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Abstract 

Optimization methods are being used progressively in the automotive industry. New 

legislation on emissions have pushed the development of more efficient vehicles, thus vehicles 

become more complex, the task of finding the optimal design only by engineering expertise 

becomes almost impossible, or at least deemed to result in sub-optimal designs. To deal with the 

increased complexity of the task, this thesis aims to develop a tool to perform optimization to 

solve several problems, e.g. model calibration, vehicle feature optimization. The tool developed is 

able to perform mixed-integer and multi-objective optimization, and handle various types of 

constraints, as many of the problems require these abilities. The tool has been tested on 

benchmark functions and on test cases provided by Volvo AB. On the first test case, it has 

managed to perform a multi-objective problem with both discrete and continuous variables and 

successfully reduced the calibration error of a Gipps traffic model. On the second test case, it 

optimizes a gearshift map for an automated gearbox. The aim was to reduce fuel consumption and 

improve the performance. By the end, it was obtained a 1.4% improvement in fuel consumption 

with the same performance as the reference calibration. 

 

Keywords: Optimization, Multi-objective, Mixed-integer, Calibration, ZF gearbox, Gipps traffic 

model. 
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Nomenclature 

Abbreviations 

Variable Description 

GSP Global Simulation Platform 

DOE Design of Experiments 

SQP Sequential Quadratic Programming 

MADS Mesh Adaptive Direct Search 

NSGA II Second version of the Non-dominating Sorting Genetic 

Algorithm. 

ZDT Zitzler-Deb-Thiele’s multi-objective benchmark function 

RMS Root Mean Square error 

RSM Response Surface Method 

ZF Gearbox manufacturer 

Symbols 

Variable Description Units 

f Function to be minimized -- 

g Inequality constraint function -- 

h Equality constraint function -- 

Meq Number of equality constraints -- 

Mineq Number of inequality constraints -- 

x Vector of design variables -- 

v Vector with mutated variables -- 

u Vector with the design variable of the child -- 

F Mutation factor -- 

CR Crossover probability -- 
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randn Random number generated by normal distribution -- 

rand Random number generated by uniform distribution -- 

SCR Vector of successful crossover probability values -- 

SF Vector of successful mutation factor values -- 

c Adaptation control parameter of JADE -- 

p Percentile of best individuals parameter of JADE -- 

σ Tolerance -- 

N Number of allowed values for discrete variable -- 

d Euclidean distance -- 

NP Number of individuals in population -- 

τ Response time s 

Sv Safety margin m 

bl Deceleration of the leader m/s2 

bf Deceleration of the follower m/s2 

Subscripts 

m Mean values 

i Individual index 

j Variable index 

G Generation index 

Best Best values in population 

R Random picked individual 

Max Maximum value 

Superscripts 

P p% individuals of population 
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1. Introduction 

Automotive industries have progressively increased the usage of CAE (Computer Aided 

Engineering) methods to improve lead-time and reducing costs in product development projects. 

Simulation is one of these tools that have the greatest potential in contributing with early 

development analysis, prototype expenses and improving overall project results. Instead of 

building prototypes on each development loop, it is possible to access many vehicle features by 

simulation before a defined concept even exists. By doing early concept analysis, errors that 

would be found only during testing phase, can be identified and corrected. 

GSP (Global Simulation Platform) is a tool developed at Volvo AB. It is based on 

Simulink models that simulate the complete vehicle, the interactions of its subsystems and its 

external interactions with the driver and the environment (road). The models simulate the physical 

and control behaviour of components through 0D/1D dynamic models [1]. This tool is essentially 

used to evaluate vehicle features such as fuel consumption and performance and to generate useful 

insight of the vehicle behaviour.  

A single truck can be adapted to a wide range of applications by modifying engine and 

gearbox control calibrations, tyres, final gear ratio and many other parameters. To find the 

configuration that meets all requirements and that has the lowest fuel consumption, one way is by 

simulating all possible combinations of parameters, tough it can be impossible given the number 

of possibilities to be tested. This approach is often referred to as the brute force method. 

For many years, engineers used a variation of the brute force method that relies on their 

expertise of knowing, from all the possible configurations, which were the most promising 

settings and testing only those, drastically reducing the number of simulations to be made. This 

approach sometimes does not consider configurations that could be even better than the ones 

believed feasible by the engineer.  

New legislation on emissions have pushed the automotive industries to develop more 

efficient vehicles, thus vehicles become more complex, the task of finding the optimal design only 

by engineering expertise becomes almost impossible, or at least deemed to result in suboptimal 

designs. To deal with the increased complexity of the task, optimization methods have been 

applied to solve some of the problems that are common in automotive industry. 



 

 

 

 

10 

 

1.1. Purpose 

Optimization can be used to solve several problems in automotive industries. Problems 

like optimal component sizing, controller calibration, optimization of vehicle features, calibration 

of models, simply anything that is not easily achieved by trial and error methods or is considered 

too complex, could be solved by optimization techniques.  

The purpose of this thesis was to develop a platform that applies optimization algorithms 

to solve many of the problems highlighted earlier. Currently at Volvo AB, there are several 

optimization methods being used in different departments, but they are developed for specific 

needs and not reused. To avoid that, one of the purposes of building an optimization tool was to 

have common methods that could be reused for different problems in all the company. 

There are multiple tools and software that perform optimization in the market, but to use 

them in the specific problems at Volvo AB would require a long time to set up. The interface 

between the applications and the optimization tool would take too long to be developed. With an 

in-house developed tool, the algorithms available can be tuned for the target tasks, giving faster 

and better results with increased compatibility. 

Section 1.1.1 and 1.1.2 explain two situations where optimization could be used at Volvo. 

1.1.1. Vehicle Feature Optimization 

The optimization of a vehicle using simulation models can be seen as a multi-level 

optimization problem [2]. Figure 1, shows the three different possible levels of optimization of a 

vehicle. The first is the topology, which represent the number of components and the order that 

they are connected in the driveline. The second is the sizing of the components and technology 

optimization, known also as outer loop or offline optimization. Finally, the third is the optimal 

control of each component, known as inner loop or online optimization. 

If the topology is considered constant and the goal is to optimize the sizing and control of 

components, this constitutes a bi-level optimization and it is inherently a mixed-integer multi-

objective problem [3]. This is mainly because there is a finite number of components to be chosen 

from, and then the choice is over a discrete finite domain. The control and vehicle parameters can 

be either discrete or continuous; a problem, which can have both types, is called mixed-integer. It 

is multi-objective because even fuel consumption being the main objective of an optimization in 
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the automotive industry, this cannot be done without taking into account the performance and 

driveability aspects, the optimization should try to minimize fuel consumption and maximize the 

performance of the vehicle. Other objectives could be taken into account, like the minimization of 

the number of gearshifts per kilometre. 

 

Figure 1- Different optimization levels [2]. 

One important aspect that must be taken into account, if one have limited computational 

power, is to prefer the usage of light models when performing complex optimization. If this is not 

possible, the usage of algorithms that need the lowest number of simulations per step, not to occur 

in a long optimization process should be prioritized. The GSP models, used in this thesis, are 

considered complex and time consuming, with an average running time of 2 minutes. 

1.1.2. Model calibration by optimization 

Optimization is a very general method that could be used to solve infinity of problems, and 

then it is natural that this technique could be used in model calibration problems. These problems 

often have high dimensionality and are hard to tune given the wide range of values that the 

calibration variables can assume. Often calibration can be a tedious trial and error process, and in 

this case, through optimization it is possible to find good solutions with less effort while searching 

the domain in a smart way.  
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The objective in this case is to find the parameters that minimize the error between the 

outputs of the model and a measured or reference output that is being modelled. 

1.2. Objective 

The following objectives should be met by the end of the thesis: 

 This master thesis aims to develop an optimization platform to work with GSP and 

other applications such as Matlab scripts and Simulink models. The platform must 

apply different optimization methods to solve usual problems found at Volvo AB. 

The most common problems are optimal component sizing, controller calibration, 

optimization of vehicle features, and calibration of models.  

 The resultant tool should be able to perform mixed-integer multi-objective 

optimization, since many of the problems at Volvo AB require this ability. 

 The tool must be easy to use and to be easily customizable by the user, so it is 

possible to set up complex problems without difficulty.  

 The platform should be tested on real situations that reflect the main possible 

usages of the tool at Volvo AB.  

1.3. Delimitations 

Only a few optimization algorithms were tested, since the main idea is not to perform a 

full benchmark between them. The focus was on the development of the tool and on the handling 

of the various types of problems rather than finding the best algorithms for each problem. 

Only offline (outer loop) optimization was be contemplated by the tool. The module could 

be extended to perform online optimization also, but given time constraints, this was not done. 

2. Optimization 

This section gives a background about optimization for the better understanding of the 

thesis. 

2.1. Single Objective Optimization 

The objective of an optimization method is to solve the following system of equations [4]: 
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 Minimize  f (x) 

Subject to  gj(x) ≤ 0,    j=1, 2, …, Mineq, 

                        hi(x) = 0,    i=1, 2, …, Meq. 

(1) 

where f is the function to be minimized (often referred to as objective or cost function), and in the 

case of this thesis can be the result of a Simulink® model or of a calculation made in a Matlab® 

script. h and g are the equality and inequality constraint functions respectively, appearing in any 

number and being calculated from the results of the calculations or from the design variables x. 

2.2. Optimization Methods 

There are different classes of optimization methods, [4] defined them to be gradient 

dependent and gradient-free methods. 

2.2.1. Gradient based methods 

Gradient dependent methods use the information of the gradient to guide the search to the 

next point of evaluation, since in this thesis the cost function is a model in Simulink or calculation 

in a Matlab script, hence non-differentiable, gradient methods become less efficient since they 

require estimating the gradient by finite difference method. This approach increases the number of 

function evaluations at each step, therefore, gradient-free methods become an interesting choice. 

 

Figure 2 – Gradient descent search method. 

Figure 2 illustrates the gradient descent method. In this method, the point is moved in the 

space in the direction of the gradient (perpendicular to the lines that represent constant cost 
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function value), the size of the step is proportional to the gradient, more spaced lines means lower 

values of gradient, therefore smaller steps.  

Gradient methods usually are trapped to the first minimum found, since for most of them 

the stopping criterion is to achieve zero gradient. Figure 3 illustrates how the starting point of the 

search affects the convergence towards a local minimum, if the starting point were to the left of 

the “hill” the solver would have found the global minimum. This fact makes the gradient-based 

methods less reliable to solve multi-modal (more than one minimum) problems. 

