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Abstract 

Hydrogen embrittlement can manifest itself as hydride formation in structures when in contact 

with hydrogen-rich environments, e.g. in space and nuclear power applications. To supplant 

experimentation, modeling of such phenomena is beneficial to make life prediction reduce 

cost and increase the understanding. 

In the present work, two different approaches based on phase field theory are employed to 

study the precipitation kinetics of a second phase in a metal, with a special focus on the 

application of hydride formation in hexagonal close-packed metals. For both presented 

models, a single component of the non-conserved order parameter is utilized to represent the 

microstructural evolution. Throughout the modeling the total free energy of the system is 

minimized through the time-dependent Ginzburg-Landau equation, which includes a sixth 

order Landau potential in the first model, whereas one of fourth order is used for the second 

model. The first model implicitly incorporates the stress field emanating from a sharp crack 

through the usage of linear elastic fracture mechanics and the governing equation is solved 

numerically for both isotropic and anisotropic bodies by usage of the finite volume method. 

The second model is applied to plate geometries containing a notch or not, and it includes an 

anisotropic expansion of the hydrides that is caused by the hydride precipitation. For this 

approach, the mechanical and phase transformation aspects are coupled and solved 

simultaneously for an isotropic material using the finite element method. 

Depending on the Landau potential coefficients and the crack-induced hydrostatic stress, for 

the first model the second-phase is found to form in a confined region around the crack tip or 

in the whole material depending on the material properties. From the pilot results obtained 

with the second model, it is shown that the applied stress and considered anisotropic swelling 

induces hydride formation in preferential directions and it is localized in high stress 

concentration areas. The results successfully demonstrate the ability of both approaches to 

model second-phase formation kinetics that is triggered by flaw-induced stresses and their 

capability to reproduce experimentally observed hydride characteristics such as precipitation 

location, shape and direction. 

 

Keywords: phase transformation, phase field theory, hydrogen embrittlement, hydride, linear 

elastic fracture mechanics, finite volume method, finite element method 
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1 Introduction 

Hydrogen, the most abundant and lightest chemical element in the universe, has become a 

major concern for the material industry. Numerous works have shown that it is responsible for 

degrading the mechanical properties of metals in hydrogen-rich environments, possibly 

leading to premature fracture. Among hydrogen damage processes stand hardening, 

embrittlement and internal damage. 

Hydrogen embrittlement is generally characterized by the deterioration of the mechanical 

properties of a material in presence of hydrogen. The phenomenon is well known in aerospace 

and nuclear industries. In rocket engines being developed for Ariane 6 such as Vinci and 

Vulcain 2, hydrogen is thought to be utilized as fuel and cooler and therefore interacts with 

some engine components. The properties of nickel superalloys, traditionally used in high-

temperature areas such as the combustion chamber (Kirner, et al., 1993) and the nozzle, have 

been observed to be derogated in presence of hydrogen (Fritzemeier & Chandler, 1989). 

Brittle compounds, titanium hydrides, are likely to form in colder engine parts made of 

titanium alloys when in contact with hydrogen and can embrittle the structure. In nuclear 

reactor pressure vessels, atomic hydrogen (H) penetrates zirconium-based cladding and 

pressure tubes where potentially forms brittle zirconium hydrides (Puls, 2012). Hydride 

formation, a second-phase precipitation, is one stage of the complex mechanism of delayed 

hydride cracking (DHC) (Northwood & Kosasih, 1983; Coleman, 2003), which is one of the 

most notorious mechanisms of hydrogen embrittlement in nuclear industry. It can be 

enhanced by the presence of material defects, which acts as stress concentrators and hydrogen 

trapping sites. 

Knowledge of hydride formation kinetics is fundamental in order to predict the life time of a 

metallic structure subjected to DHC in a hydrogen-rich environment. For this purpose, 

modeling is found to be an economically beneficial route to develop knowledge in the field. 

Thus, in this context, the present study focuses on modeling a second-phase formation in the 

presence of a crack and notch. 

The second-phase formation has been modeled over the years through the use of different 

approaches such as the sharp-interface and phase field methods (PFM). In the present work, 

two different models based on phase field theory (PFT) are developed to model second phase 

formation, especially in the vicinity of stress concentrators. Linear elastic fracture mechanics 

(LEFM) is adopted in the first presented model in order to account for the stress field in 

presence of a sharp crack. The problem is solved with finite volume method and the model 

formulation allows both first- and second-order transformations to occur. In the second model 

that is still a pilot model the anisotropic material swelling caused by zirconium hydride 

formation is explicitly taken into account while only first-order transformations are allowed. 

The second model is applied to a defect-free plate and a notched plate, which are subjected to 

external tensile stress. The numerical scheme employs the finite element method to 

concurrently solve the mechanical and phase-field governing equations, which are strongly 

coupled.  
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2 Hydrogen degradation 

Hydrogen is known for its capacity to alter the properties of metals such as steels, aluminum 

(Al), titanium (Ti), zirconium (Zr), nickel (Ni) and their respective alloys. In hydrogen rich 

environments, failures can arise from residual and/or applied tensile stresses combined with 

hydrogen-metal interactions. Loss of ductility and reduction of load-carrying capacity are 

often observed in a metal because of such interaction, e.g. in steels, nickel-base alloys, 

aluminum alloys, and titanium. Such deteriorations of materials are usually referred to as 

hydrogen embrittlement. For example, hydrogen environment embrittlement characterizes the 

situations where materials undergo plastic deformation while in contact with hydrogen-rich 

gases or corrosion reactions. Molecular hydrogen undergoes adsorption at the metal free 

surface, which weakens the H-H bond and promotes its dissociation into atomic hydrogen 

within the metal lattice (Christmann, 1988; Hicks & Altstetter, 1992). Several other types of 

hydrogen damage are known as hydrogen attack, blistering and hydride formation (Cramer & 

Covino, 2003). Formation of gas or non-metallic compounds emanates from these hydrogen 

degradation processes. Hydrogen attack affects carbon and low-alloyed steels and usually 

occurs at high temperature. The inner hydrogen reacts with carbon to form methane within the 

material. Possible damaging consequences are crack formation and decarburization. Blistering 

is the result of plastic deformation induced by the pressure of molecular hydrogen that is 

formed near internal defects. The gas formation occurs due to the diffusion of atomic 

hydrogen to these regions. Once formed, blisters are often observed to be fractured. 

During service and in presence of hydrogen, the formation of non-metallic compounds, the 

so-called hydrides, can be responsible for material embrittlement (Puls, 2012; Northwood & 

Kosasih, 1983; Coleman & Hardie, 1966). A well-known associated fracture mechanism 

example is the so-called delayed hydride cracking (DHC). It is a form of localized hydride-

embrittlement that is characterized by a combination of processes, which involve hydrogen 

diffusion, hydride precipitation including subsequent hydride expansion – the phase 

transformation induces a swelling of the reacting zone – and possible crack growth (Coleman, 

2003). Driven by the stress, hydrogen migrates towards the region of high tensile stress 

concentration, e.g. in the vicinity of defects or in residual stress regions, leading to 

supersaturation. Brittle hydrides form once the solid solubility limit is exceeded and usually 

develop orthogonally to the tensile stress until a critical size is reached. Thereafter, the 

localized hydrided region can be fractured under the present stress. The possible resulting 

crack is then likely to propagate through the material by the same described mechanism in a 

stepwise manner (Puls, 2012). The adjective “delayed” reflects the fact that it takes time for 

hydrogen to diffuse towards the crack tip and react with the matrix to form a hydride. 

(Banerjee & Mukhopadhyay, 2007). For instance, DHC was observed to operate in Zr-2.5Nb 

alloy pressure tubes in nuclear industry (Singh, et al., 2004). 

A number of materials such as zirconium, titanium, hafnium, vanadium and niobium have a 

low solubility of hydrogen, and, therefore, can form different types of hydride phases 

depending on e.g. hydrogen concentration and temperature history (Coleman, 2003). For 

example, Figure 1 shows the phase diagram for the Zr-H system, which constitutes five solid 

phases (Zuzek, et al., 1990). The solid solution phase , with a hexagonal close-packed 
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(HCP) crystal structure, has a low solubility of hydrogen, while the high-temperature 

allotrope -Zr (BCC) has a high solubility. Two stable hydride phases are identified, the FCC 

- and FCT -phases, respectively. The -phase is considered metastable and has FCT 

structure (Barrow, et al., 2013). Additionally, a crystal structure denoted  has recently been 

observed and may be a possible precursor to the formation of - and -phases (Zhao, et al., 

2008). The phase diagram of the Ti-H system is very similar to that of Zr-H, and only the 

exact location of the phase boundaries differs. 

 

Figure 1: Phase diagram for the Zr-H system, reproduced with permission from 

(Maimaitiyili, et al., 2015). 

The hydride precipitates generally appear as needles or platelets in the solid solution -phase 

of Zr and Ti alloys, and the formation may occur either in grains or grain boundaries in 

polycrystals (Beck & Mueller, 1968; Coleman, 2003). A preferred hydride orientation may 

exist and is affected by the crystal structure and texture emanating from the manufacturing 

process and the possible presence of applied and residual stresses (Chu, et al., 2008; 

Northwood & Kosasih, 1983). Some hydrides such as andhydrides in zirconium-based 

alloys have been observed to exhibit a volume change when they form (Barrow, et al., 2013). 

