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Abstract
Current practice in the safety-critical industry is to run critical application programs
on dedicated processors. Adopting widely available multi-core processors to run pro-
grams of different levels of criticality in parallel on the same chip would allow the
required performance to be achieved with lower energy and material costs. How-
ever, the inherent run-time variability would be exacerbated by indirect interference
through shared resources, to the extent that no overall benefit would be derived
from multi-core technology.

We consider the case of a dual-core ARM processor with a real-time program
assigned to one core and a best-effort program assigned to the other. An existing
technique from the literature allows us to guarantee safety by stopping the best-
effort program – and therefore the interference – whenever a real-time deadline is
in danger of being overrun. We show that combining this technique with quality-
of-service strategies can result in significant improvements in processor utilisation
while maintaining the safety guarantee.

Keywords: mixed criticality, multi-core processor, worst-case execution time,
scheduling, quality of service.
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1
Introduction

Microprocessor manufacturing has seen a significant shift in recent years towards
multi-core designs, provoked by diminishing returns in performance from technology
scaling, for example the breakdown in Dennard scaling [1] with small feature sizes.
Multi-core processors are able to exploit thread-level parallelism and take advantage
of shared on-chip resources, allowing the required performance to be achieved with
a lower energy footprint.

In a safety-critical system, the failure to meet hard real-time processing dead-
lines can have differing consequences in terms of severity. The level of severity is
classified by the Design Assurance Level (DAL) for avionics applications and the
Automotive Safety Integrity Level (ASIL) for automotive applications. The failure
of a system classified as DAL A (the highest integrity level) would have catastrophic
consequences. DAL B and C are (to a lesser degree) also safety-critical, while
DAL D and E are considered non-safety-critical. An example of a safety-critical ap-
plication would be a flight management system (DAL B or C), while an example of a
non-safety-critical application (DAL E) would be an in-flight entertainment system
(DAL E). However, the assigned level ultimately depends on the actual solution as
installed in the aircraft.

Current industry practice is to run each safety-critical application program on
a single processor. But multi-core technology gives us the opportunity to have
applications with different levels of criticality run concurrently on the same pro-
cessor, thereby maximising resource usage, reducing costs, and minimising energy
consumption.

The safety-critical industry has typically guaranteed the real-time deadlines of
safety-critical programs by computing the worst-case execution times of the program
tasks, and ensuring that tasks are scheduled in such a way as to always meet their
deadlines in the worst case. With multi-core processors, this approach is no longer
applicable, as the work of Bin [2] (amongst others) demonstrates. This is due to
indirect interference between nominally independent programs as a result of their
using shared hardware resources. Consequently, there is so much pessimism in the
worst-case-execution-time calculations that no benefit can be derived from multi-
core technology in such situations.

In order to use multi-core processors in future safety-critical systems, new ap-
proaches therefore need to be developed. Bin et al. [3] presented a technique for
characterising application behaviour with respect to every potentially shared hard-
ware resource. This technique used stress-testing benchmarks and hardware monit-
ors to measure the extent of the interference between concurrently-running programs
as a result of contention for shared resources. Unfortunately, the technique is only
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1. Introduction

suitable for applications where the combination of different programs is limited and
controlled, which is not the case in many realistic situations.

For the more general case, Kritikakou et al. [4] addressed the problem of multi-
core mixed-criticality by proposing a worst-case-execution-time controller. This con-
troller stops low-criticality tasks (running on other cores) whenever it determines
that their continued execution could cause a high-criticality task to fail to meet a
deadline. However, this results in all low-criticality tasks being stopped simultan-
eously, regardless of whether each individual task has an impact on the critical task.
Furthermore, the low-criticality tasks are not restarted until after the high-criticality
task in question has finished executing, even if restarting them sooner would not
endanger the critical task’s deadline.

Consequently, the problem that this work aims to solve is that of maximising
resource utilisation in a mixed-criticality multi-core system, or – from an application
user’s perspective – maximising overall performance for the best-effort tasks while
still meeting the real-time deadlines of the safety-critical tasks. We refer to this as
the quality of service (QoS) provided by the run-time system to the best-effort tasks,
and it supplements the deadline guarantees provided by the worst-case-execution-
time controller.

2



2
Background

Influenced by the trend in greater integration of systems of different levels of crit-
icality, along with the move towards multi-core processors, the last decade has seen
an abundance of research into mixed-criticality systems. Burns and Davis’s com-
prehensive review [5] reminds us that underpinning this body of research is a funda-
mental conflict between safety and efficiency: safety is assured through partitioning a
system (physically or temporally), while efficiency is maintained through the shared
use of resources. The interplay between these two factors becomes increasingly com-
plex as a result of the trade-offs made to maximise utilisation and to minimise energy
and manufacturing costs.

Designing a mixed-criticality system with temporal partitioning is possible under
certain constraints. For example, Hu et al. [6] consider a pre-emptive event-driven
uniprocessor system with fixed task priorities, and show that adaptively shaping the
incoming flow of low-criticality tasks at run time can improve system utilisation.

Schneider et al. [7] study schedulability in a mixed criticality system containing
real-time tasks with fixed deadlines (high criticality) and control tasks (low critical-
ity) where there is a trade-off between later deadlines and quality of control. They
show that, in this context, traditional scheduling is overly conservative, and present
an improved schedule synthesis algorithm. However, this work is focused on static
scheduling for uniprocessor systems where the behaviour of the low-criticality tasks
can be characterised statically.

2.1 A mixed-criticality multi-core system
With a multi-core system, physical partitioning can be used to keep high- and low-
criticality tasks on separate cores. In our work, we consider a multi-core processor
running a single safety-critical, real-time process (DAL A, B, or C) and one or more
non-safety-critical, best-effort processes. The real-time process runs in fixed time
slots on a single processor core, according to a predetermined schedule with known
worst-case execution time (WCET). The best-effort processes run in the other cores,
according to either a cyclic schedule or a fixed-priority schedule, and may be stopped
and resumed at any point during their execution.

In a static cyclic schedule (Figure 2.1), the various program tasks repeat period-
ically, perhaps to sample input data at regular intervals, or to perform a calculation
based on that data. This contrasts with a dynamic schedule, where tasks can pre-
empt each other at run time. Each real-time task, or sequence of real-time tasks,
also has a deadline by which the task or tasks must finish. The deadline is the
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2. Background

time by which some action must be taken by the system, for example to operate an
electric motor, or to update a display. Even if a task itself does not directly cause
an action to be taken, it may be part of a sequence of tasks that results in an action
being taken, where each task in the sequence depends on the output of one or more
of the preceding tasks.

