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Abstract
This thesis evaluates the possibility and the effects on performance of running an
existing software, not designed for real-time operation, on a real-time operating
system. The software being investigated is Unite Communication Server developed
by Ascom Wireless Solutions, and is used for wireless communication within the
healthcare sector.
The software, which originally runs on Red Hat Enterprise Linux 7 with stock

kernel, was installed on a Red Hat Enterprise Linux 7 system (the host) running
a kernel patched with the real-time patch RT-Preempt. Performance was then
measured by an external computer (the client) connected directly through wired
Ethernet. The host was also put under a number of different loads to further amplify
the effects of the real-time runtime.
The real-time kernel is shown to give equal or better determinism under all loads,

albeit only marginally if one considers how the software is used. The stock kernel
is deemed good enough regarding performance and determinism while also being
more stable, and migration to the real-time kernel is therefore advised against for
this particular software. Furthermore, the standard Intel Ethernet driver for Linux
is identified as a substantial source of nondeterminism that should preferably be
avoided in networking applications with strict timing constraints.
Nonetheless, switching to the RT-Preempt based real-time kernel showed to be a

simple way to increase determinism for this system, especially since no changes to
the software were required.

Keywords: real-time, Linux, software porting, performance measurement, operating
systems, rt-preempt
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1
Introduction

Real-time systems can today be found almost everywhere in different shapes and
forms. Be it everyday consumer electronics such as mobile phones and television
sets, or control systems for industrial robots or missile defense systems, they most
certainly have some aspect that can be considered a real-time constrained system:
the television set must have processed the next video frame when it should be
displayed or the video will stutter, and the missile defense system must detect an
incoming missile, calculate its trajectory, and give the instruction to fire before
destruction of property and lives is inevitable. The consequences of missing the
deadline for these two examples may not be considered comparable according to
many, but from the viewpoints of the systems themselves, not being able to meet
the deadline means one thing only: system failure.
Although the above mentioned systems were examples of embedded systems, real-

time performance is also often desired in general purpose systems, including (but not
limited to) desktop computers, where functionality such as audio/video playback or
Voice over IP (VoIP) communication is expected to work well enough to give the
user a pleasant experience.
AscomWireless Solutions develops wireless mission critical on-site communication

solutions for customers globally, with focus on healthcare. As a manufacturer of
products involved in mission critical aspects of a company or business, one of the
most important qualities of the products is reliability. As the main advantage of a
real-time operating system over a non-real-time operating system is the reliability
in response time, Ascom is looking for the possible gains obtainable by migrating
one of the main products to a real-time operating system.

1.1 Unite Messaging Suite
The Unite Messaging Suite is a communication platform developed by Ascom that
links Ascom messaging systems with mission-critical work processes and tasks. The
system is designed for high performance, flexibility, and reliable communication as
it is designed to be deployed in areas where such properties are of paramount impor-
tance, such as the healthcare sector. The overall structure of the Unite Messaging
Suite can be seen in figure 1.1.

1



1. Introduction

Figure 1.1: Ascom Unite Messaging Suite for healthcare

The Core component in itself consists of two components: The Unite Application
Manager, where customer applications are run in a Windows environment, and a
second component responsible for handling alarms and ensuring that a message is
sent to the intended device. This second component is available in two varieties:

1. The Unite Connectivity Manager. An embedded Linux server platform sold
as a complete package including software and hardware

2. The Unite Communication Server. A purely software based product intended
as an alternative to the Unite Connectivity Manager

The focus of this project is the Unite Communication Server (from here on referred
to as Unite CS, or ”the software”), which will be described further in the next
section.

1.2 Unite Communication Server
The Unite CS is intended to run on a machine provided by the customer (physical
or virtual). The software itself consists of multiple applications communicating with
each other over the Unite protocol, which is a proprietary communication protocol
built on top of UDP.
The machine on which the software is run is not limited to running the Unite CS

exclusively, but could – although not recommended – be a general purpose server
where other processes are running simultaneously. At the moment of writing, Unite
CS requires the machine to run Red Hat Enterprise Linux 7 (or other compatible
OS, such as CentOS) a general purpose operating system not intended for hard real-
time operation, something that brings drawbacks regarding using it as a means to
distribute mission critical messages.

2



1. Introduction

Unite CS is not a medical device and therefore need not comply with regulations
applicable for medical devices. It is however developed in accordance with certain
regulations, for instance IEC 62304, should it become classified as a medical device
in the future.

1.2.1 Deployment method and portability
Unite CS is installed through a shell script with appended compressed binary data
containing the applications in the suite and dependencies in the rpm file format.
When the install script is executed the binary data is decompressed and the appli-
cations are installed through the yum package manager1. When installed it uses the
init system systemd for initialization and starting of the service.
The programs in the suite are written mainly in portable C and C++ and should

themselves be rather portable between platforms with a compliant compiler.

1.3 Problem definition
For software such as Unite CS, being able to provide low variance in response times
for messages not only makes the product seem more attractive against competing
actors, shorter response times can also improve the outcome of critical situations
where time is of essence, for example medical emergencies. Running Unite CS in a
real-time operating system also helps by minimizing risks for problems like priority
inversion, or giving too much CPU time to non-real-time tasks, such as system
updates or logging functionality. As Unite CS is run on a machine provided by the
customer, and Ascom not being able to control what other applications the customer
is running, evaluating how well the software is performing in such environments, both
with and without a real-time operating system, is of great interest.
First, a suitable RTOS must be chosen for the task and a few criteria must be

accounted for in the selection of the operating system. After a set of OSes have been
evaluated, one will be selected to be used for the remainder of the project. A strong
contender is already suggested by Ascom since before the start of the project, namely
Red Hat Enterprise 7 with a real-time kernel, as the current solution is deployed on
Red Hat Enterprise (non-real-time variant), but this suggestion should be evaluated
on the same criteria as the alternatives.
After an operating system has been selected, the next step is to make the necessary

changes to the application and deployment procedure in order to install the software
in said operating system.
Upon successful installation in the new environment, the software needs to be

adjusted in order to exploit the real-time advantages now available. This will hope-
fully prove to bring measurable improvements compared to the system running in
the non-real-time environment, which leads to the final task for this work.
Measuring the performance of the final product will provide the hard data on how

well this particular system responds to being run in a RTOS. In order to benchmark
1The yum (Yellowdog Updater, Modified) package manager is the default package manager for

many rpm based Linux systems, including Red Hat Enterprise Linux [1] and CentOS [2].
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1. Introduction

the system, a test environment needs to be developed. The measurements should
preferably be done by an external computer connected to the host machine through
wired Ethernet in place of WiFi as a means to achieve reasonably consistent delays.

1.4 Purpose
The main aim for this thesis is to investigate the possible advantages of migrating the
Unite Communication Server software to a real-time operating system (RTOS) and
optimize it to utilize the real-time constructs available in the chosen OS. Advantages
and disadvantages of such a migration will be addressed, not only from a performance
perspective, but also from the perspective of the software engineer, i.e. how viable
such a migration would be in practice.