 

Figure 3 – Solver being trapped in local minima depends on the starting point. 

2.2.2. Gradient-free methods 

Gradient-free methods, as the name states, do not calculate the gradient of the function. 

These methods are highly desired in this thesis since they guide the search without “wasting” 

function evaluations to estimate the gradient locally. Instead, they search the domain in an 

efficient way.  

The three main families of gradient-free methods are direct search, surrogate based and 

stochastic methods [4]. Only the most relevant algorithm of each family are discussed in this 

section, since there are a large number of different methods in these families. 

2.2.2.1. Direct Search methods 

There are several types of direct search methods and each one search the space in a distinct 

way. The main idea behind them is to evaluate a certain quantity of points at each step (the 

number of points can change) and use their cost functions and constraint values to move them 
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around the search space until the optimum is found. The most known methods in this category are 

the Nelder-Mead Simplex Algorithm [5] and the Mesh Adaptive Direct Search (MADS) [6] that is 

available in Matlab® under the name of Pattern Search. 

Both of these methods evaluate a mesh in the search space at each iteration, the best of the 

points that form the mesh does define where the mesh shall move for the next iteration. The mesh 

converges to a region where the candidate to a minimum is located, and then it shrinks until it 

finds it. If the cost function value does not improve when shrinking, the algorithm expands the 

mesh again in an attempt to find another area that could be better. 

Figure 4 shows some examples of meshes that could be used in the MADS algorithm, each 

of the points represent an evaluation of the cost function. 

 

Figure 4 – Examples of meshes that are used in MADS algorithm. 

2.2.2.2. Surrogate model methods  

Surrogate model optimization methods use an approximation of the cost function at the 

range of the evaluation points of the step. This model can be a simple linear/quadratic model or 

even a response surface generated by the evaluation points [4]. 

Then, by optimizing this surrogate model, a new direction to move the evaluation points is 

determined. They are moved in the search space and evaluated until the error between the 
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surrogate model and the cost function values is minimized and the solution converges. Models 

that are more complex require more evaluation points for a given number of dimensions, 

increasing the computational cost, but providing a better representation of the function. 

 

Figure 5 – Surface fitting on the points used in the response surface method. 

 

Figure 6 – Illustration of the response surface method. 

Figure 5 and Figure 6 explains the methodology behind the response surface method 

(RSM), which is similar to many surrogate methods. In this example, a surface is fitted to the 

points as shown in Figure 5. Then, a direction of search is derived from it and a step size is 
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calculated being proportional to the gradient (similar to the gradient descent method, but in this 

case applied to maximization). The search continues in the same direction until the value 

decreases if compared to the previous one. Then, the search goes back one step and evaluates 

more points to derive a new response surface and a new search direction, as shown in Figure 6. 

2.2.2.3. Stochastic methods 

A different approach of derivative-free algorithms are the stochastic methods, these 

methods can perform better than deterministic ones in cases where the cost function has multiple 

local minima and discontinuities. Since the topology of the cost function in this thesis is unknown 

and can change depending on the parameters being optimized these methods quickly become an 

attractive option. 

The most common types of stochastic methods are the meta-heuristic methods that aim to 

improve an answer rather than finding the global minimum. They are proven useful when there is 

little knowledge of the problem and brute force search is not a viable possibility given the search 

space is large and the computational cost high. Additionally most of them are applicable to both 

continuous and discrete optimization (including mixed integer) and can be extensible to multi-

objective optimization. Some disadvantages are the lack of convergence proof, the high 

computing time (but still much lower than brute force) and the sensitivity of the control 

parameters, which are problem dependent [7]. 

2.2.2.3.1. Evolutionary Algorithms 

The most known family of meta-heuristic methods are the Evolutionary Algorithms (EA). 

Given a population of individuals in an environment with limited resources, the competition 

between them causes natural selection, where the fittest individual survives. In the context of 

optimization, the individuals are the candidate solutions, randomly generated. They compete with 

other candidate solutions, and at the end of each optimization step, the fittest of them is selected 

[8].  

At each step, the parent individuals create new individuals called children (or offspring) 

with new parameter combinations. This is called recombination (crossover). Then the new 

individuals evolve through the mutation operation that aims to increase the diversity and to 

generate new variable values. By the end of the step, there is a population two times bigger than in 
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the start. Since there are only resources from half of them, the algorithm uses the selection 

operator to select the individuals that are the fittest in the population (lower cost function value) 

until the original population size is achieved [8].  

 

Figure 7 – Solutions converging towards the optimum region of Rosenbrock function. Different evolutions stages are shown in 

different colours. 

Figure 7, shows the convergence of an evolutionary algorithm towards the optimum. The 

example function is the Rosenbrock function (see Section 3.5 for more details). In the figure, 

individuals at multiple optimization steps are shown, the points converge towards the optimum, 

shown in black. 

Important concepts that define the search in evolutionary algorithms are exploration and 

exploitation. Exploration is the initial phase of the search where new individuals are being 

generated through mutation and recombination (crossover), therefore populating the search space. 

Exploitation is the next phase of the search where the individuals start to converge to regions of 

good fitness. Too much of one of these characteristics can make the search inefficient. Too much 

exploration can lead to bad convergence speed and too much exploitation leads to premature 
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convergence, not giving enough time for the individuals to search properly the space before 

converging to a possible local minimum [8]. 

2.2.2.3.2. Differential Evolution algorithms 

Differential evolution (DE) algorithms uses in the mutation operator information about 

other individuals of the population. This could be compared to social behaviour and collective 

intelligence. This intelligence is incorporated to the algorithm by the use of differences between 

individuals, done by the differentiation operator, which is simple and fast [7]. Therefore, DE is 

strict mathematical formulated. 

It has all the operators as normal evolutionary algorithms, which are mutation, crossover 

and selection. The differential operator is applied in the mutation phase, where the mutated value 

is the result from a difference of two individuals of the population times the mutation factor. In 

the mutation strategy DE/rand/1 [9], three individuals are randomly chosen from the population, 

the mutated vector is written according to Equation 2: 

 𝐯𝒊,𝒈  =  𝒙𝒓𝟎,𝒈  + F( 𝒙𝒓𝟏,𝒈 −  𝒙𝒓𝟐,𝒈) (2) 

where 𝑥𝑟0,𝑔,  𝑥𝑟1,𝑔,  𝑥𝑟2,𝑔 the randomly chosen individuals at generation g, F is the mutation factor 

and 𝐯𝒊,𝒈 is the mutated vector at generation g. There are several other mutation strategies for DE 

algorithms, some of them use the best individual of the population to guide the others towards the 

optimum, and these are called, greedy strategies [9]. 

The main advantages of differential evolution over common evolutionary algorithms is the 

higher convergence speed resultant from the collective intelligence of the population, through the 

differential operator new successful individuals can be generated more easily. 

2.2.2.3.3. Adaptive Evolution algorithms 

Most of the evolutionary algorithms require two main parameters to control the evolution, 

the crossover (recombination) probability and the mutation factor. These parameters are highly 

dependent on the problem being optimized and they affect directly the convergence in a way not 

yet understood. Therefore, it is impossible to determine a parameter combination that is suitable 

for various problems or performs well at different evolution stages of a single problem [9].  
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To avoid tedious trial and error calibration of the parameters by the user each time, 

adaptive parameter control methods were developed, their main goal is to change dynamically the 

parameters during the optimization. Using feedback from the evolution process the parameters are 

changed to comply with the algorithms needs at each step [9].  

The implementation is done by storing a set of control parameters for each individual, and 

using the successful individual’s control parameters to update the population’s control parameters. 

The result is an algorithm that is robust and flexible on a wide range of problems. In the 

case of this thesis, this is a highly desirable quality, given that the target problem is most of the 

times unknown. Tough, one must be aware that a non-adaptive algorithm can outperform an 

adaptive one if correctly calibrated. 

2.3. Possible variable types on optimization problems 

Many problems in industry require the usage of variables that can only assume specific 

values. Problems that use only discrete values are often referred to as combinatorial problems, and 

there are many algorithms specialized to solve them.  

In the platform developed in this thesis, the interest lies in a different type of problem, 

where there could be variables that are continuous and discrete. A problem with both types of 

variables is called a mixed-integer problem. 

Some algorithms can use binary coding for the variables instead of the common known 

real coded variables (real numbers). The binary coding is often used in Genetic Algorithms. It 

simplifies the recombination (crossover) operator, since it splits the binary number that represents 

a variable value in a number of parts and recombines those parts with the ones of a variable from 

another individual. Since this coding is not so easily understandable by users, in the platform real 

coded variables are preferred. 

2.4. Multi-Objective Optimization 

Often the problems that are solved by engineers in the industries consist of more than one 

objective. In automotive companies, a good example is to both minimize fuel consumption and 

maximize performance. In this case, the goal is to find the best compromise between the 

objectives, given that they are conflicting. 

A multi-objective problem can be formulated as follows: 
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 min 𝒇(𝑥) = (𝑓1(𝒙), 𝑓2(𝒙),… , 𝑓𝑀(𝒙))
𝑇 (3) 

where x is optimized over a D-dimensional search space and 𝑓𝑖(𝒙) is one of the M objectives to be 

minimized [9]. 

 In multi-objective optimization the concept of optimum changes, since now the goal is to 

find the best compromise (trade-off) between the objectives. For this, the concept of Pareto 

optimality is used. A solution 𝒙∗ is Pareto optimal if there is no feasible vector x which would 

decrease some objective without causing a simultaneous increase in at least one other objective 

(assuming minimization) [10]. In mathematical notation vector 𝒙∗ dominates another vector x if: 

 ∀𝑖 ∈  {1,2, . . . , 𝑀} ∶  𝑓𝑖(𝒙
∗)  ≤  𝑓𝑖(𝒙) 𝑎𝑛𝑑 ∃𝑖 ∈  {1,2, . . . , 𝑀} ∶  𝑓𝑖(𝒙

∗)  <  𝑓𝑖(𝒙). (4) 

A Pareto front is the hyper-surface in the objective space that is defined by all Pareto-

optimal solutions. The result is a set of best compromise solutions that cannot be dominated by 

others [9].  

 

Figure 8- A Pareto front example. The objective is to minimize both objectives. 