Major cycle

Time

Core 0

Core 1

Core 2

Core 3

Time slots

Figure 2.1: Cyclic schedule on a multi-core processor

In addition to the period and deadline, we consider that the worst-case execution
time – when running in isolation – is known for each of the real-time tasks, and this
information is used to compute a complete static schedule (assuming that a valid
schedule is indeed possible). This schedule is implemented as a set of fixed time
slots on the processor cores, each time slot containing the sequence of tasks to be
executed at that point in the schedule. We refer to the period at which the pattern
of time slots repeats itself as the major cycle, which is the least common multiple
of the task periods.

The method of scheduling the real-time process on a dedicated processor core, in
fixed time slots according to known worst-case execution time, avoids the potential
for direct interference from the best-effort processes. Direct interference could have
occurred if the (potentially sporadic) best-effort tasks were to compete for processing
time on the same core as the real-time tasks, and to pre-empt them. With physical
separation, the schedule for the real-time tasks can be entirely specified without
reference to the best-effort tasks.

However, multi-core processors, such as the dual-core ARM Cortex-A9 shown in
Figure 2.2, have a number of resources shared between the processor cores. Although
the first-level cache is private to each core, bus access and the rest of the memory
hierarchy are shared by all of the cores. Indirect interference occurs, for example,
when best-effort tasks write to the same cache line as a real-time task, causing the
cached copy to be updated or invalidated. If this happens frequently, the resultant
bus traffic and cache operations can cause significant delays to the real-time tasks.
Indeed, interference through shared resources is a well-known problem, particularly
for shared memory operations [8].
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2. Background

ARM Cortex-A9 CPU

FPU NEON Data Engine

MMU

32 KiB
I-Cache

32 KiB
D-Cache

ARM Cortex-A9 CPU

FPU NEON Data Engine

MMU

32 KiB
I-Cache

32 KiB
D-Cache

Snoop Control Unit

512 KiB L2 Cache & Controller

Memory Interfaces

Application Processor Unit

DDR2/3, 3L, LPDDR2
Controller

Figure 2.2: Shared resources in a dual-core ARM Cortex-A9 architecture

2.2 Using a run-time system to control WCET
Kritikakou et al. [4] describe a run-time system where regular checkpoints are added
to the real-time program in order to detect potential deadline overruns before they
happen. Initially, all processes (real-time and best-effort) are run concurrently, but
a safety condition (Equation 2.1) is evaluated at each of the checkpoints; if it is
not satisfied then the real-time process is in danger of overrunning its deadline, and
so the best-effort processes are stopped. The real-time process can then continue
running in isolation.

RWCETiso(x) + Wmax + tSW <= DC − ET(x) (2.1)

RWCETiso(x) is the remaining worst-case execution time of the real-time pro-
gram from checkpoint x, calculated as if it were running in isolation; Wmax is the
maximum worst-case execution time (assuming maximum interference) from check-
point x to checkpoint x + 1; tSW is the overhead involved in stopping the other
(best-effort) processes; DC is the real-time deadline; and ET(x) is the elapsed exe-
cution time measured at checkpoint x.

As long as RWCETiso(x), Wmax, and tSW are known, and that we are capable
of measuring ET(x), we can use this mechanism to guarantee that the real-time
program will not miss the deadline DC .

2.3 Nomenclature
In the context of our work, we employ a number of terms with specific meanings in
relation to task scheduling, so it will be helpful to provide clear definitions here.
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2. Background

A slot is a temporal subdivision of a cyclic schedule on a particular processor
core.

The major cycle is the period at which the schedule repeats itself across all
processor cores.

A partition is a logical set of time slots on one or more processor cores to which
we map a program.

A plan defines a complete schedule (a major cycle), mapping partitions to slots.
This is a term used by some hypervisors, which allow the schedule to be changed
at run time by switching from one plan to another. In the avionics application
domain, different plans might be optimised for the various phases of the flight:
take-off, cruising, and landing. Switching plans can also be used for other purposes,
for example dynamic reconfiguration after the failure of a processor core so that the
system can continue operating.

A task is a function (that potentially calls other functions) in the program.
It generally carries out an identifiable application task that has similar behaviour
across multiple occurrences of it in the same program.

A job is an occurrence of a task at a particular point in a given slot. This means
that each job repeats once every major cycle. A slot may contain multiple jobs.

2.4 Maximising utilisation
Our work aims to build on the WCET controller technique described by Kritikakou
et al. by using it to guarantee the deadlines of critical tasks, while applying new
techniques to maximise the overall performance of best-effort tasks.

We define the utilisation for slot i as the ratio of execution time ETi to slot
length Li. The overall utilisation is therefore given by Equation 2.2.

∑
i

ETi

Li

(2.2)

It is possible to achieve higher utilisation than that offered by the WCET con-
troller alone because the level of interference can vary with time, and does not
necessarily remain constant during a given time slot. This in turn is because the
pattern of shared resource (memory, bus) use varies with time: each task will have
its own particular characteristics.

Rather than try to profile every combination of tasks running concurrently on the
processor, and then fine-tuning the schedule on that basis, our approach is to infer
at run time the periods of greatest interference, and to provide a strategy to adapt
accordingly. In any case, as well as potentially being prohibitively complex, such
profiling may well be meaningless for best-effort programs whose exact behaviour is
not known until run time.

2.5 Limitations
We do not consider the case where there are multiple critical process running at
the same time, or at least assume – as do Kritikakou et al. – that the problem of
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2. Background

determining a valid schedule for multiple critical processes has been solved. The
latter is a difficult research problem and is beyond the scope of this work.
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3
Methods

In order to validate the theoretical aspects of this work, we set up a dedicated
hardware platform that would allow us to make precise measurements and to exper-
iment with techniques for maximising utilisation. In terms of software, we required a
real-time hypervisor with configurable time slots, and a run-time library that could
schedule arbitrary application and benchmark programs while recording measure-
ments such as the cycle counter, instruction counter, and cache events from the
hardware performance monitoring unit.