For instance, the global swelling of the unconstrained andhydrides, which results from 

anisotropic dilatational misfits, has been theoretically estimated to be between 10% and 20% 

with respect to untransformed zirconium, (Carpenter, 1973). The hydrides are more brittle 

than the -phase, and the fracture toughness of a hydride can be orders of magnitude lower 

than the solid solution. For example, the fracture toughness KIC of pure -Ti at room 

temperature is around 60 MPa ∙ m1 2⁄  (Welsch, et al., 1994) while for titanium-based δ-

hydride the value of KIC can reach 2.2 MPa ∙ m1 2⁄  (Lanin, et al., 1984). The Zr-2.5Nb alloy’s 
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fracture toughness was measured to be around 70 MPa ∙ m1 2⁄  with quasi-zero hydrogen 

content, while that of the δ-hydride (ZrHx, x =1.5−1.64) is found to be approximately  

1 MPa ∙ m1 2⁄  at room temperature (Simpson & Cann, 1979). In addition, as the hydrogen 

content increases global KIC of hydrided metals may decrease. For the Zr-2.5Nb alloy with a 

hydrogen-zirconium ratio of 0.4, the fracture toughness is found between 10 and  

15 MPa ∙ m1 2⁄  (Simpson & Cann, 1979). Of great concern is that the brittle hydrides are 

observed to form in high stress concentration regions such as in the vicinity of notches, cracks 

and dislocations, where stress gradient drives hydrogen diffusion until the material exceeds its 

solubility limit inducing precipitation (Takano & Suzuki, 1974; Birnbaum, 1976; Grossbeck 

& Birnbaum, 1977; Cann & Sexton, 1980; Shih, et al., 1988; Maxelon, et al., 2001). Under 

stress and deformation of the metal, and owing to their low fracture toughness, hydrides can 

be fractured along their length, e.g. in Ti (Shih, et al., 1988; Xiao, et al., 1987), in Zr: (Cann 

& Sexton, 1980; Östberg, 1968), in Hf (Seelinger & Stoloff, 1971); in V: (Takano & Suzuki, 

1974; Koike & Suzuki, 1981); and in Nb: (Matsui, et al., 1987), or across their thickness, e.g. 

in Ti: (Beevers, et al., 1968) and in Zr: (Coleman & Hardie, 1966; Westlake, 1963). 

3 Linear elastic fracture mechanics 

A number of models about failure mechanisms were published in the 20
th

 century (Inglis, 

1913; Griffith, 1920; Westergaard, 1939; Irwin, 1949; Orowan, 1949; Irwin, 1956), some of 

which were used by Irwin to develop a description of the stresses and displacements ahead of 

a crack using a single parameter, the so-called stress intensity factor, which is connected to 

the energy release rate, the external stress, the crack length and the geometry of the 

considered structure (Irwin, 1957). This stress and displacement analysis is still used in 

fracture mechanics for bodies displaying small plastic zones around crack tips. This theory is 

called linear elastic fracture mechanics (LEFM). 

The fracture operates in three different basic modes depicted in Figure 2. Mode I, also called 

the tensile opening mode, occurs when the crack walls separate symmetrically with respect to 

the crack axis and in the crack-plane normal direction. In mode II, the in-plane sliding mode, 

the crack surfaces are sheared from one another and the sliding is achieved parallel to the 

plane of the crack and perpendicular to the crack front. Mode III is also known as the tearing 

or anti-plane shear mode. In this situation, the crack surfaces slide relative to each other in 

opposite directions parallel to the crack front and the crack plane. 
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Figure 2: Illustration of the three fracture modes. 

By considering fracture problems in a polar coordinate system as presented in Figure 3 within 

LEFM, the stress intensity factor gives the expressions of the components of the stress tensor 

in the vicinity of the crack-tip for a specific mode of fracture in a linear elastic medium, as 

expressed in (Anderson, 2005) as 

𝜎𝑖𝑗 =
𝐾

√2𝜋𝑟
𝑓𝑖𝑗(𝜃) + ∑ 𝐵𝑚𝑟

𝑚
2 𝑔𝑖𝑗

(𝑚)
(𝜃)

∞

𝑚=0

, (1) 

where 𝑟 is the distance from the origin that is the crack-tip, 𝐾 is the stress intensity factor for 

the considered mode, 𝑓𝑖𝑗 is a trigonometric and dimensionless function, 𝑔𝑖𝑗
(𝑚)

 and 𝐵𝑚 

designates a trigonometric function for the 𝑚𝑡ℎ term and its amplitude. The indices 𝑖 and 𝑗 are 

taken in {1,2,3}. The high-order terms become negligible as 𝑟 is small. Therefore, in the close 

region of the crack-tip, the stress approximately varies in 1/√𝑟. 

 

Figure 3: Illustration of the two-dimensional stress in different coordinate systems and bases 

in the vicinity of a crack tip. 
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Although the polar coordinates are used to express the stress components around the crack tip 

the stress components can be written in the Cartesian base as well as in the polar base as 

illustrated in Figure 3. 

For a linear elastic medium, the strain tensor 𝜀𝑖𝑗 is related to the stress tensor through the use 

of Hooke’s law as, 

𝜀𝑖𝑗 = 𝑠𝑖𝑗𝑘𝑙  𝜎𝑘𝑙, (2) 

where 𝑠𝑖𝑗𝑘𝑙 is the compliance tensor, and is also connected to the displacement field 𝑢𝑖 

through 

𝜀𝑖𝑗 =
1

2
(
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
). (3) 

In planar fracture analysis, the out-of-plane stress and strain contributions can be different 

from zero depending on the assumed plane-state condition. The latter presents two distinct 

variants: plane strain and plane stress. In plane stress condition, the stress components relative 

to the out-of-plane direction are zero. In contrast, in plane strain, the strain components 

relative to the out-of-plane direction are zero. A plane strain condition is suitable for a planar 

study of a thick body and the plane stress condition is applicable to thin bodies. In a Cartesian 

base (𝑥1, 𝑥2), in fracture mode I and for plane-strain conditions, the stress components lying 

in the close region of a crack tip in an isotropic and linear elastic body are expressed as in 

(Anderson, 2005) as Eq.(1) with 

𝑓11(𝜃) = cos
𝜃

2
[1 − sin

𝜃

2
sin

3𝜃

2
], (4) 

𝑓22(𝜃) = cos
𝜃

2
[1 + sin

𝜃

2
sin

3𝜃

2
], (5) 

𝑓12(𝜃) = sin
𝜃

2
cos

𝜃

2
cos

3𝜃

2
, (6) 

and 𝜎33 = 𝜈(𝜎11 + 𝜎22), where 𝜈 is the Poisson’s ratio. The associated displacement field for 

such body is given as 

𝑢1 =
2 𝐾𝐼 (1 + 𝜈)

𝐸
√

𝑟

2𝜋
cos

𝜃

2
[1 − 2𝜈 + sin2

𝜃

2
], (7) 

𝑢2 =
2 𝐾𝐼 (1 + 𝜈)

𝐸
√

𝑟

2𝜋
sin

𝜃

2
[2 − 2𝜈 + cos2

𝜃

2
], (8) 

where 𝐸 is the Young’s modulus. 
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Paris and Sih (Paris & Sih, 1965) developed a description of the anisotropic linear-elastic 

crack-tip stress fields. In a Cartesian base (𝑥1, 𝑥2), and in fracture mode I, it is expressed as in 

Eq.(1) with 

𝑓11(𝜃) = Re {
𝜇1𝜇2

𝜇1 − 𝜇2
(

𝜇2

√cos 𝜃 + 𝜇2 sin 𝜃
−

𝜇1

√cos 𝜃 + 𝜇1 sin 𝜃
)} , (9) 

𝑓22(𝜃) = Re {
1

𝜇1 − 𝜇2
(

𝜇1

√cos 𝜃 + 𝜇2 sin 𝜃
−

𝜇2

√cos 𝜃 + 𝜇1 sin 𝜃
)} , (10) 

𝑓12(𝜃) = Re {
𝜇1𝜇2

𝜇1 − 𝜇2
(

1

√cos 𝜃 + 𝜇1 sin 𝜃
−

1

√cos 𝜃 + 𝜇2 sin 𝜃
)}, (11) 

with μ1 and μ2 being the conjugate pairs of roots of 

 𝑆11 𝜇
4 − 2𝑆16 𝜇

3 + (2𝑆12 + 𝑆66) 𝜇
2 − 2𝑆26𝜇 + 𝑆22 = 0. When μ1 = μ2 , the stress field 

relations are reduced to the isotropic ones (Paris & Sih, 1965). The coefficients  𝑆𝑖𝑗 are the 

components of the compliance matrix in plane stress or in plane strain conditions in a 

determined crystal plane, such that, 

[

𝜀11

𝜀22

2𝜀12

] = [

𝑆11 𝑆12 𝑆16

𝑆12 𝑆22 𝑆26

𝑆61 𝑆62 𝑆66

] [

𝜎11

𝜎22

𝜎12

]. (12) 

The planar compliance components 𝑆𝑖𝑗  are, therefore, combinations of the three-dimensional 

compliance components 𝑠𝑖𝑗𝑘𝑙. The displacements of the anisotropic linear-elastic crack-tip 

area can successively be deduced by using Eqs.(9)-(12). 

4 Phase field theory for microstructure evolution 

Material processing, including solidification, solid-state precipitation and thermo-mechanical 

processes, is the origin of the development of material microstructures. The latter generally 

consists of assemblies of grains or domains, which vary in chemical composition, orientation 

and structure. Characteristics of the microstructure such as shape, size and distribution of 

grains, impurities, precipitates, pores and other defects have a strong impact on the physical 

properties (e.g. thermal and electrical conductivity) and mechanical performance of materials. 

