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Methane oxidation over palladium oxide:
From electronic structure to catalytic conversion

Maxime Van den Bossche
Department of Physics
Chalmers University of Technology

Abstract

Understanding how catalysts work down to the atomic level can provide ways to improve
chemical processes on which our contemporary economy is heavily reliant. The oxidation
of methane is one such example, which is important from an environmental point of
view. Methane is a potent greenhouse gas and natural and biogas vehicles need efficient
catalysts to prevent slip of uncombusted fuel into the exhaust. Commercial catalysts
for methane oxidation are often based on palladium or platinum. Metallic palladium,
however, is easily converted to palladium oxide when the engine is operated at oxygen
rich conditions.
In this thesis, various aspects of complete methane oxidation over PdO(101) are investi-
gated with computational methods based on density functional theory (DFT). PdO(101) is
the active surface for methane oxidation, and firstly, the reaction intermediates CO and H
are studied in detail. Possible pathways for H2 adsorption, dissociation and eventual water
formation are investigated, in connection to core-level spectroscopy experiments. Similarly,
the adsorption configurations for carbon monoxide on clean and oxidized palladium are
examined with a combination of DFT calculations, core-level and infrared spectroscopy.
Secondly, a detailed kinetic model is constructed that describes the catalytic conversion
of CH4 to CO2 and H2O over PdO(101). This is done in a first-principles microkinetics
framework, where the kinetic parameters are obtained by applying density functional
and transition state theory. The kinetic model provides a fundamental understanding of
findings from reactor experiments, such as the rate limiting steps and poisoning behaviour,
and shows qualitatively different behaviour of adsorbates on oxide as compared to metal
surfaces.
Lastly, limitations of the commonly used class of generalized gradient functionals are
illustrated in the computation of several properties of adsorbates on metal oxide surfaces.
These include core-level shifts and thermodynamic and reactive properties of adsorbates
on the PdO(101) surface. Similarly, the description of several molecular and cooperative
adsorption processes are also found to be sensitive to the applied exchange-correlation
functional on the BaO(100), TiO2(110) and CeO2(111) surfaces.

Keywords: heterogeneous catalysis, methane oxidation, palladium oxide, PdO(101),
density functional theory, microkinetic modelling, core-level spectroscopy.
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Chapter 1

Introduction

Our society faces challenges in all areas of sustainable development [1]. One of the most

pressing environmental issues is the release of pollutants by human activity. Greenhouse

gas (GHG) emissions are suspected to be the main cause for the observed global warming

of the planet. A number of initiatives therefore aim to reduce these emissions. One

example is the EU 2020 strategy [2], where one of the targets is to lower the GHG

emissions by at least 20% by 2020 (compared to 1990).

Important anthropogenic GHGs include carbon dioxide, methane, chlorofluorocarbons

and nitrous oxide [3]. While emissions of non-carbon dioxide GHGs, such as methane,

are much lower than that of carbon dioxide, their contributions to the greenhouse effect

are considerable due to their higher global warming potential (about ten times that of

carbon dioxide on a molar basis for methane [4]). For methane, emission sources include

agriculture, waste treatment, oil, gas and coal extraction and fuel combustion [5]. It is

preferable to oxidize methane into carbon dioxide, which is a less harmful pollutant.

The contribution of methane emissions from the transportation and energy sector is

expected to grow due to the increasing use of methane-based fuels, as an alternative to

traditional fossil fuels [6]. The main reasons for this increase are (i) lower carbon dioxide

emissions per unit of energy generated, (ii) lower particulate emissions compared to

traditional fuels, (iii) the existence of large reserves of natural gas, and (iv) the possibility

of using environmentally friendly biogas. Regarding the transportation sector, natural

gas vehicles are especially common in Asian and South American countries [7]. A more

nearby example is the GoBiGas project [8] in Göteborg, where the aim is to produce

biogas through gasification of biomass, so as to promote the use of biogas vehicles in the

region. In the energy sector, natural and biogas power stations are on the rise, in part

because efficient gas turbines are a common choice in high efficiency combined heat and

power generation cycles [9].

Combustion engines running on methane-rich fuels are plagued by unburned methane

slipping into the exhaust. A similar issue is present in catalytic combustors used in

gas turbines to burn the fuel at more moderate temperatures, so as to reduce e.g. NOx

emissions [6]. To avoid increasing the temperature in order to burn the remaining methane,
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a catalyst is generally used to speed up the oxidation.

Commercial catalysts are based on precious transition metals such as palladium or

platinum [6]. These catalytically active materials are present as nanometer-sized particles

dispersed on the surface of a porous support, such as alumina, silica or ceria. The

methane and oxygen reactants that are present in the gas stream adsorb on the catalyst

surface, where the subsequent chemical reactions between them take place. Aside from

the ‘engineering’ problems in optimizing the mass and heat flow through a catalytic

reactor, there is still considerable room to improve the actual ‘chemistry’ occurring on the

catalyst. On one hand, it is desirable to increase the intrinsic activity of these catalysts,

so that more of the methane is being converted. On the other hand, decreasing (or even

eliminating) the active metal content allows a more efficient use of the limited precious

metal reserves on Earth.

1.1 Unravelling surface reactions

In order to improve the catalytic activity and selectivity, it is beneficial to start with

understanding of how the current catalysts are able to carry out the chemical process.

Insights in how technical catalysts work can however be hard to acquire. The catalysts can

adopt various structures and compositions and are exposed to complex feed streams. One

successful approach to this problem has been to reduce the catalyst to its essential part

and to thereby identify and investigate the catalytically active material itself, without the

support. A further disentanglement can be achieved by separately studying the different

ideal crystal surfaces of the material under consideration. In order to perform detailed

experiments, such as X-ray spectroscopy, also the pressure needs to be much lower than

atmospheric pressure. Conventional setups require high vacuum conditions (around 10−8

10−7 millibar), while advanced instruments allow total pressures up to 1 millibar.

Both the simplification of the material and the lowering of the pressures lead to a

certain discrepancy between the studied material and the technical catalysts. This is called

the ‘materials gap’ and ‘pressure gap’, respectively. However, once a firm understanding

has been obtained on this level, the complexity can be gradually brought back in. Surface

defects can for example be included, as well as effects of the support material and the

behaviour at relevant pressures.

Computational physics/chemistry can have different roles to play in this process of

understanding and improving catalytic materials. Electronic structure calculations can

offer access to (in principle) all properties of a material starting from ‘first principles’,

i.e. from fundamental physical theories. This means that theoretical predictions can aid
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the interpretation of measurements. Additionally, some properties can be more easily

tackled from a theoretical point of view. Surface energies and detailed reaction kinetics

are examples of such properties. Thirdly, a first-principles viewpoint has a high potential

in the rational design of new, as yet unsynthesized catalytic materials.

1.2 Objectives

The general aim of this thesis is to attain a more fundamental, molecular-level understand-

ing of methane oxidation on transition metals and their oxides, especially palladium oxide,

using theoretical methods. Additionally, the total oxidation of methane can serve as a

model system for the oxidation of more complex hydrocarbons and can also yield insights

regarding partial oxidation reactions, e.g. from methane to methanol. The different

elements of this thesis are represented in Figure 1.1.

Core-level shifts

and vibrational

frequencies

Reaction 

mechanisms and

microkinetic

modelling

X-ray and 

infrared 

spectroscopy

measurements

Conversion

and kinetic

measurements

Assessment 

of theoretical 

methods

?

Figure 1.1: Schematic representation of the different elements used in this thesis to study
methane oxidation over palladium oxide.
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Several aspects of methane oxidation have been investigated during the course of this

work. The approach has been to build up the complexity in steps, with continued feedback

between computations and experiments. On one hand, density functional theory studies

were performed to address the elementary processes of methane oxidation. These are

the interaction of carbon monoxide and hydrogen with the oxidized palladium surfaces,

in connection to experimental spectroscopic measurements. Secondly, a detailed kinetic

model was built for the complete conversion of methane over the PdO(101) surface,

providing a more fundamental understanding of experimental reactor data. Lastly, also

the accuracy of the employed computational methods has been investigated.
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Chapter 2

Electronic structure

“ Nature isn’t classical, dammit, and if you want to make a simulation of

nature, you’d better make it quantum mechanical, and by golly it’s a wonderful

problem, because it doesn’t look so easy.

– Richard P. Feynman [10]

Although the above statement was originally made in the context of quantum comput-

ing, it also sounds appropriate when applying quantum mechanics to chemical problems.

Solids and molecules are made up of electrons and nuclei, which can, in principle, be

exactly described by a many-body wave function obtained by solving the Schrödinger (or

Dirac) wave equation. The quantum many-body problem can, however, only be solved

analytically in the case of one-electron systems and also exact numerical solutions are

hard to come by. This is due to the fact that the many-body wave function must not only

reflect the Coulomb interactions between the particles, but must also obey antisymmetry

with respect to the exchange of two particles.

As a consequence, different approaches have been advanced to find an approximate

solution to the Schrödinger equation for many-particle systems. The two most widely

used families of methods are those based on Hartree-Fock theory and Density Functional

Theory (DFT). For problems involving surfaces and with structural models including

several tens of atoms (up to around a thousand atoms), DFT is frequently the method of

choice.

The following sections give an introduction to DFT and an example of how it can

be implemented in a practical computer code. First, however, the Born-Oppenheimer

and non-relativistic approximations will be discussed. While DFT is not bound by these

approximations, they are common in the study of chemical problems.

2.1 The electronic Hamiltonian

In the Born-Oppenheimer approximation, the electrons are assumed to stay in the same

adiabatic eigenstate when the coordinates of the nuclei are changed. This means that the
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electronic and nucleic motions are considered to be decoupled and that the many-body

wave function can be written as a product of an electronic and a nucleic wave function.

The electronic wave function obeys an electronic Schrödinger equation, with an external

potential that depends on the instantaneous positions of the nuclei. In turn, the potential

energy in the nucleic equation of motion depends on the electronic eigenstate (e.g. the

ground state). This assumption is typically valid except if the nuclei are moving fast and

the electronic energy levels are closely spaced. In other words, the nuclei are stationary

from the electrons’ point of view and one can focus on solving the electronic Schrödinger

equation, for given positions of the nuclei.

Another approximation is that the electrons are treated as non-relativistic particles,

which is justified as long as they do not reach relativistic speeds. This is commonly the

case for the valence electrons. Core electrons, however, require a relativistic treatment at

least for elements starting from the fourth row [11]. A relativistic treatment of the core

electrons is important as this will affect the electronic spectrum also in the valence. A

fully relativistic method also includes spin-orbit coupling.

Within a non-relativistic treatment assuming the Born-Oppenheimer approximation,

the time-independent electronic wave function Ψ(r1, . . . , rN , σ1, . . . , σN ) for a set of N

electrons in the presence of M nuclei obeys the Schrödinger equation:

EΨ(r1, . . . , rN , σ1, . . . , σN ) = HΨ(r1, . . . , rN , σ1, . . . , σN ). (2.1)

The symbol r denotes the spatial coordinates and σ refers to the spin coordinate (± 1
2

in a collinear spin treatment). The Hamiltonian H is the sum of kinetic and potential

energy operators (in atomic units):

H = T + Vext + Vel, (2.2)

T = −1

2

N∑

i

∇2
i , (2.3)

Vext =
N∑

i

M∑

j

Zj
|Rj − ri|

, (2.4)

Vel =

N∑

i

∑

j<i

1

|rj − ri|
. (2.5)

Here, the external potential Vext represents the Coulomb attraction of the electrons to the

nuclei and Vel the potential arising from the Coulomb repulsion between the electrons.
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2.2 Density functional theory

Already in 1927 alternative approaches to the Schrödinger equation were formulated by

Thomas and Fermi [13, 14] that relied on the electron density as the central variable,

rather than the intractable many-body wave function. However, these methods lacked a

rigorous basis until Hohenberg and Kohn [15] showed in 1964 that there exists a functional

F that maps the electron density function ρ(r) to the electronic energy E:

E = F [ρ(r)] = F [ρ] . (2.6)

If contributions from the external potential and from the classical Coulomb (‘Hartree’)

potential are separated from F , one obtains:

E = Eext [ρ] + EHartree [ρ] +G [ρ] , (2.7)

Eext [ρ] =

∫
Vext(r)ρ(r)dr, (2.8)

Vext(r) =

M∑

j

Zj
|Rj − r| , (2.9)

EHartree [ρ] =
1

2

∫
VHartree(r)ρ(r)dr, (2.10)

VHartree(r) =

∫
ρ(r′)

|r− r′|dr
′. (2.11)

The Hohenberg-Kohn theorem implies that we can use the density ρ(r) instead of

the many-body wave function Ψ(r1, . . . , rN , σ1, . . . , σN ) to obtain electronic properties.

While this approach is potentially much more efficient, the exact form of the functional G

is unknown and will probably remain so.

One particularly successful approach to use the result by Hohenberg and Kohn is

that by Kohn and Sham [16], which is largely the reason for the wide popularity of DFT

schemes. They showed that the ground state density and energy can be obtained by

solving a set of one-electron equations instead of solving the many-electron problem.

Kohn-Sham theory assumes that the total electron density can be represented as the sum

of the orbital densities of non-interacting electrons:

ρ(r) =

N∑

i

|ψi(r)|2. (2.12)
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Then, the kinetic energy functional for the non-interacting particles can be separated

from G [ρ]:

G [ρ] = Tnon−int [ρ] + Exc [ρ] , (2.13)

Tnon−int [ρ] = −1

2

N∑

i

〈
ψi|∇2|ψi

〉
. (2.14)

The exchange-correlation functional Exc is usually constructed to depend on the separate

spin densities ρ↑ and ρ↓ rather than the total density ρ.