3.1 Hypervisor
Xtratum is a hypervisor for safety-critical real-time embedded systems, designed
in particular with support for aerospace applications (ARINC 653) in mind [9][10].
It offers a low-overhead, low-footprint virtualisation framework based on research
from the Universitat Politècnica de València, and is developed by a spin-off company,
Fentiss, S.L.

Virtualisation is a relatively old technique that has recently started to be used in
embedded systems, and consists of modelling enough of the hardware in a hypervisor
to allow multiple operating systems (or programs) to be run independently in a
partitioned environment.

One of our aims being to measure the performance of – and interference between
– the various benchmark and application programs, rather than that of the hyper-
visor, a more substantial embedded operating system would have been unsuitable.
Indeed, we assume that the overhead involved in running the hypervisor is negligible,
and does not therefore significantly affect our measurements. It should, however, be
possible to estimate the overhead from some of our hardware performance measure-
ments, and thereby test this assumption.

For the purposes of this study, we used the ARM port of Xtratum, which is cur-
rently under active development. Through collaboration with Fentiss, S.L., we were
able to take advantage of experimental features needed to implement our quality-of-
service strategies, notably the ability to instantaneously stop and restart an arbitrary
program during a slot for which it is scheduled.

3.2 Hardware platform
For the experimental hardware, we chose the Zynq-7000 ZC706 evaluation kit. The
Zynq-7000 system-on-a-chip combines a field-programmable gate array (FPGA) with

9



3. Methods

a dual-core ARM Cortex-A9 (ARMv7) processor, along with a DDR3 SDRAM inter-
face and a number of peripherals [11]. However, for the purpose of this work we did
not use the FPGA, since we were only interested in running benchmark programs
and our run-time system on the dual-core Cortex-A9 processor.

The main reason for choosing this hardware was that it was supported by
Xtratum, with whose developers we were able to collaborate during the course of
the project. In addition, the Cortex-A9 has a set of hardware counters for mon-
itoring processor performance. These counters can be programmed to measure a
range of activity such as memory access, instruction dispatch, and processor cycles.
The counters are programmed and read via a set of ARMv7 coprocessor instruc-
tions [12][13].

3.3 Run-time system
We developed a run-time system that runs on top of Xtratum and has three main
components: (i) a resource manager, (ii) a fine-grained scheduler, and (iii) a monit-
oring subsystem.

The resource manager is the intelligence in the run-time system. It makes de-
cisions based on the run-time monitoring data, with the objective of maximising
utilisation, and provides hints to the best-effort programs so that they can adapt
their behaviour to fit in with the real-time programs, and avoid being stopped by
the scheduler.

The fine-grained scheduler component starts each program task in turn, including
the resource management and monitoring tasks, and enforces the decisions made by
the resource manager at run time by making adjustments to the schedule for the
best-effort programs.

Tasks are run according to a cyclic schedule with a fixed priority assigned to
each task. This is equivalent to a pre-determined sequential order. For each slot,
the scheduler reads the list of jobs from the current plan, calling each one in turn.
(Control returns to the scheduler when a job ends.)

The same scheduler is used for both the real-time program and the best-effort
program. The latter, however, is asynchronous with respect to the cyclic sched-
ule: from the scheduler’s viewpoint it is a single job that never returns, running
continuously across each of its time slots from one major cycle to the next.

The monitoring subsystem gathers run-time resource usage data from low-level
hardware counters, aggregating it for each job and time slot. On the Cortex-A9
processor, this is done by executing ARMv7 assembly instructions that configure the
performance monitoring unit and retrieve its counter values from the coprocessor.

The monitoring functions are called by the run-time scheduler before and after
each job; the differences in hardware counter values during that time – an indication
of the job performance – are then stored in data structures held in shared memory.
Statistical information can then later be retrieved and acted upon by the resource
manager.

Figure 3.1 shows the run-time sequence of interactions (function calls) between
the fine-grained scheduler (LRS), monitoring subsystem (MON), application pro-
grams, and resource manager (LRM) during a major cycle with two slots.

10



3. Methods

LRS MON Program 1 Program 2 LRM

...

...

slot start

job start

job end

job start

job end

slot end

slot start

job start

job end

job start

job end

slot end

job 1

job 1

job 2

job 2

LRM

Figure 3.1: Example sequence diagram for the run-time system
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3.4 Test programs

In carrying out this work, we used the following benchmark and application pro-
grams, in various combinations, to serve as the real-time and best-effort programs
under test.

3.4.1 Real-time safety-critical application programs
So that our measurements would be as realistic as possible, we chose a set of real-
time application programs whose run-time characteristics and behaviour would cor-
respond to those of a typical safety-critical system.

These programs are the flight management system (FMS), the display man-
agement system (DMS), and the sensor data provider (SDP), each implementing
functionality representative of a real safety-critical system.

3.4.2 MiBench
MiBench [14] is a set of freely available embedded benchmarks designed to represent
the characteristics of commercially available programs from a number of application
domains: automotive and industrial control; networking; security; consumer devices;
and office automation.

Each benchmark has its own particular characteristic distribution of program
instructions between integer, floating point, load, store, and branch operations. We
chose the Rijndael benchmark for our tests because its encrypt and decrypt functions
have a relatively large proportion of memory operations: around 50%.

We configured the Rijndael benchmark to run in a continuous loop, with a re-
peating sequence of 4 encrypt, 4 decrypt, and 32 verify operations. The verify
operations are less memory-intensive; the intention of adding them to the loop was
to produce cyclic variations in interference with a period of 5–10 major cycles of the
hypervisor.

3.4.3 Memory-stressing benchmark programs
In addition, we developed a set of benchmark programs – listed below – designed
to strongly exercise the memory resources shared by the processor cores, in a way
that would provoke various patterns of interference and therefore variations in the
running time of any concurrently-running process.
Sequential read (rs)

32-bit read operations on sequential 32-bit-aligned addresses in a 4 MiB1 array
in SDRAM.

Pseudorandom read (rr)
32-bit read operations on pseudorandomly chosen 32-bit-aligned addresses in
the 4 MiB array.

11 MiB = 10242 bytes
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3. Methods

Sequential write (ws)
32-bit write operations on sequential 32-bit-aligned addresses in the 4 MiB
array.

Pseudorandom write (wr)
32-bit write operations on pseudorandomly chosen 32-bit-aligned addresses in
the 4 MiB array.