Therefore, the study of mechanisms causing microstructural changes appears necessary to 

predict the modifications of material properties and, thus, take action to avoid associated 

malfunctioning components or failure of structures. 

Conventionally, the physical and thermodynamic mechanisms acting in an evolving 

microstructure such as heat diffusion and impurity transportation are modeled through the use 

of a time-dependent partial differential equations and associated boundary conditions. This is, 

for instance, the case in sharp-interface approaches, where the interfaces between the different 

microstructure areas are supposed sharp as presented in Figure 4a and their positions need to 

be explicitly followed with time. However, some phenomena are not suitable for sharp-
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interface modeling when they are combined with other effects (Haataja, et al., 2005). In 

addition, complex morphologies of grains are hard to represent mathematically by the sharp-

interface approaches when the interfaces interact with each other during phase transformation, 

e.g. interface merging and pinch-off within coalescence and splitting of precipitates. 

Moreover, such modeling is found to be more computationally demanding than diffuse-

interface approaches. Therefore, sharp interface models are often more appropriate for one-

dimensional problems or simple microstructural topologies (Provatas & Elder, 2010; 

Moelans, et al., 2008). 

  
(a) (b) 

Figure 4: Illustration of (a) a sharp interface and (b) a smooth interface. 

An alternate way to describe the microstructure evolution is to use phase field methods 

(PFM), which also employ kinetics equation. This type of modeling provides a continuous 

and relatively smooth description of the interfaces as illustrated in Figure 4b. The 

microstructure is represented by variables, also called phase-field variables, which are 

continuous through the interfaces and are functions of time and space. Thus, unlike sharp 

interface models, the position of the interface is implicit and determined by the variation of 

the variable value. Moreover, no boundary conditions are necessary inside the whole system 

except at the system boundary. Initial conditions are, however, still required. Consequently, 

PFT allows not only the description of the evolution of simple but also complex 

microstructural topologies unlike sharp-interface problems. For instance, the dendritic 

solidification with its complex features was successfully modeled through the use of PFM 

(Kobayashi, 1993; Kobayashi, 1994). 

From the second part of the 20
th

 century to nowadays, phase-field modeling has found a lots 

of applications in material science processes such as solidification, solid-state phase 

transformation, coarsening and grain growth, crack propagation, dislocation dynamics, electro 

migration, solid-state sintering and processes related to thin films and fluids. A number of 

these achievements is compiled in (Moelans, et al., 2008; Chen, 2002; Steinbach, 2009; Shen 

& Wang, 2009). More recent publications show that PFM is a current research field when it 

comes to modeling phenomena which involve some of the mechanisms listed in this 

paragraph (Bair, et al., 2017; Chang, et al., 2016; Hektor, et al., 2016; Kiendl, et al., 2016; 
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Schneider, et al., 2016; Shanthraj, et al., 2016; Stewart & Spearot, 2016; Sulman, 2016; 

Tourret, et al., 2017; Wu & Lorenzis, 2016). 

4.1 The phase-field variables 

In PFT, a microstructural system is described through the use of single or multiple phase-field 

variables. Depending on the type of quantity it is connected to, a field variable can be 

conserved or non-conserved. Conserved variables customary refer to local composition 

quantities such as the concentration of chemical species. They can also be associated with 

density and molar volume (Shen & Wang, 2009). According to Moelans, the non-conserved 

phase-field variable category contains two groups of variables, which are utilized to 

distinguish two concurrently prevailing phases: the phase-field and the order parameters 

(Moelans, et al., 2008). The former are phenomenological parameters indicating the presence 

of a phase in a specific position and the latter designate the degree of symmetry of phases, 

giving information about the local crystal structure and orientation. However, this distinction 

is often not made. Thus, conserved and non-conserved phase-field variables can often be 

found to be respectively termed conserved and non-conserved order parameters (Shen & 

Wang, 2009; Jokisaari, 2016; Provatas & Elder, 2010). This paper uses these latter 

denominations. 

In the theory suggested by Landau, a bi-phase system may be defined by the presence of an 

ordered phase and a disordered phase depending on their degree of symmetry. The coexisting 

phases are associated with specific values of the non-conserved order parameter 𝜙 or other 

conditions on the phase variable, e.g., traditionally, 𝜙 = 0 for the disordered phase and 𝜙 ≠ 0 

for the ordered phase (Landau & Lifshitz, 1980). Depending on the formulation, the phase-

variable can be defined with different values in order to account for the phases of a system 

from model to model. It can be found that a disordered phase corresponds to 𝜙 = 0 and the 

ordered phase associated with 𝜙 = −1 or 1 (Moelans, et al., 2008). In (Ståhle & Hansen, 

2015), 𝜙 = −1 accounts for an empty space and 𝜙 = +1 denotes a filled space. A one-

dimensional example of the variation of the order parameter through an interface is illustrated 

in Figure 4b. The significance and interpretation of a conserved phase field variable is 

analogue to those of the non-conserved order parameter. Thus, different values of the 

chemical concentration can be used to distinguished different microstructural domains for 

example. 

The conserved order parameter is usually a scalar but the non-conserved variable can be 

employed as a vector. When used as a scalar, it can be considered a spatial average of its 

vector form (Provatas & Elder, 2010). The components of the non-conserved order parameter 

vector are also responsible for the orientation of the phases (Wang, et al., 1998; Bair, et al., 

2016). 
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4.2 Minimization of the free energy of a system 

4.2.1 The total free energy 

In nature, systems strive to find equilibrium by minimizing its energy. In phase-field theory, 

the evolution of a microstructure, e.g. a phase transformation, is governed by a kinetics 

equation based on the minimization of the total free energy F. The latter can be expressed as 

the sum of characteristic free energies which are functions of time, space, pressure, 

temperature and the phase-field variables. The total energy boils down to  

F=F
𝑏𝑢𝑙𝑘

+F
𝑔𝑟𝑎𝑑

+F
𝑒𝑙

+ ⋯, (13) 

where the bulk or chemical free energy F
𝑏𝑢𝑙𝑘

 is the Landau free energy functional. In Paper C 

the chemical free energy is denoted F
𝑐ℎ

. The gradient energy F
𝑔𝑟𝑎𝑑

 accounts for the 

presence of interfaces through a Laplacian term and is connected to the interfacial energy. The 

bulk energy and gradient energy can be regrouped in a single term, the structural free energy 

F
𝑠𝑡𝑟

 (Massih, 2011), as in Paper A and B. The elastic-strain free energy F
𝑒𝑙

 represents the 

energy stored by a system subjected to stresses or undergoing deformation. The energy 

associated with a microstructural swelling or dilatation due to phase transformation can be 

included in the elastic-strain energy term, e.g. in Paper C, where the elastic-strain energy is 

denoted F
𝑠𝑡

, or appear in the equation as an independent term, the interaction energy denoted 

F
𝑖𝑛𝑡

, e.g. in Paper A and B and (Massih, 2011). Finally, other free energy terms can be added 

to the expression such as free energies related to electrostatics and magnetism. 

4.2.2 The Landau potential and system equilibrium 

The Landau free energy density is a thermodynamic potential, which can be used to 

characterize the thermodynamic state of the system near a phase transition. The Landau 

potential can be written in terms of pressure 𝑃, temperature 𝑇 and an order parameter 𝜙. It 

was suggested by Landau that it can be formulated as a polynomial expansion in power of 𝜙 

(Landau & Lifshitz, 1980) as 

ψ𝑏𝑢𝑙𝑘(𝑃, 𝑇, 𝜙) = ψ𝑏𝑢𝑙𝑘(𝑃, 𝑇, 𝜙 = 0) + ∑
𝐵𝑛(𝑃, 𝑇)

𝑛

𝑁

𝑛=1

𝜙𝑛, (14) 

where 𝐵𝑛 denotes the coefficient of the phase-field variable, and can be a function of pressure 

and temperature. In this paper, the pressure 𝑃 is assumed constant in all descriptions. 

Landau’s theory supposed that 𝐵2 = 𝑎0(𝑇 − 𝑇𝑐) where 𝑎0 is a phenomenological positive 

constant, 𝑇 is the material temperature and 𝑇𝑐 is the phase transition temperature. The Landau 

free energy can be chosen symmetric, for instance, in case of a simple bi-phase system for 

driven by a symmetric phase diagram, but can also be non-symmetric, for example, in case of 

a gas-liquid transition or system with a phase diagram including a critical point (Provatas & 

Elder, 2010). 
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A typical example of one form of the symmetric forth-order potential, where 𝐵1 = 𝐵3 = 0, 

𝐵2 ≠ 0 and 𝐵4 > 0, representing the thermodynamic potential of a binary system is presented 

in Figure 5. In this specific case, the Landau potential curve displays a characteristic shape 

called double well. The thermodynamic potential finds minima for 𝜙 = −1 and 1 and a 

maximum for 𝜙 = 0. 

 

Figure 5 : Example of a Landau potential profile. 