It may seem peculiar to reintroduce the orbitals in a formalism based on the density,

as it noticeably increases the complexity compared to using the total electron density

alone. With this approach, however, the kinetic energy is well described. This is critical

in e.g. covalent bonding and is a major reason for the failures of Thomas-Fermi theory

[17].

The true electron density is obtained if the independent particles obey the single-

particle Kohn-Sham equations. These equations are given by:

(
−1

2
∇2 + veff(r, σ)

)
ψi(r, σ) = εiψi(r, σ). (2.15)

All (same-spin) particles move in the same local effective potential veff(r, σ) determined

as:

veff(r, σ) = vext(r) + vHartree(r) + vxc(r, σ), (2.16)

vxc(r, σ) =
∂Exc[ρ↓, ρ↑]

∂ρ(r, σ)
. (2.17)

The set of Kohn-Sham equations is to be solved self-consistently (see subsection 2.3.3),

under the constraint that the integrated density equals the number of electrons N . The

total energy in the Kohn-Sham approach equals:

Etot = Tnon−int + Eext + EHartree + Exc. (2.18)

Due to their auxiliary character, the individual one-electron orbitals and eigenvalues

do not have a rigorous meaning. The eigenvalues do not correspond to an ionization

potential, as the eigenvalues in Hartree-Fock theory (Koopman’s theorem [18]). The

exception is the eigenvalue of the highest occupied state in a finite system, which (with the

exact functional) corresponds to the negative of the first electronically relaxed ionization
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potential [19]. Likewise, the Kohn-Sham band gap does not necessarily correspond to the

gap measured experimentally [20]. Another consequence of reformulating the many-body

problem in terms of one-electron orbitals is that the total energy of the interacting system

is not simply equal to the sum of the Kohn-Sham eigenvalues, but rather:

Etot =

N∑

i

εi − EHartree[ρ] + Exc[ρ↓, ρ↑]−
∫
ρ(r)vxc(r)dr. (2.19)

Empirically, however, it is known that the orbital shapes and density of states can be used

to analyze chemical bonding [21, 22]. Even more chemically meaningful representations

can be acquired by unitary transformation to maximally localized orbitals [23].

It is clear that the potential benefits of the Kohn-Sham approach are huge, as the

independent-particle problem is much easier to solve than the original many-body problem.

The difficulties instead lie in the exchange-correlation functional Exc, which is the term

where all the complicated quantities are hidden. Effects that Exc should capture are:

(i) Owing to the fermionic nature of the electron, the many-body wavefunction must

change sign when two electrons are exchanged. This is generally referred to as

‘electronic exchange’. This antisymmetry requirement ultimately results in a larger

spatial separation between same-spin electrons, which results in a lowering of the

electronic repulsion. Moreover, the nuclear charge is in this way less effectively

screened.

(ii) Other effects are also present from the purely classical interactions between the

electrons. The effect of ‘instantaneous’ Coulomb correlation, for example, is not

captured by the mean-field character of the Hartree energy expression.

(iii) The self-interaction in the Hartree term needs to be corrected by Exc. The Hartree

energy namely contains artificial interactions of the electrons with themselves, which

is clearly visible in the case of one electron where the Hartree energy is non-zero.

(iv) Lastly, Exc should also take into account the difference in kinetic energy of the

interacting and non-interacting electrons.

As with the Hohenberg-Kohn functional, the exact form of the Kohn-Sham exchange-

correlation functional is likely to remain unknown. The strength of Kohn-Sham DFT lies

in the fact that there exist computationally tractable approximations to the exchange-

correlation functional which can yield quite accurate results. The development of these
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approximations has been guided, in part, by a series of constraints [24, 25] that apply to

the exact functional.

A very useful analysis, in this regard, is obtained through what is called the ‘adiabatic

connection’ [26–30]. Following the fact that the exchange-correlation functional maps

the fully interacting system to a non-interacting one, it can be shown that the exchange-

correlation energy can be written as the coupling-constant integral:

Exc =

∫ 1

0

Exc,λdλ. (2.20)

Exc,λ is the exchange-correlation energy for a system where the Coulomb interaction

has been scaled by the coupling-constant λ and where the external potential is modified

such that the ground state density is the same as in the fully interacting case. The

exchange-correlation energy can be decomposed into separate exchange and correlation

contributions, corresponding to the non-interacting (λ = 0) limit and the coupling-constant

integration (λ = 0→ 1), respectively.

If the non-interacting Kohn-Sham wave function can be represented as a single Slater

determinant, the exchange energy is exactly given by the Hartree-Fock (HF) exchange

integral [29]:

Exc,λ=0 = EHF
x = −1

2

occup.∑

i 6=j

∫∫
ψ∗i (r)ψj(r)ψ∗j (r′)ψi(r

′)

|r− r′| drdr′. (2.21)

The full exchange-correlation energy can be shown to correspond to the interaction of the

density with a (coupling-constant-averaged) positively charged hole hxc created around

each electron as a result of Pauli and Coulomb repulsion:

Exc =
1

2

∫∫
ρ(r)

|r− r′|

(∫ 1

0

hxc,λ(r, r′) dλ

)
drdr′. (2.22)

As the Coulomb interaction is spherically symmetric, only the spherical average of hxc,λ

around r′ = r influences Exc. As a result, one can write [31]

Exc = N

∫ ∞

0

2π u h̄xc(u)du, (2.23)

with u = r− r′ and h̄xc(u) the system-, angle- and coupling-constant-averaged exchange-
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correlation hole:

h̄xc(u) =
1

N

∫ 1

0

dλ

∫
dΩu

4π

∫
ρ(r) hxc,λ(r, r + u).dr (2.24)

Like the exchange-correlation energy, hxc and h̄xc(u) can be decomposed into separate

exchange and correlation holes. The exchange hole must be nonpositive everywhere and

integrate to -1, whereas the correlation hole may change sign but must integrate to 0.

Much of the successes (and failures) of approximate exchange-correlation functionals can

be understood in terms of the properties of the exchange-correlation hole.

2.2.1 The local density approximation

The most basic (and arguably most important) approximation to the exchange-correlation

energy is the local density approximation (LDA) [16], which starts out from the limit

of a sufficiently slowly varying density. In this limit, it can be shown that the exact

exchange-correlation functional is a local functional of the density:

ELDA
xc [ρ↓, ρ↑] =

∫
ρ(r) εHEG

xc (ρ↓, ρ↑) dr, (2.25)

with εHEG
xc (ρ↓, ρ↑) the exchange-correlation energy per electron in a homogeneous electron

gas (HEG) with ρ↓ and ρ↑ spin densities. For the exchange part, the exact analytical

solution is known [16, 32] and analytical expressions for the correlation energy density

are obtained by parametrization of exact quantum Monte Carlo simulations of the HEG.

Equations (2.28)-(2.29) show the parametrization by Perdew and Zunger [33] of the

simulation results of Ceperley and Alder [34] for the unpolarized case (ρ↓ = ρ↑).

εHEG
xc (ρ) = εHEG

x (ρ) + εHEG
c (ρ), (2.26)

εHEG
x (rs) = − 3

4π
3

√
9π

4

1

rs
, (2.27)

εHEG
c (rs) = −0.048 + 0.0311 ln rs + 0.0020 rs ln rs − 0.0116 rs (rs < 1), (2.28)

=
−0.1423

1 + 1.0529
√
rs + 0.3334 rs

(rs ≥ 1). (2.29)

The variable rs corresponds to the radius of a sphere containing one electron:

rs(r) = 3

√
3

4πρ(r)
. (2.30)
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The validity of the LDA expressions for the separate exchange and correlation energies

is restricted to sufficiently slowly varying electron densities similar to the HEG (such as

e.g. the valence electrons in simple bulk metals such as Al). The LDA exchange energy is

also exact for the (non-relativistic) exchange energies of atoms in the limit of large atomic

numbers [35]. The total ELDA
xc energy turns out to be also surprisingly well described

in many other cases where large density gradients are present. For the G2-1 data set

containing atomization energies of 55 small molecules, for example, the mean absolute

error amounts to 1.6 eV [36]. Although this is a considerable error, it is circa four times

smaller than for Hartree-Fock theory, and shows that the LDA can capture the essence

of regular chemical bonding. The LDA systematically overbinds molecules with respect

to atomization, and bond lengths are underestimated with mean absolute errors of circa

0.02 Å[37]. For solids the situation is similar, with consistent overestimation of cohesive

energies and too short lattice constants [38].

The partial cancellation of errors in the separate exchange and correlation energies is

not fortuitous, but stems from the fact that the local density approximation to the averaged

exchange-correlation hole h̄xc is much more accurate than for the separate exchange and

correlation holes. The separate holes are usually delocalized, whereas the LDA exchange

and correlation hole are always centered around the position of the reference electron

(r = r′). In many situations, however, the exact exchange and correlation holes cancel

eachother fairly rapidly away from the reference position. It can furthermore be shown

that the LDA on-top (r = r′) exchange-correlation hole depth is rather accurate [29, 31,

39] and that the LDA exchange and correlation holes satisfy the previously mentioned sum

and sign rules. In addition, Equations (2.23-2.24) imply that the exchange-correlation

energy is not very sensitive to details in hxc. This also means that the difference between

the spherical symmetry of the LDA exchange-correlation hole and the asymmetry of the

exact hole is rather unimportant [40]. The moderate accuracy of the LDA total energy

expression for typical inhomogeneous densities is therefore related to the fact that the

relevant features of the corresponding exchange-correlation holes are similar to those in

the HEG.

2.2.2 Generalized gradient approximations

Overall (and especially for atoms and molecules) a significant improvement is obtained

when including the effect of the magnitude of the density gradient on the exchange-

correlation energy. Generalized gradient approximations (GGAs) employ the gradient

corrections to better describe the shape of the exchange-correlation hole close to the

reference position (small values of u) [39], while making sure that the resulting functional
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obeys the same exact constraints as the LDA. As the GGA form is more flexible than the

LDA, GGAs can satisfy more exact constraints than the LDA. The Perdew-Wang (PW91)

[30, 41] and Perdew-Burke-Ernzerhof (PBE) [42] functionals are the most well known

amongst the non-empirical GGA functionals. Their general form can be written as:

EGGA
xc [ρ↓, ρ↑] = EGGA

x [ρ↓, ρ↑] + EGGA
c [ρ↓, ρ↑], (2.31)

EGGA
x [ρ↓, ρ↑] =

∫
ρ(r) εHEG

x (ρ↓, ρ↑)Fx(ρ↓, ρ↑, |∇ρ|) dr, (2.32)

EGGA
c [ρ↓, ρ↑] =

∫
ρ(r)

(
εHEG
c (ρ↓, ρ↑) +Hc(ρ↓, ρ↑, |∇ρ|)

)
dr. (2.33)

The mean absolute error in the atomization energies of the G2-1 data is 0.37 eV with

the PBE functional [36]. This constitutes a decrease by a factor of four compared to the

LDA, at essentially the same computational cost. Also the barrier heights for gas-phase

reactions are significantly improved as compared to the LDA: the mean absolute error in

the BH76 set (containing 76 atom-transfer barrier heights) decreases from 0.64 eV (LDA)

to 0.38 eV (PBE) [43]. The uniform improvement can be mainly attributed to a better

quantitative description of the shape of the exchange-correlation hole nearest to the probe

electron [39]. The GGA hole, however, retains the localized and spherically symmetric

traits of the LDA hole.

For solids and clean surfaces, the comparison between GGAs and the LDA becomes

more subtle. GGA functionals such as PBE and PW91 improve on the LDA results,

though mainly in a statistical sense, not systematically [44, 45]. The LDA overestimation

of cohesive energies, for example, is typically over-corrected [38]. Similarly, PBE lattice

constants are on average 1-2% too long [38]. It has been argued that this behaviour

is caused by the presence of diffuse tails of the exact hole [46]. Such features are less

prominent in finite systems, and are not well captured by the PBE and PW91 functionals.

It is, however, possible to construct alternative GGA functionals (such as WC [47] and

AM05 [45]) which deliver improved accuracy in the solid state. Unfortunately, this type

of improvement comes hand in hand with a worsened description of atoms and molecules

[47–49].

2.2.3 Meta-generalized gradient approximations

Meta-GGA functionals, such as TPSS [50], M06-L [51] and SCAN [52], include second

derivatives of the kinetic energy density into the exchange-correlation potential. While

the description of finite systems is better compared to GGA functionals such as PBE,

the improvement is again less uniform in the solid state [38]. Calculated lattice constants
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are often more accurate, while cohesive energies remain difficult [38, 53]. However, the

recently developed TM functional appears to be promising [54, 55].

2.2.4 Hybrid functionals

The largest errors of (meta-)GGA functionals in atomization energies involve molecules

with multiple bonds. The binding energies of O2, N2, CO, and NO, for example, are

all overestimated by the PW91 functional, with errors ranging between 0.4 and 1.0 eV

[31, 56]. The difference in accuracy between single- and multiple-bonded molecules is

related to differences in the exchange-correlation hole in the bonding region. In the case

of multiple bonds, the exchange hole in between the nuclei becomes more delocalized

due to the proximity of same-spin electrons [31]. The exchange-correlation hole is more

localized than the exchange-only hole, but features remain which are not well captured by

the localized GGA hole [57]. Consequently, the exchange-correlation energy (and therefore

stability) of the molecule is overestimated compared to the atoms.