Figure 8 shows an example of a Pareto front. The blue points dominate the red ones, this is 

shown by the red rectangles drawn starting at the blue points, the area formed by the red 

rectangles is the area of the objective space that is dominated by correspondent blue point.  

It is evident that the yellow point is not inside any rectangles meaning that is not 

dominated by any other solution and should be integrated to the Pareto front. Section 3.6.2 shows 

more examples of possible Pareto fronts. 
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Evolutionary algorithms, that are population based, find several Pareto-optimal solutions 

in a single run, different from other algorithms that require multiple runs to achieve the same 

approximation, which is the case of some stochastic processes and most of the gradient based 

methods [11]. The crossover and mutation operators naturally make the solutions converge to a 

Pareto position in the front, and its resolution depends on the number of individuals in the 

population.  

There are methods to transform a multi-objective problem into a single objective one, 

without disregarding the other objectives, the most common technique is scalarization [12], where 

the objective becomes a weighted sum of the other objectives, the downside of this method is that 

it depends on assigning the right weight value by the user. The result using scalarization does not 

provide the Pareto front, and to achieve that, the optimization must be run several times with 

different weights, then all of these results could approximate the Pareto front [3]. 

A more effective approach is the hypervolume indicator [13], it concatenates the multiple 

objectives into a single objective taking into account the dominance of the solutions, then the 

objective becomes only minimizing the hypervolume instead of minimizing each of the objectives. 

Since it takes into account the dominance of the solutions, the result of the optimization becomes 

automatically a Pareto front. Therefore, the calculation of the hypervolume becomes highly 

computationally expensive given the number of objectives and the number of elements in the 

Pareto front [13]. Figure 9 shows an example of a hypervolume defined by eight points in a three 

objective space. 

 

Figure 9 – Hypervolume defined by a set of eight solutions for three objective functions [13]. 
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Instead of dealing with a multi-objective problem, an alternative method is to set a 

constraint for the other objectives, forcing the results to be within a margin of a target value. Then 

it is possible to ensure that the other objective is not be denigrated. 
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3. Methods 

This section describes the methodology used, the methodology did not follow any 

standards and it was particular to this thesis. Each of the steps is described in the next sub-

sessions. 

3.1. Platform building 

Initially the building of the platform was addressed. It was developed in Matlab® software 

since the optimization platform used at Volvo AB is fully based on Simulink®, what gave a 

higher compatibility, also there was a high number of optimization algorithms available as 

Matlab® code in the internet free to use. 

The platform followed a modular configuration, with the more reusable scripts as possible 

to lower maintenance cost in the future. The topology of the tool is shown in Figure 10. The tool 

can performs tasks like optimization and calibration, for each of those tasks an algorithm should 

be selected, then the proper connector, a script that creates the interface between the tool and the 

application. The objective value is computed from the outputs of the application. This can be the 

result of a simulation model, a simple Matlab® script or a generic output from any commercial 

software. 

 

Figure 10 - Overview of the platform and its subparts. 

The platform was built on top of a previous development started in 2015, but several 

aspects of it were changed. The first of these changes was to enable user defined cost functions 

and constraints functions, in a way that the user could choose as many as wanted of each, they are 

very generic which gives the user full freedom of implementation. The tool needed a resume 
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functionality, in case the user needs more steps in the evaluation or if the optimization crashes by 

any reason (leaving the laptop without the power cord attached is the most common occurrence). 

The tool needed to handle multi-objective as well as mixed-integer optimization, the 

implementation of both functionalities is described later in this chapter. 

The simulations and calculations were parallelized in Matlab® to save time, in this way, 

the whole batch of simulations can be split into different workers, and each of those workers runs 

its own batch and sends the data back to the main session of Matlab®. In this way, optimization in 

applications like GSP can be run in a reasonable time. This can be done by launching several 

Matlab® sessions that are closed once their batch is complete, or by using the distributed 

computing toolbox from Matlab®. 

Afterwards it was identified the need of implementing the possibility to load calibration 

files to be used in the calibration task, then the results of simulation could be compared with a 

calibration measurement so an error can be calculated. 

To set up a problem the user must code the cost and the constraint functions. Then, 

indicate the model or calculation file that is used to evaluate a design. If the GSP application is 

being used, the cycles should also be defined. If the goal is to perform a calibration, then a 

measurement file must be indicated. The variables must be defined with information and ranges. 

Finally, the user must input the number of steps that are run and the number of processor cores to 

be used if the goal is to run the evaluations in parallel. 

3.2. Algorithms selected 

Five algorithms were selected to be evaluated in this thesis. Derivative-free algorithms 

were preferred over gradient-based methods given the nature of the target problems of this thesis 

(as discussed in Section 2.2). 

Many algorithms have been created in the past years, selecting an algorithm for a task can 

be complicated given that each is made to a specific kind of problem, constraint and variables 

type. In the case of this thesis, an extra complication had to be taken into account, which was the 

fact that the algorithms could be used for any problem, any kind of constraints and variables from 

discrete to continuous set by the user. 
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Candidate algorithms were selected based on their effectiveness to solve similar problems 

as the ones of this thesis, this was identified by analysing papers where the authors use multiple 

techniques and benchmark them [3] [14]. However, the models used in most papers were simple 

models and less computational expensive than the ones used in this thesis, hence faster algorithms 

are needed. Additionally, the algorithms benchmarked were out-dated and better versions of them 

were available for usage. 

Table 1 shows the information of each of the selected algorithms. It is important to state 

that the algorithms did not need to comply with all the requirements of the tool, and that some 

methods were applied so these algorithms, so they did comply with those requirements. In the 

case of the mixed integer optimization, a method was applied that enables the usage of both 

discrete and continuous variables for all algorithms (see Section 2.3 for more details), but none of 

the algorithms is a proper mixed-integer optimizer. Also for multi-objective optimization, the only 

algorithm that can properly perform this task is JADE (see Section 3.6), but the others can be used 

if a weighting factor is applied to the cost functions and the optimization is run several times for 

different sets of weights. Evolutionary algorithms are by nature unconstrained, it was necessary to 

implement a constraint handling method for JADE. 

Table 1 – Selected algorithms properties and their classification. 

Algorithm Family Applicable on Constraint 
Multi-objective 

method 
Variables type 

Lean gradient 

(in-house) 

Direct search 

surrogate model 

based 

Smooth convex 

problems 
Non-linear scalarization Continuous 

Linear DoE (in-

house) 

Direct search 

surrogate model 

based 

Smooth convex 

problems 
Non-linear scalarization Continuous 

fmincon – SQP 

(Matlab®) 

Gradient-based 

line search 

Smooth convex 

problems 
Non-linear scalarization Continuous 

Pattern search 

(Matlab®) 

Direct search 

global optimizer 

Smooth non-

convex problems 
Non-linear scalarization Continuous 

JADE 

Adaptive 

Differential 

Evolutionary 

Non-smooth 

non-convex 

problems 

Unconstrained 

Non Dominating 

Sorting by 

crowding density 

Continuous 
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The next sections describe briefly the mechanisms behind each of the selected algorithms. 

3.2.1. Lean Gradient 

The Lean Gradient algorithm is an in-house optimizer developed at Volvo AB and it is 

classified as a surrogate model optimizer. The main idea behind it is to evaluate a DoE (Design of 

Experiments) design [15]. This design is a number of parameter combinations that represents the 

data with a certain resolution. To achieve a high resolution on a design, the size of it (number of 

different parameter sets) must be large. To avoid large number of tests at each optimization step a 

lean design was adopted [16]. This design can represent the data well enough to guide the 

optimization towards the optimum. 

At each step, the lean design is evaluated and the cost function values are used to solve an 

undetermined system of equations. The solution is used to determine what the direction that the 

optimizer should go is. In the next step, the search space is updated or by moving the ranges or by 

shrinking it (zooming into and specific area in the domain).  

Since there is no condition that makes the solver increase the range (zoom out) of the 

search it can be trapped in local minima, but for cases where the function is smooth and convex it 

converges fast and with a low number of evaluations of the cost function. 

3.2.2. Linear DoE 

Linear DoE was also developed at Volvo AB. The method consists of evaluating a 

saturated DoE design [16]. Then, using the values of the cost function and constraints at those 

points it creates a linear surrogate model. The linear model is optimized within the range taking 

into account the values of the constraints. As a result, the range can move or shrink depending on 

the best value of the step. The solver stops when the error between the linear model and the actual 

cost function is low, or when there is no improvement of the cost function values. 

Linear DoE requires more function evaluations at each step than Lean Gradient, since it 

uses a saturated design instead of a lean design, but it is still less than most algorithms. It is 

especially good for constrained optimizations, since the constraints are also modelled in the range. 
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3.2.3. Fmincon  

Fmincon is the Matlab® algorithm for constrained minimization, and it is a part of the 

basic optimization toolbox [17]. This function uses different algorithms inside and each of them 

can be used in certain situations, the documentation web page [18] shows recommendations to 

choose the correct algorithm for the task. The recommendation is to use the interior-point 

algorithm first and then sqp (sequential quadratic programming) if the result is not as expected. 

The problem with the interior-point algorithm is that, due to the barrier function calculated inside 

the algorithm, the solution does not approach the boundaries of the inequalities constraints [18]. 

Since in the platform, all constraints are implemented as inequality constraints (see Section 3.3 for 

more information), this algorithm is not recommended given that it could provide sub-optimal 

solutions too often. Finally, the algorithm selected in the platform was the sqp. 

The sqp is a line search method that calculates the derivative by finite differences method. 

It applies a small increment on each search dimension to estimate the gradient. Then, the 

algorithm determines the step size that should be given towards the optimum, and it repeats the 

process until the minimum is found.  

Fmincon is a local optimizer, that means that it is not made to find the optimal of multi-

modal functions, but for simple functions, it can be fast converging. 

3.2.4. Pattern Search 

Pattern Search is a Matlab® function that is a part of the Global Optimization Toolbox. It 

gathers multiple grid search methods, the one being used in the platform is the MADS (mesh 

adaptive direct search). The main idea of MADS is to evaluate a mesh of points in the search 

space, and moving and shrinking it around the search domain until the minimum is found, if the 

cost function values do not improve when it shrinks, the solver expands the mesh again to search 

for a new region. Pattern Search is a global optimizer that can find the global optimum of multi-

modal functions. 
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3.2.5. JADE  

JADE [9] [19] is an adaptive differential algorithm, which means that it is a differential 

evolution algorithm and has adaptive control parameters. Therefore, it aggregates the social 

intelligence of differential evolution with the flexibility and robustness of the adaptive evolution. 