1.5 Context
The deployment of a software in an environment is an important step when devel-
oping software. In order to assure customer satisfaction with the product and to
increase overall perception of the quality of the product, one needs to ensure that the
product is adjusted according to the needs of the customer [3, 4]. Although several
models have been developed to provide guidelines on how to build the deployment
architecture, Unkelos-Shpigel and Hadar [3] struggled to find any specific factors
affecting the general quality of the solution. Talwar et al. [5] goes on to say that no
optimal deployment method exists, but that the best method of deployment is the
one that matches the deployment needs the closest, be it a manual deployment for
smaller systems or systems where configurations rarely change, or scripts for systems
where configurations are more likely to change.

Tyrrell et al. [6] explored the possibility of migrating an off-line medical system,
in this case a frame-rate vision system designed for computer-assisted laser retinal
surgery, to a real-time implementation running under an operating system running
the Linux kernel. They see the problem of porting large, complex code bases through
rewriting of the software, a process that is very costly, not only short term, but also
longer term, as two separate code bases need to be kept in sync through changes
and updates over the lifespan of the application. Instead, they propose the use of
the Linux kernel, and a virtual device driver as a vessel to bring the user space exe-
cutable into kernel space, thus making execution of the application non-preemptible,
in addition to giving it immediate access to system level services. Their solution
proved to reduce the variance of observed CPU cycles for processing a single frame
by two orders of magnitude compared to running in user mode, showing that it is
indeed a viable method for this use case. However, with frame-rate vision systems
not generally requiring any asynchronous processing, and this solution lacking a so-
phisticated scheduling mechanism between real-time tasks, using this technique will
not be satisfactory in a real-time system where parallel execution is required. Note
that the Linux kernel have been preemptible since version 2.6, although this can be

4



1. Introduction

disabled if desired [7].

As for measuring the performance of a real-time operating system, it is not a
simple task, and is by some said to not be possible without the use of external
hardware [8]. Aroca and Caurin measured a set of real-time operating systems
using a function generator to generate interrupts, and an oscilloscope to record the
responses from the systems in order to measure the response times. It is concluded
that the Linux kernel, and RTAI Linux, which is an extension to the Linux kernel,
are good candidates for real-time operation. This conclusion is further supported by
[9] where a similar technique was applied, and RTAI Linux and Xenomai (another
extension to the Linux kernel) are deemed adequate for control systems used for
studies on thermonuclear fusion.
Despite being able to acquire hard measurement data on a technical level, de-

ciding which RTOS to use for mission critical tasks remains a rich field, subject
also to subjective aspects, such as the developers’ familiarity with the OS, and their
willingness (or unwillingness) to migrate to a new OS [8].

5



2
Theory

2.1 Software portability
The existence of multiple computer architectures and operating systems makes
portability an important aspect of software development today. Having a product
that is portable enables simpler development and distribution for different computer
systems, thus increasing the potential customer base while lowering development and
maintenance effort.
Creating portable software essentially means designing the software according to

some standard API. Consequently, the software would be compatible with each
platform that implements this API [10]. The platforms themselves may be source
compatible, where a recompilation of the source is necessary for each platform the
binary should run on, or binary compatible, where the same compiled binary can be
run on all platforms without any recompilation [11].
For instance, the free Linux distribution CentOS is designed to be binary compat-

ible with the commercial distribution Red Hat Enterprise Linux (RHEL), meaning
any application developed for RHEL can be copied in binary form to a CentOS
system and be expected to run correctly.
By developing in a portable programming language, such as C, the number of

source code compatible platforms for an application can increase considerably, and
as long as one adheres to the C standard the code is usually2 portable. However,
venturing outside the standard is often necessary in real-world applications. Tanaka
et al. [12] identifies parts of code not portable as porting impediments. As the porting
of an application mainly consists of rewriting non-portable segments, they consider
ridding the source from such sections an important step towards increased portability
for applications. Examples of such porting impediments obtained through their
research include (but are not limited to):

• Use of implementation-dependent system calls

• Use of assembly language

• System-specific functions (e.g. regarding memory protection)

Such porting impediments are often necessary from a performance perspective, and
replacing them with portable code usually has a high performance penalty, as each
implementation of the standard defining the portable code must implement the
most general interpretation for each function, thus performance inevitably suffers
as portability increases [10]. However, as computing power increases, the practical

6



2. Theory

impact of this portability-performance trade-off is likely to be visible mostly in more
demanding applications.

2.2 Real-Time System
Real-time systems differ from non-real-time systems in that not only the result of
a computation determines the correctness of the system, but also in what time the
result can be computed. If an answer cannot be computed within a set deadline,
the answer loses its usefulness; more specifically, the worst case latency for the sys-
tem must be guaranteed, rather than maximizing the throughput [14]. A Real-time
system in itself can be classified as one of the following:

Hard real-time: For a hard real-time system, being able to perform some task be-
fore a set deadline is crucial to the system’s function, and a late answer is regarded
as system failure [15]. Such systems include pacemakers [16], avionics control sys-
tems, and ABS systems [17].

Soft real-time: In contrast to hard real-time systems, missing the deadline in a
soft real-time system can be acceptable to a certain degree, but usually degrades
the usefulness of the result, and therefore the quality of service for the system as
a whole. Examples of soft real-time systems include games and vehicle comfort
functionalities such as air conditioning [17].

2.3 Operating system
The operating system exists as a layer between the user and the hardware on a
computer system and is responsible for providing said user with a more friendly
environment in which the task of direct low-level communication with the machine
is shifted from the user to the OS. Furthermore, many modern operating systems
also take upon themselves the task of providing a multitasking environment, in
which multiple tasks can be executed simultaneously, either through time-sharing
on a single processor or real parallel execution on multiple processing units [18].
Operating systems have not always looked and functioned like they do today,

but have evolved through a number of stages – what Chauhan calls generations –
since the inception of the computer. In the dawn of the computer age programmers
wrote programs in machine language on punch cards that talked directly with the
hardware. This first generation (1940s - 1950s) was completely devoid of any kind
of operating system as we know them today, and had the user responsible for even
the lowest level operation [18].
The second generation (1950s - 1960s) brought higher level programming lan-

guages, as well as compilers and magnetic tapes for secondary storage. Initially,
manual operation was still needed for running a user program: A compiler tape

2Discrepancies may exists between various implementations of the standard. For instance, the
standard only defines the minimum size limits for the non-exact-width integer types, leaving the
compiler to ultimately decide the sizes [13].
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2. Theory

would be mounted on the system, compile the user program read from a card to
assembly; another tape, containing the assembler would then need to be mounted
for generating executable machine code from the assembly, which could then be
loaded and executed. If one considers running a series of programs, possibly written
in different languages necessitating different compilers, these manual interventions
would render the CPU idle for long periods of time. This idle time posed a problem,
as computing time was very expensive, and time spent idle is wasted time if other
tasks are waiting to be executed. The users also had to, in addition to writing the
programs, learn how to operate the machinery. As a means to mitigate these prob-
lems an operator could be employed that was trained for the manual tasks associated
with computing. This operator could be seen as a precursor to the (automatic) op-
erating system. Eventually, automatic job switching was introduced by utilizing a
control monitor that lay resident in memory, and providing instructive information
for each task on how it should be executed [18].
The third generation (1960s - 1980s) introduced concepts such as multi-programming,

where the CPU would execute another job while waiting for I/O, and multi-user
time-sharing systems where some fraction of each unit of CPU time was given to
each user of a system, resulting in a system that felt responsive to the individual
user’s input. UNIX is an example of such an operating system developed during
that time, and operating systems like it came to dominate computing for a long
time [18].
The fourth generation (1980s - present) saw the birth of graphical user interfaces

and a big shift toward user friendliness. Operating systems such as Windows, Mac
OS and Linux belong to this generation [18].