The sequential memory operations were designed to incrementally step through
memory as fast as possible (for maximum memory bandwidth), while the pseudor-
andom ones were designed to step across page boundaries in an unpredictable way
in order to cause more cache misses. The write operations were intended to cre-
ate more interference (through disruptive cache flushes) than the read operations.
All were capable of having their execution time adjusted (via loop conditions) to
run for some given proportion of the slot duration, or of running continuously until
interrupted by the hypervisor.

3.4.4 Composite benchmark program
For later experiments, as a more memory-intensive stand-in for the real-time applic-
ation programs, we used a sequence of jobs combining the memory-stressing program
tasks described above, along with a sleep task that makes no memory access opera-
tions.

3.5 Measurements
The ultimate goal of this experimental set-up is to measure the effects of interference
through shared resources (e.g. bus, shared caches, memory controllers) on a real-time
application program, and the usefulness of strategies to mitigate that interference.

Since we are concerned with meeting real-time deadlines, the most important
variable to measure is the real running time; we achieve this by sampling the cycle
counters for each processor core.

We also want to study the memory activity, so we sample a number of related
hardware counters: data cache miss, data read, and data write. Unfortunately, data
cache miss appears to always return zero on our Cortex-A9 processor, and so is not
useful to us.

Finally, we want to be able to estimate the progress made by each program
scheduled by our run-time system, so we sample the instruction counter. On the
Cortex-A9, an exact value is not available; instead we measure the number of in-
structions renamed, which gives an approximation.

All the above values are sampled via the monitoring subsystem described in
Section 3.3. Measurements are taken at various levels of granularity by saving the
value of each counter to shared memory at the start and end of each job, slot,
and major cycle. Note that each core has its own set of hardware counters, so the
measurements taken on each core are independent. Table 3.1 gives a summary of
the measurement sources.

In order to exfiltrate the measurement data saved in shared memory, we imple-
mented an optional feature in the run-time system that encodes the information
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Table 3.1: Measurement sources in the Cortex-A9 Performance Monitoring Unit

Hardware counter Description

Cycles

Number of processor cycles for which the core has
been active. Given that we know the processor
frequency, we can use this to calculate the real
running time.

Data cache misses Number of data cache misses.
Always returns zero on the Zynq-7000 ARM processor.

Data reads Number of load instructions architecturally executed.
Data writes Number of store instructions architecturally executed.
Instructions renamed Approximate total number of instructions executed.

stored in memory by the monitoring subsystem, and prints it to the serial console in
a compact format. We are then able to extract and plot the data we are interested
in with a set of scripts.

3.5.1 Interference between benchmark pairs
To begin with, we simply ran pairs of benchmark programs in parallel (one on
each core) in their various combinations. This had the dual purpose of testing the
experimental set up – to ensure that it was capable of adequately measuring the
phenomena being studied – and giving an indication of the interference generated
by different patterns of memory access.

For these tests, we ran one of the benchmark programs on core 0 of the Cortex-
A9 processor, calibrated so that its running time in isolation was approximately 80%
of the slot duration. We then ran the other benchmark program in parallel on core 1
ten times, stopping it after 10% of the slot duration the first time, and subsequently
incrementing its running time (and therefore the duration of any interference) in
steps of 10% of the slot duration, until it filled the whole slot. This procedure was
repeated for each pair of benchmark programs.

3.5.2 Interference to a safety-critical application
Having established that we were able to observe and measure interference between
two independent programs running on different processor cores, we proceeded to
measure the effects on a set of realistic application programs (described in Sec-
tion 3.4.1).

We assigned a partition to each program (FMS, DMS, SDP) and mapped these
partitions to three hypervisor slots on core 0 of the Cortex-A9 processor. The
slots were programmed sequentially, constituting the major cycle of the hypervisor
schedule. The duration of each slot was calibrated such that the corresponding
application jobs would have time to complete, even under the levels of interference
being observed.
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For the first run, we ran the application programs in isolation, i.e. without any
other program running.

We then ran each of the four memory-stressing benchmark programs in turn on
core 1. The benchmark programs were scheduled to run continuously. The running
time of each of the application jobs was measured again, giving us four further sets
of values.

3.6 WCET controller implementation
The next step was to reimplement the WCET controller described by Kritikakou et
al. [4]. We did this by having the monitoring subsystem compare its hardware cycle
counter samples with statically defined observation points specified in the run-time
system configuration. This check occurs after the completion of each real-time job.
If the offset of a job’s end time from the start of its slot is greater than its defined
observation point, a deadline overrun warning is triggered, resulting in all best-effort
programs being stopped until the end of the slot.

Figure 3.2 shows an example where the the best-effort program (core 1) is stopped
in two successive major cycles, due to the WCET controller issuing a deadline over-
run warning at the end of the third real-time job (core 0).

Time

Core 0

Core 1

Major cycle 2

Warning

Major cycle 1

Warning

Figure 3.2: WCET controller stopping the best-effort program after a deadline
overrun warning

Note that here we do not concern ourselves with how the observation points
are defined in order to guarantee safe operation; questions of schedulability and
calculating the remaining WCET for a real-time program slot are beyond the scope
of this work. Our aim is to reproduce the WCET controller mechanism, then use
this as a starting point for improving the utilisation with our QoS strategies.

3.7 Quality-of-service strategies
Having established a functional WCET controller, we were then in a position to
experiment with various QoS strategies to attempt to increase the utilisation for
the best-effort program. The goal here was to find a strategy that could achieve a
utilisation as close as possible to that measured in isolation, and no lower than that
obtained without any QoS strategy being used. Figure 3.3 illustrates how a simple
QoS strategy could result in a significant improvement in utilisation by turning the
WCET controller’s actions to our advantage.
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Figure 3.3: Example showing improved utilisation with a simple QoS strategy

In major cycle 1, the WCET controller stops the best-effort program after the
third real-time job.

In major cycle 2, the QoS strategy programmes the job that triggered the dead-
line overrun warning to run in isolation; as a result, the third real-time job does not
encounter interference, and an overrun warning now only occurs later in the slot,
after the fifth job.

In major cycle 3, the fifth job is also programmed to run in isolation; this time
no overrun warnings occur.