It is known that the parameters F and CR (mutation factor and crossover probability) are 

problem-dependent and that it is necessary to calibrate them for each problem. An advantage of 

JADE is that it eliminates the need of this calibration by implementing the parameters c and p, 

which can be chosen according to their role in the algorithm given that they are insensitive to the 

problem [9]. The parameter c rules the adaptation of the crossover probability and mutation factor, 

while p determines the percentage of best values that can be randomly chosen to compute the 

mutation as it is be shown in Equation 9. The adaptation of the control parameters is done 

according to the following equations: 

 𝐶𝑅𝑚 = (1 − 𝑐) .  𝐶𝑅𝑚 + 𝑐 .  𝑚𝑒𝑎𝑛(𝑆𝐶𝑅) (5) 

  
𝐹𝑚 = (1 − 𝑐) .  𝐹𝑚 + 𝑐 .  

∑(𝑆𝐹)
2

∑𝑆𝐹   
 

(6) 

  𝐶𝑅𝑖 = 𝐶𝑅𝑚 + 0.1 .  𝑟𝑎𝑛𝑑𝑛 (7) 

  𝐹𝑖 = 𝐹𝑚 + 0.1 .  tan(𝜋 .  (𝑟𝑎𝑛𝑑 − 0.5)) (8) 

where 𝐶𝑅𝑚  and 𝐹𝑚  are the mean values of the distribution that generate 𝐶𝑅𝑖  and 𝐹𝑖  for the 

individual i at each generation. 𝑆𝐶𝑅 and 𝑆𝐹 are vectors that contain the values of CR and F that 

successfully generated better individuals in the last generation, in other words, generated children 

(offspring) that replaced their parents. The value of 𝐶𝑅𝑖 is generated by a normal distribution with 

mean 𝐶𝑅𝑚 and standard deviation of 0.1 as Equation 7 shows, while the value of 𝐹𝑖 is calculated 

by a Cauchy distribution, as Equation 8 shows. The Cauchy distribution is more helpful to 

diversify the values of mutation factor when compared to a normal distribution, decreasing the 

probability of early convergence at local minima [9]. The Lehmer mean (
∑(𝑆𝐹)

2

∑𝑆𝐹   
) used in Equation 

6 also helps propagating larger values of mutation factors, improving the progress [9]. 

The successful individuals are responsible to update the control parameters and adapt them 

to the needs of the algorithm at a certain evolutionary stage. The higher the value of the parameter 
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c the fastest this adaptation takes place. Too high values can lead to fast convergence, but low 

reliability in the results. JADE performs best with c ∈ [1/5, 1/20] and p ∈ [5%, 20%] [19]. 

JADE has two different versions, with and without the archive. The archive stores 

members of the population of past generations that can be used in the evolution process. The 

archive is set to a certain size, and once it becomes full, individuals are randomly taken out of it in 

order to maintain its original size. The archive stores the inferior solutions throughout the process, 

and it is used in the mutation process. 

The mutation strategy that JADE uses is DE/current-to-pbest/1 developed especially for 

this algorithm. It is a greedy strategy in order to improve convergence speed, but the algorithm 

does not lose its reliability since the adaptive control of the mutation factor determines how 

greedy the search is [9]. Equation 9 shows how the calculation of the mutated vector is done. 

 𝑣𝑖,𝑔  =  𝑥𝑖,𝑔 + 𝐹𝑖(𝑥𝑏𝑒𝑠𝑡,𝑔
𝑝 − 𝑥𝑖,𝑔) + 𝐹𝑖(𝑥𝑟1,𝑔 − �̃�𝑟2,𝑔) (9) 

where 𝑣𝑖,𝑔 is the mutated vector, 𝑥𝑖,𝑔 is the parent individual, 𝑥𝑏𝑒𝑠𝑡,𝑔
𝑝

 is a vector randomly chosen 

from the p% best individuals of the population, and 𝑥𝑟1,𝑔, �̃�𝑟2,𝑔  are the random individuals 

chosen from the population, but in the case of JADE with archive, the individual �̃�𝑟2,𝑔 is chosen 

from the union of the archive and the population. In this way, the expression 𝑥𝑟1,𝑔 − �̃�𝑟2,𝑔 is a 

difference between a good solution (from the current population) and a possible worst solution 

(from the union of the archive and the population) and helps guiding the individuals towards the 

optimum. 

The 𝑣𝑖,𝑔 vector goes into the crossover operator to generate the 𝑢𝑖,𝑔 trial vector. The 𝑢𝑖,𝑔 is 

the child individual generated at generation g and has values from the parent 𝑥𝑖,𝑔 and the mutated 

vector 𝑣𝑖,𝑔. 

A mutated value of a variable is transmitted to a child under two conditions. The first is if 

a randomly generated number in the range of 0 to 1 is higher than the crossover probability of that 

individual,  𝐶𝑅𝑖 . The second is particular to JADE, and for each individual, a variable j is 

randomly chosen in the range of 1 to D, where D is the number of variables being optimized. 

Then, the mutation occurs for that variable (does not matter the result from the first condition). 

This ensures that always the child has one coordinate mutated even if the 𝐶𝑅𝑚 value is really low 

(low probability of generating high 𝐶𝑅𝑖 values for the individuals). 
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At the end the selection process choses between the children and the parents, which ones 

are the best. 

 Figure 11 shows the algorithm of JADE with archive for single objective optimization. 

 

Figure 11 – JADE with archive single objective algorithm. 

3.3. Constraint Handling 

The platform has three types of constraints: design, performance and standard constraints.  

The design constraints are calculated using the variables values only, this can be used to 

verify if a set of values can be evaluated or not. If the candidate solution is unfeasible by design, it 

is not evaluated and it is assigned a dummy value. 

Performance constraints are used only for the GSP application, where there is a need to 

evaluate the vehicle in a standard performance cycle e.g. an acceleration cycle. By running this 

additional simulation, it is possible to determine if the vehicle complies with basic performance 

criteria, if the vehicle does not comply with the criteria it is not be evaluated in the other cycles 

and a dummy value is assigned to its cost function. 
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The dummy values assigned to the individuals unfeasible by design or by performance are 

later on corrected. This correction is done following the method shown in Section 3.3.3. 

Standard constraints, refers to the constraints that are calculated based on the results of the 

calculation or simulation. They take the form of inequality constraints always, if the user wants to 

use an equality constraint then it is needed to set the absolute value of the constraint breaching 

minus a tolerance to be lower than zero according to the Equation 10 [20]. This was necessary to 

avoid having dedicated constraint-handling techniques for each algorithm. 

 |ℎ(𝑥)| −  𝜎 ≤ 0 (10) 

3.3.1. Built-in Matlab optimizer constraint handling 

The Matlab® optimization algorithms evaluated (fmincon and pattern search) are treated 

as black boxes and it was impossible to change their constraint handling approach. Then, to use 

them in the platform, all constraints were considered non-linear and were all set to be inequality 

constraints. Again, if the user wants to use an equality constraint, it must use the methodology of 

Equation 10. 

3.3.2. In-house optimizers constraint handling 

Linear DoE algorithm uses both the cost function and the constraint values to create a 

linear surrogate model, and then it solves the resultant constrained linear problem. In this way, the 

optimum found complies with the constraints at each iteration. The algorithm only stops when the 

value of the constraint breaching is lower than the tolerance set by the user. 

Lean gradient uses the information of the best feasible cost function value of each step to 

guide the search. This method is not robust, and then it is recommended using Linear DoE on 

constrained problems. 

3.3.3. JADE constraint handling 

Evolutionary algorithms are naturally unconstrained, to constrain an evolutionary 

algorithm, such as JADE, a common practice is to multiply the constraint breaching by a penalty 

value and add this value to the cost function of the individual that is considered unfeasible. In this 

way, the search is not be guided to the unfeasible direction, since the cost function value is higher 

in the unfeasible region. 
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In general, the penalty values should be kept as low as possible, just above the limit that 

unfeasible solutions are optimal. This is called the minimum penalty rule [21]. If the penalty value 

is too low, then an unfeasible individual can be selected, since the value of the penalty is seen as 

negligible. On the other hand, a high penalty value can discourage the algorithms to search the 

region close to the feasible boundary, where often the optimum lies. 

According to [21], there are six classes of penalty functions: static penalty; dynamic 

penalty; annealing penalty; adaptive penalty; co-evolutionary penalty and death penalty. Each one 

of them has their pros and cons.  

Static penalties are problem dependant, the value of the penalty must be carefully chosen 

so they are not too high or low than the cost function values at the unfeasible points, therefore 

previous knowledge about the cost function values is necessary. Additionally, it is difficult to 

determine a single value of penalty for a constraint that works well throughout the whole domain. 

In dynamic penalty methods, it is hard to derive a good penalty function to change the 

values of the penalties dynamically, and the derived expression is still problem dependent. 

Co-evolutionary, adaptive penalty and annealing penalty are all very advanced methods 

that would take long time to implement and tune, increasing the complexity of the problem 

considerably, still not guaranteeing a robust implementation of the cost functions. 

The chosen method is a variation of the death penalty method described by [22]. In this 

method, the individual that is considered unfeasible receives the value of the worst feasible 

individual of the whole process added the sum of the normalized constraint breaching. In this 

way, during the selection process if (i) two feasible solutions are compared, the best objective 

value is chosen, (ii) one feasible and one unfeasible solution are compared, the feasible solution is 

chosen, (iii) two unfeasible solutions are compared, the one that has the lowest constraint 

breaching is chosen. It is vital to stress out that constraint-breaching values must be normalized to 

avoid any bias from a certain constraint before adding to the objective value [22]. 

Figure 12 illustrates how this method was implemented. The dashed line is the cost 

function values, when approaching from the right, the values of the cost function become lower, 

and then the search mechanism would continue the search in this direction.  
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Figure 12 – Illustration of the constraint handling method implemented for JADE in the platform [22]. 

It is needed to discourage further search for better individuals in the unfeasible area 

(region on the left of g(x) = 0), and this is done by giving to the first point of the unfeasible area 

(just after the constraint become activated) the value of the worst feasible cost function indicated 

by the figure by 𝑓𝑚𝑎𝑥. In order to guide the individuals back to the feasible area, a slope is created 

by giving to the unfeasible individuals the worst feasible cost function value added to the sum of 

the normalized constraint breaching. In this way an individual further inside the unfeasible region 

would be guided towards the border and then back to feasibility. 