More generally, the zero root of a symmetric forth-order potential with 𝐵4 > 0 can be defined 

to correspond to a solid solution and the non-zero roots represent the second phase. In the 

absence of other energy contributions, the prevailing phase is the one for which the order 

parameter values minimizes the Landau potential. Therefore, in the considered system 

location where the Landau expansion appearance is similar to that in Figure 5, the second 

phase should develop and dominate the solid solution. The described situation may be 

characterized by  𝑇 < 𝑇𝑐, i.e. 𝐵2 < 0 and result, for example, from a phase transformation 

caused by an undercooling of a pure solid solution. The Landau potential appearance for 

𝑇 > 𝑇𝑐, i.e. 𝐵2 > 0 is depicted in Figure 6. In this situation, there is only one minimum and it 

is associated with 𝜙 = 0. This indicates the prevalence of the solid solution with respect to 

the second phase. Consequently, a temperature variation can modify the shape of the curve. 
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Figure 6 : Example of a Landau potential profile with  𝑇 > 𝑇𝑐. 

When the temperature is constant a phase transformation can be triggered by the presence of 

energy contributions, such as those presented in the section 4.2.1, which are different from 

F
𝑏𝑢𝑙𝑘

. For instance, in (Bjerkén & Massih, 2014), the elastic strain energy, which is added to 

the bulk energy, has an active role in the phase evolution. The transition temperature varies 

depending on the gradient of stress and strain induced by a dislocation. Thus, the total free 

energy density profile changes with distance from the flaw. This can result in the formation of 

a second phase where 𝑇 < 𝑇𝑐 in the vicinity of the dislocation, while the rest of the material is 

in a state of solid solution (𝑇 > 𝑇𝑐). 

In other phase field models where a symmetric fourth order Landau expansion is employed, 

some of the energy terms other than the bulk energy one are formulated so that they 

contribute to a breaking of the symmetry of the system total free energy density. For example, 

in (Ståhle & Hansen, 2015), the elastic strain energy includes first and third order terms in 𝜙 

and modifies the double well shape. An illustrated example of such change is given in Figure 

7. In such situation displayed at specific position and instant, the solid solution and the second 

phase are represented by 𝜙 = −1 and 𝜙 = 1 respectively. In Figure 7, the non-symmetric 

terms promote the domination of the second phase. In this formulation, if the total free energy 

density profile was similar to the Landau potential’s one presented in Figure 5 it would 

represent a microstructure where both phases can coexist. 
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Figure 7 : Example of a total free energy profile for which the elastic strain energy induced a 

appearance. 

Two types of phase transitions exist: first and second order transformation. First order 

transitions are characterized by a discontinuous derivative of the system free energy with 

respect to a thermodynamic variable and a release of latent energy. Nucleation of a metastable 

state of the matter is the starting point of a first-order transformation. In addition, some 

materials, which undergo such type of transformation, are able to display the coexistence of 

different phases for many thermodynamic conditions and compositions. Transformation 

examples such as liquid solidification and vapor condensation are part of the first order 

transition category. For the second order transition the system free energy first derivative is 

continuous with no release of latent heat. Nevertheless, the second derivative of the system 

free energy of the system is discontinuous. In this case, the transformation is triggered by the 

presence of thermal fluctuations. This category includes phenomena such as phase separation 

of binary solutions, spinodal decomposition in metal alloys or, below Curie temperature, 

spontaneous ferromagnetic magnetization of iron (Provatas & Elder, 2010). 

A relation exists between the order of the transformation and the formulation of the free 

energy of the system. In the literature, the formulations using a fourth-order Landau 

expansion for the bulk energy can mainly display first and second order transformation 

(Cowley, 1980). A symmetric fourth-order Landau potential usually represents second-order 

phase transformation when 𝐵4 > 0. First-order transition are mostly modeled through the use 

of an asymmetric double well potential but can also be described by a symmetric fourth-order 

polynomial with 𝐵4 < 0. However, in the latter case, since the fourth order Landau potential 

is unbounded, it is unpractical to use. In order to use a symmetric Landau expansion to 

represent first-order transition, higher order terms are required. 
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As energies other than the bulk free energy are included in the total free energy of the system, 

first- and second-order transformations may occur depending on the formulation of the extra 

terms. For example, in the first type of models presented above, where the transformation is 

driven by a stress-induced change of the phase transition temperature and 𝐵4 > 0, the elastic-

strain energy only affects the quadratic term of the double-well potential. Consequently, the 

symmetry of the system free energy is conserved and the transformation is of second order. In 

the second presented type of formulations illustrated in Figure 7, first-order transitions are 

considered since non-symmetric terms such as first- and third-order terms in 𝜙 are added by 

the elastic-strain energy to the total free energy of the system. Further, more complex forms of 

the free energy density of the system allow representing both order transformations as in 

(Bjerkén & Massih, 2014), where the Landau expansion includes higher order terms of the 

order parameter. A model using a symmetric sixth order polynomial for the system free 

energy density is illustrated in Figure 8. 

 

(a) 𝐴4 < 0          (b) 𝐴4 > 0 

Figure 8 : Free energy of a system versus phase field variable obtained with a model where 

the bulk energy is represented by a 6
th

 order Landau expansion. 

In this example, stability of the system is ensured by setting  𝐵6 > 0. The sign and value of 

the coefficients 𝐵2 and 𝐵4 affect the appearance of the free energy. Figure 8a and Figure 8b 

respectively present the free energy density polynomial for 𝐵4 < 0 and 𝐵4 > 0. The zero 

value of the phase field variable corresponds to the prevalence of solid solution (𝑇 > 𝑇𝑐 or 

𝐵2 > 0) while non-zero values designate the second phase domination (𝑇 < 𝑇𝑐 or 𝐵2 < 0). In 
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both figures, the transition from upper to lower curves represents an increase in the material 

transition temperature. In the situation depicted in Figure 8a, where metastable phases marked 

by local minima (green and yellow curves) possibly exist, first-order transformations may 

occur whereas in the case illustrated in Figure 8b only second-order transitions may take 

place. Note that for 𝐵4 < 0, the phases may coexist. This situation is represented by the red 

curve in Figure 8a. 

In an evolving microstructure, the total free energy profiles changes with time and location. 

This evolution is governed by the kinetic equations. 

4.2.3 The kinetic equations 

As mentioned in section 4.2.1, the kinetic equations govern the evolution of the 

microstructure. Employed to model the variation of the phase-field variables in time and 

space, the governing equations are introduced as the Cahn-Hilliard equation (Cahn, 1961) and 

the time-dependent Ginzburg-Landau (TDGL) equation. The latter is also named the Allen-

Cahn equation (Allen & Cahn, 1979). The Cahn-Hilliard and the TDGL equations 

respectively use a conserved and a non-conserved order parameter. In both equations, the 

minimization of the total free energy is obtained through the use of a functional derivative. 

For a quasi-static transformation, the system is in equilibrium or its free energy reaches a 

minimum when the functional derivative is zero. For a dynamic evolution of the 

microstructure, the relaxation toward equilibrium is controlled by a partial derivative of the 

phase-field variable with time and a positive kinetic coefficient (Gurtin, 1996). The latter is 

termed mobility and is denoted by 𝐿 in the TDGL. The kinetic coefficient is the diffusion 

coefficient 𝐷 in the Cahn-Hilliard equation. For a scalar order parameter 𝜂 and without 

thermal fluctuations, the Allen-Cahn equation can be written as in  

𝜕𝜂

𝜕𝑡
= − L

δF
𝛿𝜂

. (15) 

The Cahn Hilliard equation is derived from a mass balance as in (Gurtin, 1996) and, for a 

conserved order parameter 𝜓 and without thermal fluctuations, it is expressed as 

𝜕𝜓

𝜕𝑡
=∇2 (D

δF
𝛿𝜓

). (16) 

The use of phase-field theory and linear elastic fracture mechanics respectively described in 

sections 3 and 4 are used to build up two models, which are presented in the in the next 

sections of this paper. 
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5 Phase-field models for second-phase formation in 
presence of a crack 

5.1 Introduction and motivation 

Over the years, models have been developed to predict and simulate second phase nucleation 

and formation in materials (Varias & Massih, 2002; Jernkvist & Massih, 2014; Bair, et al., 

2016; Massih, 2011; Bjerkén & Massih, 2014; Ma, et al., 2006; Deschamps & Bréchet, 1998; 

Gómez-Ramírez & Pound, 1973; Thuinet, et al., 2012; Shi & Xiao, 2015), some of which are 

based on PFT and have found applications in hydride formation modeling within HE (Bair, et 

al., 2016; Massih, 2011; Ma, et al., 2006; Thuinet, et al., 2012; Shi & Xiao, 2015). Moreover, 

PFT has lately been used increasingly for phase precipitation modeling. This is probably due 

to its practicality for modeling complex microstructure topologies and smooth interfaces.  

Depending on the extra energy terms and a considered fourth-order Landau potential form, 

the formulation of the total energy is either symmetric or asymmetric. Therefore, models 

based on fourth-order Landau potential cannot suitably represent both types of phase 

transitions unlike higher order polynomials. A sixth order Landau potential based model has 

been presented in (Massih, 2011; Massih, 2011; Bjerkén & Massih, 2014) and applied to 

crack- and dislocation-induced hydride formation although no kinetic study was carried out in 

case of cracks with this model. In addition, regarding pure phase transition, the conserved and 

non-conserved phase field variables can be found to be coupled and, therefore, the Cahn-

Hilliard and the TDGL equations can be solved simultaneously (Bair, et al., 2016). The 

mechanical aspect of the transformation is usually treated as uncoupled from that of the phase 

field. However, since hydride precipitation induces a material swelling and, therefore stresses 

and strains, it can be thought that a strong coupling exists between phase transformation and 

the mechanical behavior of the material. It seems therefore necessary to solve the mechanical 

and phase-field equations simultaneously to ensure a coupling and a stable solution scheme. 