For multitasking systems a certain part of the OS is of particular interest for this
thesis, namely the task scheduler, which is responsible for allotting processing time
to runnable tasks.

2.3.1 Task Scheduling
In a multitasking system the task scheduler’s responsibility is to make sure that all
tasks scheduled to run can run in a timely manner. More specifically, it needs to
select at most one ready task to be run at each processing unit according to some
strategy that ensures the system’s function [17]. To allow the simultaneous execu-
tion of a number of tasks greater than the number of available processing units, it
also needs to provide a mechanism for storing the current state of the processing
unit for some task to allow it to resume execution at a later point in time on the
same or on a different processing unit, a process called context switching. Through
context switching, a single processing unit can be used to execute multiple tasks
simultaneously by giving each task some time t where it can run uninterrupted on
the CPU, after which it will be switched out for some other task and rescheduled
for execution at a later point in time [18].

To aid the scheduler a task can be in a number of states [17]:

• Ready

8



2. Theory

The task is ready to run and is waiting for the scheduler to allow it to execute.
Possible future states:

– Running (through promotion)
– Terminated (through deletion)

• Running
The task is executing on one of the system’s processing units.
Possible future states:

– Ready (through preemption)
– Blocked (while waiting for resource, or ordered to sleep)
– Terminated (through termination)

• Blocked
While the task is waiting for some resource or timer event.
Possible future states:

– Ready (when resource is acquired or timer event fired)
– Terminated (through deletion)

• Terminated Final state for a task. From here it cannot move to any other
state.

The scheduler will choose only from the tasks in the ready state which should be
the next to be moved to the running state. The selection of the next task is based
on the current state of the system and the states currently in the ready state. For
this purpose an efficient selection algorithm must be employed, as time spent on
scheduling cannot be utilized for actual work, thus such housekeeping belongs to
what is called the processor overhead.
When the scheduler is allowed to interrupt a task t1 in favor of another task

t2 without needing explicit permission from t1 in order to do so, it is said to be a
preemptive scheduler, and the act of interrupting t1 in favor of executing t2 is known
as preemption (t2 preempts t1) [19].

2.3.2 Real-Time Operating System
Like the name suggests, a real-time operating system is an operating system in-
tended for real-time operation. It differs from a non-real-time OS in that it does
not emphasize flexibility or speed, but rather determinism. For an operating system
this includes having a predictable interrupt latency, i.e. the delay from when an
interrupt is generated, to when the associated interrupt handler is executed, and
context switch latency, i.e. the delay associated with a context switch [20], and
overall low processor overhead [21].
While many proprietary real-time operating systems are available, such as Vx-

Works and Integrity, there are also free and open source alternatives such as real-
time adjusted varieties of Linux available [20].
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2.3.2.1 Real-Time Linux

With the rising popularity of the free and open-source kernel Linux, there has also
been an increasing interest in using it as a real-time operating system. The Linux
kernel, not originally intended for hard real-time operation has seen many attempts
at making it a kernel suitable as such. Different approaches have been taken in order
to make this a reality [20].
RTAI and Xenomai are two Linux extensions aiming to bring real-time perfor-

mance to the Linux kernel through a provided real-time API. They both employ a
dual kernel approach, where a thin nanokernel is run below the Linux kernel, posi-
tioning itself between the hardware and the kernel. The nanokernel also runs the
extension in question. Hardware interrupts are then intercepted by the nanokernel
before being propagated further. The real-time extension is positioned before the
Linux kernel in the pipeline for receiving these interrupts, giving it a chance to react
to the interrupts before involving the Linux kernel, thus enabling deterministic re-
sponse times for real-time tasks. Non-real-time tasks are simply propagated further
to the Linux kernel where they can be scheduled according to which ever scheduler
is in effect there [9].
Xenomai is also available in a single kernel configuration since version 3, where

it relies on the real-time capabilities of the Linux kernel as is. This configuration is
usually used in conjunction with the RT-Preempt patch [22], which will be described
further in the next section.

RT-Preempt is a patch originally created by Ingo Molnar (employed by Red Hat
at the time of writing) for the Linux kernel aiming to make it suitable for hard real-
time operation. The patch works by making the kernel fully preemptible through
some changes to the source code, such as exchanging non-preemptible spinlocks with
preemptible mutexes. It also implements priority inheritance for in-kernel synchro-
nization constructs, thus preventing priority inversion in the kernel [23]. A clear
advantage of the RT-Preempt patch over the above mentioned extensions is that
the RT-Preempt kernel is binary compatible with the standard Linux kernel, mean-
ing all user applications continues to work without any recompilation; the real-time
benefits propagates to the standard Linux APIs [24]. Conversely, one could also
run the real-time application developed for running on the real-time kernel on the
standard Linux kernel without any modification or recompilation.
Measurements by Brown and Martin [25] show that the Linux kernel with the

RT-Preempt patch does not perform as well as Xenomai, although the penalty of
using RT-Preempt might be more or less of a problem depending on the real-time
requirements for the system [22]. The RT-Preempt patch is at the time of writing
also under heavy development [23], suggesting previous measurements might lose
their relevance over time.
Aside from explicit real-time extensions it should also be noted that the standard

Linux kernel enables the exploitation of real-time priorities as is, giving the user bet-
ter control over the responsiveness on a per-thread level for a system. Although not
performant enough for being used with feedback control systems for fusion devices,
Barbalace et al. [9] praised the standard Linux kernel for being highly performant
and suitable for smaller dedicated real-time systems.
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2. Theory

2.4 Certification

2.4.1 Certification for mission critical systems
Kim [26] argues that stricter government imposed requirements for certification may
not lie far ahead when it comes to safety-critical software systems. As hardware has
become increasingly more reliable in the last few decades, it is now only natural
that the general public turns its eye towards the software systems, in particular
software incorporated into systems where total reliability is imperative to the safety
of the people which are under the direct control of said system. However, such
certifications – what Kim refers to as Quality-of-Service (QoS) certifications – are
far from the norm, something he argues stems from the difficulty of testing a system
to the point where all worst case paths of execution are accounted for.
One of the most cited examples of mission critical systems is that of avionics,

where a system error could compromise safety for large numbers of people. The
avionics industry have therefore together with regulatory authorities defined a strict
certification standard for software used in mission critical systems within the field
of avionics. The standard, called DO-178 and its European counterpart ED-12
describes guidelines regarding software life-cycle processes, and puts strong emphasis
on verification of the software [27]. In contrast to earlier versions, the latest version
of the standard, DO-178C, also allows formal verification of programs in place of
other forms of testing.