For all the algorithms, if a design constraint or a performance constraint is breached, the 

simulations or calculations are not run, and then a dummy value is assigned for the cost function. 

Later, in the post processing, it is assigned to the unfeasible solution the value of the worst 

feasible solution added to the sum of the normalized constraint breaching. 

3.4. Mixed-integer implementation 

The following method was applied to allow both discrete variables and continuous 

variables to be used in the optimization without any algorithm compatibility.  

In this method, the user inputs the different levels that the variable can assume, then the 

values are coded as 1, 2 … N, where N is the number of variables levels (allowed values), these 

coded variables are sent to the optimization algorithm as continuous variables. Each time that the 

algorithms sends to the cost function a combination of values to be evaluated, the platform rounds 
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the continuous value to the closest integer. The result is the code of the variable, which is used to 

retrieve the correct value of the variable. 

This method is not a proper mixed-integer optimization, but it is a very simple way to 

make any algorithm compatible with this feature. In Section 5.1, it was verified to be a successful 

method. 

3.5. Algorithms benchmark 

Each algorithm was tested on a set of eight benchmark computationally expensive cost 

functions from CEC 2014 (Congress on Evolutionary Computation) [23]. This helped to identify 

the strengths of each algorithm on different problems, each of these functions has a peculiar 

characteristic that makes it complex to optimize, and several times real problems present some of 

those characteristics (see Section 5.1.1 for more details). By benchmarking them, it was possible 

to determine if an algorithm could be successful in real test case usage or not.  

The benchmark functions were coded for any number of dimensions, the higher the 

number of dimensions the harder it is to solve them. In this thesis, the number of dimensions was 

fixed to ten. The range of evaluation for each of these functions was changed from what is 

recommended by CEC 2014 since many optimizers have initial evaluations exactly on the middle 

of the range, where the optimum is located. As a result, they achieved their goal at the first step, to 

avoid that, the range used is non-symmetrical. Table 2 shows the information about these 

functions. Plots for the two dimensional version of these functions are found in Appendix A. 

The first four functions are uni-modal, which means that they have only one local 

minimum that is  the global minimum, while the last four functions are multi-modal, having many 

local minima and one global minimum. 

The tests compared the number of evaluations needed in order to find the global minimum 

of these functions and if the correct value was found in a single run. The number of evaluations is 

directly proportional to the execution time. Different methods can be compared by number of 

evaluations, since there is a negligible computational overhead for each method.  
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Table 2 – CEC 2014 test functions information. 

ID 
Function 

Name 
Range Minimum Formula 

1 Sphere [-20,22] 
𝑥𝑗 = 0, 𝑗

∈ [1, … ,10]. 
𝑓1 =∑𝑥𝑗

2

𝑁

𝑗=1

 

2 Ellipsoid [-20,22] 
𝑥𝑗 = 0, 𝑗

∈ [1, … ,10]. 
𝑓2 =∑𝑗. 𝑥𝑗

2

𝑁

𝑗=1

 

3 
Rotated 

Ellipsoid 
[-20,22] 

𝑥𝑗 = 0, 𝑗

∈ [1, … ,10]. 
𝑓3 =∑(∑𝑥𝑘

2

𝑗

𝑘=1

)

2
𝑁

𝑗=1

 

4 Step [-20,22] 
𝑥𝑗 = 0, 𝑗

∈ [1, … ,10]. 
𝑓4 =∑𝑓𝑙𝑜𝑜𝑟(𝑥𝑗 + 0.5)

2
𝑁

𝑗=1

 

5 Ackley [-32,33] 
𝑥𝑗 = 0, 𝑗

∈ [1, … ,10]. 
𝑓5 = −20. 𝑒

(−0,2.√∑
𝑥𝑗
2

𝑗

𝑁

𝑗=1

)

− 𝑒
(∑

cos(2.𝜋.𝑥𝑗)

𝑗

𝑁

𝑗=1

)

+ 20 + 𝑒 

6 Griewank [-50,52] 
𝑥𝑗 = 0, 𝑗

∈ [1, … ,10]. 
𝑓6 =∑

𝑥𝑗
2

4000
−∏cos(

𝑥𝑗

√𝑗
) + 1

𝑁

𝑗=1

𝑁

𝑗=1

 

7 Rosenbrock [-20,22] 
𝑥𝑗 = 1, 𝑗

∈ [1, … ,10]. 
𝑓7 = ∑(100. (𝑥𝑗

2

𝑁−1

𝑗=1

+ 𝑥𝑗+1)
2 + (𝑥𝑗 − 1)

2
) 

8 Rastringin [-20,22] 
𝑥𝑗 = 0, 𝑗

∈ [1, … ,10]. 
𝑓8 =∑(𝑥𝑗

2 − 10. 𝑐𝑜𝑠(2. 𝜋. 𝑥𝑗) + 10)

𝑁

𝑗=1

 

 

A complete benchmark would require multiple runs of each algorithm, and to analyse the 

mean and standard deviations of these results, but given time constraints, only a single run of each 

algorithm was made. This was not entirely wrong, given that users do not usually run the 

problems more than once. In a certain way, these tests assessed the capacity of the algorithm to 

deliver good results in a single run, tough no clear conclusions could be drawn in terms of 
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convergence speed or accuracy. The process was stopped once the algorithms found a value lower 

than 0.001, since for all these functions the minimum is equal to zero. 

The results are shown Table 3. The first value is the cost function and the value in 

parenthesis is the number of evaluations that were required to achieve this result. The results that 

are in bold are the best results for each problem and the ones that are written in red are 

optimizations that were stopped for taking too long, this was identified when the number of 

evaluations was about twice the second highest number of evaluations for that problem. Cells with 

red shading did not find the minimum, and green shading shows the successful ones. 

Table 3 – Results of the optimization of the CEC 2014 test functions. The first value of each cell is the final cost function value, the 

value in the parenthesis is the number of cost function evaluations needed to achieve the result. Text in bold highlights the best 

method that solved the problem, while the red text shows simulation that were stopped for taking too long. 

Function lean_gradient linear_DoE fmincon patternsearch JADE 

f1 
6,19E-4 

(342) 

6,4E-4 

(96) 

0,1054 

(242) 

0.0874 

(11089) 

9,74E-4 

(5850) 

f2 
9,87E-4 

(498) 

4,90E-5 

(300) 

2,34E-4 

(352) 

0.9241 

(11658) 

4,35E-4 

(6200) 

f3 
9,97E-4 

(1332) 

2,1715 

(2399) 

1,5962 

(242) 

29,6956 

(3311) 

8,26E-4 

(6850) 

f4 
2 

(192) 

10 

(70) 

974 

(33) 

0 

(3706) 

0 

(2350) 

f5 
2,0133 

(552) 

3,0274 

(792) 

19,9668 

(44) 

1,14E-2 

(10331) 

1,12E-2 

(7650) 

f6 
2,21E-2 

(768) 

0.6442 

(6307) 

0,3983 

(231) 

5,66E-2 

(5193) 

1,77E-4 

(22300) 

f7 
171,5582 

(2760) 

7,2996 

(14098) 

83,864 

(407) 

18,896 

(9794) 

8,77E-4 

(602) 

f8 
10.9445 

(7842) 

0,1269 

(715) 

134,1259 

(418) 

1,0005 

(5998) 

8,74E-4 

(17450) 
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The built-in optimization algorithms from Matlab® proved to be unsuccessful in the tests. 

Fmincon only found the optimum of a single function, and was still slower than Linear DoE and 

Lean Gradient at it. Pattern Search only found the optimum once and was slower than JADE. 

Lean Gradient was better than Linear DoE, but not by much. JADE was the only algorithm that 

successfully solved all the problems.  

These results represent the behaviour of a single run of each method, if more executions 

were done, the results could be different. Naturally, a different starting point for fmincon or 

Pattern Search could have improved the answer, but most of the times there was no indication of 

where this point should be placed. 

Nevertheless, some recommendations can be derived from these results. The first was that 

JADE is the right choice for most of the problems, since it was clearly more robust than the others 

were. Linear DoE and Lean Gradient started to be better when the cost function was not so 

complex, but each evaluation of it was costly time wise, e.g. a complex simulation, since they use 

less function evaluations to converge. Fmincon could be used when there was certainty that the 

problem was convex and smooth. Pattern Search could be taken out of the tool since it was worse 

than JADE in all tests. 

3.6. Multi-Objective implementation 

The only algorithm that performs proper multi-objective optimization is JADE. Other 

algorithms evaluated in this thesis can also perform it by using the scalarization method, as 

explained in Section 2.4, but to get a Pareto front it is necessary to re-run the optimization with 

different set of weights. This section focus in the implementation and modification of JADE to 

perform multi-objective optimization. 

3.6.1. Multi-Objective implementation in JADE 

In population based algorithms the individuals quickly become non-dominated, then it 

becomes impossible to select the best when the dominance criteria ties. Therefore, an alternative 

measure must be adopted [9].  

Figure 13, shows the Pareto front at different evolution stages of a multiobjective 

optimization. In the initial stages, the left figure shows that there is a clear gradient towards the 

Pareto front and that the best individuals are used to guide the others towards it, but as the process 
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continues, the individuals become more scattered and the difference between them cannot be used 

anymore to guide the search as efficiently.  

To overcome the challenges of multiobjective optimization the authors of [9] suggest that 

modifications in JADE are made in the selection and mutation operations. 

 

Figure 13 – Pareto front at different evolution stages, left figure shows individuals in early stages and right figure shows at more 

advanced stages. [9] 

The selection process suggested by [9] was not successfully implemented, there were 

some inconsistancies when runnnig the ZDT test functions (see Section 3.6.2), consequently, only 

the mutation process was modified following the guidelines of the authors of [9]. Finally, the 

implemented selection process was the non-dominating sorting method from NSGA II [24]. 

The new selection process implementation has the intention to reduce the number of 

individuals from 2NP to NP, where NP is the number of individuals in the population. This was 

done in three steps. 

The first step is to sort the population in groups of neutrally dominant individuals. Each 

group represent a different Pareto front, formed by individuals that do not dominate each other. 