In this thesis, PFT is chosen to model hydride formation with two different approaches. The 

first one is based on Massih and Bjerken’s work (Massih, 2011; Bjerkén & Massih, 2014) 

where a scalar structural order parameter is employed to describe the crack-induced second 

phase precipitation for different sets of Landau potential coefficients. Both order transitions 

can be represented with this model. The mechanical aspect is implicitly incorporated in the 

mathematical formulation through the use of LEFM relations for isotropic and anisotropic 

materials. The second approach proposes to use a fourth-order double-well expansion for a 

structural order parameter scalar to account for hydride formation. In this second model, the 

mechanical and phase transformation aspects are fully coupled. Both presented models allow 

describing the kinetics of the second-phase precipitation thanks to the use of the TDGL. 
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5.2 Description of the models 

5.2.1 Model 1 

In this model, the spatial position of a particle can indifferently be referred through a 

Cartesian or a polar coordinate system. Thus, the position vector 𝑥𝑖 is respectively defined by 

(𝑥1, 𝑥2, 𝑥3) or (𝑟, 𝜃, 𝑧), and the origin is defined at the tip of a mode-I crack as presented in 

Figure 9. 

 

Figure 9: Geometry of the system. 

The non-conserved order parameter scalar 𝜂 is chosen to describe the evolution of the 

microstructure such that 𝜂 = 0 designates the matrix or the solid solution and 𝜂 ≠ 0 

represents for the second phase. The order parameter may be thought as the probability of 

phase transformation. Moreover, the diffusional aspect, usually described by a conserved 

order parameter, is ignored. Therefore, the phase transformations considered in this model 

may be seen as diffusionless.  

The total free energy density of the system with a volume 𝑉 is derived from Eq. (13) and 

becomes: 

F = ∫[
𝑔

2
(∇𝜂)2 + 𝜓(𝜂) +

1

2
𝜎𝑖𝑗𝜀𝑖𝑗

𝑒𝑙 − 𝜉 𝜂2𝜀𝑙𝑙] 𝑑𝑉, (17) 

where the sum of the first two terms on the right hand side is equal to the structural free 

energy F
𝑠𝑡𝑟

, the third term is the elastic-strain energy and the last term represents the 

interaction energy F
𝑖𝑛𝑡

. The coefficient 𝑔 is positive, and is related to the interfacial energy 

and the interface thickness. The phase transformation-induced dilatation of the system and 

lattice misfit are represented by F
𝑖𝑛𝑡

 and include a positive constant  𝜉, called striction factor 

in (Massih, 2011). The tensor quantities  𝜎𝑖𝑗, 𝜀𝑖𝑗 and 𝑢𝑖 respectively accounts for the stress 

tensor, the strain tensor and the displacement field. The sixth order Landau potential 𝜓 is 

expressed as 

𝜓(𝜂) =
1

2
𝛼0𝜂

2 +
1

4
𝛽0𝜂

4 +
1

6
𝛾𝜂6, (18) 

where 𝛼0, 𝛽0 and 𝛾 are constants related to temperature and the stability of the system is 

ensured by imposing 𝛾 > 0, see section 4.2.2. It is assumed that the system is at mechanical 

equilibrium at all times. This condition boils down to: 
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𝜕𝜎𝑖𝑗

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗
(
𝛿F 

𝛿𝜀𝑖𝑗
) = 𝑄𝑖, (19) 

where 𝑄𝑗 represents the crack induced force field. Proceeding as in (Landau & Lifshitz, 1970) 

for an isotropy body and using Eq. (3), Eq. (19) can be rewritten as 

𝑀
𝜕𝑢𝑖

𝜕𝑥𝑗𝜕𝑥𝑗
+ (𝛬 − 𝑀)

𝜕2𝑢𝑙

𝜕𝑥𝑖𝜕𝑥𝑙
− 𝜉 

𝜕(𝜂2)

𝜕𝑥𝑖
=  𝑀𝑔𝑖(𝑥𝑖), (20) 

where 𝑢𝑖  is the displacement field, 𝑔𝑖 accounts for a function of space, which is related to the 

crack-induced strain gradient and,  𝑀 and 𝛬 denote the shear and the P-wave moduli. 

Equation (20) is analytically solved for an isotropic body in order to determine 𝜖𝑙𝑙 = 𝜕𝑢𝑙 𝜕𝑥𝑙⁄  

as function of the order parameter and eliminate the elastic field from Eq. (17) as explained in 

(Massih, 2011). Therefore, the total energy of the system for constant pressure can be given as 

a function of the order parameter solely. It can be expressed as 

F(𝜂, 𝑇) = F(0, 𝑇)+∫ [
𝑔

2
∇2𝜂 +

1

2
𝛼𝜂2 +

1

4
𝛽𝜂4 +

1

6
𝛾𝜂6] 𝑑𝑉, (21) 

where F(0, 𝑇) is an energy depends on temperature and stress while 𝛼 and 𝛽 are the Landau 

potential coefficient of the quadratic and the quartic terms in 𝜂, which depend on by the crack 

displacement field. Thus, in plane strain conditions and through the use of LEFM, 

𝛼 ≡ |𝛼0| (sgn (𝛼0) − √
𝑟0
𝑟

𝑓(𝜃, 𝜁)), (22) 

where 𝑓(𝜃) =
1

2𝑆11
[𝐴1 𝑓11(𝜃) + 𝐴2 𝑓22(𝜃) + 𝐴3 𝑓12(𝜃)] with 𝐴1 = 𝑆11 + 𝑆12 , 𝐴2 = 𝑆12 +

𝑆22  and 𝐴3 = 𝑆16 + 𝑆26 . The function 𝑥 → sgn(𝑥) is defined such that sgn(𝑥) = 1 for 

positive 𝑥, and -1 for negative 𝑥. The trigonometric functions 𝑓𝑖𝑗 are given in Eqs.(4)-(6) for 

an isotropic system and in Eqs. (9)-(11) for anisotropic media, while 𝑆𝑖𝑗 are the planar 

compliance components calculated for a determined crystal plane. 

For isotropic bodies where 𝐸 and 𝜈 respectively account for the Young’s modulus 

 and Poisson’s ratio,  𝐴1 = 𝐴2 = (1 + 𝜈)(1 − 2𝜈) 𝐸⁄ ,  or 1 [2(𝛬 − 𝑀)⁄ ] while 𝐴3 = 0 and,  

𝑆11 = (1 + 𝜈)(1 − 𝜈) 𝐸⁄  or 𝛬 [4𝑀(𝛬 − 𝑀)]⁄ . The length parameter 𝑟0 is expressed as  

𝑟0 =
8

𝜋
(
𝜉 𝐾I𝑆11 

|𝛼0|
)
2

, (23) 

where 𝐾I is the stress intensity factor for the mode-I crack. Hence, the parameter 𝛼 is not only 

temperature dependent, but also space dependent. Its temperature dependence can be 

explicitly formulated as  
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𝛼 = 𝑎 (𝑇 − 𝑇𝑐(𝑟, 𝜃)), (24) 

where 𝑇𝑐(𝑟, 𝜃, 𝜁) = 𝑇𝑐0
+

4 𝜉 𝐾I 𝑆11

𝑎

𝑓(𝜃)

√2𝜋𝑟
 is the phase transition temperature modified by the 

influence of the crack-induced stress field and 𝑇 is the material temperature assumed constant. 

The constant 𝑇𝑐0
 denotes the phase transition temperature in a defect-free crystal, which is 

included in the quadratic term of the Landau potential as 𝛼0 = 𝑎[𝑇 − 𝑇𝑐0
]. In defect-free 

condition, 𝑇 > 𝑇𝑐0
 corresponds to the prevalence of the solid solution and 𝑇 < 𝑇𝑐0

 the second 

phase becomes stable unlike the solid solution, which is rendered unstable. In presence of a 

crack, these stability conditions are readjusted by substituting 𝑇𝑐0
 by max(𝑇𝑐0

, 𝑇𝑐). Thus, the 

effect of the space-dependent crack-induced stress field on the terminal solid solubility 

becomes therefore the driving force for the microstructural evolution. 

The coefficient of the quartic term of total free energy, 𝛽, is dependent of the elastic constants 

of the material and, for isotropic bodies, is expressed as,  

𝛽 = 𝛽0 −
2𝜉2

𝛬
. (25) 

When the crack is inclined with an angle 𝜁 relative to crystallographic planes, as illustrated in 

Figure 10 for an HCP crystal structure, a change of base for the stress tensor is necessary. 

Hence, the trigonometric function 𝑓 and the coefficients  𝐴1, 𝐴2 and 𝐴3 are not only 

dependent of the second polar coordinate 𝜃 but also of the crack inclination 𝜁 such that 

𝐴1(𝜁) = 𝑆11cos2 𝜁 + 𝑆12 + 𝑆22sin
2 𝜁 +

1

2
(𝑆16 + 𝑆26) sin 2𝜁, (26) 

𝐴2(𝜁) = 𝑆11sin
2 𝜁 + 𝑆12 + 𝑆22cos2 𝜁 −

1

2
(𝑆16 + 𝑆26) sin 2𝜁, (27) 

𝐴3(𝜁) = (𝑆11 − 𝑆22) sin 2𝜁 + (𝑆16 + 𝑆26) cos 2𝜁. (28) 
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(a) (b) (c) 

Figure 10: a) Basal and prismatic planes in an HCP crystal. b) Crack plane (in red) 

orthogonal to the basal planes (in blue) with an inclination angle 𝜁 relative to {11̅00}  
planes c) Crack plane (in red) orthogonal to prismatic planes of the {11̅00} family (in blue). 