2.4.2 Certification for medical devices
Healthcare, being among industries where unsatisfactory operation can result in
severe degradation in quality of life, or even death, it is an industry subject to heavy
regulation. With software playing an increasingly larger role in medical devices and
healthcare, the complexity of, and reliance on said software has grown accordingly
[28]. To ensure the safety of patients, the development process of medical device
software and its associated activities regarding regulation and certification poses
many challenges for the manufacturers.
A famous example on why such regulations are necessary is the Therac-25 in-

cidents, where between June 1985 and January 1987 six people received massive
overdoses of radiation from a computerized radiation therapy machine (the Therac-
25) due to faulty software, resulting in death or serious injury for the patients
treated. The cause of the accidents can’t be attributed solely to the coding errors,
but also to poor software engineering practices, such as inadequate documentation
and insufficient testing. Furthermore, excessive confidence was put in the software’s
correctness; that software cannot fail, leading to the dismissal of the machine (and
it’s software) being the reason for the individual accidents, resulting in further ac-
cidents [29].
It’s important to note that only software classified as a medical device is subject to

these regulations. In the EU, the European Commission describes a medical device
in directive 2007/47/EC [30] (which came into force March 10 2010 [28]) as follows:
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”medical device” means any instrument, apparatus, appliance, software, material
or other article, whether used alone or in combination, together with any acces-
sories, including the software intended by its manufacturer to be used specifically
for diagnostic and/or therapeutic purposes and necessary for its proper application,
intended by the manufacturer to be used for human beings for the purpose of:

– diagnosis, prevention, monitoring, treatment or alleviation of disease,

– diagnosis, monitoring, treatment, alleviation of or compensation for an injury
or handicap,

– investigation, replacement or modification of the anatomy or of a physiological
process,

– control of conception,

and which does not achieve its principal intended action in or on the human body
by pharmacological, immunological or metabolic means, but which may be assisted
in its function by such means.”

The directive also states [30]:

”Stand alone software is considered to be an active medical device.”

as well as [30]:

”It is necessary to clarify that software in its own right, when specifically intended
by the manufacturer to be used for one or more of the medical purposes set out
in the definition of a medical device, is a medical device. Software for general
purposes when used in a healthcare setting is not a medical device.”

For software classified as a medical device, the directive continues to explain un-
der what circumstances such software should be developed [30]:

”For devices which incorporate software or which are medical software in them-
selves, the software must be validated according to the state of the art taking into
account the principles of development lifecycle, risk management, validation and
verification.”

Where ”state of the art” is considered development in accordance with the standard
IEC 62304 along with its aligned standards [28]. The IEC 62304 [31] itself describes
software life cycle processes for medical device software, and has been recognized
as consensus standard also by the United States Food and Drug Administration
(FDA). Without developing the software in compliance with these standards, one
cann<ot obtain the CE mark required for legal marketing and distribution in the
EU [32].
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As can be concluded from the above, there are no explicit certifications regard-
ing the real-time performance for medical devices. Rather, the performance of the
systems needs to be assured in rigorous testing of the device, which is in itself a
regulated activity. A certified real-time operating system might help with reaching
the desired determinism of the system if it so requires thus simplifying the develop-
ment, but if satisfactory performance can be obtained from a non-certified real-time
system, or even a non-real-time system, the usage of such a system will pose no
regulatory or legal problems.
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Methodology

3.1 Selection of real-time operating system

3.1.1 Evaluation of operating systems
First, a rough list of available real-time operating systems was compiled, from which
the obviously unfit for the project were filtered out, leaving a manageable list of
operating systems on which a deeper evaluation was performed. The OSes were
evaluated primarily on the following criteria:

• Performance (or rather response time)
What guarantees can be given regarding deterministic response for the system,
and how performant is the run time and scheduler? It is possible that a less
strict or less performant RTOS could be chosen if it satisfies the other criteria
with high marks.

• Ease of porting
The chosen system needs a rather high degree of compatibility with the current
codebase in order for the project not to turn into a full-scale porting job. Time
should preferably be spent on optimizing the current code (i.e. adding real-
time related constructs and hints), not translating the majority of it to some
DSL, or worse yet, some other programming language.

• Ease of deployment
Having to spend as little time as possible dealing with the installation on the
new system allows for more time to be spent on the main problem.

• Licensing
The monetary aspect is of course of importance when selecting the operat-
ing system. A very expensive or overly restrictive license may disqualify a
contender before even evaluating the other criteria.

• Certification
The OS having certain certifications could benefit the product in several ways:
It can be used purely as a sales argument, but it could also allow the system to
be used in areas not before possible due to the lack of certification. Of course,
the software would also need to be certified for this to be considered relevant,
and this lies beyond the scope of this project.
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3.1.1.1 Red Hat Enterprise Linux 7 with Real-Time Kernel

Red Hat Enterprise 7 with real-time kernel was the most obvious choice, since
RHEL7 (without the real-time kernel) is the officially supported operating system
for Unite CS at the time of writing. It has several attractive qualities making it
a strong candidate, one of them being premium support from Red Hat [33]. It is
running a kernel with the RT-Preempt patch.

Performance: Based on RT-Preempt patch. Should give a clear advantage in
real-time performance over the standard kernel [25].

Ease of porting: No changes needed. Running the RT-Preempt patch requires
no code changes, nor recompilation of software.

Ease of deployment: No changes needed. Installation procedure is identical to
that of the current product.

License: Commercial. Free developer license available.

Certification: None

3.1.1.2 CentOS 7 with Real-Time Kernel

CentOS 7 with real-time kernel is another very strong contender, as it is an operat-
ing system binary compatible with Red Hat, meaning deployment and porting don’t
require any extra work. It also runs a kernel with the RT-Preempt patch.

Performance: Based on RT-Preempt patch. Should give a clear advantage in
real-time performance over the standard kernel [25].

Ease of porting: No changes needed. Running the RT-Preempt patch requires
no code changes, nor recompilation of software.

Ease of deployment: No changes needed. Installation procedure is identical to
that of the current product.

License: Free software

Certification: None

3.1.1.3 Red Hat Enterprise Linux 7 or CentOS 7 with Xenomai dual-
kernel extension

By using the Xenomai extension the customer is able to run time critical processes
on the co-kernel while letting the Linux kernel deal with non-real-time tasks.

Performance: Should perform better than RT-Preempt [25], but not quite on
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the same level as VxWorks [9].

Ease of porting: Provides POSIX ”skin”, simplifying compiling POSIX compliant
code for the co-kernel. Recompilation according to the Xenomai build procedure
needed for all modules. At the moment of writing, Unite CS consists of over 1700
Makefiles that would need to be modified, making this a daunting endeavor.

Ease of deployment: Provided the software is successfully ported, new pack-
ages have to be built for the recompiled modules, which could then be installed
through the same install script used in the current solution.

License: Free software

Certification: None

3.1.1.4 Green Hill Software INTEGRITY-178 RTOS

INTEGRITY-178 is a commercial real-time operating system heavily focused on
reliability and performance. For instance, it is used in over 20 different aircraft
models, both military and civilian [34].

Performance: Expected very good

Ease of porting: Complicated. Although POSIX compliant, not running a Linux
system necessitates recompilation of all modules. In addition, the certified part of
the INTEGRITY-178 OS only supports ANSI C and Embedded C++ and not the
full C++ runtime rendering the source code incompatible [35]. A major rewrite of
the whole software suite would be necessary to comply with the available runtimes.
However, one has access to a full C and C++ runtime in the non-certified part of
the operating system.

Ease of deployment: Complicated. Not an rpm based system, thus requiring
rewrite of deployment script and packages

License: Commercial

Certification: DO-178B Level A, EAL 6+

3.1.1.5 Wind River VxWorks

VxWorks is another widely used high-performance real-time operating system with
customers such as NASA, Boeing, Airbus, and Northrop Grumman [36].