In major cycle 4, the pattern is repeated, the system already having reached an
equilibrium, with the third and fifth jobs being run in isolation. Owing to the QoS
strategy, the proportion of the time slot when the best-effort program is able to run
has increased significantly compared to major cycle 1.

Of course, this is a contrived example whose outcome is a significant improvement
in utilisation, but other outcomes are possible. For example, were the deadline
overrun warning to be triggered by the sixth job, a simplistic QoS strategy would
result in that job being programmed to run in isolation; even if the seventh and final
job were then not run in isolation, it is shorter than the sixth job, and so the total
running time for the best-effort program over the course of the slot would necessarily
be shorter. Another limitation is that the job that triggers the deadline overrun
warning may not necessarily be the job that encounters the most interference.

Table 3.2 gives a summary of the QoS strategies we evaluated. For strategy 0,
no QoS action is taken. The other four strategies take various combinations of the
following actions—
Action 1

If a job triggers a deadline overrun warning, programme that job to run
in isolation.

Action 2
If a job triggers a deadline overrun warning, programme the job with
the lowest deadline overrun metric to run in isolation. This metric is
calculated by subtracting the measured duration of the job from the dif-
ference between the job’s deadline and the previous job’s deadline, and is
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Table 3.2: QoS actions taken for each QoS strategy

Action 1 Action 2 Action 3
Strategy 0
Strategy 1 •
Strategy 2 •
Strategy 3 • •
Strategy 4 • •

a measure of the relative contribution of a job to a deadline overrun.
Action 3

Reset the QoS state of jobs occurring after and in the same slot as a job
that triggered a deadline overrun warning.

In the event of deadline overrun warnings, the QoS strategies programme one or
more real-time jobs to run in isolation, with the intention that this set of jobs reach
an equilibrium over the course of a few major cycles. While the behaviour of the
real-time program is by definition cyclic, the behaviour of the best-effort program
may change over time. Even if its behaviour is also cyclic, the period may be
much longer than a major cycle of our real-time schedule, with alternating phases of
high and low interference. It is therefore necessary to reset the QoS strategy either
periodically or when a change in behaviour is detected, in order that real-time jobs
not be run in isolation unnecessarily.

We evaluated these QoS reset strategies—
Reset strategy 0

QoS strategy is never reset.
Reset strategy 1

Reset the QoS strategy after a fixed number of major cycles (40).
Reset strategy 2

Reset the QoS strategy if a deadline overrun warning occurs more than a
fixed number of major cycles (1) after the last one, and there are currently
one or more jobs programmed to run in isolation.

Reset strategy 3
Reset the QoS strategy if the number of memory stores as a proportion
of all instructions drops by more than a given amount (20%) relative to
the maximum recorded proportion since the last time the QoS strategy
was reset.

3.8 Test procedure
For each configuration (real-time program, best-effort program, task schedule, test
parameters), we launched a series of ten test runs. Each test run consists of three
reference tests plus a test for each combination of the QoS strategies and QoS reset
strategies.

17



3. Methods

iso Run the real-time program on core 0 in isolation (i.e. with nothing running
on core 1).

ref Run the best-effort program on core 1 in isolation (i.e. with nothing run-
ning on core 0).

0.0 Run the real-time and best-effort programs simultaneously on cores 0
and 1, respectively, with deadline checkpoints set for each job of the real-
time program, and no QoS strategies used.

Q.R Run the real-time and best-effort programs simultaneously on cores 0
and 1, respectively, with deadline checkpoints set for each job of the real-
time program, and QoS strategy Q used in combination with QoS reset
strategy R.

We post-processed the serial console output for each test to extract the necessary
data: per-core PMU measurements; per-slot PMU measurements; per-job PMU
measurements; best-effort program progress; WCET controller actions; and QoS
actions.
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4
Results

4.1 Interference between benchmark pairs

We begin by observing the effects of indirect interference between pairs of the
memory-stressing benchmark programs described in Section 3.4.3. Figure 4.1 shows
the variation in running time of the sequential-read (rs) benchmark program run-
ning on core 0 of the Cortex-A9 processor, while under interference from each of the
four benchmark programs running in turn on core 1. The interfering program on
core 1 is run for 0–1000 ms in steps of 100 ms.

The increase in running time is directly proportional to the duration of the inter-
ference, up to around 800 ms. After this point, the running time of the interfering
program overtakes that of the program being measured, so there is no further in-
crease in the latter. The slowdown at 800 ms is approximately 1.3.

600

650

700

750

800

850

900

0 200 400 600 800 1000

P
ro

g
ra

m
 d

u
ra

tio
n 

on
 c

or
e 

0 
(m

s)

Duration of interference from core 1 (ms)

rr
wr
rs

ws

Figure 4.1: WCET of the sequential-read benchmark under interference from each
of the four benchmark programs
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4.2 Interference to a safety-critical application
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Figure 4.2: WCET of safety-critical application tasks in isolation and with inter-
ference

Figure 4.2 shows the maximum running time (in processor cycles) of the real-time
application jobs within a major cycle of the hypervisor schedule. Jobs 0–4 are from
the SDP, jobs 5–12 are from the DMS, and jobs 15–22 are from the FMS. In all
cases, these jobs are running on core 0 of the Cortex-A9 processor.

Jobs 13 and 14 are excluded from the plot because they belong to the run-time
system itself and not to the application programs.

For each job, the five running time measurements (displayed as clustered bars in
the figure) correspond to five configurations—
isolation (iso)

Only the real-time application jobs are run, and no program is scheduled
on core 1.

pseudorandom read (rr)
sequential read (rs)
pseudorandom write (wr)
sequential write (ws)

The corresponding memory-stressing benchmark program (as described
in Section 3.4.3) is run continuously on core 1.

We observe that uniform interference – from a memory-stressing benchmark
program running continuously on core 1 – appears not to have a uniform impact on
the real-time programs (FMS, DMS, SDP). The worst interference occurs with jobs
2 and 4 (SDP), and job 10 (DMS). Neither do all of the memory-stressing programs
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have the same impact. The worst interference comes from the sequential memory
writes (ws); memory reads have a generally lower impact.
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Figure 4.3: Slowdown of safety-critical application tasks with interference

Rather than looking at the absolute job duration figures, it is perhaps more
instructive to consider the relative slowdown for each job. Figure 4.3 was compiled
from the same data as Figure 4.2, but instead each measurement is expressed as
a slowdown relative to the application program running in isolation, as given by
Equation 4.1.