The TDGL equation, presented in Eq. (15), is chosen to be solved in order to determine the 

evolution of the structural order parameter and, therefore, predict the possible microstructural 

changes induced by the presence of a crack in the system. Dimensionless coefficients are 

introduced as,  𝜂 = √
|𝛼0|

|𝛽|
Φ,  𝑟 = √

𝑔

|𝛼0|
𝜌,  𝑥𝑖 = √

𝑔

|𝛼0|
𝑥�̃�, 𝑟0 = √

𝑔

|𝛼0|
𝜌0, 𝑡 =

1

|𝛼0|𝐿
𝜏 in Eq. (21) 

so that Eq. (15) becomes 

𝜕Φ

𝜕𝜏
= ∇̃2Φ − (𝐴 Φ + sgn (𝛽) Φ3 + 𝜅 Φ5), (29) 

where 𝐴 = sgn (𝛼0) − √
𝜌0

𝜌
𝑓(𝜃, 𝜁) and ∇̃ is the dimensionless gradient operator resulting 

from non-dimensionalization. 

5.2.2 Model 2 

The second model is a pilot model for the formation of hydrides in metals, which takes the 

swelling of the second phase into account. The coordinate system is defined to be Cartesian 

and plane strain is assumed. A non-conserved phase field variable scalar 𝜑 is selected to 

describe the evolution of the phases. It is defined so that 𝜑 = −1 characterizes the prevalence 

of the solid solution, and 𝜑 = 1 corresponds to the hydride dominancy. 

Here, the total energy of the system with a volume 𝑉 is the sum of the bulk free energy, which 

includes a fourth order Landau potential as 

ϕ𝑏𝑢𝑙𝑘 = 𝑝 (−
1

2
𝜑2 +

1

4
𝜑4) , (30) 
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where 𝑝 is proportional to the height of the double well, the gradient energy 

  F
𝑔𝑟𝑎𝑑

= ∫
𝑔

2
(∇𝜑)2 𝑑𝑉  and the elastic-strain energy F

𝑒𝑙
 as introduced in section 4.2.1. The 

swelling of the hydrides induces a deformation of the material and is taken into account in the 

total strain 𝜀𝑖𝑗
𝑡𝑜𝑡 as  

𝜀𝑖𝑗
𝑡𝑜𝑡 = 𝜀𝑖𝑗

𝑒𝑙 + 𝜀𝑖𝑗
𝑠 ℎ(𝜑), (31) 

where ℎ(𝜑) =
1

4
(−𝜑3 + 3𝜑 + 2). The presence of solid solution implies ℎ(−1) = 0, and 

that of the hydride induces ℎ(1) = 1, a local maximum of the function. The strain field 𝜀𝑖𝑗
𝑠  

designates the strain tensor relative to hydride swelling in the global coordinate system. The 

energy release in form of material dilatation during phase transformation is embedded in the 

elastic-strain free energy. The functional derivative of the latter with respect to the phase field 

variable can, thus, be formulated as, 

𝛿F
𝑒𝑙
 

𝛿𝜑
= ∫−

3

4
𝜎𝑖𝑗

 ′  𝜀𝑖𝑗
𝑠 ′(1 − 𝜑2) 𝑑𝑉 (32) 

The expansion is anisotropic and the directions of the eigenstrains, 𝜀11
𝑠 ′ 𝑎𝑛𝑑 𝜀22

𝑠 ′, relative to the 

swelling are assumed to be the directions of the principal stress 𝜎11
 ′  and 𝜎22

 ′ . The tensors 𝜀𝑖𝑗
𝑠 ′ 

and 𝜎𝑖𝑗
 ′  are related to 𝜀𝑖𝑗

𝑠  and 𝜎𝑖𝑗 respectively through 𝜀𝑝𝑞
𝑠 ′ = 𝑄𝑖𝑝

𝑠 𝑄𝑗𝑞
𝑠 𝜀𝑖𝑗

𝑠  and 𝜎𝑖𝑗
 ′ = 𝑄𝑖𝑝

𝑠 𝑄𝑗𝑞
𝑠 𝜎𝑖𝑗. 

where 𝑄𝑖𝑝
𝑠  and 𝑄𝑖𝑝

𝑠  are basis transition matrices. The components of 𝜀𝑖𝑗
𝑠 ′ are directly provided 

from the literature and, 𝜎11
 ′  and 𝜎22

 ′  are the eigenvalues of 𝜎𝑖𝑗. 

The problem is driven by the minimization of the energy as the mechanical equilibrium is 

satisfied at all times. The governing equations are, therefore, the second law of Newton for 

static conditions and the TDGL equation, Eq. (15). By using the derivative of the different 

energy contributions with respect to 𝜑, the TDGL equation can be written as, 

1

𝐿

𝜕φ

𝜕𝑡
= − [(−

3

4
𝜎𝑖𝑗

 ′𝜀𝑖𝑗
𝑠 ′ − 𝑝𝜑) (1 − 𝜑2) − 𝑔∇2𝜑] . (33) 

5.3 Numerical methods 

5.3.1 Model 1 

The simulations of the microstructural evolution of isotropic and HCP materials, which are 

described with the first presented methodology, are performed through the use of the software 

FiPy (Guyer, et al., 2009). With this Python-language-based module, the TDGL is solved 

based on a standard finite volume approach over a grid composed of equally-sized square 

elements. The solver employs a LU-factorization solving algorithm, which allows the results 

to converge rapidly. The domain is considered large enough so that it prevents edge-effects on 

the results. 
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The numerical set-up utilizes a 1000 × 1000-element grid with an element dimensionless 

side length of ∆𝑙 = 0.2 for the isotropic body and a 200 × 200-element grid with a ∆𝑙 = 0.5 

in the case of a HCP material. The time stepping is respectively taken as ∆𝜏 = 0.1 and 

∆𝜏 = 0.05. 

A zero gradient of the order parameter is applied perpendicular to the boundary implying a 

non-variation condition of the phase field variable at the domain limits. The phase dynamics 

is triggered by an initial random distribution of the order parameter value over the grid in the 

range  [0.5, 1] ∙ 10−4. 

5.3.2 Model 2 

The second model presented in section 5.2.2 employs the finite element method to solve the 

fully coupled mechanical and the phase transformation problem. The software Abaqus 

(Dassault System, 2009) is selected because it allows using user subroutines to alter the code. 

Thus, the fully coupled thermo-mechanical problem is modified and adapted for phase field 

modeling.  

Equation (33) undergoes a backward-difference scheme and the solution of the non-linear 

system is obtained through the use of Newton-Raphson’s method, which includes a non-

symmetric Jacobian matrix, as 

[
𝐾𝑢𝑢 𝐾𝑢𝜑

𝐾𝜑𝑢 𝐾𝜑𝜑
] [

∇𝑢

∇𝜑
] = [

𝑅𝑢

𝑅𝜑
] , (34) 

where ∇𝑢 and ∇𝜑 are the correction for incremental displacement and order parameter, 𝐾𝑖𝑗 

are the “stiffness” sub-matrices of the Jacobian matrix and 𝑅𝑖 are the residual vectors for the 

mechanical and the phase evolution parts of the system.  

The equations are first solved simultaneously over a 300 × 300 grid of equally-sized and 

quadratic elements with an element side length ∆𝑙 = 1μm for a defect-free hydrogenated 

plate. Regarding the boundary conditions, a zero displacement condition along 𝑥2⃗⃗⃗⃗  is applied 

to the lower edge and the first element of the same edge is also blocked in displacement along 

the 𝑥1⃗⃗  ⃗. The load is induced by a displacement imposed on the upper edge of the domain with 

a determined rate. An additional zero phase-field gradient is applied on the whole boundary. 

For all simulations performed on the plate the same initial condition is applied to the 

computing domain as a Gaussian distribution of the order parameter within the range 

[−0.04,0.01]. Finally, an adaptive time increment is employed and is initially equal to 10−7s.  

Later, Eq. (33) is solved over a meshed domain accounting for a notched plate. The same side 

length is used for the elements of the notched plate as the one used with the plate mesh. The 

notch, which has a root radius of 0.3 mm as in (Ma, et al., 2006) penetrates the plate in the 

direction 𝑥2⃗⃗⃗⃗  from the upper edge. The left edge is fixed while a displacement in the direction 

𝑥1⃗⃗  ⃗ is applied on the right edge. The other edges are free from mechanical boundary 

conditions. A zero-gradient of the order parameter is also applied on the boundary of this 
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geometry. For this simulation, as for the plate, the order parameter is initially distributed 

within the range [−0.04,0.01] over the domain and the adaptive time stepping, whose initial 

value is 10−7s, is used.  

6 Results and summary of appended papers 

The attached papers describe either Model 1 or Model 2 as well as the respective numerical 

procedures. Simulations were performed for specific situations with both models and the 

results are presented in this section. 

6.1 Paper A 

In the first paper, Model 1 is applied to isotropic bodies at a temperature T. A parametric 

study is achieved and presented showing different situations which can be modeled with this 

formulation. The influence of the system total free energy coefficients, presented in Eq. (21), 

on the solution of Eq. (29), and the modification, or shift, of the phase transition temperature 

by the crack-induced stress gradient are thoroughly discussed. 