Performance: Expected very good

Ease of porting: Complicated. Although POSIX compliant, not running a Linux
system necessitates recompilation of all modules.

16



3. Methodology

Ease of deployment: Complicated. Not an rpm based system, thus requiring
rewrite of deployment script and packages

License: Commercial

Certification: None for the operating system itself, but Wind River supplies tools
for simplifying obtaining certification for applications developed for the OS

3.2 Testing the real-time performance of the op-
erating system

After evaluating a number of operating systems, Red Hat Enterprise Linux (RHEL)
7 with a real-time kernel was selected, as it is the only operating system officially
supported by Ascom for running the Unite CS software suite. In addition RHEL has
a free evaluation license, making it a good candidate for the project. Furthermore,
the real-time kernel supplied by Red Hat is based on the RT-Preempt patch, meaning
no changes to the code, or recompilation of the software is necessary.
The real-time kernel was installed according to the installation guide provided by

Red Hat [37] through the yum package manager. Although no major problems arose
during install, a few dependencies could not be resolved automatically as according
to the installation guide, and had to be installed manually.

In order to test the interrupt latency for the real-time kernel the program cyclictest,
which is the most frequently cited metric for real-time Linux performance [38], was
used in conjunction with the dohell script, which is a script designed to generate
load on a Linux machine through the use of commonly available commands and is
used as part of a latency test shipped with Xenomai for measuring the real-time
performance [39].
Simplified, cyclictest measures latency according to the following pseudocode,

presented by Rowand [38]:
clock_gettime ((&now))
next = now + par ->interval
while (! shutdown) {

clock_nanosleep ((& next))
clock_gettime ((&now))
diff = calcdiff(now , next)
# update stat -> min , max , total latency , cycles
# update the histogram data
next += interval

}

In short, it measures the difference between the time when a thread should have
been woken up and the time it actually woke up.
The same test was run under the same conditions when running the standard
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Linux kernel, as well as with the real-time kernel as verification that the real-time
kernel was installed correctly and functioning as to be expected.

cyclictest was run with the following command:

cyclictest -p 30 -t -n -l 100000 -H 1000 –histfile hist

The above command starts one thread for each CPU core on the system, running
100000 loops each, using clock_nanosleep for measuring time.
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Figure 3.1: Above: Cyclictest with standard kernel
Below: Cyclictest with real-time kernel
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As can be seen in figure 3.1 the interrupt latency was far lower and more consis-
tent when running the real-time kernel, which suggests that the kernel was indeed
correctly installed and running.

3.3 Setup
The tests and measurements were run on a remote machine connected to the host
computer directly via wired Ethernet in order to minimize network delay. To improve
accuracy of the measurements3, the remote machine itself was running a real-time
operating system (CentOS with RT-Preempt patch). During the measurements,
care was taken not to interfere with either the remote or host computer.

Host machine Client machine

Ethernet

Figure 3.2: Setup used for measuring Unite CS

3.3.1 Host machine
The following system was used to run Unite CS:

Hardware:
Processor: Intel Core i5-2500
Memory: 12GiB DDR3 1333Mhz
Hard drive: 500GB Hitachi HDS72105
Network interface controller: Intel 82579V Gigabit Ethernet

Software:
Operating system: Red Hat Enterprise Linux 7.2 Maipo
Kernel: 3.10.0-327
Real-time kernel: 3.10.0-493.rt56

3.3.2 Client machine
The following system was used for measuring the performance of the host computer:

Hardware:
Processor: Intel Core i5-3210M

3When a reply is obtained, the thread responsible for measuring the delay needs to wake up
fast in order to not to skew the results with its own scheduling latency.
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Memory: 8GiB DDR3 1600Mhz
Hard drive: 128GB SAMSUNG MZ7PC128
Network interface controller: Intel 82579M Gigabit Ethernet

Software:
Operating system: CentOS 7.2.1511
Kernel: 3.10.0-327
Real-time kernel: 3.10.0-514.rt56

3.4 Testing the software
A test suite was developed in order to automate the measurements of the response
times for the software. The test script is itself written in bash script, and internally
uses a modified C++ application provided by Ascom that communicates with the
Unite CS. The modified software then uses the tsc4 clock to acquire accurate mea-
surements for the elapsed time between sending a message to the Unite CS, and
receiving a reply. In addition to merely measuring the response time, the test suite
is also responsible for putting the computer under load i.e. starting up processes
with the purpose of slowing the machine down so that the advantages of running the
real-time operating system become more prominent. This is necessary as a system
usually is more predictable when not overloaded [8].
During transmission of a single message, multiple round trips are made over the

network due to how the applications and Unite protocol work. The elapsed time
therefore does not describe the time elapsed until the first response is received from
Unite CS, but rather when the last response is received. Using Wireshark, it was
determined that four round trips (eight packets in total) were done over the network
for every message.

The test procedure was structured as follows:

1. Start processes generating load on the computer running Unite CS

2. Every 30 milliseconds send a message to the Unite CS and record the time
elapsed before an answer is received.

3. Repeat step 2 until 10000 messages have been sent.

4. Repeat the test for every operating system and load we are interested in mea-
suring

For each operating system tested, measurements was performed with and without
the software being adjusted for real-time operation. Due to the fact that the real-
time kernel’s obvious advantage is when running processes with a real-time priority,
the remainder of the report mainly discusses differences when running processes
with real-time priority, regardless of kernel.

4The tsc (Time Stamp Counter) clock is a high resolution clock that measures the number of
clock cycles since some point in time, e.g. a reboot
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3.5 Adjusting the software for real-time operation
To adjust the software for real-time operation, certain processes need to be promoted
to a real-time priority. By inspecting the source code of Unite CS and monitoring
system calls, the Unite CS processes involved in the critical information path were
identified. When setting a real-time priority only these processes were promoted.
Three alternatives on how to perform the promotion are presented below.

3.5.1 Using chrt

Under Linux it is possible to set the real-time priority for a running process through
the chrt command. As a first step towards reaping the benefits of the real-time
kernel, this command was used to give certain processes belonging to the Unite CS
suite a real-time priority. It can be easily done through one command, making it a
very simple procedure not requiring substantial intervention from neither the cus-
tomer nor Ascom:

pgrep -w ”($Program1|$Program2|$ProgramX)” | xargs -L1 chrt -p -f $priority

The command takes a list of program names as part of the regular expression passed
to the pgrep command, which returns the process IDs for these programs. These are
then passed into the chrt command via the xargs command, where they are given
a SCHED_FIFO (denoted by the -f flag) scheduling policy with priority $priority.
This line of code could easily be put in a startup script for the target computer,
although it needs to be run every time one of the included applications are started
or restarted.

