this network architecture is not suitable to use in a spoof
image quality assessment. Differentiation between the quality of the images in the
set could however possibly be obtained with a more shallow network.

The images presented in Figure 4.33 clearly demonstrates that the spoof images
which the network is the least certain of are the ones with ridge and valley patterns
which cannot be differentiated from ridge and valley patterns of live fingerprints.
Thus, the network appears to have learned to identify fingerprint images with re-
alistic ridge and valley patterns. Moreover, the network has evidently learned to
differentiate obvious spoof images from live fingerprint images.

Important to note is that the left and the middle images in Figure 4.33, which are
the same images that were the most difficult for the network to classify as spoofs,
are the images which were assigned the highest quality in the feature design part
of the thesis (see Figure 4.31). As previously discussed in Section 4.1.6, the bright
circular shapes in these images probably originate from air bubbles in the spoofs.
Since the images in the training set did not contain many spoof images with air
bubbles, this is evidently not a feature that the network learned during training.
This is, however, a feature which the network probably could learn if the training
set contained a larger amount of spoof images with this particular feature.

The low quality spoof example images in Figure 4.30, which were assigned the high-
est spoof probabilities by the hyperplane model, were also assigned very high spoof
probabilities by the network model. These images were assigned spoof probabili-
ties in the range 0.99 — 1.0 by the network. Hence, these three images are easily
differentiated from live fingerprint images both by the hyperplane model and the
convolutional neural network. The network also assigned a very high spoof proba-
bility (0.99) to the rightmost of the high quality spoof images in Figure 4.31. The
fact that the network model assigned almost the same spoof probability to these
four spoof images substantiates the claim that the structure of the given network
is unsuitable for spoof image quality assessment. The hyperplane model assigned
a spoof probability of 0.38 to the rightmost of the images in Figure 4.33. This is
considered to be a quite high spoof probability for such a realistic spoof image. A
possible explanation for this unexpectedly high spoof probability could be the in-
tensity variations along the valleys which may be seen in some areas of the image.

The difference in performance of the two trained networks in this thesis is believed
to exist due to the difference in variability within their training and test data sets.
The training and test images used in the first network are obtained with eight
different sensors and the spoof images in the sets are created with spoofs of eight
different materials, while the training and test images used in the second network
are obtained with a single sensor and the spoofs are all made of the same material.
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Conclusion

The purpose of this thesis was to develop a tool which assesses the quality of spoof
fingerprint images in a data set and two methods has been evaluated for this pur-
pose. The first method was based on manually designed features derived from visual
comparisons of live and spoof images in the data set provided by Fingerprint Cards.
Ten of these detected features were found to differ significantly between the live and
spoof images and these features were thus used to create a support vector machine-
based classifier by identifying the hyperplane model which best separated the live
and spoof fingerprints in the data set. The quality of the spoof images in a data set
was estimated by assessing the number of spoof images that this hyperplane model
managed to classify as spoofs. Moreover, the quality of the individual spoof images
in the set was defined as the liveness probability assigned by the model. Promising
results were obtained from this quality assessment method. The spoof images that
were assigned a low quality by the hyperplane model were images which easily could
be differentiated from their live equivalents in a manual inspection. Conversely, the
spoof images that were assigned a high quality were images in which the fingerprint
patterns could not be differentiated from live fingerprint patterns. The presented
results indicate that the implemented quality assessment was successful for the in-
vestigated data set. Further, it shows that the liveness features which were manually
designed in this thesis can be used to estimate the spoof image quality.

Features for which there were significant differences between the investigated live
and spoof images originated from the fingerprint skeletons, the fingerprint intensities
and the ridge and valley patterns of the fingerprint images. The number of breaks in
the valley skeletons and the number of spikes and bifurcations in both the ridge and
valley skeletons were the first five significant liveness features that were constructed.
All these features occurred more frequently in spoof fingerprint skeletons than in
their live equivalents. Another significant difference was found when the curvature
of the ridge skeleton was investigated. The curvature of the skeleton is however not
believed to measure the skeleton jaggedness as intended, but is instead believed to
measure the larger scale curvature of the skeleton. Although this assessment might
not function as intended, the curvature of the ridge skeleton is still considered to
be valuable features. The significant features related to the fingerprint intensities
were the average intensity along the ridge skeletons and the intensity profiles per-
pendicular to the ridge and valley patterns in the images. Even though the results
obtained for the intensity profile features did not agree with the original hypothesis,
the differences found was still considered to be a valuable feature. The significant
feature related to the ridge and valley patterns is the average distance to the closest
valley from all the ridge pixels in a fingerprint image. Among these ten features, the
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intensity profiles were given the largest impact in the separating hyperplane model
which best separated the two classes. The number of breaks in the valley skeletons
and the number of bifurcations in the ridge skeletons were also given a relatively
large impact in the separating hyperplane model.

The second method evaluated for spoof image quality assessment purposes was based
on a convolutional neural network from which state-of-the-art liveness classification
results recently has been reported on benchmark data sets. The initial idea was
to estimate the spoof image quality of a data set based on the classification results
obtained when the set was classified with the state-of-the-art liveness classification
network. This network was however trained on images obtained from optical fin-
gerprint sensors and did not manage to generalize to fingerprint images obtained
from capacitive sensors due to their different characteristics. By training the same
network architecture on fingerprint images obtained from capacitive sensors instead
of images obtained from optical sensors, a capacitive version of the state-of-the-art
liveness detection network was created. The performance of this liveness detection
network was far better than expected, the network classified all the live and spoof
images in the investigated set correctly and only three of the spoof images were
assigned a spoof probability lower than 0.975. These are fantastic liveness detec-
tion results. However, the fact that the network managed to classify even the most
realistic spoof images correctly with a high degree of certainty makes this network
architecture unsuitable for spoof quality assessment. Differentiation between the
images in the set could however possibly be obtained with a more shallow network.

Since the implemented liveness detection network demonstrated such extraordinary
performance, it is suggested that future studies investigate the network in more
detail. There are methods to investigate the features learned by the network [33, 34]
and by identifying such features a better understanding of the liveness detection
performed by the network might be obtained. Also, by investigating the network
in more detail it could probably be reduced in size which could make it suitable for
usage in on-line applications such as mobile phones.
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