The error in the atomization energy arises mainly from the λ = 0 limit of the coupling-

constant integration [56]. This means that improvements can be made by using the exact

exchange energy at λ = 0 (see Equation 2.21) instead of the GGA exchange energy, while

keeping the GGA expression for the exchange-correlation energy at λ = 1. This leads to

the so-called ‘hybrid’ functionals [58], with the total exchange-correlation energy given by:

Ehybr
xc = αEHF

x + (1− α)EGGA
x + EGGA

c . (2.34)

The optimal amount α of Hartree-Fock (HF) exchange admixture depends on the curvature

of the Exc,λ curve [59, 60]. For molecular atomization energies, α equal to 1/4 has

been shown to be most appropriate [59]. When applied to the PBE functional, the

resulting ‘PBE0’ hybrid substantially improves the description of molecular geometries,

thermochemistry and kinetics [36, 61]. The mean absolute errors in the G2-1 atomization

energies and BH76 barrier heights, for example, are further reduced to 0.15 eV and 0.16

eV, respectively [36, 43].

Using the same amount of HF exchange also leads to improved descriptions of semicon-

ductors and insulators, where the GGA underbinding is reduced [36, 62, 63]. Additionally,

oxides such as CoO [64] and PdO [65] are correctly predicted to be semiconducting,

whereas GGA functionals predict metallic behaviour. For most metals, however, including

HF exchange enhances the underbinding by the parent GGA functional [62, 63, 66]. Due

to (near-)degeneracy effects, the Exc,λ curve is such that it is preferable not to include

HF exchange (α = 0) [59]. In order to improve the GGA description for metals, it is the
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λ = 1 end of the coupling-constant integration that needs to be addressed, rather than

the shape of the Exc,λ curve.

An important drawback of ‘global’ hybrid functionals, such as PBE0, is that the

non-locality of the exchange functional in Eq. (2.34) severely worsens the scaling of

the computational cost with the number of electrons. For more efficient calculations on

extended systems such as bulk materials or surfaces, it can be beneficial to neglect the

minor contribution of the long-range part of the exact exchange interaction by screening

the exchange potential. This results in ‘screened’ hybrid functionals, such as the Heyd-

Scuseria-Ernzerhof (HSE) functionals [67–69]. In the HSE functionals, the exchange

potential is screened using the complement of the error function:

EHSE
xc = αEHF,SR

x (ω) + (1− α)EPBE,SR
x (ω) + EPBE,LR

x (ω) + EPBE
c , (2.35)

vHF,SR
x (r, r′) =

1− erf(ω|r− r′|)
|r− r′| . (2.36)

The short- and long-range exchange potential is shown in Figure 2.1. The screening

parameter ω has to be set small enough to retain agreement with the parent PBE0

functional, but as large as possible to improve the computational efficiency. Additionally,

the accuracy in the G2-1 data set can actually be slightly enhanced over the PBE0

functional in a certain range of ω values. Based on these considerations, the optimal value

for ω is chosen to be 0.11 Bohr−1 in the HSE06 functional (with α = 0.25). There is,

hence, a slight semi-empirical touch to the HSE functionals.

2.2.5 Limitations of semi-local and hybrid functionals

(Meta-)GGA and hybrid functionals have gained widespread use in materials science

research, including the field of computational catalysis, thanks to a beneficial cost-to-

accuracy ratio [70]. In this section, several shortcomings of these functional types are

considered.

Fractional spins

The fractional spin constancy condition demands that the total energy remains constant

when an electron is divided among degenerate frontier orbitals [71]. The energy of the

hydrogen atom, for example, should be the same whether the electron density corresponds

to that of the spin-up solution, the spin-down solution, or a convex combination of the

two solutions (e.g. half spin up and half spin down). Another example is the oxygen atom,

where all convex combinations of the 2s2 2p2x 2p1
y 2p1

z, 2s2 2p1
x 2p2y 2p1

z and 2s2 2p1
x 2p1

y 2p2z
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Figure 2.1: Plot of the Coulomb potential and its decomposition into long- and short-range
parts using the error function for ω = 0.11 Bohr−1.

solutions ought to be degenerate. Almost all commonly used functionals, however, will

attribute higher energies to the fractional combinations [72]. As a direct consequence,

dissociation curves are not well described. When stretching the singlet H2 molecule, for

example, the separate H atoms adopt 1/2 spin up and 1/2 spin down densities, and the total

energy is overestimated by several eV [73] As in the case of bulk metals, the curvature

of the adiabatic connection curve is such that any amount of HF exchange will further

worsen the GGA (or LDA) description [59]. This problem can also arise at equilibrium

geometries, as in the example of O3 [74]. A pragmatic solution is to (artificially) break

the spin symmetry so that the integer-spin solution is retrieved [75, 76].

Fractional charges

The linearity condition for fractional charges states that the total energy must vary

linearly between integer electron numbers [77]. Many density functionals, however, usually

yield convex curves where fractional charge states are too low in energy. The stretched

H+
2 molecule serves as a minimal example [72], where the H+ · · ·H and H0.5+ · · ·H0.5+

configurations are (near-)degenerate. Commonly used functionals, however, erroneously

stabilize the configuration with fractional charges. This ‘delocalization’ error is largest (up

to 2-3 eV) with LDA and GGA functionals, and reduces as the amount of HF exchange is

increased [78]. This observation is easily explained in terms of the exchange-correlation

hole, which for H+
2 reduces to the exchange-only hole. In the case of H0.5+ · · ·H0.5+, the
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exact exchange hole is delocalized over both hydrogen atoms. The LDA and (meta-)GGA

exchange-correlation hole is always localized around the position of the reference electron,

and as a result the exchange-correlation energy is overestimated. The example of stretched

H+
2 is, however, a pathological case because correlation in many-electron compounds

will partially localize the exchange-correlation hole. Reducing the delocalization error is

known to be important for the description of barrier heights, and is often considered to

be the main reason why hybrid functionals correct the underestimation of barrier heights

by GGA functionals [79].

Other methods aim to reduce the delocalization error through orbital-dependent effec-

tive potentials. In the Perdew-Zunger self-interaction correction (PZ-SIC) approach [33],

the total energy is corrected such that the (self-)Hartree and (self-)exchange-correlation

energies cancel for every orbital. This scheme is accurate for single-electron systems

and approximate otherwise [80]. Routine application of PZ-SIC is currently hampered

by the need for unitary optimization of the orbitals and by the search for a compatible

exchange-correlation functional [80, 81].

When the delocalization error involves a particular set of atomic orbitals, ‘+U’ ap-

proaches can be applied where repulsive terms are added to destabilize fractional occupa-

tions [82–84]. Typical examples are d states in transition metal oxides and f states in

rare-earth oxides.

Van der Waals interactions

Pure GGA and hybrid functionals do not account for van der Waals (vdW) forces, which

are due to long-range electronic correlation between non-overlapping densities. Meta-

GGA functionals are often able to capture vdW interactions at medium range [52]. One

approach to describe the full range of vdW interactions is the Chalmers-Rutgers functional

(vdW-DF [85]), which is based on the adiabatic connection. Methods employing the

random phase approximation (RPA) can also be used [86, 87], albeit at much increased

computational cost.

2.3 DFT in practice: the ‘PWPAW’ approach

As in the case of the functionals, there is a wide variety of approaches addressing the

more ‘technical’ aspects of electronic structure calculations. One of these aspects is the

basis set in which the wave functions are expanded. One straightforward option is to use

a uniform real-space grid, as in the GPAW code [88, 89]. Another is to use a basis set of

local functions centred around each atom, e.g. Gaussian-type functions. When applying
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periodic boundary conditions, plane waves are a natural choice owing to their inherent

periodicity. Another aspect is how to treat the different behaviour of core and valence

electrons. Popular choices here are methods based on pseudopotentials and all-electron

methods such as the projector augmented-wave (PAW) method. As the VASP code is

a plane wave PAW code, it is these techniques that are given attention in the following

paragraphs.

2.3.1 Kohn-Sham DFT with a plane wave basis

Bloch proved [90] that a one-electron Schrödinger equation with a periodic Hamiltonian

has solutions which can be written as:

ψk(r) = uk(r) exp(ik · r). (2.37)

The k-vectors reside in the reciprocal space spanned by the basis vectors bi:

k =

3∑

i=1

kibi , ki ∈ R, (2.38)

b1 = 2π
a2 × a3

a1 · (a2 × a3)
, (2.39)

where ai are the real space lattice vectors (b2 and b3 follow by permutation). The function

uk(r) has the periodicity of the crystal, as has the potential energy operator (here in the

form of the effective Kohn-Sham potential veff(r)), which means they can be represented us-

ing Fourier series. The relationships between uk(r) and its Fourier coefficients ûk(G) are:

uk(r) =
∑

G

ûk(G) exp(iG · r), (2.40)

ûk(G) =
1

Vcell

∫

Vcell

uk(r) exp(−iG · r)dr. (2.41)

The vectors of the reciprocal lattice are denoted by G (=
∑3
i=1Gibi , Gi ∈ Z) and Vcell

represents the volume of the unit cell.

The wave functions in general do not have the periodicity of the lattice, but are

shifted in phase by a factor exp(ik ·R) upon translation by a real space lattice vector
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R =
∑3
i=1Niai , Ni ∈ Z. For these we can write:

ψk(r) =

(∑

G

ûk(G) exp(iG · r)

)
exp(ik · r), (2.42)

=
∑

G

ûk(G) exp(i(k + G) · r). (2.43)

If these expressions for ψk and veff are substituted in the real space Kohn-Sham equation,

(
−1

2
∇2 + veff(r)

)
ψk(r) = εkψk(r), (2.44)

the corresponding expression in reciprocal space becomes:

1

2
|k + G|2ûk(G) +

∑

G′

v̂eff(G−G′)ûk(G′) = εkûk(G). (2.45)

The eigenvalues and the Fourier coefficients ûk(G) of the wave function are obtained

by finding the eigenvalues and eigenvectors of the Hamiltonian matrix with elements:

HG,G′(k) =
1

2
|k + G|2δG,G′ + v̂eff(G−G′). (2.46)

In practice, the number of reciprocal lattice vectors needs to be truncated, which is

done by considering only those vectors corresponding to a kinetic energy smaller than a

certain energy cut-off value ( 1
2 |k + G|2 < Ecut). This is appropriate as the magnitude

of the terms in a Fourier series decreases rapidly as the norm of the frequency vector

increases.

The problem now boils down to solving this eigenvalue problem for all k ∈ R3. However,

it follows from Bloch’s theorem (Eq. (2.37)) that if ψk is a solution, then so is ψk+G.

The solutions can therefore be restricted to k-vectors inside a primitive unit cell of the

reciprocal space (such as the first Brillouin zone). Now there are different solutions ψk,n

for such a k, which are labeled by the band index n = 0, 1, 2, ..., with progressively higher

eigenenergies εk,n. In practice, the k-dependence is handled through a discrete sampling

of the (first) Brillouin zone. Additionally, only a finite number of bands needs to be

considered, since there are only a finite number of electrons per unit cell.

The k-point sampling in the calculations in this thesis is performed with the widely

used method of Monkhorst and Pack [91, 92]. The method selects k-points according to a

19



uniform (N1 ×N2 ×N3) grid (Ni k-points along the ith reciprocal axis):

kn1,n2,n3 =

3∑

i=1

2ni −Ni − 1

2Ni
bi , ni ∈ {1 . . . Ni}. (2.47)

The mesh needs to be dense enough such that the Brillouin zone is sufficiently sampled to

yield converged total energies. The set of k-points for which the Hamiltonian needs to be

diagonalized is reduced by only considering the irreducible Brillouin zone, from which the

contributions of the other k-points can be deduced by symmetry operations.

The different contributions to the Kohn-Sham potential v̂eff(G) and the total electronic

energy are obtained from the Hartree potential, the external potential arising from the

nuclei, and the exchange-correlation potential. An expression for the Hartree energy (see

Eq. (2.10)) can be derived starting from the Poisson equation in real space:

∇2vHartree(r) = −4πρ(r). (2.48)

After substitution of the Fourier expansions, this yields the corresponding expression in

reciprocal space:

v̂Hartree(G) =
4πρ̂(G)

|G|2 . (2.49)

Using Plancherel’s theorem [93], the Hartree energy per unit cell is given by:

EHartree =
1

2

∫

Vcell

vHartree(r)ρ(r)dr = 2πVcell

∑

G6=0

ρ̂(G)2

|G|2 . (2.50)

The divergent term for G = 0 has been omitted, as it cancels with the corresponding

terms for the nucleus-nucleus and electron-nucleus interactions, provided the unit cell has

no net charge.

The results for the external potential can be obtained in a similar way:

∇2vext(r) = 4π
∑

m

Zm δ(|r−Rm|), (2.51)

v̂ext(G) = −4π
∑

m

Zm exp(−iG ·Rm)
1

|G|2 , (2.52)

Eext = −4πVcell

∑

G6=0

∑

m

Zm exp(−iG ·Rm)
ρ̂(G)

|G|2 . (2.53)
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The exchange-correlation potential, however, is typically determined in real space from

the real space electron density ρ(r). The Fourier coefficients vxc(G) are then obtained by

Fourier transformation.

2.3.2 The projector augmented-wave method

One important obstacle in performing efficient electronic structure calculations with plane

wave basis sets is formed by the lowest energy electrons, which are located close to the

atomic nucleus (the core electrons). Due to their strongly localized nature, they need

to be represented with much finer resolution than the more extended valence electrons.

Furthermore, the valence electron wave functions will show high frequency oscillations

in the core regions, which are also numerically expensive to describe, especially in a

plane wave basis set. Additionally, the valence electrons generally do not require explicit

relativistic treatment, but the core electrons for heavier elements do.