3.5.2 Create scripts replacing the binaries
Another approach is to replace the executables for the programs with scripts pointing
to and running the real executable with certain scheduling settings. The creation of
these scripts would then be managed by a central application where one can view
and set the priorities for each application. Such a solution would not require any
manual intervention between restarts, but would pollute the file system structure,
rendering management of the installation more complicated. Moreover, having the
system depend on both the script and the original executable to function properly
would add an additional point of failure, something that should be minimized in a
mission critical system such as Unite CS. That said, this method has the advantage
of being deployable on an existing installation without updating the Unite CS.5

5 Applications setting real-time priorities for processes must have the rights to do so on the
target system. An application running under the root user normally has this right, however, if the
application is started as a systemd service, which is the case with Unite CS, a real-time priority
limit must be specified in the .service file in the [Service] section, like so:

LimitRTPRIO=50
This will give the process the rights to promote processes to a real-time priority up to 50.
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3.5.3 Adjusting the program code
The most attractive long term solution is to set the desired priority in the applica-
tion responsible for starting each individual program in the Unite CS suite. Such
a change would necessitate changes to the source code and recompilation of the
particular program, but would ultimately produce the same result as with the chrt
command, but without the need for any housekeeping between restarts. This solu-
tion should preferably be accompanied by a per-application user adjustable priority
setting available from some settings console for the Unite CS.6

A proof of concept was created for this solution, where a real-time priority at-
tribute was added to the applications’ configuration files which are stored in the
XML format. The application responsible for starting the applications was then
modified to parse this attribute, as well as setting the priority for each application
through the POSIX conforming command sched_setscheduler available through
the Linux scheduling API.
An application was also developed in the Python programming language for ad-

ministering the real-time priorities for each application. It reads and writes to the
configuration XML files directly, as well as setting the priorities for the currently
running applications through the chrt command. This tool is required to be run as
the root user on the target system as the configuration files for the applications are
owned by the root user in a standard installation of Unite CS.

6See footnote 5
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Results

The following results were obtained when benchmarking Unite CS according to sec-
tion 3.4, with and without a real-time kernel. The results are categorized according
to which load the machine running the Unite CS was subject to at the time of
measurement.
It should be noted that running with the real-time kernel sometimes stalled the

CPU when closing applications in the Unite CS suite, resulting in a frozen system.
It happened rarely, but as the system freezes during a stall – requiring a reboot –
it needs to be addressed. Applying step 2 in [40], giving the timer softirq threads
priorities higher than those given to the Unite CS threads, reduced the frequency of
such stalls greatly, although they still occurred.
Results for non-promoted processes are provided in Appendix A.

4.1 dohell

The following measurement shows the results obtained when stressing the system
with the dohell script.
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Figure 4.1: Response times for Unite CS on RHEL7 not running the real-time
kernel with Unite CS processes promoted to a real-time priority. Load: dohell

a)

Figure 4.2: Response times for Unite CS on RHEL7 running the real-time kernel
with Unite CS processes promoted to a real-time priority. Load: dohell
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4.2 Concurrent memory allocations
During these measurements the application stress was used to perform repeated
memory allocations while measuring the system. The following command was run:

stress --vm 40 --vm-bytes 256M

This command starts 40 worker threads, each continuously allocating and freeing
256 megabyte chunks of memory.

Figure 4.3: Response times for Unite CS on RHEL7 not running the real-time
kernel with Unite CS processes promoted to a real-time priority. Load: stress

--vm 40 --vm-bytes 256M

26



4. Results

Figure 4.4: Response times for Unite CS on RHEL7 running the real-time kernel
with Unite CS processes promoted to a real-time priority. Load: stress --vm 40

--vm-bytes 256M

Note that for figure 4.3 the second largest latency was 5451 µs.

4.3 Stressing CPU
During these measurements the application stress was used to utilize the CPU
while measuring the system. The following command was run:

stress --cpu 100

This command starts 100 worker threads, each continuously calculating the square
root of a random number.
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Figure 4.5: Response times for Unite CS on RHEL7 not running the real-time
kernel with Unite CS processes promoted to a real-time priority. Load: stress

--cpu 100

Figure 4.6: Response times for Unite CS on RHEL7 running the real-time kernel
with Unite CS processes promoted to a real-time priority. Load: stress --cpu

100
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Investigation

By looking at the figures in chapter 4 and comparing them with those in appendix
A it is clear that running the vital Unite CS processes with a real-time priority
improves determinism for the system greatly regardless of load, something that is
true running both with and without the real-time kernel.
This chapter aims to discuss and comment on the differences in the results between

the real-time and non-real-time kernel for the different loads. It also discusses how
network latency affects the measurements.

5.1 Load: dohell

By observing figures 4.1 and 4.2 it can be concluded that running a real-time kernel
does give some improvements regarding determinism over running the non-real-time
kernel when promoting the Unite CS processes to real-time priorities. Additionally,
marginally higher throughput was also observed when running the real-time kernel.
However, the maximum values, which are ultimately the metric of importance, did
not see any improvement.

Looking at figure 4.2 (real-time kernel), a pattern can be observed. The samples
exhibiting a higher latency to the extent that it is visible on the scatter plot seem to
occur at rather regular intervals. This is especially clear beneath the a) mark. To
understand why such behavior was observable further insight in the dohell script
was needed.

The dohell script is rather simple, and basically stresses the system through four
commands:

cat /proc/interrupts

ps w

dd if=/dev/zero of=/dev/null

ls -lR /

By testing each command alone, it was found that running ls -lR / produced
these spikes in latency. The command itself lists all files on the system recursively,
starting from the root folder. Trying to produce a minimal working example, the
following command was found to produce the same spikes
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ls -R -U -i /
Where -R enables recursive listing, -U disables sorting (removing any excessive CPU
usage), and -i enables printing of inode number. The flag of interest here is the
-i flag. Without it these spikes did not occur. Running both commands under the
strace7 tool gave the following output on the machine running Unite CS:

% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
75.97 0.254045 1 207979 1 lstat
11.60 0.038779 1 50632 getdents
6.05 0.020232 1 25313 3 openat
2.96 0.009901 0 25325 close
2.02 0.006769 0 25324 fstat
1.32 0.004420 3 1332 write
0.02 0.000075 2 33 mmap
0.02 0.000056 3 20 mprotect
0.02 0.000055 2 25 12 open
0.00 0.000014 7 2 statfs
0.00 0.000013 1 11 read
0.00 0.000011 0 25 brk
0.00 0.000007 7 1 1 access
0.00 0.000005 3 2 stat
0.00 0.000005 2 3 munmap
0.00 0.000003 2 2 2 ioctl
0.00 0.000002 1 2 rt_sigaction
0.00 0.000002 2 1 futex
0.00 0.000001 1 1 rt_sigprocmask
0.00 0.000001 1 1 execve
0.00 0.000001 1 1 getrlimit
0.00 0.000001 1 1 arch_prctl
0.00 0.000001 1 1 set_tid_address
0.00 0.000001 1 1 set_robust_list
0.00 0.000000 0 2 mremap

------ ----------- ----------- --------- --------- ----------------
100.00 0.334400 336040 19 total

Figure 5.1: strace-cf ls -RUi /

7strace is an program used for monitoring which system calls are used by some program
running on a system.
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% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
47.67 0.027230 1 50632 getdents
27.24 0.015559 1 25313 3 openat
12.53 0.007157 0 25325 close
9.16 0.005231 0 25324 fstat
2.91 0.001664 2 975 write
0.14 0.000079 2 33 mmap
0.11 0.000063 3 20 mprotect
0.09 0.000053 2 25 12 open
0.04 0.000023 1 25 brk
0.04 0.000022 11 2 statfs
0.02 0.000010 1 11 read
0.01 0.000006 3 2 stat
0.01 0.000006 2 3 munmap
0.01 0.000003 2 2 2 ioctl
0.01 0.000003 3 1 1 access
0.00 0.000002 1 2 rt_sigaction
0.00 0.000001 1 1 rt_sigprocmask
0.00 0.000001 1 1 execve
0.00 0.000001 1 1 getrlimit
0.00 0.000001 1 1 arch_prctl
0.00 0.000001 1 1 futex
0.00 0.000001 1 1 set_tid_address
0.00 0.000001 1 1 set_robust_list
0.00 0.000000 0 2 mremap