WCET measured with interference
WCET measured in isolation (4.1)

Considering relative slowdown, rather than absolute job duration, gives us a
better idea as to which jobs suffer the worst interference. Jobs 1, 4, and 10 (identified
above) are not impacted the most. Instead, several of the shortest jobs (1, 3, 15,
16, 17, and 20) suffer the worst interference. These short jobs have limited impact
in this scenario for the very reason that they are short, but this impact could be
greater if there were a large number of such tasks in a real-time program.

For write-based interference, the sequential writes invariably have the greater im-
pact, often significantly so. In terms of interference from memory reads, the impact
is generally lower than for writes, but whether the sequential or the pseudorandom
read operations have a greater impact depends on the real-time job being interfered
with.

The deadline overrun mechanism described by Kritikakou et al. [4] ensures that
excessive interference does not result in real-time deadlines being missed. Figure 4.4
illustrates our initial strategy for improving on this by cutting interference only
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where its impact is greatest: the memory-stressing programs running on core 1 are
stopped at the start of job 10 and restarted once that job finishes.
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Figure 4.4: WCET of safety-critical application tasks with no interference during
job 10

We made a series of 84 test runs whereby for each memory-stressing program
running on core 1, we suspended it for the duration of each of the safety-critical
application jobs in turn, and measured the WCET for that job. These results are
aggregated in Figure 4.5: the four bars for each job correspond to the four test runs
where the memory-stressing program was suspended for the duration of that job.
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Figure 4.5: Aggregate plot of task slowdown where the memory-stressing program
is suspended for the duration of the indicated job

These results show that although the technique of suspending the interfering
program is effective for reducing the absolute impact on running time, the relative
slowdown can still be as high as 1.08 for short tasks. One possible cause could be if
the relevant hypervisor API calls1 are not completely synchronous, resulting in some
interference occurring at the start of the job. It could also be due to the cache state
left by interference during the previous job. However, this observed slowdown is still
much smaller than the effect of leaving the memory-stressing program running.

4.3 Comparison of QoS strategies
For each configuration, we plot the results for each of the various QoS strategies
used. QoS reset strategy 1 is used in all of these configurations. The programs used
for this set of results are: the composite benchmark (CB) described in Section 3.4.4
on core 0 with real-time deadlines; and the Rijndael benchmark from MiBench (see
Section 3.4.2) running in a continuous loop on core 1.

The x-axis indicates the number of major cycles. (All tests were run for two
hundred major cycles.)

The performance measurements are shown in the lower part of the plot, for each
of the two processor cores: the left-hand y-axis indicates the number of processor
cycles for which the partition is being run (blue line); the right-hand y-axis indicates
the number of memory loads and stores (orange and green lines) and the total
number of instructions executed (red line).

1XM_suspend_partition and XM_resume_imm_partition
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The deadline-overrun and QoS actions are shown in the upper part of the plot,
and are duplicated between cores 0 and 1 to facilitate interpretation in conjunction
with the performance measurements. Vertical red lines indicate a deadline overrun
warning, triggered by the job marked by a red dot. A blue dot indicates that the
best-effort program was suspended for the duration of the given real-time job in a
particular major cycle.
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Figure 4.6: Composite benchmark in isolation, Rijndael in isolation (iso)

The first plot (Figure 4.6) is special, in that it combines two sets of results:
one with the real-time program (core 0) running in isolation, and the other with
the best-effort program (core 1) running in isolation. These two sets of results are
combined in a single plot to aid comparison with subsequent figures.

For the real-time program, the number of instructions is constant across all major
cycles. This is because it runs according to a fixed schedule, performing the same
tasks in the same sequence each time, and stopping once those tasks are done. The
number of cycles also remains constant, showing that there is no significant variation
in running time for these tasks.

The best-effort program, however, exhibits some variation in the number of in-
structions per major cycle. This is consistent with the fact that it runs in a continu-
ous loop, asynchronous with respect to the fixed schedule and to the duration of a
major cycle. The number of cycles remains constant at 200 million; this corresponds
to the length of the slot (0.5 s) at 400 MHz.

Figure 4.7 shows what happens when we run the two programs simultaneously,
with the WCET controller turned on but no QoS strategies used. As a reminder,
this configuration is the baseline for our work, upon which we must obtain an im-
provement.

24



4. Results

0
2
4
6
8

10
12

Jo
b

Core 0

0
2
4
6
8
10
12

Jo
b

Core 1

0 M

20 M

40 M

60 M

80 M

100 M

120 M

140 M

160 M

180 M

200 M

0 20 40 60 80 100 120 140 160 180 200

C
yc

le
s

Major cycle

0 20 40 60 80 100 120 140 160 180 200

0 M

5 M

10 M

15 M

20 M

25 M

30 M

35 M

40 M

45 M

50 M

55 M

60 M

65 M

70 M

75 M

80 M

In
st

ru
ct

io
ns

Major cyclecycles loads stores all instrs

Figure 4.7: Composite benchmark (CB) + Rijndael, no QoS (QoS 0.0)

Immediately, we see from the vertical red bars that a deadline overrun warning
was triggered by the WCET controller during most major cycles. Most of these
occur after the first job, although during three major cycles the warning is triggered
after job 4 or job 8 instead.

Although the WCET controller ensures safe operation by stopping the best-
effort program when necessary, we see that this has a significant impact on the
latter’s performance: for most major cycles, its instruction count (the red line on
the lower right part of the plot) drops to less than a third of the value measured
when running in isolation. This is unsurprising given that it is being stopped by
the WCET controller after only one real-time program job, and is unable to resume
until the start of the following major cycle.

For the major cycles where there is no deadline overrun warning, the instruction
count for the best-effort program is significantly higher at around 60 million, albeit
still lower than the values obtained in isolation. The cycle count for the real-time
program is higher than in isolation; this is consistent with cache interference from
the best-effort program slowing down the real-time jobs.

Figure 4.8 shows the result of applying QoS strategy 1, whereby each real-time
job for which a deadline overrun warning occurs is programmed to run in isolation
in subsequent major cycles. QoS reset strategy 1 is also applied here, meaning that
the QoS policy is reset every forty major cycles.
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Figure 4.8: CB + Rijndael, QoS strategy 1, QoS reset strategy 1 (QoS 1.1)

As before, we see that in major cycle 1 there is a deadline overrun warning after
the first job. As a result, the best-effort program is stopped by the WCET controller
for the remainder of the major cycle, and the instruction count remains at around
20 million.