6.1.1 The analytical steady-state solution 

First, Eq. (29) is analytically examined for a steady state and for a condition implying that the 

variation of the order parameter in one point does not affect its neighbors, i.e. 𝜕Φ 𝜕𝜏⁄ = 0 and 

∇̃2Φ = 0. One result of this investigation is the phase diagram, illustrated in Figure 11, which 

exhibits the dimensionless distance from the crack tip versus 𝜅 sgn (𝛽) for 𝛼0 > 0 or 𝑇 > 𝑇𝑐0
, 

i.e. in the cases where no phase transformation is expected to occur under defect-free 

conditions. 

 

Figure 11: Phase diagram for steady-state and no order parameter gradient conditions for 

 𝛼0 > 0. The notations I and II denote respectively the solid solution and the second phase. 

The superscript (*) indicates a metastable state of the considered phase.  
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This phase diagram is useful to approximately predict the steady-state microstructure in 

presence of a sharp crack when 𝑇 > 𝑇𝑐0
. Depending on the value of 𝜅, the distance from the 

crack tip and the sign of 𝛽 , the second phase may precipitate. Approaching the crack-tip, the 

modified phase transition temperature 𝑇𝑐  is increased, inducing a decrease of  𝛼. Thus, this 

type of quench of the solid solution in the vicinity of the crack tip potentially allows phase 

transformation. In addition, the analytical solution predicts first order transformations for 

𝜅 sgn (𝛽) < 0 and second order transitions for 𝜅 sgn (𝛽) > 0.  

In the case of negative  𝛽, when 𝜅 > 1/4, four regions are expected to be seen depending on 

the distance from the crack tip: II, I*+II, I+II* and I, in order. For 𝜅 < 1/4, the analytical 

solution of Eq. (29) predicts that the furthest region from the crack tip can contain metastable 

second phase and stable solid solution. For 𝜅 < 3/16, the solid solution is never expected to 

be stable regardless of the distance from the crack. In case of positive 𝛽, two different region 

are likely to exist depending on the distance from the crack tip. A stable second phase (II) 

should spontaneously form in the areas close to the crack tip for a length ratio 

𝜌 [𝜌0 cos2 𝜃

2
]⁄ < 1 and this region is expected to be surrounded by stable solid solution (I). 

This inequality represents the transition line between region II and I*+II for negative  𝛽. 

According to the model predictions, for 𝑇 < 𝑇𝑐0
 or 𝛼0 < 0, the whole considered body is 

expected to transform into a stable second phase. 

6.1.2 Results 

The full solution of Eq. (29) applied to the situations analytically investigated in section 6.1.1 

at steady states are numerically examined and presented in this section. 

In all studied cases, the order parameter growth pattern is similar: a relatively sharp peak of 

the order parameter emerges in the first elements near the crack tip before it reaches a 

maximum 𝛷𝑚𝑎𝑥. At this point, lower non-zero values of the order parameter spread around 

the crack tip driven by the space-dependent phase transition temperature 𝑇𝑐. In other words, 

the second phase nucleates in the crack-tip closest region and the phase transformation 

expands with space as long as the condition 𝑇 <  𝑇𝑐 is satisfied. This pattern is sequentially 

illustrated in Figure 12. 

Depending on the value of 𝜅 and the sign of 𝛼0 and 𝛽 some characteristic data are collected: 

the peak value of the order parameter, the time 𝜏𝑚𝑝 to reach it, the steady-state distance 

between the crack tip to the limit of the second-phase precipitate 𝑤𝑠𝑠 𝜌0⁄  for  ỹ/𝜌0 = 0 and 

 x̃/𝜌0 > 0, and the needed time 𝜏𝑠𝑠 to reach the steady state when it exists. The value of the 

characteristic parameter of the different studied cases are presented in Table 1 of Paper A., 

Globally for 𝛼0 > 0, the results tend to show that 𝛷𝑚𝑎𝑥 and 𝑤𝑠𝑠 𝜌0⁄  decrease with increasing 

𝜅. Although 𝜏𝑠𝑠 is relatively similar to those of the cases with positive 𝛽 it decreases for 

increasing 𝜅 for 𝛽 < 0 and 𝜅 > 1/4. For 0 > 𝜅 sgn (𝛽) ≥ −3/16, the steady state was not 

reached but, based on the phase diagram in Figure 11, the whole system is expected to turn 

into stable second phase with possible retained metastable solid solution. In the case where 
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𝜅 sgn (𝛽) = −1/4, the system was still slowly evolving during the calculation of the second 

phase expansion and it is thought that a very large computing time is required to reach the 

steady state predicted by the analytical solution. The analysis of the data collected for 𝛼0 < 0 

shows that the evolution of the system is much faster than when 𝑇 > 𝑇𝑐0
. The picked-up 

characteristic times for 𝑇 < 𝑇𝑐0
 are approximately half as large as those for 𝑇 > 𝑇𝑐0

. Hence, 

as expected, the transformation is quicker for a quenched system. Even though the whole 

material is expected to transform into second phase in defect-free conditions 𝑇 < 𝑇𝑐0
, the 

crack induced stress enhances the transformation and may thought to accelerate it. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 12: Evolution of the order parameter in a 2d space, which contains a crack, for 

(a)𝜏 = 5,(b) 𝜏 = 10, (c) 𝜏 = 100 and (d) in one dimension for �̃� 𝜌0⁄ = 0. The evolution is 

indicated by an arrow. 

6.1.3 Further remarks 

The comparison of the analytical steady-state and the numerical solutions was achieved and is 

depicted in Figure 13. It is shown that except at the interface between phases the analytical 

and numerical steady-state solutions are similar. The local analytical solution for steady state 
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presented in section 6.1.1 is therefore a good approximation for this model. However, the 

interface thickness and the kinetics of the microstructural changes can only be represented 

numerically by including Laplacian and temporal terms in Eq. (29). 

 

(a) 

 

(b) 

Figure 13: Comparison between steady-state solutions analytically and numerically obtained 

for (a) 𝑇 > 𝑇𝑐0
 and sgn (𝛽) = −1, and (b) 𝑇 < 𝑇𝑐0

 and sgn (𝛽) = −1. 

In addition, in Paper A, it is demonstrated that the material properties affect the results as well 

as the load. For instance, when 𝐾𝐼 increases so does 𝜌0. Consequently, the presence of a crack 

induces phase transformation on a larger area as it propagates or the external load increases.  

At this stage, the metastable phases predicted by the analytical formulation are not revealed in 

the numerical results. Moreover, the phenomenological coefficients have not been identified 

yet for diffusionless hydride formation in hydrogenated metal. When this model is calibrated, 

it could allow predicting the kinetics of hydride precipitation in crack-tip vicinity contributing 

to the calculation of hydride-related failure risk. 

6.2 Paper B 

In the second paper, Model 1 is applied to two anisotropic HCP metals that potentially form 

hydrides when in contact with hydrogen: Zr and Ti. The considered systems are single 

crystals, which are preliminary cracked, at a temperature 𝑇. The precipitation kinetics of the 

second phase is investigated in basal and prismatic planes. In addition, the effect of the 

crystallographic crack orientation on second-phase formation is also examined. The used 

material data is summarized in Table 1 of Paper B. Equation (29) is solved for 𝛼0 > 0, i.e. 

𝑇 > 𝑇𝑐0
, 𝛽 < 0, and 𝜅 = 1. 
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Figure 14: Evolution of 𝛷(�̃�, �̃�) in a-c) the prismatic planes of Ti for 𝜁 = 0, 𝜋/4 and 𝜋/2, 

and d) the basal plane. Each line represents 0.1 𝛷𝑚𝑝 for each case for 𝜏 in [0,50] every 

twenty ∆𝜏. The corresponding 𝛷-surfaces at steady state are shown in e)-h) for Ti, and i)-l) 

for Zr. 

The different morphologies for Ti and Zr are illustrated for different plane and crack 

orientations 𝜁 in Figure 14. The general observation is that a second phase precipitate form in 

a confined region around the crack tip. Independently of the considered material, the 

formation of the second phase follows the pattern described in section 6.1.2 and is depicted in 

Figure 14a-d for Ti. The behavior of both materials is isotropic in the basal plane. Thus, the 

steady-state appearances of the second phase in Zr and Ti are the same in the basal plane 

regardless of the crack orientation. In the prismatic planes, the change of crack orientation can 

induce asymmetric and/or elongated morphologies in the �̃�  direction. A more detailed 
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description is given in the paper. In the basal planes the second-phase shape obtained with Zr 

appears to be larger than that in Ti while it appears thinner in and its curvature radius appears 

smaller in Zr compared with Ti. The model predicts that the presence and orientation of the 

crack and the constitutive properties of the material could affect size and shape of a forming 

hydride.  

The characteristic parameters of the transformation kinetics are summarized in Table 2 of 

Paper B. The analysis of the collected data shows that the time required to reach steady state 

is independent of the crack inclination. In addition, the steady-state vertical length of the 

second phase as presented in Figure 14 is reached earlier than its steady-state horizontal 

counterpart. Finally, the system reaches steady state earlier in the basal plane than in the 

prismatic plane, which may come from the fact that the precipitate is smaller in basal plane. 

As mentioned in section 6.1.3, the identification of the phenomenological parameters either 

from experiments or ab-initio modeling would allow a quantitative analysis of diffusionless 

hydride formation for Ti and Zr. In order to fully represent hydride formation as hydrogen 

diffuses in the metals, a composition phase field can be added to the problem and coupled to 

the structural order parameter. The latter could also be formulated as a multi-component field 

in order to possibly represent the different orientations and crystal structures of the forming 

hydrides (Moelans, et al., 2008). 