Many different approaches have been formulated in order to solve this problem. One

attractive approach is the projector augmented-wave (PAW) method developed by Blöchl

[95]. It uses the idea from augmented plane wave (APW) methods to divide real space

into spherical regions centred around the nuclei and the remaining interstitial region.

Inside these spheres, the wave functions are atomic-like and efficiently described using

atomic-like basis functions (e.g. the solutions of the Kohn-Sham equation for the isolated

atom) on logarithmic radial grids In the interstitial region, the wave functions vary

smoothly, so that a plane wave basis (or a uniform real space grid) is more advantageous.

In the PAW method, the wave functions ψj are described as smooth wave functions ψ̃j

extending over the entire space to which corrections are added inside each ‘augmentation

sphere’ m:

|ψj〉 = |ψ̃j〉+

M∑

m=1

(|ψmj 〉 − |ψ̃mj 〉). (2.54)

As mentioned before, good choices for a ‘partial waves’ basis φmi for ψmj are the solutions of

the (relativistic) Kohn-Sham equation for the isolated atom. Their expansion coefficients

happen to be the same as for their smooth counterparts ψ̃mj expanded in a basis of smooth

partial waves φ̃mi , which match the partial waves outside the augmentation spheres. These

smooth partial waves can be chosen to be polynomials [89, 95] or Bessel functions [96]. It

is in this way possible to construct a complete and orthonormal set of smooth projector

functions p̃mi that collect the expansion coefficients of the smooth part of the wave function
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inside the augmentation sphere:

|ψ̃mj 〉 =
∑

i

〈p̃mi |ψ̃i〉 |φ̃mi 〉. (2.55)

In this way the wave function can be written as:

|ψj〉 = |ψ̃j〉+

M∑

m=1

(∑

i

〈p̃mi |ψ̃i〉 |φmi 〉 −
∑

i

〈p̃mi |ψ̃i〉 |φ̃mi 〉
)
. (2.56)

Similarly, the electron density can be viewed as a smooth density augmented by atomic

corrections:

ρ(r) = ρ̃(r) +

M∑

m=1

(ρm(r)− ρ̃m(r)). (2.57)

Finding the electronic ground state is in this scheme reduced to variationally optimizing

the smooth part of the wave function only. For this quantity, the transformed Kohn-Sham

Hamiltonian contains potential energy operators acting on the smooth density (evaluated

using e.g. a plane wave basis set) plus corrections evaluated inside the augmentation

spheres involving the partial waves and smooth partial waves (which can be evaluated

efficiently using atom centered radial grids).

So far, the PAW method still provides an ‘all-electron’ description. In typical calcula-

tions, however, the frozen core approximation is invoked, which means the wave function

for each frozen core state is considered constant and equal to its form of the reference

atom. As sufficiently deep lying core states are typically quite inert in chemical processes,

this is an efficient way of reducing the number of electrons that need to be explicitly

taken into account. The atomization energies in the G2-1 data set, for example, have

been shown to be affected by only a few meV/atom by this approximation [97]. Several

additional approximations need to be made, such as truncating the (in principle infinite)

number of (smooth) partial waves and projector functions, though also this can be done

with very little loss in accuracy [95].

2.3.3 Finding the Kohn-Sham ground state

Generally the Kohn-Sham equations (2.12-2.18) need to be solved iteratively. In plane

wave codes, the superposition of the atomic charge densities is typically used as an initial
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guess for the total density. As the density determines the Kohn-Sham Hamiltonian matrix

HG,G′(k) (Eq. 2.46), the initial wave functions could in principle be obtained after full

diagonalization at every k-point. Using the lowest occupied states a new charge density

can then be constructed. This is iterated until the convergence thresholds are met (e.g.

less than 10−5 eV changes in the energy).

Due to the large size of the plane wave basis set, however, full diagonalization as well

as storage of the Hamiltonian must be avoided. Most plane wave codes, including VASP,

employ algorithms where only diagonalization in the subspace of the occupied orbitals

is needed. In such schemes, the initial wave functions are randomly generated, and the

electron density and wave functions are alternatingly updated until self-consistency is

reached [98].
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Chapter 3

From electronic energies to measurable

properties

This chapter deals with methods used in this thesis to link the first-principles description of

the electronic structure to experimentally measurable quantities. The different connections

are illustrated in Figure 3.1, which depicts a metal nanoparticle with O and CO adsorbates.

Firstly, the binding energies of the core electrons in the different atoms can be measured

by X-ray photoemission. Also infrared radiation may used to probe the properties of

the adsorbates by exciting certain molecular vibrations such as the C-O stretch. Lastly,

the rate of product formation can be quantified via e.g. mass spectrometry. There are

of course many other available techniques in heterogeneous catalysis research to probe

reactions and the state of the catalyst (see e.g. Ref. [99]).

Infrared ray

Reaction rate

X-ray

Photoelectron

Figure 3.1: Cartoon representation [100] of a metal nanoparticle with O and CO adsorbates
and illustration of different experimental measurement principles.
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3.1 Core-level spectroscopy

Core-level spectroscopy is a powerful technique to investigate the structure and chemical

environment of the atoms close to the sample surface [101]. It uses X-ray photons to

measure the binding energies of core electrons (e.g. the 3d5/2 level in Pd atoms), based

on the photoelectric effect. Synchrotrons are often the preferred X-ray radiation sources,

thanks to the high energy resolution and tunability of the X-ray beams [102].

Comparisons between the measured photoemission spectrum and theoretical predictions

for different structures has proven to be a fruitful approach for elucidating surface

structures and adsorbate geometries [103–106]. Direct reproduction of the experimental

binding energy spectrum is, however, rarely attempted, for two reasons. One is that

absolute binding energies of core electrons with respect to e.g. the Fermi level are difficult

to calculate with high accuracy. Secondly, also the precise line shape is difficult to

reproduce, requiring e.g. time dependent DFT or many-body perturbation techniques

[107] such as the GW approach [108]. However, for interpreting core-level spectra without

significant shake-up or shake-down satellites, it is sufficient to only calculate the relative

shifts between the centers of the main peaks in the spectrum. Such relative peak shifts

are easier to calculate with reliable accuracy [109] and are referred to as the core-level

shifts (CLS).

3.1.1 The complete screening picture

In the complete screening picture, the CLS is calculated as the energy difference:

CLS = [E∗ − E0]− [Eref
∗ − Eref

0 ], (3.1)

with E0 and E∗ representing (valence) ground state energies of the unperturbed material

and in presence of a core-hole in one of the atoms, respectively. This total energy approach

relies on four main approximations regarding the final state, i.e. the electronic state of

the material when the photoelectron has left the system:

(1.) The core-hole has not yet decayed, i.e. its lifetime is long compared to the photoe-

mission process itself. This is indeed true in the case of not too heavy atoms and

not too deep levels [110–112], where intra-atomic Auger decay of the core-hole is

sufficiently slow [113].

(2.) The valence electrons are considered to be in the ground state (with the constraint

of a core-hole). Including the relaxation of the valence electrons is often crucial for

accurately determining the CLS [114–117].
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(3.) The remaining core electrons can be treated in different of ways: (i) by using

pseudopotentials that have been generated for an ionized reference atom, (ii) by

simply substituting the atom with the next element in the periodic table, the so-called

‘Z+1’ or ‘equivalent core’ approximation [118], and (iii) by removing the core state (in

all-electron methods) and either relaxing the other core electrons (while maintaining

orthogonality towards the core-hole) or keeping the remaining core electrons frozen

(as done in the PAW implementation in VASP). These different methods yield similar

results, although the ‘Z+1’ approximation only holds for sufficiently deep core-holes

[119]. The reason for this similarity is that the relaxation of the core electrons is

rather unimportant for the CLS, because this relaxation is quite independent of the

chemical environment [120, 121].

(4.) The effect of structural relaxation is neglected. Except for light atoms in molecules

or light molecular adsorbates, these vibrational excitations in the final state do not

contribute significantly to the measured binding energy thanks to the slow response

of the nuclei in comparison to the electrons [112].

The use of periodic boundary conditions prohibits the use of charged supercells, as charge

neutrality needs to be maintained. This can be done either by adding an extra electron to

the valence or by adding the compensating charge as a homogeneous ‘jellium’ background.

Adding an electron to the valence band is the better approach if there is a high density

of states at the Fermi level, but is problematic for insulators and semiconductors, in

which case the jellium background approach is preferred. In the jellium approach, the

total electronic energy does not converge with respect to the vacuum distance between

periodically repeated images. This would call for the application of charged supercell

corrections of the total energy [122] but such corrections largely cancel out when the CLS

is calculated between two atoms in the same unit cell. In that case the CLS expression

reduces to:

CLS = E∗ − Eref
∗ , (3.2)

which has the additional benefit of accelerating the convergence with respect to k-point

sampling, energy cutoff, inter-slab distance and slab dimensions [121].

3.1.2 Initial and final state contributions

In order to understand the origin of the CLS, it can be useful to decompose the CLS in

so-called initial and final state shifts. The initial state contribution is related to differences
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in the charge density in the initial ground state, whereas the final state contribution arises

because of differences in the screening of the core-hole in the final state [101, 123]. While

such a decomposition is to an extent arbitrary and only the total shift can be measured

experimentally [124], it can be used to understand the origin of these shifts. Within

Kohn-Sham DFT it is reasonable to associate the initial state shift with the negative of

the shift in the core electron eigenvalue [125, 126]. The eigenvalue shift is furthermore

closely related to the difference in electrostatic potential at the nuclei [101, 123, 124, 127].

Trends in core-level shifts can in some cases be understood in terms of the initial state

shifts alone, as for the surface CLS across different transition metal surfaces [128]. In

other situations, such as e.g. surface alloys [129] or adsorbate-covered substrates [117,

130, 131], trends across different elements are complicated by variations in the final state

contribution to the total CLS.

3.2 Geometry optimization

The most relevant molecular structures for many properties (such as the spectroscopic

properties described in the previous section) are the ‘equilibrium geometries’ where the

molecule adopts a local or global energy minimum with respect to displacement of the

nuclei. Another type of configuration of particular interest in reaction rate theory are

the ‘transition states’ corresponding to the minimum energy barrier separating reactants

and products. Methods to find these three types of structures are sketched in the next

sections.

3.2.1 Finding a local minimum

Finding the closest local minimum to a certain initial geometry guess is a matter of

applying a suitable algorithm to minimize the total energy with respect to the positions

of the nuclei. All efficient minimization methods require knowledge of the forces fi along

each nuclear coordinate i:

fi = − ∂E
∂Ri

. (3.3)

From the Hellmann-Feynman theorem it can be shown that this force only depends

on the charge density and the change in the Coulomb potential of the nuclei, i.e. just

classical electrostatic forces [132]:

fi = −
∫
ρ(r)

∂Vext(r,R)

∂Ri
dr − ∂Ei−i

∂Ri
. (3.4)
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The iterative process of computing the forces and generating successive structures is

pursued until the chosen convergence criteria are met. For most purposes, a suitable

criterion is that the norm of the force on each atom is below 10−2 eV/Å . In this thesis

mostly the conjugate gradient, BFGS [133] and FIRE [134] algorithms have been used.

3.2.2 Finding the global minimum

In many cases one is interested in finding not just a local (free) energy minimum but

rather the most stable local minimum – the global minimum (GM). Common examples

include finding the most stable configurations of nanoparticles, molecular adsorbates,

surface structures and bulk crystal structures. In case there are few local minima, the

GM can be found ‘manually’ through an exhaustive search or educated guess. However,

as the degrees of freedom increase automated search heuristics become necessary. Many

global minimization methods have thus far been developed, including simulated annealing

[135, 136], genetic algorithms (GAs) [137], basin hopping [138], minima hopping [139],

and particle-swarm optimization [140]. The literature is sparse on comparisons between

different global minimization methods for chemical structures, and it has been argued that

the optimal algorithm is likely to be system dependent [141]. GAs are however generally

considered to be advantageous for complex potential energy landscapes [142] and have

seen diverse application, ranging from clusters [143] to bulk crystals [144].

In this thesis, the genetic algorithm (GA) module [145] from the ASE package [146]

has been used. The general outline of a genetic algorithm run is shown in Figure 3.2.

First, an initial database is created from randomly generated structures subjected to

local minimization. From the database a ‘population’ is drawn containing the most stable

unique structures. Typical population counts range from 10 to 30. New structures are

then created from the population, locally minimized, and added to the database.

In order to spawn new structures from existing ones, one or several genetic operators

need to be defined. ‘Pairing’ operators, for example, combine random parts from two

parent structures into a new structure. ‘Mutations’ operate only on one structure, by e.g.

subjecting the atoms to random displacements. Inside the main loop, operators are picked

at random according to user-defined weights. Selecting structures from the population

also happens randomly, with a weight distribution favouring the more stable structures.

As the GA run proceeds, the population will contain increasingly stable structures,

and will hopefully include the GM before the iteration limit is reached. Because GAs are

stochastic procedures, the number of required iterations to find the GM varies from run to

run. Consequently, several GA runs are typically executed in parallel. It is often the initial

structure generation and the choice of genetic operators that have the largest impact on
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Figure 3.2: Flow chart of a genetic algorithm run.

the efficiency of the GA [147, 148]. Many applications therefore feature custom-designed

operators that are expected to increase the performance for the problem at hand.

3.2.3 Finding a transition state

The transition state for a chemical reaction is defined as the lowest energy saddle point

connecting the reactants and the reaction products (more on that in Section 3.4). Saddle

points are local minima on the potential energy surface in all directions except for the

mode along which the reaction occurs, where the saddle point is a local maximum. In

principle, the second derivatives of the potential energy would be helpful in finding such

transition states, since they describe the local curvature of the potential energy landscape.
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In plane wave DFT codes, however, these second derivatives are not readily computed (see

Section 3.3), so different methods have been developed which rely only on first derivatives.