The first front is formed by the most dominant individuals of the population and they receive a 

rank value of one. Then a comparison is run among all individuals, and the rank number of them 

is increased by a unit every time another solution dominates it. By the end of this step there is a 

clear distinction of how dominant an individual is and to which front it belongs. The rank value 

determines how dominated an individual is, the lower the value the best it is. Individuals with the 

same rank number belong to the same front. 

The second step is to calculate the crowding density to untie individuals with the same 

rank number. The basic principle is to measure how crowded the Pareto front is, and remove the 

individuals that are too close to their neighbours and belong to the same Pareto front (have the 
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same rank value). By doing that, the solutions that are more distanced and separated from the 

others are preferred, resulting in a better approximation of the Pareto front and increasing the 

diversity of the individuals that form it.  

The crowding density is calculated by Equation 11: 

 

𝑑𝑖 =

{
 
 

 
 

∑𝑙𝑜𝑔 𝑑𝑖𝑗

𝑘

𝑖=1

, 𝑖𝑓 𝛼 = 1

(1 − 𝛼)−1∑𝑑𝑖𝑗
1−𝛼

𝑘

𝑖=1

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 (11) 

where 𝑑𝑖𝑗 is the Euclidean distance between individual i and the j-th neighbour. As recommended 

in [9] if 𝛼 is set to two, the crowding density becomes the harmonic distance calculated by the 

Equation 12: 

 
𝑑𝑖 =

1

1
𝑑𝑖,1

+
1
𝑑𝑖,2

+⋯+
1
𝑑𝑖,𝑘

 
(12) 

In NSGA II [24], the crowding density is calculated as the sum of the Euclidean distances, 

instead of the harmonic distance (using 𝛼 equals to zero instead of two). The sum of distances was 

used because it was the best performing on the tests ran on the ZDT functions as shown in Section 

3.6.2. 

The third step consists of sorting the individuals first by rank, at this point, the NP worst 

individuals are removes and the ones that are parents are added to the archive to be used later in 

the mutation process. The individuals that have the same rank number are sorted by crowding 

density and the final selected individuals are the best NP individuals of the population. 

The mutation operation occurs in a very similar way in both mono and multi-objective 

cases. Since the recent inferior solutions are still capable of providing guidance towards the 

optimum, the archive stores the parents recently removed in the selection process [9]. Then the 

vector  �̃�𝑟2 is selected only from the archive and not from the union of the archive and the current 

population, given that the latter is unable to guide the process. 

3.6.2. ZDT functions testing 

The ZDT test functions [25] were used to verify the implementation of the multi-objective 

modification of JADE, since it was done by following the suggestions of [9] and afterwards 
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modified to comply with these tests using the method from the NSGA II algorithm. The objective 

was to assess how good the Pareto front generated by JADE was. Table 4 shows information 

about each test functions [26]. Each of the functions was optimized for 30 variables.  

Table 4 – ZDT test functions information, the plots can be found at [27]. 

Test 

function 
Formula Pareto front 

ZDT 1 

𝑓1 = 𝑥1, 

𝑓2 = 𝑔(𝑥) [1 − √
𝑥1

𝑔(𝑥)
], 

𝑔(𝑥) = 1 + 9.
(∑ 𝑥𝑗

𝑁
𝑗=2 )

𝑁 − 1
 

 

ZDT 2 

𝑓1 = 𝑥1, 

𝑓2 = 𝑔(𝑥) [1 − (
𝑥1

𝑔(𝑥)
)
2
], 

𝑔(𝑥) = 1 + 9.
(∑ 𝑥𝑗

𝑁
𝑗=2 )

𝑁 − 1
 

 

ZDT 3 

𝑓1 = 𝑥1, 

𝑓2 = 𝑔(𝑥) [1 − √
𝑥1

𝑔(𝑥)
−

𝑥1

𝑔(𝑥)
𝑠𝑖𝑛(10𝜋𝑥1)], 

𝑔(𝑥) = 1 + 9.
(∑ 𝑥𝑗

𝑁
𝑗=2 )

𝑁 − 1
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ZDT 4 

𝑓1 = 𝑥1, 

𝑓2 = 𝑔(𝑥) [1 − √
𝑥1

𝑔(𝑥)
], 

𝑔(𝑥) = 1 + 10(𝑁 − 1) +∑[𝑥𝑗
2 − 10 cos(4𝜋𝑥𝑗)]

𝑁

𝑗=2

 

 

ZDT 6 

𝑓1 = 1 − 𝑒
(−4𝑥1) 𝑠𝑖𝑛6(6𝜋𝑥1), 

𝑓2 = 𝑔(𝑥) [1 − (
𝑥1

𝑔(𝑥)
)
2
], 

𝑔(𝑥) = 1 + 9.

[
 
 
 
 (∑ 𝑥𝑗

𝑁

𝑗=2
)

𝑁 − 1

]
 
 
 
 

1
4

 

 

 

The goal of the authors of [25] was to create a set of functions that would test problems 

like multimodality, deception, isolated optima, convexity or non-convexity, discreteness and non-

uniformity. Each of these functions has some of these features in it [25]. The ZDT 5 was not 

optimized in this thesis since the deception, which is the main feature modelled in it, is not easily 

found in real problems and is not often used in benchmark papers.  

Normally the tests are run several times and the final Pareto front is the result of all those 

runs. Since in this thesis the objective was only to verify the implementation and not to 

benchmark the algorithm, the optimizations were run only once, what does occur most of the 

times in real life usage of the platform, where the user does not want to run the process multiple 

times.  

For ZDT 4, some modifications had to be done. The mean initial values of F and CR 

(mutation factor and crossover probability) were changed to 0.7 and 0.3 respectively. This was 

done to avoid being trapped in a local minimum. It is natural that for complex problems the 

control parameters of JADE need to be changed, the adaptation feature eliminates this need for 

most of the problems, but sometimes it is still needed. Since ZDT 4 is a multimodal problem, in 

several runs, the algorithm was trapped in a local minimum when using the default values of CR 



 

 

 

 

43 

 

and F. The resultant Pareto front was of the same shape, but translated to higher values of the 

second objective.  

The resultant Pareto fronts can be seen in Appendix B and they prove that the adaptation 

of the multi-objective capability on JADE was successful. 
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4. Test cases used 

This section explains the selected test cases used to test the tool. They use different 

features of the tool and their goal is to test these features on real life usage. 

4.1. Gipps traffic model calibration 

Optimization can be useful to calibrate complex models. In this test case, the goal was to 

calibrate the parameters of a Gipps traffic model in order to minimize the speed and position 

errors of the simulated vehicle against measurement data. 

The goal of Gibbs model is to predict the response of vehicles in a stream of traffic, the 

response of a vehicle is dependent on the vehicle in front of it in the stream. The variables 

modelled are the response time (time that it takes to take an action, τ), the safety margin 

(clearance distance to the vehicle in front, Sv), and the maximum deceleration rates of the leader 

(the vehicle in front, 𝑏𝑙) and of the follower (the target vehicle, 𝑏𝑓) [28]. Table 5 shows the ranges 

used in the optimization for each of these variables. 

Table 5 – Ranges of the variables used in the optimization. 

Variable Range 

Response time, τ [0.3, 15] s 

Safety margin, Sv [3, 50] m 

Deceleration of leader, bl [-15, -0.4] m/s2 

Deceleration of follower, bf [-10, -0.1] m/s2 

 

The model was coded as differential equations in Matlab® and its output are the position, 

the speed and the acceleration of a vehicle following a traffic stream. Four different methods to 

solve this differential equation were coded in different files. The methods used were, Euler 

Implicit, Euler Explicit, Midpoint and Treiber (Euler explicit for speed and midpoint for position) 

[29]. 

A design constraint was used to make sure that the results would be strictly real. For that, 

the argument of the square roots of the model was set not to be lower than zero.  
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Additionally, calibration files storing calibration data of the follower and leader vehicles 

were initialized for different time steps in the beginning of each process. Different time steps 

affect the outcome of the calibration.  

To set up the problem to be run in the platform, the user must adapt the script that runs the 

simulation (if it already exist). Then, code the design constraint and the cost functions in separate 

files. After, input the variables that shall be optimized with their information and ranges. Finally 

indicate the calibration file that has the measurement data in different time steps. All this process 

was done quite fast and in an easy way. 

This optimization was done in four steps. In all those, the goal was to minimize the RMS 

(root mean square) error in position and speed of the simulated vehicle and the measurement. 

In the first step, only the four basic variables described in Table 5 were optimized. All 

optimizers were compared, and to be fair, the scalarization method (see Section 2.4) was applied 

to deal with the two objectives. The solver used was Euler implicit and the time step was set to be 

1 second. 

The second step performs the same optimization as the first step, but using JADE multi-

objective implementation.  

Then for the third step the different measurement files recorded with different time step 

were used and a time step variable was implemented that allows to choose which measurement 

file should be used in the calibration, this variable is discrete and can assume the values of 0.01, 

0.1, 0.5 and 1 second. This was done as an alternative of running an optimization for each time 

step value. The solver used was the Euler implicit. 

In the fourth step, it was added another discrete variable that describes which solver 

should be used to solve the differential equations. The final problem had four continuous variables 

and two discrete. This was done to avoid running an optimization for each combination of time 

step and solver type, since the interaction between these variables is unknown. 

This optimization tested the multi-objective, the calibration and the mixed-integer 

capabilities of the tool. The results are presented in Section 5.1. 
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4.2. ZF gear-shifting optimization 

This test case was an attempt to test the limits of the tool, instead of fast running Matlab® 

scripts or simple Simulink® models, GSP complete vehicle simulations were used for the 

evaluation, since with them, it was possible to capture the correct behaviour of gear shifting. The 

complexity also increases considerably from the previous cases and many features of the tool 

were explored. 

The objective was to optimize fuel consumption and performance of a bus in a cycle by 

optimizing the gearshift maps of its automated gearbox. The target vehicle was an urban bus and 

has a six-speed gearbox manufactured by ZF.  

GSP models were used to evaluate the target vehicle regarding fuel consumption and 

performance. Each simulation using a GSP model takes about 2 minutes to complete, then it was 

vital to minimize the number of evaluation to make the process feasible time wise. 

Ten maps were selected to be optimized, each of them representing a possible gearshift 

e.g. from first to second, from second to third, all the way to sixth gear and downshifts also, from 

sixth to fifth all the way back to first gear. These maps have 18 coordinates (6x3) that contains the 

threshold speed to shift (which was the lowest speed required) in total 180 variables were 

optimized. 