6.3 Paper C 

Model 2 undergoes the numerical procedure described in section 5.3.2 in order to solve Eq. 

(33). The achieved simulations provide qualitative results, which allow assessing the 

capabilities of the numerical methodology for a fully coupled problem applied to the model. 

The used material data for an isotropic body is summarized in Table 1 in Paper C. 

6.3.1 Hydride formation in a defect-free plate 

Computations for 𝛾-hydride formation are first performed on a Zr alloy-based and defect-free 

plate. The evolution of the order parameter distribution for a displacement rate of 2.2 ∙ 10−7 

m/s is illustrated in Figure 15. The used colors vary from dark blue to red. Dark blue accounts 

for the presence of solid solution (𝜑 = −1) and red corresponds to the presence of second 

phase (𝜑 = −1). Intermediate colors indicate the position of the smooth interfaces between 

the phases. 

It is observed in every computation that a differentiation of the phases from the initial 

distribution of the order parameter values initially occurs as in Figure 15a-b. Thereafter, the 

separation of phases takes place and randomly shaped hydrides (𝜑 = 1) are found to coexist 

in the matrix (𝜑 = −1), see Figure 15c. Later, the microstructural evolution tends to make 

large hydrides grow and small precipitates disappear, as in Figure 15c-d. A preferential 

direction of hydride formation is noticed on average perpendicular to the applied stress as 

described in section 2. Here, this is induced by the anisotropic swelling of hydrides in the 

local principal stress directions. 
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In this work, other effects are emphasized. It is notably highlighted that the increase of stress 

with time causes the formation of larger hydrides, an increase of displacement rate results in 

more elongated hydrides, and an increase in interfacial energy promotes the disappearance of 

more hydrides. More details about this parametric dependence of the hydride formation are 

given in Paper C. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 15: Distribution of the order parameter over the considered domain for a loading time 

of: (a) 0.3 𝑠, (b) 0.5 𝑠, (c) 1 𝑠, and (d) 3 𝑠. An applied displacement rate of 2.2∙10-7𝑚/𝑠 is 

used. 
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6.3.2 Hydride formation in a notched plate 

Simulations were also performed on the domain that represents the notched plate described in 

section 5.3.2. With the same displacement rate as for the case of the plate, hydride formation 

is found to occur. Once again, it is shown that the microstructural evolution starts with a 

differentiation of the phase out of the initial distribution of phase field values. This first stage 

is illustrated in Figure 16a-b. Thereafter, hydrides appear clearly around the notch tip, see 

Figure 16c. The number of hydrides is shown to gradually vary with the stress gradient 

around the notch tip. Thus, the hydrides are to a larger degree localized directly underneath 

the flaw tip than further around. The distribution of the hydrides is reminiscent of the 

hydrostatic stress ahead of a notch tip as in the micrograph presented in (Ma, et al., 2006) 

regardless of the orientation of the hydrides. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 16: Distribution of the order parameter over the considered domain for simulation 

times of: (a) 0.03 s, (b) 0.08 s, (c) 0.13 s, and (d) 1 s. 
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6.3.3 Further remarks 

This pilot model represents the evolution of hydrides with a single order parameter 

component, taking physically well-motivated anisotropic swelling into account. The fully 

coupled solution technique is also considered advantageous regarding the strong coupling 

between the phase transformation and mechanical aspects. 

In the plate without a notch, the expansion of the hydrides induces elongated shaped second 

phases in preferential directions globally perpendicular to the applied stress as in nature (Puls, 

2012; Northwood & Kosasih, 1983). However, in case of the notched plate, the orientation of 

the hydrides is somewhat different from the micrograph presented in (Ma, et al., 2006). This 

may be due to effects which are not included in the model such as hydrogen diffusion and a 

mathematically incomplete representation of the crystal orientation. Using a multi-component 

phase variable may allow representing the orientation of hydrides in better ways (Moelans, et 

al., 2008). Therefore, improvements must be applied to this pilot model.  

As for Model 1, the phenomenological constants, here the parameters 𝐿, 𝑝 and  𝑔, are still 

estimations. Experiments and ab-initio calculations are needed to quantify them and, thus, 

calibrate the model and carry out a quantitative study.  

7 Conclusion 

In this work, two different approaches based on phase field theory are employed to study the 

precipitation kinetics of a second phase in a metal with a special focus on hydride forming. 

For both presented models, the diffusional aspect is disregarded and a single component of 

the non-conserved order parameter is utilized to represent the microstructural change. At all 

time, the total free energy of the system is minimized through the TDGL equation and 

includes a sixth-order Landau potential in the first model and that of fourth-order in the 

second model. 

The first model implicitly incorporates the presence of a sharp crack through the utilization of 

LEFM, which is employed to both isotropic (Paper A) and anisotropic bodies (Paper B). The 

results from Paper A reveal that the driving force for the phase transformation at the crack tip 

can be attributed to a local shift in the phase transition temperature. This shift appears as a 

result of the crack induced stress field, which effectively acts as quenching in the close crack 

tip proximity. To investigate the influence of different material characteristics and loads, 

different phase transformation scenarios are simulated by using a wide range of combinations 

of dimensionless parameters that can be translated to different material properties and stress 

levels. For all combinations, where the material temperature is higher than the defect-free 

transition temperature, it is found, that close to the crack tip, the transition temperature shift is 

always large enough to induce precipitation within a confined area. It is further shown that the 

formation of the second phase is enhanced by the presence of the crack, despite that the entire 

system undergoes transformation simultaneously. In other words, the second-phase 

precipitation may occur faster in the vicinity of the crack tip than elsewhere in the material 

when the material temperature is already lower than the defect-free transition temperature. 
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For Paper B, the first model is extended to include elastic anisotropy and we study crack-

induced precipitation of a hydride in single crystal Ti and Zr. To investigate the effect of 

elastic anisotropy on the evolution different crack planes are considered, including the 

crystallographic basal and prismatic planes. As previously observed, the precipitate initiates in 

the crack-tip vicinity and then propagates into regions in high strain regions. Based on the fact 

that the evolution rate does not vary notably with the crack inclination, the time to reach 

steady state is found to be independent of the elastic anisotropy. However, the elastic 

anisotropy affects the size and shape of the hydride. For instance, when the crack inclination 

relative to the prismatic plane increases, the second-phase becomes elongated in the direction 

normal to the crack plane. In contrast, no effect of the crack direction is noted in the basal 

plane. However, an asymmetric precipitate shape is observed for crack planes with 

inclinations relative to the basal plane, which implies that, although it does not affect the time 

to reach steady state, the hydride shape is affected by the elastic anisotropy. 

For the second model (Paper C), we study the formation of -hydrides in a Zr-based plate with 

and without a notch through the use of a single scalar order parameter. The flaw produces a 

non-uniform stress field, which leads to stress gradients that promote inhomogeneous 

precipitation around the notch. Higher area densities of hydrides are displayed in high stress 

regions. The mechanical and phase transformation aspects are coupled and the governing 

equations are solved simultaneously for an isotropic material with the stress field emanating 

from the anisotropic swelling taken into account. To represent this anisotropic aspect, the 

direction of the highest eigenstrain is assumed to be applied in the direction of the highest 

principal stress. The proposed model does not account for the diffusion of hydrogen in 

zirconium since it is assumed that the diffusion process for the formation and growth of 

hydrides occurs in a quasi-static manner. The results reveal that the hydride formation is 

affected by the applied load and the applied displacement rate. Moreover, the interfacial 

energy is observed to affect the hydride formation. The increase of interfacial energy 

promotes the formation of fewer precipitates. The results show that the global growth of 

hydrides is perpendicular to the direction of the applied stress in a defect-free plate and 

perpendicular to the notch-tip surface in case of a notched plate.  

8 Further works 

This work demonstrates the capabilities of both approaches to model hydride formation 

kinetics with a single scalar order parameter, by taking into account isotropic and anisotropic 

aspects. The results exhibit the effect of anisotropic compliance constants and hydride 

expansion respectively with the first and second models. The combination of these anisotropic 

aspects could allow the results to get closer to reality, in the case of zirconium for example. 

However, the values of the phenomenological constants employed in the models are still 

estimations and may be determined thanks to experiments and ab-initio studies. Moreover, 

diffusion of hydrogen within the metals is disregarded in the presented approaches. Yet, it is 

thought to play an active role in the formation of hydride, for instance, in DHC. In future 

works, the introduction of a conserved order parameter and the use of a supplementary 

equation, the Cahn-Hilliard one, may allow the representation of diffusional effect. In 

addition, material plasticity and the variation of the material temperature are aspects, which 
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may have an effect on hydride forming and, therefore, should be included in the model. 

Further, the use of a multi-component non-conserved order parameter may improve the 

predicted appearance of the hydrides in terms of orientation. However, this might induce 

computation, which are more resource demanding. 

Finally, only one equation is solved in the first model as the mechanical equilibrium is 

implicitly included in the model by employing the analytical solution. This is an advantage in 

terms of computation time although the inclusion of more anisotropic effect and plasticity 

might present limitations. However, the use of finite element method to solve the mechanical 

and phase transformation equations simultaneously appears to be promising, especially if 

other energies and mechanisms, such as diffusion, are to be included, although it might lead to 

computations being slower. One next step could be to implement an element which allows 

coupling conserved and multi-component non-conserved order parameters.  
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