The nudged elastic band method

In the nudged elastic band (NEB) method [150–152], as the name suggests, the idea is to

span an elastic band between the reactant state and the product state and to optimize

this band so that it follows the minimum energy pathway between them. The procedure is

started by constructing a band of intermediates and specifying the spring constant of the

spring forces between successive intermediates in the band, so as to keep them equidistant.

If the forces on the nuclei for each image are calculated, then following the components

of the forces perpendicular to the band will lead to convergence towards the minimum

energy pathway. A convenient variant is the climbing image NEB method, where, in

addition, the energy of the highest intermediate is maximized and hence converges to the

energy of the transition state.

The dimer method

The NEB method requires knowledge of the product state and involves ground state

calculations for a large number of intermediates in order to resolve the minimum energy

pathway. While it constitutes a rather robust method, it can be excessive if only

information about the transition state is required. The dimer method [153] involves

only two structures (the ‘dimer’), both slightly displaced from the center of the dimer

along a particular direction. Through a series of translations and rotations of the dimer,

the center of the dimer is moved to the nearest saddle point for the given initial direction.

From the forces on the dimer structures, it is possible to estimate the rotation angle

necessary to align the dimer along the direction with lowest curvature. One can translate

the dimer following a modified force which points towards the saddle point.

3.3 Vibrational frequencies

Molecules vibrate at characteristic frequencies, related to the molecular bond acting as

a spring that counteracts a displacement of the atoms from their equilibrium positions.

Estimating the vibrational frequencies can be useful for interpreting infrared spectroscopy

measurements and for evaluating the vibrational entropy and energy contributions to

thermodynamic properties.

This is often done in the harmonic approximation. In this approximation, the displace-

ments are assumed to be sufficiently small, so that the potential energy scales quadratically.
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The modes in which the atoms vibrate and their energy levels can then be obtained by

diagonalizing the mass-weighted Hessian matrix. Each mode i has the following allowed

energy levels:

Ei,n = ~ωi
(

1

2
+ n

)
, n = 0, 1, 2, ... . (3.5)

If the molecule is isolated, six of these modes will have (near-)zero frequencies ωi, corre-

sponding to translation and rotation of the whole molecule (five in the case of a linear

molecule). The remaining modes are associated with true vibrations, such as the stretch-

ing of the C-O bond in the CO molecule. In the case of modes with a negative energy

curvature, as along the reaction coordinate at a saddle point, ωi will be imaginary.

3.4 Rates of reactions on surfaces

Estimating the rates of elementary reactions from first principles is important to construct

theoretical models that describe the preferred reaction mechanism for a chemical process.

Also the catalytic activity of materials that are not yet experimentally synthesized can

be evaluated in this way. One could, in principle, perform ab initio molecular dynamics

simulations, explicitly propagating a collection of molecules on a surface, from which

reaction rates can be extracted. This, however, is presently not an option, mainly because

of the extremely wide separation of time scales for molecular vibrations (∼ 1013 Hz) and

activated chemical reactions (down to 1 Hz or less). This viewpoint, however, opens up

possibilities for useful approximate theories [154, 155].

3.4.1 Transition state theory

A solution to the time scale separation problem is to coarse-grain the phase space that

is sampled in the molecular dynamics simulations. Instead of resolving all the atomic

positions and momenta, the time evolution can be modelled as the hopping between

different local minima of the free energy landscape. In the context of surface reactions,

such a local minimum is associated with a specific spatial arrangement of adsorbates on

the surface. Each such ‘configuration’ describes which adsorbates are bound to which

adsorption sites. Neighbouring configurations are hence separated by a single diffusive

or reactive event. After assuming thermal equilibration within the basin of the local

minimum, the probability Pα(t) of observing the specific configuration α at a certain time
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t obeys a gain-loss type equation called the Master Equation:

∂Pα(t)

∂t
=
∑

β

Wβ→αPβ(t)−
∑

β

Wα→βPα(t). (3.6)

The ‘transition frequency’ Wα→β denotes the frequency at which a configuration α

transforms into a neighbouring configuration β. It can be shown that expressions for

these transition frequencies are given by the ones familiar from conventional transition

state theory (TST)1 developed by Eyring [158], Evans and Polanyi [159]:

Wα→β =
kBT

h

Q‡
Qα

=
kBT

h

q‡
qreactants

, (3.7)

Wβ→α =
kBT

h

Q‡
Qβ

=
kBT

h

q‡
qproducts

. (3.8)

The label ‡ refers to the ‘transition state’, which corresponds to a saddle point on the energy

landscape representing the minimum energy barrier separating α and β configurations. For

the right hand side equalities in Eq. (3.7-3.8) it has been assumed that the total partition

function Q can be written as the product of the single-adsorbate partition functions q.

As a result, only the partition functions of the adsorbates directly participating in the

reaction enter the expression for the transition frequency W .

The partition functions q are typically evaluated2 using simple statistical mechanical

models (such as the quantum harmonic oscillator, rigid rotor, particle in a box) after

assuming separability of e.g. translational, rotational, vibrational and electronic contri-

butions to the total partition function (for further information, see e.g. Ref. [99]). The

link to the well known Arrhenius equation [160] is easier to recognize if in Eq. (3.7) the

electronic partition functions are evaluated with respect to their own potential energy

minimum:

Wα→β =
kBT

h

q′‡
q′α

exp

(
−Eel,‡ − Eel,α

kBT

)
. (3.9)

3.4.2 Mean-field kinetic modelling

The evolution of the adsorbate configurations on the surface, i.e. the probabilities Pα(t),

can in principle be obtained by integrating the Master Equation (3.6), starting from

1For conventional TST the additional ‘no-recrossing’ approximation needs to be made [156], meaning
that every trajectory crossing the phase space boundary between α and β actually results in the
transformation to β. This is in general a very suitable approximation [157].

2This is commonly done in a canonical ensemble so as to yield ‘Boltzmann’ transition frequencies,
which have been averaged over the internal states of the reactants.
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a chosen initial configuration. As the number of possible configurations α is typically

extremely large,3 direct numerical integration is infeasible. Kinetic Monte Carlo methods

carry out the integration more efficiently through the use of stochastic techniques [161].

Since these methods come with a significant computational cost, usually simpler and more

efficient (though potentially less accurate) procedures are employed.

In the mean-field approximation, the adsorbates are assumed to be uniformly dis-

tributed over the surface, so that the probability of finding an adsorbate i on a lattice site

is the same and equal to its fractional coverage θi. This is only strictly justified if (i) the

surface is uniform, (ii) the number of sites is sufficiently large, (iii) the diffusion of the

adsorbates over the surface is sufficiently fast and (iv) lateral interactions (repulsive of

attractive forces between adsorbates) are weak [154, 162, 163]. This approximation allows

to derive the typical mean-field rate equations from the Master Equation [154]. In the

case of a bimolecular reaction between i and j adsorbates, the expression of the reaction

rate is given by:4

r = Wθ(i,j)−pairs
mean−field

=========⇒
approximation

r = WZθiθj . (3.10)

Z is the coordination number of the lattice, i.e. the number of nearest-neighbour sites

around a site. The coverage dependence of the transition frequency W can be included in

an approximate manner by using the mean-field probabilities for the different possible

occupations of the sites that surround the reactant(s).

With a set of adsorbates and elementary reactions, the time evolution of the coverages θ

can be simulated together with the reaction rates r by integrating the following set of

coupled differential equations:

∂θi(t)

∂t
=

∑

reaction k

cikrk(θ(t)). (3.11)

where cik is the number of adsorbates i consumed (cik < 0) or produced (cik > 0) in a

reaction k. In this thesis the open source SciPy Python package is used for performing

such numerical integrations, which wraps around the widely used odepack Fortran library

[164].

3For a surface with M sites and N adsorbates, the total number of configurations equals (N + 1)M .
4This shows that the transition frequencies W and macroscopic rate coefficients k relate as k = ZW .
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3.4.3 Quasi-chemical kinetic modelling

The mean-field rate equations become increasingly inaccurate as the lateral interaction

strengths exceed the thermal energy kBT [162, 165]. In such cases the quasi-chemical

approximation presents an alternative approach, without having to resort to Monte Carlo

simulations. Instead of describing the surface coverage in terms of single-site probabilities

θi, the two-site probabilities τij are introduced which describe the probability that two

neighbouring sites are occupied by a pair of i and j adsorbates. Given the global coverages

θi, the distribution of each adsorbate i among the different (i, j) pairs can be calculated

from equilibrium thermodynamics (assuming fast surface diffusion).

The main approximation in terms of lateral interactions lies in the evaluation of the

energetical preference of the different (i, j) pairs. There, the probability that a site next

to the i (resp. j) adsorbate is occupied by k is assumed to be equal to τik (resp. τjk).

This means that the correlations between the different neighbours around the site pair

are neglected.

The probabilities τij cannot usually be expressed in closed form and hence need to

be computed iteratively [162]. The coverage derivatives can then be calculated as in

Equation (3.11) by using the pair probabilities τij in the evaluation of the reaction rates.

As in the case of the mean-field approximation, the coverage dependence of the transition

frequencies can be included if desired.

This scheme is in general approximate, but becomes exact if the surface lattice only

has one-dimensional periodicity [162, 165]. The PdO(101) surface is such a case, because

the parallel rows of reactive threefold coordinated O and Pd atoms are separated by rows

of relatively inert fourfold coordinated O and Pd atoms (see Chapter 5). Edge sites on

stepped Ru surfaces are another example [166, 167].
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Chapter 4

Reactions on surfaces

4.1 Catalytic processes

The term ‘catalysis’ was coined in the early 19th century by the Swedish scientist Berzelius,

to refer to phenomena where a small amount of a foreign substance has a great influence

on the course of a chemical reaction [168]. Early examples were Döbereiner’s experiments

with ignition of a hydrogen-air stream using platinum powder [169]. The word derives

from the ancient Greek verb καταλύειν meaning ‘breaking down’, implying that the

catalyst decomposes the reactants and so facilitates the formation of the reaction products.

Ostwald [170] later offered a more precise definition of a catalyst: a substance that changes

the rate of a chemical reaction without being consumed.

Catalysts can be classified as homogeneous, heterogeneous and enzymatic [171]. Homo-

geneous catalysts are part of the same fluid phase as the reactants, whereas heterogeneous

catalysts (usually a solid surface) form a phase separate from that of the reactants.

Enzymatic catalysts are a special case of homogeneous catalysis, referring to large, com-

plex biomolecules. Of these three types, the heterogeneous catalysts have the distinct

advantage of being easy to separate from the reactant phase, which has led to innumerable

industrial applications [172]. Homogeneous and enzymatic catalysts, however, often allow

better control of product selectivity [173].

The first step in the heterogeneous catalytic process, as sketched in Figure 4.1, is

the binding of the reactants from the fluid phase to the catalyst surface. Once they

are adsorbed, molecules often undergo dissociation steps where they are separated into

smaller fragments (e.g. O2 dissociating into O atoms). After adsorption, the species can

diffuse over the surface. When two reactants are in close proximity, reaction products can

be formed. The catalytic cycle is completed by the desorption of these products into the

fluid phase, with the surface sites becoming available again for reaction.

The reaction mechanism depicted in Figure 4.1 is of Langmuir-Hinshelwood type,

where the products are formed by reactions between adsorbed species [174]. Another

possibility is that gas phase molecules react directly with adsorbates, which is referred to

as an Eley-Rideal mechanism [175]. Yet another type is the Mars-van Krevelen mechanism,
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Figure 4.1: Diagram of a simple catalytic cycle for the reaction A2 + 2 B → 2 AB.

where atoms of the substrate lattice act as reactants and become part of the product

molecule [176]. This can for example occur on surfaces of reducible oxides such as the

PdO(101) surface.

One of many considerations when using catalysts to speed up a chemical process, is the

activity of the catalyst. Catalytic activity is commonly defined as the net rate at which

the reactants are converted into products. The rate is usually normalized, e.g. per unit

weight of the catalyst, per mole of the precious metal, or per surface atom of the active

component. In this definition, the catalytic activity of a material is in general a time

dependent property, as well as a function of the local reaction conditions (temperature

and partial pressures).

In many applications, such as the total oxidation of methane, the performance of the

catalytic reactor is limited by the activity of the catalyst. Although the total activity may

be the result from numerous reaction pathways and may involve many different surface

species, it is to a first order approximation only sensitive to the stability of a small subset

of intermediates and transition states [177]. One particular reaction step may for example

be kinetically relevant due to a high free energy of activation. This is often the case for the

first C-H dissocation step in methane oxidation catalysis [178]. Another example is the CO

oxidation activity of several transition metal catalysts, which is sensitive to the stability of

adsorbed CO under typical low-temperature conditions [179]. Understanding the origins

of a catalyst’s limited activity in terms of its structural and electronic properties can then

be reduced to understanding how these relevant intermediates and activated complexes

are bound to the catalyst surface.
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4.2 Bonding on surfaces

Even though accurate electronic structure methods allow for detailed descriptions of the

interaction between molecules and a catalyst surface, it is often more insightful to analyze

the bonding in simpler, more qualitative terms. In frontier molecular orbital theory

[180–182] the interaction between two fragments (such as the adsorbate and the surface)

is described in terms of the energies and shapes of the ‘frontier’ molecular orbitals (MOs).

These usually consist of the highest occupied and lowest unoccupied MOs (HOMO and

LUMO) of each fragment.