------ ----------- ----------- --------- --------- ----------------
100.00 0.057118 127704 18 total

Figure 5.2: strace-cf ls -RU /

Figure 5.1 and 5.2 reveals that when the -i flag is enabled, the ls command uses
the lstat8 system call for every file on the system. The command also spends most
of its time executing this system call.
Compiling the ls program from source, and eliminating the lstat call (thus

breaking the printing of inodes) further verified that repeatedly using this system
call indeed was responsible for the spikes in latency.
Redoing the measurements with a modified dohell script, where the ls command

is changed to ls -RU / produced the following results:
8lstat is a system call defined by the POSIX standard used for querying information about a

file.
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Figure 5.3: Response times for Unite CS on RHEL7 not running the real-time
kernel with Unite CS processes promoted to a real-time priority. Load: Modified

dohell

Figure 5.4: Response times for Unite CS on RHEL7 running the real-time kernel
with Unite CS processes promoted to a real-time priority. Load: Modified dohell
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It can be seen that determinism improved for both kernels when eliminating the
lstat call. This might lead one to believe that Unite CS accesses the disk within
the critical execution path. However, monitoring the system calls for Unite CS
processes showed that not to be the case. In conclusion, the lstat call is considered
a heavy system call where the real-time kernel shows only minor improvement over
the standard kernel.

5.2 Load: Concurrent memory allocations
This load produced the most obvious improvements for the real-time kernel. It is
likely that this is due to the Linux kernel shipped with the tested version of RHEL7
being compiled with the preemption mode PREEMPT_VOLUNTARY. This preemption
mode does allow for some preemption within the kernel, but only at certain points
[41]. Consequently, the processes wanting to wake up may not be able to do so due
to preemption being disabled during the memory allocations.
The ftrace tool can be used in conjunction with the wakeup_rt tracer to monitor

the wakeup latency for real-time threads. Indeed, using it while measuring under
this load showed a very high wakeup latency when running the normal kernel, on the
order of several thousand microseconds due to the stress application. On the other
hand, when using the real-time kernel the latency rarely rose above 30 microseconds.

Keeping this in mind, the Linux kernel offers another low latency preemption mode
which is included in the mainline Linux kernel called CONFIG_PREEMPT. Compiling
the kernel with this preemption mode allows for further preemption in the kernel,
although not to the same extent as with the RT-Preempt patch. Repeating the
same measurement with a kernel compiled with CONFIG_PREEMPT enabled yielded
the following result:
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Figure 5.5: Response times for Unite CS on RHEL7 running kernel compiled
with CONFIG_PREEMPT with Unite CS processes promoted to a real-time priority.

Load: stress --vm 40 --vm-bytes 256M

It can be seen that the CONFIG_PREEMPT enabled kernel gives much better results
than the standard kernel shipped with RHEL7 regarding latency for this particular
case. However, a kernel configured as such is at the time of writing not provided by
Red Hat but has to be compiled from source or acquired from a third party, which
is not supported by Red Hat [42].

5.3 Load: Stressing CPU
For this load no clear improvements were seen, and the high maximum seen in figure
4.5 was a lone outlier. This result was expected, as the load itself (calculating square
roots of random numbers) does not utilize any system calls, i.e. no non-preemptible
kernel code paths are executed; Unite CS processes can always preempt the lower
priority tasks when needed without any significant delay.

5.4 The impact of network communication
As mentioned in chapter 3, the two computers used in the measurements were con-
nected directly via wired Ethernet in order to minimize delay caused by network
communication. Even doing so, it can be observed that even the results with the
lowest standard deviation (figure 4.4) exhibit a span of 391 microseconds between
minimum and maximum. The culprit for such values is unlikely to be the inter-
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rupt latency of the system, which was measured to be on the order of single digit
microseconds.
To measure the latency of the network, two simple test applications were created.

A server which resides on the machine that is normally running Unite CS, and a
client which resides on the machine carrying out the measurements. The client mea-
sures the latency by sending a series of messages over the UDP protocol, waiting
for an acknowledge message from the server after each message. The latency is then
measured as the time that passed between the first message sent, and the last mes-
sage acknowledged. This procedure, with four round trips (eight messages in total),
resembles the execution of the application used for the original measurements while
keeping the focus on network latency only. Both applications are run with a real-
time priority.

Measuring 10 000 runs while loading the host computer with the command
stress --vm 40 --vm-bytes 256M

yielded the following result:

Figure 5.6: Response times for mock server on RHEL7 running the real-time
kernel. Load: stress --vm 40 --vm-bytes 256M

These results show similar numbers regarding determinism as figure 4.4, suggesting
that the use of wired Ethernet and associated drivers might introduce a fair amount
of nondeterminism to the system.
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5.4.1 Improving network determinism using Xenomai with
RTnet

While porting Unite CS to the Xenomai extension requires too big changes to the
build procedure to be viable for this project, porting the mock server and client
still provided insight in how a real-time adjusted Ethernet driver can improve the
network determinism of the system.
First, the latest (at the point of writing) Linux kernel with a suitable Xenomai

patch, 4.1.18, was patched with the Xenomai dual-kernel extension with RTnet9

enabled. The kernel was then compiled and installed on the host RHEL7 installation.
After recompiling the mock server for Xenomai and RTnet, the measurements

from section 5.4 were repeated, giving the following result:

Figure 5.7: Response times for mock server on RHEL7 running the Xenomai
extension kernel with RTnet. Load: stress --vm 40 --vm-bytes 256M

Installing the Xenomai patched kernel also on the machine performing the measure-
ments gave the following result:

9RTnet is an open source hard real-time network protocol stack available for Xenomai and RTAI
[43]. It supports many common network cards, including the ones available in the machines used
for this thesis.
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Figure 5.8: Response times for mock server on RHEL7 running the Xenomai
extension kernel with RTnet driver and running the Xenomai extension with
RTnet on the computer doing the measurement. Server load: stress --vm 40

--vm-bytes 256M

As can be seen in the above figures, determinism is greatly improved when using
the RTnet driver under Xenomai, especially when used on both network nodes,
confirming that the standard Intel Ethernet driver (in this case the kernel module
e1000e) in conjunction with the Linux kernel considerably impairs determinism for
this particular setup.
However, even assuming Unite CS can be successfully ported to utilize RTnet, the

solution is difficult to adapt due to a number of reasons: Firstly, while running the
RTnet driver, all applications that utilize the network need to be compiled to use
RTnet themselves, which is not really an alternative for the machines running Unite
CS10. Secondly, RTnet was not completely stable on the host machine and sometimes
needed to be restarted. Thirdly, just as with CONFIG_PREEMPT, this solution would
not be supported by Red Hat, should problems with the operating system arise.