At the end of major cycle 1 the QoS policy is updated, and instructs the scheduler
to suspend the best-effort program for the duration of the job that triggered the
deadline overrun warning (job 0 of the real-time program) in subsequent major
cycles. In major cycle 2, the deadline overrun is therefore avoided at this point.
When the scheduler resumes the best-effort program after job 0, it is able to run
during jobs 1, 2, and 3, before being stopped by the WCET controller due to a
deadline overrun warning after job 3.

In major cycle 3, the best-effort program is suspended for the duration of jobs 0
and 3 (both of which triggered deadline overrun warnings), and is able to run during
jobs 1, 2, and 4 to 8. It is again stopped by the WCET controller after job 8.

In major cycle 4, the QoS policy reaches an equilibrium: the best-effort program
is suspended during jobs 0, 3, and 8, but is able to run for the remaining duration
of the time slot without a deadline overrun warning occurring. This equilibrium
continues until major cycle 40, when the QoS reset policy causes the QoS policy
to be returned to its initial state (i.e. with no real-time jobs programmed to run in
isolation).

The pattern of deadline overrun warnings, separated by longer periods of QoS
policy stability, repeats itself roughly every forty major cycles, in line with the QoS
reset policy. The pattern is not exact, though: immediately after major cycle 40,
both programs are able to run concurrently for several major cycles without a
deadline overrun warning being triggered. This corresponds to a temporary lull
in memory store operations by the best-effort program, in turn resulting in a lower
level of interference to the real-time program. And as the number of memory stores
ramps up again, the first deadline overrun warning occurs after job 3, rather than
after job 0.

Apart from the major cycles when deadline overrun warnings occur, or shortly
after major cycle 40, the instruction count for the best-effort program is around 40–
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50 million, approximately double the value without any QoS strategy being used.

Figure 4.9 shows the result of applying QoS strategy 2, whereby for each deadline
overrun warning, the real-time job that suffered the most interference is programmed
to run in isolation in subsequent major cycles. QoS reset strategy 1 is also applied.
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Figure 4.9: CB + Rijndael, QoS strategy 2, QoS reset strategy 1 (QoS 2.1)

We see that after the deadline overrun warning in major cycle 3, job 5 is pro-
grammed to run in isolation, rather than job 8. This indicates that job 5 encountered
more interference than job 8, despite the latter being the immediate source of the
deadline overrun warning. Between major cycles 80 and 160, job 8 is the one selected
to run in isolation; this suggests that the time-varying behaviour of the best-effort
program affects the relative level of interference experienced by jobs 5 and 8.

Despite the less simplistic nature of QoS strategy 2, there is no readily discernible
difference in the instruction count for the best-effort program when compared with
QoS strategy 1.

Figure 4.10 shows the result of applying QoS strategy 3. This is identical to
strategy 1, except that when a deadline overrun warning is triggered, the QoS policy
is reset for jobs scheduled in the same slot after the triggering job.
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Figure 4.10: CB + Rijndael, QoS strategy 3, QoS reset strategy 1 (QoS 3.1)

In practice, this strategy gives almost identical results to QoS strategy 1. The
only readily discernible difference concerns the cluster of deadline overrun warnings
after major cycle 40: the first overrun of the cluster is triggered by job 3, causing
that job to be programmed to run in isolation, but the second overrun occurs earlier,
after job 0. QoS strategy 3 resets the QoS settings for later jobs, so in this case
job 3 is no longer programmed to run in isolation, only job 0.

However, the next major cycle sees a deadline overrun triggered again by job 3,
so the only real difference is that this strategy takes an extra major cycle to reach
equilibrium.

Figure 4.11 shows the result of applying QoS strategy 4. This is identical to
strategy 2, except that when a deadline overrun warning is triggered, the QoS policy
is reset for jobs scheduled in the same slot after the triggering job.
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Figure 4.11: CB + Rijndael, QoS strategy 4, QoS reset strategy 1 (QoS 4.1)

In this case, the outcome shows the similarity to QoS strategies 2 and 3: the
algorithm sometimes chooses job 5 to run in isolation and at other times chooses
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job 8; the cluster of overruns after major cycle 40 also takes an extra major cycle to
reach equilibrium.

4.3.1 Comparison of QoS reset strategies
For each configuration, we plot the results for each of the remaining QoS reset
strategies used. QoS strategy 4 is used in all of these configurations.

Figure 4.12 shows the result of applying QoS reset strategy 2, whereby the QoS
strategy is reset if a deadline overrun warning occurs after a gap of at least one major
cycle without one, and there are jobs currently programmed to run in isolation.
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Figure 4.12: CB + Rijndael, QoS strategy 4, QoS reset strategy 2 (QoS 4.2)

Once an equilibrium is reached in the fourth major cycle, no further deadline
overrun warnings occur. This demonstrates the limited utility of this reset strategy,
in that it only takes into account an increase in interference to jobs not programmed
to run in isolation, and does not react when the level of interference drops.
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Figure 4.13: CB + Rijndael, QoS strategy 4, QoS reset strategy 3 (QoS 4.3)
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Figure 4.13 shows the result of applying QoS reset strategy 3, whereby the QoS
strategy is reset if the number of memory stores as a proportion of all instructions
drops by at least 20% from its maximum value since the QoS strategy was last reset.

We see that this reset strategy is effective at detecting changes in the behaviour of
the best-effort program resulting in a drop in interference. This allows the best-effort
program to progress unimpeded during phases of low interference, while ensuring
that the QoS strategy continues to be effective during phases of higher interference.

4.3.2 Evaluating the impact on utilisation
So far we have made a qualitative comparison of the various QoS strategies and QoS
reset strategies. However, since our aim is to improve utilisation, we must consider
the quantitative impact that each of these strategies has. Figures 4.14 and 4.15
show the relative change in performance (cycle and instruction counts) for each QoS
setting, averaged2 over ten test runs, for the real time program and the best-effort
program, respectively. The y-axes indicate relative change from the measurements
obtained while running in isolation. QoS setting Q.R represents QoS strategy Q
being used in combination with QoS reset strategy R.