The cycle evaluated was a city cycle, which was believed to be the most representative 

cycle of the target vehicles application. The representativeness of the cycle is of extreme 

importance, given that the result of the optimization are only be optimal for cycles similar to this. 

The optimization needed to be constrained to make sure that the results are feasible. This 

was done by implementing performance constraints and a standard constraint. The performance 

constraints certified that the target vehicle had the same gradeability and acceleration as the 

reference vehicle. All these constraints were calculated based on the performance cycle, if the 

candidate calibration does not comply with these performance constraints, the main city cycle is 

not simulated, the unfeasible individual in this case goes through the process described in Section 

3.3.3 and receives a penalty value not to be selected in the process as feasible. 

A standard constraint was applied to the number of gearshifts per 100 kilometres to ensure 

the durability of the gearbox. 
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To set up the problem the process was similar to the previous case, but with some 

peculiarities regarding the GSP application. The user must indicate which model to be used to 

evaluate the calibrations alongside the performance cycle and the target cycle for the calibration 

(the cycle that measures the fuel consumption and the performance). Then, the constraint and cost 

function files had to be coded, in each of them the constraints had to be derived from the results of 

the simulations. The 180 variables had to be defined and set with proper ranges.  

Since the problem consists of two objectives, JADE algorithm was used to generate a 

Pareto front, in this way the result is a set of feasible calibrations, each of them representing a 

compromise between fuel consumption and performance. The performance was measured by the 

average speed on the cycle and the goal was to maximize it. The fuel consumption was calculated 

as litres per 100 kilometres and the goal was to minimize it. 
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5. Results 

This section shows the results of the test cases and discusses them in detail. 

5.1. Traffic model calibration results 

This section shows the results of the traffic simulation calibration. The methods used for 

this optimization are described in Section 4.1. The set-up of the problem was much faster and 

easier that the traditional method of coding the whole problem and connecting it to the 

optimization algorithm. 

5.1.1. Step1: Basic continuous variables and weighted objective 

In the first step, the four basic variables were optimized using all the optimizers available 

in the platform. The objectives were averaged with equal weights to simplify the problem 

(scalarization), but their values are shown separately for comparison. Table 6 shows the results 

for each of those optimizers and the number of evaluations that was required to achieve this result. 

Table 6 – First case results of the traffic model calibration. 

Algorithm 

Response 

time (s) 

Safety 

margin (m) 𝒃 �̂� 

Position 

error 

Speed 

error 

Number of 

evaluations 

Lean 

gradient 
0,97 3,92 -10,47 -3,47 3,17 0,9 270 

Linear DoE 
2,11 3,01 -2,81 -3,63 4,08 1,08 350 

Fmincon 7,65 3 -0,64 -10 14,44 2,52 44 

Pattern 

Search 
7,65 3 -0,4 -1,74 10,18 1,82 539 

JADE 1,04 3 -2,73 -1,75 2,09 0,54 1100 

 

Both fmincon and pattern search performed very poorly, the calibration error of the model 

was very high for both of them indicating that they could have been possibly stuck in a local 

minimum. JADE shows the best result, but it comes with a high price, it takes 1100 evaluations to 

achieve it. Lean gradient shows good results, better cost function value than Linear DoE with less 

number of function evaluations. Since the evaluations were not costly (less than a second) the 

trade-off tends in the direction of JADE.  
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If a Pareto is wanted as a result, the best-recommended algorithm would be JADE, since it 

achieves better results and can generate a Pareto front in a single run (since it is a proper multi-

objective method and it is a population-based algorithm). Lean gradient would require several 

runs to generate a Pareto front and the result would not be as good as for JADE given that Lean 

gradient does not find cost function values as low as JADE, then the result would be a Pareto 

front higher in objective space. 

To support the statement that fmincon and pattern search were stuck in a local minima, 

plots of the cost function were generated close to the optimum point found by those algorithms. 

Since the representation of the cost function is five-dimensional, a simplification was made. The 

function was plotted for each variable being varied one at each time, keeping the others constant. 

The result is similar as if the function was “sliced” in a certain dimension. This gives a picture of 

how does the function look like in each dimension. The plots for all the optimizers can be found 

in Appendix C1-C5. 

Figure 14 shows the plot for the response time being varied for the fmincon optimizer, 

where the first plot is the position error and the second is the speed error. The function during the 

optimization only receives the averaged value and does not have the knowledge of each of the 

objectives (since the scalarization method is being used), and then the optimum point found 

should be the one that minimizes both objectives the most.  

 

Figure 14 - Plot of fmincon results, response time being varied and the other variables kept constant. 



 

 

 

 

50 

 

Figure 15 shows the same plot as in Figure 14, but using the values found by JADE 

optimizer, this picture shows how these functions (distance and speed error) changed depending 

on the location, it also shows that for this variable the best point found was truly optimal for both 

objectives. The landscape for the response time suggests a stair-shaped function that resembles a 

step function. 

 

Figure 15 - Plot of JADE results, response time being varied and the other variables kept constant. 

The topography of the cost function changes according to where the function was “sliced”, 

each of the optimum points found shows a different topography of the function and gives an idea 

of why some solvers became stuck in local minima.  

 

Figure 16 - Plot of fmincon results, leader deceleration being varied and the other variables kept constant. 
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Figure 16 shows the landscape of the function for the leader deceleration in the optimum 

found by fmincon, while Figure 17 shows the same graph but in the location of the optimum found 

by JADE. The levels of the error were much lower for JADE, and the landscape was very 

different. 

 

Figure 17 - Plot of JADE results, leader deceleration being varied and the other variables kept constant. 

For the follower deceleration, it looks like a valley with very low gradient, which is close 

to the behaviour of Rosenbrock test function (see Appendix A6), as shown in Figure 18. 

 

Figure 18 - Plot of Linear DoE results, follower deceleration being varied and the other variables kept constant. 
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By analysing all these graphs, it was possible to conclude that the problem is very complex 

and multi-modal, given that has many local minima. This explains why Fmincon did not achieve 

good results, but does not explain why Pattern Search performed so poorly. Additionally the 

behaviour of the function for each variable resembles the functions used on the benchmark in 

Section 3.5, justifying their choice. 

5.1.2. Step 2: Basic continuous variables with multi-objective approach 

For the second step of this optimization, JADE algorithm was used as proper multi-

objective method. The goal was to generate a Pareto front for the case optimized in Section 5.1.1. 

The benefit of having a Pareto front as a result is that the user can choose the compromise 

between the objectives. 

The resultant Pareto front can be seen in Figure 19. The plot on the left is the full Pareto 

front and the plot on the right is the part of the Pareto that has the best trade-off objective values. 

The left graph shows clearly a stair shaped Pareto front, and this can be explained by the 

graphs in Appendix C5, in those graphs it is possible to see that the function is very stair shaped 

and because the minimum for one of the objectives is not always located in the same place as for 

the other objective.  

 

Figure 19 – Pareto front for the second step of the optimization. 
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Each of the smaller fronts in Figure 19 corresponds to a different level of the function’s 

steps, not necessarily being worse than the main front, but representing a different set of 

compromise (minimizing the error in distance more than the error in speed). The zoomed region 

of the best compromise front (the one circled in red) is shown in the right figure. The best 

compromise in this case was when both objectives were minimized the most (with equal 

preference).  

The following results of the next steps are only show the interest region, since it was of 

interest to minimize both errors as much as possible, but all of them showed the same stair-shaped 

Pareto fronts. 

5.1.3. Step 3: Time step as discrete variable 

In the third step, the time step variable was added to the problem, depending on its value 

the process used a different calibration file recorded with the respective time step for the 

calibration.  

The resultant Pareto front of this step is shown in Figure 20. It is possible to see that in the 

interest region the fronts are the same as in the previous step, given that all the members of the 

Pareto used time step of 1-second.  

 

Figure 20 - Pareto front for Step 3 of the traffic model calibration, where the time step was treated as a variable. 

If comparing the time of running all the time steps separately, coding the time step as a 

discrete variable resulted in less optimization time overall. The lower time step the higher the 
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calculation time is. Then comparing to the optimization fully run on low time step, considering 

also that it takes more time to converge, it was still faster to run with the variable coded as 

discrete, since not all the evaluations were run with the low time step and the convergence occurs 

at high time step which was faster to be evaluated. 

In Appendix D, the Pareto fronts are shown for each time step separately. Figure 21 shows 

all these graphs in a single picture for comparison purposes. It is possible to see again that the best 

time step for calibration was the 1-second, reinforcing the results found in the third step of this 

optimization process.  

The results concur to literature. According to [30], larger time steps are better for the 

calibration, and the same trend was shown in the results, tough this relationship was not linear as 

shown in Figure 21. The time step of 0.5 second presented worse calibration results than the step 

of 0.01 and 0.1 second. 

 

Figure 21 – Pareto front for each of the available time steps, the solver user was Euler implicit. 

5.1.4. Step 4: Time step and solver type as discrete variables 

For the last step, the solver type was added as discrete variable. The solver type indicates 

which of the available solvers should be used to solve the differential equations of the Gipps 

model. Again, JADE was used, since the objective was to generate a Pareto front for the case. The 

result of the main front can be seen in Figure 22.  

As seen in the previous section, all the points that form the main front used the time step 

of 1-second and in this case, the majority of the front used the Euler implicit solver type.  
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Figure 22 - Pareto front for Step 4 of the traffic model calibration, where the solver type and the time step where treated as 

variables. 

To understand the effect of each solver in the problem, four different optimizations each 

with a different solver type were run. The results are shown in Figure 23. 

 

Figure 23 – Pareto fronts for each solver types. 

Each of the four different curves is a Pareto front of a solver. It is evident that some of the 

solvers improved one objective more than the other, e.g. the Midpoint solver was the best to 
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improve the error in distance while it stays behind Euler implicit and explicit when it comes to 

minimize the speed error. Since the focus was on minimizing both objectives at the same time, the 

region of interest is the one highlighted with a red circle in Figure 23, and it is showed in Figure 

24 in a better way. 

Figure 24 shows that the methods Treiber and Midpoint have similar results in the interest 

region, the same happens for Euler implicit and explicit method. The Euler implicit and explicit 

methods were more successful in minimizing the speed error than Midpoint or Treiber, but the 

latter were better to minimize the distance error. 