In the following paragraphs, the bonding in different surface-adsorbate combinations

will be discussed to provide a background for the discussion in Chapter 5. First the

adsorption of CO on a transition metal surface will be discussed, followed by adsorption

of CO and H on the surface of a transition metal oxide.

4.2.1 Bonding to a transition metal surface

Blyholder was among the first to apply a MO analysis to bonding of CO to d-metal

surfaces [183]. Here, the most important frontier MOs in CO are the 5σ (HOMO)and

2π∗ (LUMO) states. The 5σ MO can be regarded as a lone electron pair situated at

the carbon end of the molecule, whereas the 2π∗ MO has lobes on both the carbon and

oxygen atoms (see Figure 4.2). The most relevant frontier MOs of the substrate are the

metal d states, in particular those with dz2 , dxz and dyz character.

The transition metal surface offers several sites for CO adsorption (see Figure 4.2).

In the ‘atop’ position, a linear M-CO bond is formed. The main bonding contributions

originate from the interaction between the CO 5σ and metal dz2 states, which yields

M M M M M M

M M M M M M

dz2
dxz

C

O
5σ

C

O
2π∗x

O2− Mn+ O2− Mn+ O Mn+

Mn+ O2− Mn+ O2− Mn+ O2−

H
2−e−

dz2

C

O
5σ

Figure 4.2: Schematics for adsorbate binding to different surfaces. Left: CO in atop and
bridge position of a transition metal surface. Right: CO and H adsorption on the surface
of a transition metal monoxide. Changes in the sign of the orbital lobes are indicated by
difference in shading.
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Figure 4.3: Density of states calculated with the PBE functional for bridge-adsorbed CO
on Pd(100). Left: the density of states in the isolated CO molecule. Right: the density
of states projected on the CO s, p and Pd 4d states when CO is adsorbed in a bridge
position on a Pd(100) surface slab.

bonding and anti-bonding combinations (see Figure 4.3). As the anti-bonding combinations

lie partly above the Fermi level, this has a net bonding effect. In this process the population

of the 5σ MO is reduced – this is called ‘σ-donation’.

In the ‘bridge’ position, the CO molecule is located in between two transition metal

atoms. Compared to the atop site, there is now an increased overlap between the

unoccupied CO 2π∗ and the (partially) occupied metal dxz and dyz states. Due to their

higher energies with respect to the Fermi level, almost exclusively the bonding combinations

get occupied, which contribute to the Pd-CO bond. This is called ‘π-backdonation’, as

the population of the 2π∗ MO is now increased. As this MO is anti-bonding with respect

to the C-O bond, this bond is weakened, leading to a larger C-O distance and a lower

vibrational frequency [183].

This picture is captured in the d-band model of Hammer and Nørskov [185, 186], which

is often used to explain variations between the adsorption properties of different d-metals.1

1The d-band description is based on the Newns-Anderson model [187, 188], which can be seen as a
band-theoretical approach to chemisorption.
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The CO and O adsorption energies, for example, are dependent on the position of the

d-band center: if the d-band is more than half filled, then moving the d-band center closer

to the Fermi level will increase the interaction with unoccupied states of the molecule

such as the CO 2π∗ MO, which increases the adsorption energy.

It should be noted that the above picture is approximate, as experimental measurements

have shown that also the 1π MO is involved in the bonding [189, 190]. This is supported

by electronic structure calculations which indicate that the 1π and 2π∗ rehybridize upon

adsorption [189, 191]. Figure 4.3 also indicates that the 1π state is affected upon CO

adsorption.

4.2.2 Bonding to a transition metal oxide surface

Owing to the transfer of charge from the metal to oxygen atoms, the electronic structure

of transition metal atoms differs in several ways from the metal. The most notable

differences are:

• A reduced d-electron count.

• A widening of the metal d-band due to overlap with the O 2p states.

• The presence of a band gap.

Considering CO binding to the metal atoms at the surface, σ-donation and π-

backdonation processes may occur as on the transition metal surface. For significant

5σ-donation, the metal dz2 states need to be sufficiently depopulated, while for 2π∗-

backdonation occupied dxz and dyz states are needed. For CO adsorption on top of an

undercoordinated Pd atom of the PdO(101) surface, the main contribution to the bonding

arises from σ-donation (see Figure 4.4). Due to the slightly anti-bonding character of the

5σ MO with respect to the C-O bond [192], the C-O stretching frequency can actually

increase compared to the gas phase [193].

Transition metal oxide surfaces also feature undercoordinated O atoms on which

molecules may adsorb. Atomic hydrogen binds to this site with the formation of a ‘surface

hydroxide’ with a typical bond length of 1 Å. In a first stage, the singly occupied H 1s

state interacts with the oxygen 2p states, which are nearly fully occupied (the O atoms

are formally in the O2− configuration). This leads, initially, to the double occupation

of the bonding combination and single occupation of the anti-bonding combination. If

the transition metal oxide is of ‘irreducible’ character, the resulting OH2− configuration

would be the electronic ground state. For ‘reducible’ transition metal oxides, however,

the surplus electron is transferred to the metal d states (see Figure 4.2). In the case of
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Figure 4.4: Density of states calculated with the HSE06 functional for atop-adsorbed CO
on PdO(101). Left: the density of states in the isolated CO molecule. Right: the density
of states projected on the CO s, p, Pd 4d and O s, p states when CO is adsorbed atop a
threefold Pd atom in a PdO(101) slab.

PdO(101), a nearest-neighbour undercoordinated Pd atom is formally reduced from the

+2 to the +1 oxidation state. The situation is analogous to other reducible oxides such as

CeO2, where H adsorption leads to the formation of Ce3+ ions [194].

4.3 Trends in catalytic activity

As for the case of the binding of surface species, qualitative concepts may help to explain

and predict trends in the catalytic activity of different materials. For this purpose two

components are needed. Firstly, it is required to known how to relate variations in the

free energies of the relevant stable surface species and transition states to variations in

the turnover rate (under the reaction conditions of interest). To this end, one may employ

either e.g. full microkinetic simulations [195] and/or degree of rate control considerations

[196]. Secondly, one should understand how the above free energies vary from one material

to the next. Preferably, these variations can be correlated to one or two independent

‘descriptors’ (such as the d-band center from the previously mentioned d-band model).
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In such ‘scaling relations’ often linear relationships are found between the descriptor and

adsorption and activation energies.

This approach has thus far been successful in understanding the overall activity trends

of transition metals for processes such as CO oxidation and NH3 synthesis [197]. This

is to a large extent made possible thanks to adequate mechanistic insight and because

the d-band model explains the existence of scaling relations on transition metal surfaces

[198, 199]. Activity trends for metal oxide catalysts, however, are generally less well

understood. This appears to be caused, at least in part, by a greater variety in terms of

reaction networks and bonding mechanisms. Scaling relations on metal oxide surfaces

have so far only been observed for a limited number of cases, such as between O and OH

adsorption energies [199–201]. Regarding methane activation, the energy for the radical-

like methane dissociation transition state is known to be related to the H adsorption

energy [202], which is in turn connected to the reducibility of the metal oxide [203]. For the

surface-stabilized transition state, however, a similar relationship cannot be constructed

because the adsorption energies of H and CH3 do not show reliable scaling [204]. A linear

correlation does appear when the transition state energy is compared to the final state

energy where H and CH3 are coadsorbed [204]. The scatter is, however, significant: the

barrier for methane dissociation on the PdO(100) surface, for example, deviates from this

relationship by 0.7 eV [205, 206]. The surface chemistry of metal oxides hence continues

to be a challenging topic.
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Chapter 5

Methane oxidation over PdO(101)

This chapter offers an introduction to methane oxidation over palladium and summarizes

the parts from the appended papers that relate to the chemistry of the studied surface

reactions. Methodological aspects contained in the appended papers are addressed

separately in Chapter 6.

5.1 Previous research

The slow rate for the total oxidation of methane at low temperatures is mainly a kinetic

problem. Thermodynamically, the process is favoured by a combustion enthalpy of over

9 eV per molecule [207], but the symmetry and the strengths of the C-H bonds can make

the methane molecule difficult to activate. The issue of catalyzing this process has a long

scientific tradition, dating back to the early twentieth century [208]. Specific interest in the

platinum group metals rose in the sixties [209, 210]. In particular, palladium-based catalysts

were discovered to have high activities under oxidizing conditions, whereas platinum is

better suited under reducing conditions. For an extensive overview of palladium-based

catalysts for methane oxidation, the reader is referred to a review by Ciuparu and

coworkers [6].

Over the past decade, a consensus has grown that palladium is active both in a metallic

and an oxidized form, and that the actual active phase depends on the reaction conditions

[6, 206, 211, 212]. Palladium oxide seems to be the active form at moderate temperatures

(below circa 950 K) and net oxidizing conditions. At higher temperatures and/or reducing

conditions, the oxide is unstable and metallic palladium becomes the active material.

In the last years, further advances have been made regarding the activities of the

different surface terminations of palladium oxide. DFT calculations indicate that the

PdO(100) orientation is the thermodynamically stable surface termination of the bulk

oxide, followed by the PdO(101) orientation [213] (see Figure 5.1 for structural models

of these surface terminations). The difference in surface free energy between the two

surfaces amounts to circa 30 meV/Å2 at 600 K and an oxygen pressure of 1 atm [213].

There is also experimental evidence that the (100) orientation is the preferred surface
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Figure 5.1: Ball-and-stick models of the PdO(101) and PdO(100) surfaces. The fourfold
coordinated Pd and O atoms are coloured in respectively light gray and red. The threefold
coordinated Pd and O atoms at the surface are given dark gray and orange colours.

orientation from bulk PdO [214–217]. It is therefore surprising that the (101) orientation

has been observed experimentally on e.g. Pd(100) [206, 218]. This can be explained by

the small lattice mismatch between PdO(101) and the Pd(100) substrate, which makes

it the most favourable orientation, at least for film thicknesses up to four PdO layers

[65]. High-quality PdO(101) thin films can also be grown on Pd(111) by exposure to an

atomic oxygen beam in ultrahigh vacuum, followed by annealing [219]. The formation

of the oxide is preceded by a Pd5O4 (
√

6×
√

6) surface oxide on Pd(111) [104, 220] (see

Figure 5.2).

Owing to the stability of the methane molecule, the dissociative adsorption of methane

is typically considered to be a rate-determining step in the methane oxidation process.

Theoretical investigations of the PdO(100) surface suggest that methane dissociation

occurs with rather large energy barriers (1 eV or more) on this surface [206, 222].

The PdO(101) surface, on the other hand, displays much lower barriers for the initial

dissociative adsorption (circa 0.5 eV with the PBE functional [206, 223, 224]). Importantly,

the PdO(101) surface has been observed to be present during oxidation using in situ

surface X-ray diffraction [206].

The topmost Pd atoms are coordinated differently on PdO(100) and PdO(101). On

PdO(100) (see Figure 5.1), the surface Pd atoms are coordinated to a rectangle of four

neighbouring O atoms. In this configuration, the Pd dz2 orbitals are less involved in

the bonding with the O atoms compared to the other d-orbitals. This results in a high

occupation of the dz2 , which upon adsorption yields a repulsion towards the σ-type MOs

on the methane molecule. The PdO(101) surface, however, contains threefold coordinated

O and Pd atoms at the surface (Figure 5.1). Due to the different arrangement of O atoms

around the threefold Pd atom, in particular the presence of an O atom directly below
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Figure 5.2: Structural model of the Pd5O4 (
√

6 ×
√

6) surface oxide on Pd(111). The
twofold and fourfold coordinated Pd atoms of the surface oxide are coloured in dark and
light gray, respectively. The threefold and fourfold coordinated O atoms are coloured as
orange and red.

the Pd atom, there is now a significant depopulation of the dz2 states. This reduces the

repulsion towards the methane molecule [206].

In view of the significance of the PdO(101) surface, the interaction of various reagents

with the surface has previously been investigated [225]. Temperature programmed desorp-

tion (TPD) experiments in combination with DFT calculations have for example shown

that water strongly adsorbs on the undercoordinated Pd atoms and can dissociate with

the formation of Pd-OH and O-H species [226]. Calculations indicate that also CO shows

strong affinity for the surface Pd atoms CO [218, 227]. Species that are more weakly

adsorbed on the undercoordinated Pd sites include O2 [228], CO2 [229] and small alkanes

such as methane, ethane and propane [223, 224, 230–233].

However, there is still an incomplete understanding of various aspects of the methane

oxidation process over PdO(101). One question, for example, is the precise bonding

configuration of intermediates to the surface, such as hydrogen and carbon monoxide.

Moreover, the knowledge is limited concerning the subsequent pathways once methane is

adsorbed and dissociated on the surface. Also the variation of the methane oxidation rate

as a function of reaction conditions (i.e. the temperature and the gas-phase pressures of

CH4, O2 and H2O) is not yet well understood in terms of elementary surface reactions.

These are the types of questions addressed in this thesis.
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Figure 5.3: Measured core-level spectra from the O 1s (left) and Pd 3d5/2 regions. The
calculated CLS with respect to bulk atoms are indicated by the lines underneath each
spectrum. The new surface components that arise after H2 exposure are shaded and are
connected to the matching surface species.

5.2 Hydrogen adsorption

In Paper I, the interaction of the PdO(101) surface with molecular hydrogen is in-

vestigated. Experimentally, the prepared PdO(101) sample was cooled down to liquid

nitrogen temperatures (circa 110 K) in high vacuum and subsequently exposed to 10

Langmuir H2. Pd 3d and O 1s core-level spectra were recorded before and after exposure.