The real-time program operates to a fixed cyclic schedule, so the instruction
count is identical in all cases. The running time (cycle count) increases by a factor
of around 1.02 with no QoS strategies used (QoS setting 0.0); this is consistent with
interference from the best-effort program delaying the memory operations of the
real-time program. The running time increases by a factor of around 1.12–1.13 with
the other QoS settings; this is consistent with the best-effort program being active
for a larger proportion of each slot, thereby causing more interference (and more
delay) to the real-time program.
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Figure 4.14: Relative change in average performance with each QoS setting (core 0)

2Since we are comparing ratios, this is a geometric average.
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For the best-effort program, we are trying to get as close as possible to the
performance obtained in isolation, and in any case to improve on the performance
obtained without employing any QoS strategies. We see that without QoS, the cycle
count (and thus processor utilisation) drops to around a third of its value measured
in isolation. But with the other QoS settings, we see a cycle count of around two
thirds of that measured in isolation, a considerable improvement. Furthermore,
despite the observed behavioural differences between the various QoS strategies, we
note that the quantitative improvement in utilisation due to our QoS policies is very
similar, whichever strategy is used.
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5
Discussion

The first set of results (interference between benchmark pairs) confirms that a
memory-intensive program’s running time increases when subject to indirect in-
terference through the shared memory resources of a dual-core ARMv7 processor.

The second set of results (interference to a safety-critical application) confirms
the significant impact on the running time of a realistic real-time application pro-
gram, and that the observed slowdown is dependent on the characteristics of both
the real-time jobs and the interfering program. Our experiments indicate a worst-
case slowdown of 1.7–1.8 for a typical safety-critical application. By suspending the
interfering program for the duration of a given real-time job, we manage to reduce
the worst-case slowdown to less than 1.1, demonstrating the basis for the WCET
controller and our proposed QoS mechanism.

Moving on to the evaluation and comparison of QoS strategies, we were first
able to implement the WCET controller, and show that although it is able to keep
the real-time program’s running time within statically defined limits – the real-time
deadlines – the available running time for the best-effort program running in parallel
drops significantly. Indeed, this technique may have a drastic effect on processor
utilisation if the best-effort processes are regularly stopped near the beginning of a
time slot as a result of high levels of interference.

Our QoS technique is designed to avoid – or at least reduce – this under-
utilisation by stopping the best-effort program for the duration of a real-time job
that incurs high levels of interference, and then restarting it once that real-time
job has finished. We show that such a technique could indeed increase utilisation
for the best-effort program, our experiments indicating an improvement in available
running time by a factor of two over the WCET controller alone.

On the basis of our experiments, there is very little to differentiate the various
QoS strategies and reset strategies, all of them resulting in very similar performance
(best-effort program running time) relative to that observed in isolation. This would
appear to suggest that the details of the QoS strategy are less important than the
basic idea behind them all, which is to suspend the best-effort program for enough
periods of high interference that no real-time deadline is in danger of being overrun.

However, we would caution against extrapolating this data set by assuming that
our proposed QoS strategies are effective in all – or even most – cases. For example,
the experimental results show significant differences between the QoS reset strategies
in terms of how reactive they are to variations in best-effort program behaviour.
QoS reset strategy 3 is the only one to detect and act upon a drop in interference,
even if the measured improvement in utilisation is slightly worse than for QoS reset
strategy 2, which never triggers a reset in our experiments. One could easily imagine
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a scenario that starts with a phase of high interference, and then settles into a long
phase of low interference; QoS reset strategy 2 would not act on this, however long
the low-interference phase, whereas QoS reset strategy 3 would act.

Another factor suggested by the results is that the potential benefits of resetting
the QoS strategy, either regularly or after a change in the pattern of interference,
might be tempered by the loss in utilisation due to the run-time system taking
several major cycles for the QoS state to stabilise afterwards. This effect could be
mitigated by having shorter major cycles, but the length of the major cycle is itself
dependent upon the real-time program schedule, and thus not necessarily possible
to manipulate.

In conclusion, we have demonstrated the potential value of using QoS strategies
to obtain significant improvements in processor utilisation. However, more experi-
ments are needed with a large number of different scenarios to explore the impact
of the various QoS strategies and reset strategies under a wide range of run-time
conditions. Our experience shows that this will be very time-consuming, but neces-
sary to get a fuller picture of when and to what degree applying these strategies is
advantageous.

5.1 Future work
In addition to carrying out more experiments to evaluate the QoS strategies and
reset strategies in a wider range of scenarios, there is another dimension in which
we would like to see it extended, namely the number of processor cores.

Our work so far only considers a dual-core processor, but the problem of interfer-
ence through a shared memory hierarchy is equally applicable to similar processors
with more than two cores. Consider the case where a real-time program runs on
one core of an eight-core processor, with one best-effort program running on each of
the other cores: the real-time program can encounter interference from each of the
best-effort programs, potentially resulting in a deadline miss. The use of a WCET
controller may result in far worse utilisation than with a dual-core processor, because
all seven best-effort programs would be stopped for the remainder of the major cycle
in the event of a deadline overrun warning. With our QoS strategies, this outcome
could be improved, but do we suspend all of the best-effort programs for the dura-
tion of the real-time jobs encountering the most interference? Only some of them?
Which ones? If only some of the best-effort programs are stopped, should different
combinations of best-effort programs be stopped in successive major cycles so as to
spread the impact on utilisation?

It was our intention to test some of these ideas on the NXP QorIQ T4240, which
has twelve processor cores. However, a port of the hypervisor software, Xtratum,
was not available for the QorIQ architecture until the end of this project, so there
was insufficient time to port our run-time system and test infrastructure.
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A
Statement of contribution

The experimental work presented in this dissertation was carried out in the context
of a research team at Thales, in Palaiseau.

A.1 Implementation
The run-time system was developed principally by Daniel Gracia Pérez and by me at
Thales, with contributions from our research partners at Onera, Technische Uni-
versität Kaiserslautern, and Universität Siegen. My contributions were focused on
the aspects most relevant to this work: worst-case-execution-time controller; monit-
oring subsystem; quality-of-service strategies and reset strategies; memory-stressing
benchmark programs; composite benchmark program; and test automation.

A.2 Dissertation
The text, figures, and tables in this document are my own work, and were produced
for the purposes of this dissertation.
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