  

Figure 24 – Pareto fronts of the interest regions for the traffic model calibration for different solvers. 

Running the optimization with both the time step and the solver type as discrete variables 

gave the best results in a single run discarding the need of running multiple times with different 

combinations of these variables. 

5.2. ZF gearbox optimization 

This section provides the results from the ZF gearbox optimization test case. For 

confidentiality reasons, no absolute values were shown in this section. 

The method used to set-up the problem was successful and intuitive. It was much simpler 

than coding the problem and interfaces between GSP and the optimization algorithm. 
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As described in Section 4.2, JADE algorithm was used to generate a Pareto front for this 

case. This is shown in Figure 25 where each point represents the result of fuel consumption and 

performance of a calibration generated by the optimizer. On the right part of the graph are located 

the calibrations that resulted in higher average speed, and in the bottom, the ones resulting in 

lower fuel consumption. The black point represents the reference calibration from ZF and the blue 

points are the final solutions that form the Pareto front.  

 

Figure 25 – Pareto front of fuel consumption and performance for the ZF gearshift optimization. 

It is possible to see that the front advanced passed the values of the reference calibration, 

which means that the result was improved both in performance and in fuel consumption. The 

Pareto front was generated in 104 steps. By the end, the process generated a calibration that 

achieved 1.4% fuel consumption reduction with the same performance if compared to the 

reference calibration. Another calibration improved the performance by 0.4% with same fuel 

consumption. 

All the individuals in the front comply with the constraints, which mean that they have at 

least the same gradeability and acceleration as the reference. In addition, the calibrations did show 

less than 10% increase in gearshift number in the city cycle. 

Since JADE  is a meta-heuristic method that seeks an improvement rather than finding the 

true optimum, then it is up to the user to decide when the process should be terminated. A great 
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way to know if no more improvements are possible is to see if the variables values have 

converged. By the end of the process, looking at the values of each variable, it was realised that 

the process did not yet converge and that greater improvements could be expected if the process 

was continued.  

It is important to point out that GSP models do not evaluate several criteria that are 

necessary to be taken into account to determine a successful calibration. Some of these criteria are 

noise, vibration and comfort. Therefore, the process described in this thesis does not eliminate the 

need of vehicle testing, but it certainly makes the process much faster by suggesting a calibration 

that is close to be optimal. 
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6. Conclusions 

The goals set for the platform were accomplished. The platform can handle mixed-integer 

multi-objective optimization and can use applications like Matlab® scripts, simple Simulink® 

models and GSP models to evaluate the design variables.  

The test cases used to test and develop the multiple functionalities of the tool proved the 

versatility of the platform to fit to multiple needs and perform the most various analyses.  

For the traffic model calibration, both the multi-objective features of the tool, the ability to 

perform mixed-integer optimization and the usage of design constraints, where proven to work 

and to generate high quality results in a reasonable time. Additionally, the coding of the time step 

and the solver type as discrete variables proved to be more time saving than the traditional brute 

force method (running all combinations of discrete variables values). 

For the ZF gearbox optimization, the ability to handle very high dimensionality problems, 

performance constraints and multi-objective optimization were proven to work well and to 

improve the current calibration in a reasonable time given the complexity of the problem. 

The benchmark of the algorithms showed that JADE was the most robust method, since it 

solved all problems and it is considered the main algorithm of the tool. Linear DoE and Lean 

Gradient should be used when the cost function is not complex (smooth and convex), but when 

each evaluation of it is time demanding, since these solvers would use less function evaluations 

than JADE.  

The CEC 2014 test functions [23] proved to test very relevant features that occur on real 

test cases situations as shown in the traffic model calibration. An algorithm that performs well in 

all of them has higher chance of performing well in real test case usage. A future user of this 

platform should rely on Table 1 to choose the correct algorithm to be used in a problem, if not 

enough information about the problem exists. 

The platform simplified considerably the optimization process, since it requires only a 

couple of scripts from the user in order to run. In the other hand, the results of the optimization 

still have to be critically analysed. The optimization algorithm has no information about the 

problem except the cost function and constraints. If those are not properly defined the results shall 

not be optimal or feasible, then it is vital that the user must understand the problem that is being 

optimized.  
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7. Future work 

Several improvements could be done in the platform. The implementation of more 

algorithms could be one, especially to cover some features that are not being covered by the 

selected algorithms. A good suggestion is to add a proper mixed integer algorithm to improve 

convergence speed in problems that have both types of variables. Another would be to add 

algorithms specific to solve the linear programming problems that sometimes appear as requests 

at Volvo AB.  

The tool does not provide means to perform inner loop (online) optimization, the topology 

generation is also not performed by this tool, and both of these features could be added to this 

platform to make it more complete. 

For very complex problems like the ZF gearbox optimization, an alternative approach 

could be used, which consists of starting the process with JADE algorithm and after the 

potentially good calibrations are found, stop the process and use one the points of the Pareto front 

as a starting point for fmincon. JADE does most of the hard work of finding the good region in the 

search space, but to converge to the minimum itself takes time, then by using fmincon this would 

be faster, since it does use the gradient information and guarantee that the solution is in the 

minimum and not around it. 
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9. Appendix A: Plots of the CEC 2014 test functions for two 

dimensions. 

A1 : Plot of Griewank test function. 

 

Figure 26 – Plots of Griewank test function in different ranges. From the top left graph to bottom right, the range is zoomed in to 

show the function close to the optimum [31]. 
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A2: Plot of Ackley test function. 

 

 

 

 

 

 

Figure 27 – Plot of Ackley test function [31]. 
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A3: Plot of Rastrigin test function 

 

 

 

 

 

Figure 28 – Plot of Rastrigin test function [31]. 
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A4: Plot of Rotated Hyper-Ellipsoid test function. 

 

 

 

 

Figure 29 – Plot of Rotated Hyper-Ellipsoid test function [31]. 
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A5: Plot of Sphere test function. 

 

 

 

 

 

 

 

 

 

 

  

Figure 30 - Plot of Sphere test function [31]. 
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A6: Plot of Rosenbrock test function. 

 

  

Figure 31 – Plot of Rosenbrock test function [31]. 
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A7: Plot of Ellipsoid test function. 

 

 

  

Figure 32 – Plot of Ellipsoid test function [35]. 



 

 

 

 

71 

 

11. Appendix B: ZDT Pareto fronts obtained by JADE 

 

Figure 33 – Pareto front of ZDT 1 function generated by JADE. 

 

Figure 34 – Pareto front of ZDT 2 function generated by JADE. 
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Figure 35 - Pareto front of ZDT 3 function generated by JADE. 

 

Figure 36 – Pareto front of ZDT 4 function generated by JADE. 
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Figure 37 – Pareto front of ZDT 6 generated by JADE. 
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12. Appendix C: Plots around the optimum points found by the 

algorithms in the traffic model calibration. 

 

C1: Lean Gradient plot for response time being varied and the other variables kept constant. 

 

 
Figure 38 – Plot of Lean Gradient results, response time being varied and the other variables kept constant. 

 

Figure 39- Plot of Lean Gradient results, safety margin being varied and the other variables kept constant. 
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Figure 40 - Plot of Lean Gradient results, leader deceleration being varied and the other variables kept constant. 

 
 

Figure 41 - Plot of Lean Gradient results, follower deceleration being varied and the other variables kept constant. 
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C2: Linear DoE plot for response time being varied and the others kept constant. 

 

 

Figure 42 - Plot of Linear DoE results, response time being varied and the other variables kept constant. 

 

Figure 43- Plot of Linear DoE results, safety margin being varied and the other variables kept constant. 
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Figure 44 - Plot of Linear DoE results, leader deceleration being varied and the other variables kept constant. 

 

Figure 45 - Plot of Linear DoE results, follower deceleration being varied and the other variables kept constant. 
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C3: fmincon plot for response time being varied and the others kept constant. 

 

 

Figure 46 - Plot of fmincon results, response time being varied and the other variables kept constant. 

 

Figure 47- Plot of fmincon results, safety margin being varied and the other variables kept constant. 
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Figure 48 - Plot of fmincon results, leader deceleration being varied and the other variables kept constant. 

 

Figure 49 - Plot of fmincon results, follower deceleration being varied and the other variables kept constant. 
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C4: Pattern search plot for response time being varied and the others kept constant. 

 

 

Figure 50 - Plot of pattern search results, response time being varied and the other variables kept constant. 

 

Figure 51 - Plot of pattern search results, safety margin being varied and the other variables kept constant. 
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Figure 52- Plot of pattern search results, leader deceleration being varied and the other variables kept constant. 

 

Figure 53 - Plot of pattern search results, follower deceleration being varied and the other variables kept constant. 
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C5: JADE plot for response time being varied and the others kept constant. 

 

Figure 54 - Plot of JADE results, response time being varied and the other variables kept constant. 

 

Figure 55- Plot of JADE results, safety margin being varied and the other variables kept constant. 
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Figure 56 - Plot of JADE results, leader deceleration being varied and the other variables kept constant. 

 

Figure 57 - Plot of JADE results, follower deceleration being varied and the other variables kept constant. 
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13. Appendix D: Pareto front for different time steps of the traffic 

model calibration. 

D1: Time step of 1 second using Euler implicit method. 

 

Figure 58- Pareto front generated for the 1s time step case of traffic model calibration. 

D2: Time step of 0.5 second using Euler implicit method. 

 

Figure 59 - Pareto front generated for the 0.5s time step case of traffic model calibration. 
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D3: Time step of 0.1 second using Euler implicit method. 

 
Figure 60 – Pareto front generated for the 0.1s time step case of traffic model calibration. 

D4: Time step of 0.01 second using Euler implicit method. 

 

 
Figure 61 - Pareto front generated for the 0.01s time step case of traffic model calibration. 
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14. Appendix E: Pareto front for different solver types of the traffic 

model calibration. 

E1: Euler explicit solver using time step of 1 second. 

 

Figure 62 - Pareto front generated for the Euler explicit solver case of traffic model calibration. 

E2: Euler implicit solver using time step of 1 second. 

 

Figure 63 - Pareto front generated for the Euler implicit solver case of traffic model calibration. 
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E3: Midpoint solver using time step of 1 second. 

 

Figure 64 - Pareto front generated for the Midpoint solver case of traffic model calibration. 

E4: Treiber solver using time step of 1 second. 

 

Figure 65 - Pareto front generated for the Treiber solver case of traffic model calibration. 

 
 