10Other applications may use the network normally with some configuration if an additional
Ethernet line is available on the host computer.
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From the results in chapter 4 one can conclude that the real-time kernel was more
deterministic under every load tested. Yet, seeing the improvements as a motivation
to require, or even recommend customers to migrate to a real-time environment is
debatable:
Firstly, the performance of the system was very good even when running the

standard kernel. With a measured maximum response time of ~58 ms, a system
where the the final actor is a person, such as Unite CS, could already be seen as
performant enough for its purpose. This maximum was also a lone outlier, with the
second largest latency being ~7 ms. Moreover, Unite CS – being a soft real-time
system – might not suffer from such delays occasionally.
Secondly, the improvements observed are rather minor considering how the system

is used in practice. Keeping in mind that the Unite CS will deliver messages to
devices operated by people, improvements on the order of single milliseconds may
not bring any noticeable improvements when put to practice, as the recipient of the
message needs to react to the notification signal, produce their device, and read the
message before any action can be taken regarding the content. If the duration of
such a procedure was measured as rigorously as the Unite CS during this thesis,
the observed deviation in durations would surely mask the improvements gained
by running the real-time kernel. The same is also true for the networking involved
when running in a production system. As the network communication itself has an
associated latency that is not constant, it is rather possible that the network latency
would also render the improvements completely unnoticeable, especially over Wi-Fi.
Finally, with Unite CS not being a medical device or subject to any other reg-

ulations regarding response time, providing a system that is well tested and good
enough is perfectly adequate. Until there is a definitive need for a more responsive
system, say, should it incorporate some machine-to-machine aspect (such as con-
trolling other medical devices), there is not enough motivation based on the results
obtained in this thesis to migrate to a real-time operating system.
Furthermore, running the software on the real-time kernel required modifications

to the system in order for it not to hang, namely raising the priority of the timer
softirq threads. Such an operation is rather invasive, and affects not only Unite
CS, but the system as a whole, and could negatively impact other applications run-
ning on the customer’s machine. If not absolutely necessary, such a modification
should be avoided. Additionally, even after this adjustment the system hung, albeit
rarely. Ceasing to function is of course unacceptable for a software of this nature.
Conversely, the non-real-time kernel did not once, under any circumstance, hang
or cease to function. Note that this paragraph only discourages using the tested
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real-time kernel and version. Other kernels, operating systems, or hardware, might
not suffer from the same problem.

However, using real-time priorities for crucial Unite CS processes can improve de-
terminism greatly on an existing system at a very low cost. Naturally, although no
issues were encountered during the measurements, further testing should be carried
out to ensure the stability of the solution.
It is also important to keep in mind that the metric of interest for a real-time

system is the maximum response time. Not performing thorough complexity anal-
ysis on the code, one can only obtain such a number by repeated testing to the
point where the gathered maximum can be deemed an approximation of the true
maximum.

6.1 Reflection
Looking back on the project, a few things can be mentioned that might be helpful
to know in case a similar evaluation is to be performed in the future.
For one, Unite CS was not subject to particular constraints regarding determinism

at the time of writing. It was also not reported to perform sub-par to expectations
prior to this thesis. Considering this, even if the results might be of interest, evalu-
ating how such a system could be improved upon in terms of performance by using
a real-time operating system could be seen as a case of premature optimization. If
the research itself is not the goal of such an evaluation, it is very possible that the
effort will give very small practical gains for the system.
Furthermore, using the built in real-time capabilities of the stock Linux kernel

resulted in much bigger improvements than going from the stock kernel to the real-
time kernel. This is consistent with what is said by Bíba et al. [37], that standard
tuning will give 90% of the latency gains, and using a real-time kernel will provide
the remaining 10%. Keeping this in mind, tuning the current system should, if not
already done, be the first step towards increasing determinism; a real-time operating
system is not a silver bullet.
It may also be true that the term ”Real-time operating system” still carries the

misconception that it will increase performance of a system. While this is generally
true for real-time performance, it is not true for throughput, which is what many think
about when they hear the word ”performance”. Rather the contrary, throughput will
often suffer in favor of increased determinism, something that could be observed in
section 4.3. This misconception is not a recent phenomenon, but has been around
for decades, and was highlighted by Stankovic in the paper “Misconceptions about
real-time computing: a serious problem for next-generation systems” [44].
Another point worth noting is that throughout this thesis, it is assumed that the

customer is able to run unrelated software on the same machine as Unite CS (as this
is not prohibited by Ascom). The obtained results, and also the results obtained by
Barbalace et al. [9], show that the improvements regarding determinism that can be
expected when moving to a real-time operating system are often sub-millisecond. If
improvements on that scale did prove to have major significance regarding the safety
of patients, surely it would be more reasonable to force the customer to dedicate a
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machine solely to most critical parts of Unite CS in order to ensure as low response
times as possible.
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Achieving major gains regarding determinism for some software by simply running
it on a real-time operating system is not something that should be expected unless
the software itself is developed from the bottom and up with real-time operation
in mind. Many otherwise indispensable tools in the programmers toolbox are not
viable if determinism is a top priority, and care must be taken in order to make sure
the implementation is free from unbounded operations.
That aside, one should also ask the question whether or not the system needs real-

time guarantees. As excluding tools such as dynamic memory allocation and disk
access greatly inhibits flexibility and introduces complexity for the implementation,
doing so only to save some fractions of a millisecond when it is not really needed
might be a bad business decision not only in short, but also long term.
That said, improvements were indeed observed when running the real-time kernel,

especially when the host computer was subject to heavy memory allocations in
the background. For a Linux system relying on sub-millisecond determinism while
simultaneously requiring the ability to dynamically allocate memory in non-real-time
processes, merely switching the real-time kernel might improve the system enough
for it to pass the performance requirements. Considering its binary compatibility
with the standard kernel and open source nature, a kernel patched with RT-Preempt
can easily be evaluated if so desired.
However, for Unite CS the performance is already deemed adequate without the

real-time kernel if running the critical programs with a real-time priority, and doing
so should preferably be adopted in the current product, as it is a very simple solution
with clear benefits. It is an easily deployable solution, not requiring any modification
to the customer’s systems. It can be shipped as an update to Unite CS, and be
activated and disabled on demand on a per-application basis with the help of the
real-time administrative tool developed as part of this project.
Furthermore, UDP over Ethernet was also found to introduce quite a bit of non-

determinism to the system, which was shown to be due to the Linux Ethernet driver.
Using the RTnet network stack under Xenomai improved network determinism con-
siderably, suggesting that the standard Ethernet driver might not be preferable in
real-time systems with stringent timing constraints.
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Appendix 1

A.1 dohell with no real-time promotion

Figure A.1: Response times for Unite CS on RHEL7 not running the real-time
kernel. Load: dohell
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Figure A.2: Response times for Unite CS on RHEL7 running the real-time
kernel. Load: dohell
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A.2 Concurrent memory allocations with no real-
time promotion

Figure A.3: Response times for Unite CS on RHEL7 not running the real-time
kernel. Load: stress --vm 40 --vm-bytes 256M

III



A. Appendix 1

Figure A.4: Response times for Unite CS on RHEL7 running the real-time
kernel. Load: stress --vm 40 --vm-bytes 256M
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A.3 Stressing CPU with no real-time promotion

Figure A.5: Response times for Unite CS on RHEL7 not running the real-time
kernel. Load: stress --cpu 100
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Figure A.6: Response times for Unite CS on RHEL7 running the real-time
kernel. Load: stress --cpu 100

VI
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