Computationally, various reactions of H2 with the surface were explored, i.e. adsorption

on threefold Pd sites, followed by dissociation and possible water formation. Comparing

the measured and calculated Pd 3d and O 1s core-level shifts (CLS) reveals that hydrogen

indeed dissociates to form Pd-H and O-H species, as shown in Figure 5.3. As mentioned

previously in Chapter 4, the formation of O-H species leads to a reduction of the nearest-

neighbour threefold Pd atom, which explains the shift to lower Pd 3d binding energies.

The calculated energy barriers show that while H2 dissociation is facile, relatively high

energy barriers need to be overcome for the formation of water. This explains why water

formation and reduction of the oxide surface is observed only at higher temperatures.

5.3 Carbon monoxide adsorption

A similar approach is used in Paper II for the adsorption of CO. In addition, infra-

red spectroscopy data was measured and calculated in order to obtain complementary
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Figure 5.4: Ball-and-stick models of dissociatively adsorbed CH4 and H2 (left and center)
and molecularly adsorbed CO (right) on the PdO(101) surface. The PdO atom colours
are as in Figure 5.1. The additional C and H atoms are coloured in black and white,
respectively.

information. Theoretically, the most favourable adsorption sites for CO are the sites

atop and bridge with respect to the threefold Pd atoms. Comparing the measured and

computed CLS and vibrational frequencies, it appears that both atop- and bridge-bound

CO is present, with a majority of the former (see Figure 5.4).

Also CO adsorption on the Pd(111) surface and the (
√

6×
√

6) Pd5O4 surface oxide on

Pd(111) are considered in Paper II. An interesting aspect that is only briefly mentioned

in the paper is the difference in the bonding of CO on the different surfaces. The CO

adsorption energy in the atop sites on Pd(111) and PdO(101) are quite comparable

(-1.38 eV and -1.49 eV, respectively, using the PBE functional). The charge difference

plots shown in Figure 5.5, however, show that the origin for the strong binding to the

oxide surface is different than on the metal. On the PdO(101) surface, there is significant

charge accumulation between the palladium and carbon atoms, indicating stronger 5σ

donation as compared to the metal (see Chapter 4). This compensates for the reduced

backdonation to the CO 2π∗ MO. Adsorption on the surface oxide, however, is clearly

weaker (-0.59 eV), which is also visible from the lower charge transfer. Here, the lack of

underlying O atoms lead to insufficient depletion of Pd s and dz2 states, which increases

the repulsion towards the CO molecule.

5.4 Methane oxidation

Paper III features a combination of experimental and theoretical work regarding the

methane oxidation reaction over PdO(101). Starting from a Pd(100) single crystal surface,

the temperature is raised from circa 440 K to 770 K in the presence of a 5:2 CH4:O2 gas

mixture with a total pressure close to 1 mbar. Below 560 K, the O 1s and Pd 3d core-level

spectra are characteristic of the (
√

5×
√

5)−R27◦ surface oxide over Pd(100). Structurally,

this surface oxide is equivalent to a single PdO(101) layer on Pd(100). The CO2 partial
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Figure 5.5: Charge density difference plots for CO adsorbed on atop sites of the Pd(111)
surface, the (

√
6×
√

6) surface oxide on Pd(111) and the PdO(101) surface. Red and blue
regions represent charge accumulation and depletion, respectively.

pressure measured by mass spectrometry is very low, indicating that the surface oxide

possesses much lower catalytic activity for CH4 oxidation. When the temperature is

raised further, the core-level signature of the PdO(101) surface emerges and the catalytic

activity increases.

The difference between the single-layer surface oxide and the multi-layer PdO(101)

surface can again be related to the local atomic structure. In the surface oxide, the oxygen

atoms underneath the undercoordinated Pd atoms are absent, leading to an increase in

the dz2 states compared to the Pd atoms of the PdO(101) surface (see Figure 5.6). The

resulting repulsive effect is visible in the higher electronic energy barrier for dissociation

(1.34 eV versus 0.68 eV, using the PBE functional) and in the potential energy diagram

for methane approaching the surface (see Figure 5.6).

In Paper IV, hybrid density functional theory and transition state theory are used

to build a detailed kinetic model that describes the complete oxidation of methane over

the PdO(101) surface. This model offers answers to several questions regarding the full

reaction pathway of the methane oxidation process and its kinetic behaviour.

The high-temperature (T > 700 K) pathway for the conversion of methane is shown

in Figure 5.7. The methyl species produced by the dissociative adsorption of methane
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further react with the undercoordinated oxygen atoms, with CH2, CH2O, CHO and CO

as main intermediates. Oxygen is mainly incorporated into the molecule through reaction

with oxygen atoms of the substrate, which supports a Mars-van Krevelen mechanism.

The catalytic cycle is completed by reoxidation of the oxygen vacancies by O2 adsorption

and dissociation. Water production occurs through reactions between surface hydroxyl

groups. According to the model, the mechanism is slightly different at lower temperatures

(600-700 K), where CH3 preferably reacts with adsorbed O and further C-H dissociation

steps mainly occur by reaction with adsorbed OH. Additionally, a second pathway for the

dissociative adsorption of methane starts to contribute under these conditions, namely a

route where methane reacts with the relatively abundant OH species, producing CH3 and

H2O.

Interestingly, there appear to be strong attractive interactions between several species

adsorbed on threefold Pd sites (such as CH3, CH2, CHO and OH) and H atoms adsorbed

on threefold O sites. These interactions are on the order of 0.5 to 1 eV, which is large

compared to the thermal energy. This means that the mean-field approximation is no

longer valid. The adsorbates are not uniformly distributed over the surface, i.e. their

positions become correlated. The concentration of CH3-H pairs during methane oxidation,

for example, is several orders of magnitude higher than the concentration expected from

the mean-field approximation. In Paper IV this is resolved through a quasi-chemical

approach, where e.g. the CH3 species are treated separately depending on whether or not

they are paired with a H species.

Figure 5.6: (a) Potential energy curves for CH4 approaching the single and double
(
√

5 ×
√

5) oxide layers on Pd(100). (b) Structural model for CH4 adsorbed on the
two-layer PdO(101) surface oxide on Pd(100). (c) The density of states projected on the
dz2 states of the undercoordinated Pd atoms of the single and double (

√
5×
√

5) oxide
layers.

51



Figure 5.7: The main reaction pathway for the conversion of methane to carbon dioxide
and water over the PdO(101) surface at moderate to high temperatures. Full arrows
indicate the carbonaceous intermediates, whereas dashed arrows show the creation of
other surface intermediates. Colour code as in Figure 5.4 and with adsorbate oxygen
atoms in blue.

Several interesting results are also obtained regarding the kinetic behaviour of the

methane oxidation process. The dissociative adsorption of CH4, for example, appears to be

partly reversible under certain conditions. This is due to the relatively slow decomposition

pathways for the adsorbed CH3 species. The stability of these species is further enhanced

by the attractive interaction between the CH3 and H species. This phenomenon offers

an explanation for the observed below-unity reaction orders in CH4 pressure at high

temperatures. As the methane pressure is raised, the concentration of H species increases,

which traps a higher portion of the CH3 species into CH3-H pairs. This, in turn, leads to

a higher fraction of the methane molecules redesorbing before further oxidation can occur.

Reaction orders of 0.6-0.7 have been measured experimentally [212], and values of 0.8-0.9

are predicted by the kinetic model.

Pairing effects can also explain the variation in measured apparent activation energies in

the mid to high temperature regimes. Above 750 K and at pressures in the Torr range, a low

apparent activation energy of circa 0.3 eV has been observed [212]. In Paper III a value of

circa 0.7 eV is measured at temperatures between 650 and 750 K and pressures in the mbar
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range. In both cases, the model predicts that the surface is essentially clean with a small

amount of surface hydroxyl groups as the most abundant surface species, in agreement

with the core-level measurements in Paper III. The apparent activation energies from

the kinetic model are 0.27 and 0.80 eV, respectively, in agreement with the experiments.

At temperatures below circa 700 K and in the presence of water vapour, the surface

is mostly covered by molecularly and dissociatively adsorbed H2O, which inhibits the

reaction rate. This is in agreement with the negative order in water pressure observed

experimentally under those conditions [234] and leads to a further increase in the apparent

activation energy to circa 1.3 eV. The kinetic model is also able to capture the increase in

the apparent activation energy, though only up to a value of 0.97 eV.

5.5 Adsorbate pairing

Attractive interactions between adsorbates have also been observed on other oxide surfaces,

such as NOx pairs on alkaline earth oxides [235, 236]. This phenomenon is known to be

characterized by charge transfer between the adsorption sites, similar to redox reactions.

In order to gain a better understanding of what determines the total pairing energy,

this topic is studied in detail in Paper V. In this study, OH-H and NO2-NO pairing

energies are compared on a series of metal oxide surfaces, namely rocksalt BaO(100), rutile

TiO2(110), fluorite CeO2(111) and tetragonal PdO(101). The geometries of the adsorbate

pairs are shown in Figure 5.8 (the separate adsorbates adsorb in similar configurations).

The stabilization by pairing is most pronounced on BaO(100) and weakest on PdO(101).

For a given oxide surface, OH and H gain more energy upon pairing than NO2 and NO.

In order to evaluate the different contributions to the total pairing energy, the adsorbate

pairing process is decomposed into separate subprocesses related to (i) the intrinsic redox

properties of the adsorbates (ii) classical electrostatic interactions between the charged

species, and (iii) ionic relaxation effects. The analysis shows that each of these components

is important in order to understand the total stabilization upon pairing and to explain

the observed trends for the different adsorbate pairs and oxide surfaces. As a result, it is

difficult to find simple descriptors for predicting the magnitude of the pairing energy.

Paper V also discusses the connection between adsorbate pairing and reactivity. The

reaction energy for A-B addition, for example, will vary depending on whether e.g. A

is paired to a third adsorbate C. The difference between the paired and unpaired cases

is directly related to the difference in A-C and AB-C pairing energies. This highlights

the importance of adsorbate pairing for reactions on oxide surfaces, which has also been

discussed in Paper IV.
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Figure 5.8: Top views of geometries of several adsorbates pairs, after ionic relaxation using
the HSE06 functional. The atomic colour coding is: Ba (green), Ce (yellow), H(white), N
(purple), O (red), Pd (gray), Ti (blue-gray).

5.6 Carbon monoxide oxidation

In Paper VI the attention turns to the effect of alloying Pd with Ag on the catalytic

oxidation of the CO molecule. This is done by comparing the oxidation process over the

Pd(100) surface with that over Pd75Ag25(100). This is done in a temperature-programmed

fashion, where the temperature is increased from around ambient temperature to several

hundred degrees Celsius and back. Near-ambient-pressure XPS allows to follow the

composition at the surface during the cycle, while the CO2 production rate is monitored

via mass spectrometry. The Pd(100) substrate shows the familiar hysteresis behaviour,

where higher activity is observed during cooling than during heating. The hysteresis is

caused by the kinetically hindered formation of the (
√

5×
√

5)−R27◦ surface oxide. In

contrast to methane oxidation, where this surface oxide is rather inactive, its activity

for CO oxidation is high and exceeds that of Pd(100) under the studied conditions. On

Pd75Ag25(100), however, the surface remains in a purely metallic state. Additionally, the

direction of the hysteresis is now reversed.

The computational work in Paper VI focuses on investigating whether changes in

the Pd/Ag ratio at the surface may explain the hysteresis reversal. For this purpose a

mean-field microkinetic model is constructed, with oxygen and CO adsorption energies

and O + CO activation energies obtained from DFT calculations with the PBE functional.

These are evaluated at different PdxAg1−x compositions of the top layer. Diffusion of Ag
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between the top layer and the bulk is included in order to allow the surface Ag content

to vary during the temperature program. Although the kinetic model is approximate in

several ways, the reversed hysteresis on Pd75Ag25(100) can be qualitatively reproduced.

At sufficiently high temperatures, the adsorbate coverages are sufficiently low, which

enables a partial Ag enrichment of the surface layer. The barriers for the O + CO reaction

is increased at this new composition, and the catalytic activity decreases as a result.

5.7 Ideas for catalyst design

Even though PdO based catalysts display a remarkable activity for methane oxidation,

the low-temperature activity leaves to be desired, especially in the presence of water

vapour and sulfur oxides. Additionally, it would be advantageous to reduce the precious

metal content of the catalyst. From the presented studies several clues can be extracted

for the design of improved catalyst formulations.

• Paper III shows that the reactivity of the undercoordinated sites in PdO(101)

is a local effect, arising from the particular arrangement of the oxygen ligands

surrounding the Pd atom. This means that the PdO bulk could be replaced by

a different material able to stabilize an ultrathin PdO layer with a similar Pd-O

coordination.

The search for such materials may for example be directed towards metal oxides with

crystal structures similar to that of PdO. Unfortunately, the square or rectangular

planar coordination of oxygen around a metal ion is relatively rare due to the close

packing of the oxygen ions [237]. Only PtO, CuO, and certain other copper minerals

are known to contain this type of coordination [237]. CuO is interesting in this

respect, as the CuxPd1−xO mixed oxide adopts the PdO crystal structure for Cu

fractions up to 72.5% [238].

Also oxides with a different crystal structure may be considered. One interesting

example in this direction is the MgAl2O4 spinel. When used as a support material,

this oxide has been found to allow for epitaxial growth of a highly active, crystalline

PdO phase [239].

• Another consequence of the ligand effect is that the undercoordinated Pd atoms at

the surface may be replaced by other transition metals. This idea has been explored

in Ref. [205], where the barriers for methane dissociation have been calculated on

the (101) surface of the (real or hypothetical) tetragonal monoxides of Pd, Pt, Rh,

Ir, Ag and Au. The barriers on PtO(101), IrO(101) and RhO(101) are found to
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be relatively close to the barrier on PdO(101). The coinage metal oxides present

higher barriers, in accordance with the understanding that σ-type orbitals increase

the repulsion towards methane. The previously mentioned CuO is therefore most

likely restricted to the potential role of support material, rather than providing

sites for methane dissociation. Bimetallic Pd-Pt catalysts have previously been

investigated, but it is uncertain whether Pt-doped PdO(101) surfaces are formed,

as the PdO phase tends to segregate [240, 241]. Paper VI also shows that alloying

may suppress the oxidation of the metal and that alloying elements may segregate

under certain reaction conditions.

Nickel oxides may be interesting in this respect, as nickel lies one row above palladium

in the periodic table. While the catalytic activity of NiO is low [210], the reactivity

towards methane can be enhanced when nickel is in the (+3) oxidation state. A

recent study shows promising results for nickel cobaltite (NiCo2O4) in terms of

low-temperature activity in both presence and absence of water [242].

• From Paper IV can be deduced that the transition state for methane dissociation

is not the only relevant design criterion for an active methane oxidation catalyst.

In order to gain adequate low-temperature activity, the active sites need to show

reduced sensitivity to water poisoning. One way to reduce the affinity towards

water adsorption may be to increase the s-electron count on the transition metal

atom, but this is likely to also increase the barrier for methane dissociation, as

discussed in the previous paragraph. Adsorbed CH3 species also display relatively

high stability, indicating that efficient catalysts also need to provide sufficiently

rapid CH3 decomposition pathways. This may require consideration of the adsorbate

pairing interaction between CH3 and H species.

• It also appears that adsorbate pairing is important in the context of scaling relations.

On transition metal surfaces, which do not exhibit adsorbate pairing, the barrier

for the surface-stabilized dissociation of methane can be linearly correlated to the

adsorption energy of either H or CH3 [202]. On nonmetallic oxide surfaces, this

relationship is no longer valid, and the adsorption energy of coadsorbed H and

CH3 needs to be employed instead [202]. This can be seen as a consequence of the

complex character of adsorbate pairing, as exposed in Paper V.

When screening potential catalysts, it needs to be recognized that the free energy

landscape for methane oxidation may be rather different as compared to PdO(101).

Transition states and intermediates which display negligible degrees of rate control on

PdO(101) may become influential on other surfaces.
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Chapter 6

Reflections on computational

methodology

This chapter offers a discussion of the methodological aspects contained in the appended

papers. These include (i) the exchange-correlation functional dependence, (ii) local and

global optimization methods, (iii) the calculation of partition functions, and (iv) kinetic

modelling approaches.

6.1 Density functionals

In this thesis mainly the GGA functional PBE and the hybrid functionals PBE0 and

HSE06 have been used. While the PBE functional is often considered a sensible choice

for calculations involving metallic Pd, it has become clear that several properties of bulk

PdO and the PdO(101) surface are not described satisfactorily by the PBE functional.

Regarding bulk PdO, experiments indicate semiconducting behaviour with a band

gap of circa 1 eV [243, 244]. As mentioned in Chapter 2, (semi-)local functionals describe

PdO as a metal, albeit with a small density of states at the Fermi level [245, 246]. A

Kohn-Sham band gap close to the experimental value opens up when hybrid functionals

such as PBE0 and HSE06 are used [65]. Also the Pd 3d shift between bulk Pd and bulk

PdO is sensitive to the exchange-correlation functional. This is discussed in Paper VII,

where the effect of HF exchange on the computation of CLSs is investigated. Using the

PBE functional, this shift is underestimated by circa 0.7 eV. PBE0 and HSE06 single-point

calculations at the PBE geometry yield better agreement with experiment, though the

PBE underestimation tends to be overcorrected when 25% of HF exchange is used. In

Paper VII the functional dependence is attributed, in part, to the slight increase in the

Pd-O charge separation upon admixing the HF exchange. Similarly, also the C 1s CLSs

in the ESCA molecule (ethyl trifluoroacetate) are found to be better described with PBE0

than with PBE due to an increased C-O and C-F charge separation in the initial state.

These effects can be attributed to a reduction of the self-interaction error, which leads to

more favourable charge accumulation on electronegative elements.
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Concerning the chemical properties of the PdO(101) surface, there are also several

indications that hybrid functionals generally improve on the generalized-gradient approxi-

mation. Experimentally it has been found that CO adsorbs mainly atop of undercoordi-

nated Pd atoms, with a large O 1s shift with respect to the bulk oxide. The preference for

the atop position and the magnitude of the O 1s shift is is better reproduced with PBE0

than with PBE (see Paper VII). Molecular adsorption of O2 to the undercoordinated Pd

sites is also sensitive to the exchange-correlation treatment (see Paper IV). Compared to

temperature programmed desorption (TPD) measurements [225, 228], the PBE functional

leads to a significant overbinding of the O2 molecule, whereas the adsorption energy is

much reduced using HSE06. This difference has a marked effect on the description of the

complete CH4 oxidation reaction: at low temperatures PBE will predict surface poisoning

by molecular oxygen, whereas HSE06 gives the experimentally observed site blocking by

water. Judging from the apparent activation energy at high temperatures, also the barrier

for CH4 dissociation appears to be better described by hybrid functionals.

Exchange-correlation dependencies are also addressed in Paper V in the context of

OH-H and NO2-NO pairing on BaO(100), TiO2(110), CeO2(111) and PdO(101). The

adsorption of OH and NO2 on cationic sites is typically significantly less exothermic with

HSE06 as compared to PBE, The adsorption of H and NO, on the other hand, is typically

more exothermic in HSE06. Also OH-H and NO2-NO pairing energies are generally

more exothermic using the hybrid functional. This functional dependence is not only of

electronic origin, but includes significant contributions from ionic relaxation. It is hence

not always sufficient to perform hybrid functional single-point calculations at the PBE

geometries. This appears to be most pronounced in the case of the open-shell molecules

on the surfaces other than PdO(101). Unfortunately, there are currently no experimental

measurements nor high-level wavefunction calculations to which the two functionals can

be compared. It is known, however, that hybrid functionals offer better descriptions of

the localized Ti3+ and Ce3+ states (and associated polaronic distortions) as compared to

GGA functionals where the defect states are delocalized over several cations.

Van der Waals interactions are usually considered to be relatively unimportant when

dealing with small molecules that are covalently bonded to the substrate, and have

therefore not been considered in this thesis. One exception, however, is made for the case

of molecularly adsorbed water (see Paper IV). Using the Grimme dispersion correction

[247] a van der Waals contribution of 0.2 eV is calculated to the total adsorption energy.

This correction leads to an improved description of the water inhibition at low temperatures.

A similar van der Waals contribution has also been found to bring the calculated adsorption

energy of water on the CeO2(111) surface in closer agreement with TPD data [248].
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6.2 Local optimization

Local minimization can usually be executed in a straightforward manner when using the

relatively inexpensive GGA functionals, starting e.g. from a hand-made guess for the

geometry. Hybrid functionals, however, are more computationally intensive by several

orders of magnitude, which calls for more careful approaches. The local minimizations

using the HSE06 functional in Paper V are usually performed starting from the relaxed

PBE geometry. In case significant distortions are expected to occur due to the formation

of localized Ti3+ and Ce3+ states, the relaxed PBE+U geometry is used instead, with

effective U values of 4-5 eV applied to the Ti d or Ce f states. In Paper V the cost of

the local minimization is further limited by only including the Γ-point in the evaluation of

the Fock operator. The full k-point mesh is only used in a single ground state calculation

at the final geometry. Selected test cases, such as H adsorbed on CeO2(111), indicate

that this approximation is suitable.

For transition state searches, such as the ones performed in Paper VI and Paper

IV, the dimer method often proved more convenient than the more commonly used NEB

method. As the reactant and product geometries are not needed, a reasonable guess for

the transition state and the negative curvature mode is sufficient. Although the dimer

method can require more force calls to converge to the saddle point, it can still result

in a reduced computational cost thanks to the reduced number of structures. This is

particularly the case when the minimum energy path is long and many intermediates are

needed in the NEB method. One example where this problem may arise is the reaction of

surface species with formation of a product in the gas phase.

6.3 Global optimization

During this thesis work also the problem of global structural optimization has been

investigated. One example where this problem arises in the context of computational

catalysis is the structure of surface oxides on transition metal surfaces. In order to evaluate

and develop genetic algorithms for such structures, the Pd10O8 surface oxide on Pd(111)

is used as a test case. The structure of this surface oxide on was originally found through

simulated annealing [104], requiring on the order of 105 force calls.

When the potential energy landscape is described using a ReaxFF potential [249], the

global minimum is not the real (
√

6×
√

6) structure but a lower symmetrical structure

containing two- and threefold coordinated Pd atoms (see Figure 1). Three ways have

been found so far to improve the performance of the standard ASE-GA code for the

Pd10O8 surface oxide case. Firstly, the effect of decoupling the pairing and crossover
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Figure 6.1: Left: global minium for the Pd10O8 surface oxide layer on Pd(111) using
the ReaxFF potential. Colour code: Pd (light), O (dark). Right: average success rates
(gray) and required number of GA iterations for retrieving the global minimum using
different GA implementations. In each version, 90% (10%) of the candidates are created
by crossover (mutation).

operations is investigated. By default, it is suggested to apply mutations after a structure

has been generated from a crossover operation, but before undergoing local optimization

[250]. Mutating already relaxed structures is however found to be more effective. Figure

6.1 shows that this leads to a higher success rate compared to the default case, without

increasing the average number of steps required to retreive the global optimum.

The other two improvements aim to take advantage of a priori knowledge about the

symmetry of the target structure. This can be useful because stable structures often

display symmetry and because such knowledge is often more readily available than the full

geometrical structure. The ReaxFF global minimum possesses the p2 plane symmetry,

with a subset of the atoms displaying p4 symmetry. Firstly, a mutation is designed that

symmetrizes an existing structure to a mixture of p2 and p4 symmetries. Secondly, a

entirely symmetry-restricted GA is constructed, where only p2 -symmetrical structures

are considered and where the symmetry is conserved by the genetic operators and the

local optimization procedure. Figure 6.1 shows that both approaches allow to further

improve the success and convergence rates of the algorithm.

Currently ongoing work indicates that the above findings also apply when the potential

energy landscape is described by the PBE functional. Using the same Pd10O8 unit

on a two-layer Pd(111) slab, the
√

6 structure is found after circa 50 iterations of the

algorithm on average, requiring circa 5 · 103 force calls on average. The employed genetic

algorithm (described in Chapter 3) uses a population of 20 structures and a typical set of
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genetic operators (80% cut-and-splice operator, 10% O-Pd permutations and 10% rattle

mutation). The initial random structures are generated with p4 symmetry (scanning

tunneling microscopy images show that the structure has p4mm symmetry).

6.4 Partition functions

In Paper IV also the pre-exponential factors of the rate coefficients are evaluated from

first principles. It is often a point of discussion how this evaluation should be performed,

in particular which statistical mechanical model (such as the quantum harmonic oscillator

(QHO), the free or hindered translator, the rigid rotor, ...) should be used to describe the

partition function of a given eigenmode. The guiding principle, however, is rather clear:

the model should be a faithful representation of the part of the potential energy landscape

(PES) that is relevant at the temperature of interest. If the calculated eigenenergy

exceeds the thermal energy (e.g. 60 meV at 700 K), the relevant part of the PES can

be considered harmonic, such that the QHO model is appropriate. This is the case for

the vast majority of the encountered eigenmodes. When lower eigenenergies are observed,

more information about the PES is needed. In Paper IV, this is done by searching for

the appropriate transition state in the direction of the eigenmode. Molecularly adsorbed

H2O atop undercoordinated Pd atoms, for example, displays a low-curvature mode for

translation along the undercoordinated Pd rows. The barrier for diffusion along this

direction is found to be large compared to the thermal energy, implying that the QHO

model is more appropriate than the free or hindered translator models. Another example

is the rotation of CH3 adsorbed H2O atop undercoordinated Pd atoms along the Pd-C

axis. In this case, the associated eigenenergy as well as the barrier for rotation are low

compared to the thermal energy, so that the rigid rotor model is more appropriate.

6.5 Kinetic modelling

As shown in Paper IV and Paper V, adsorbates on metal oxide surfaces may experience

attractive interactions. Particularly relevant for methane oxidation over PdO(101) is the

electronic pairing between CH3 and H adsorbed on undercoordinated Pd and O atoms,

respectively. As the calculated stabilization can be very pronounced (up to 1 eV), it is

clear that the mean-field approximation will be in error. This is illustrated in Figure

6.2 for the case of a one-dimensional array of site pairs comparable to the PdO(101)

surface. As the pairing between the adsorbates becomes more exothermic, the mean-field

approximation severely underestimates the coverage of adsorbate pairs on the surface.

This effects becomes increasingly pronounced as the adsorbate coverage decreases.
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Figure 6.2: Ratio of the exact relative coverage of adsorbate pairs (ξexact) to the corre-
sponding mean-field result (ξmean−field), as a function of the adsorbate coverage θA (=θB)
and the attractive A-B interaction strength ε.

In the quasi-chemical approximation the spatial correlations between the adsorbates on

the PdO(101) are described more accurately (see Chapter 2). One remaining assumption,

however, is that surface diffusion is relatively fast, so that the distribution of an adsorbate

into paired and unpaired states is given by thermodynamic equilibrium. It would be

interesting to evaluate this approximation by resolving the barriers for diffusion and

simulating the reaction kinetics using kinetic Monte Carlo methods.
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Chapter 7

Conclusions and outlook

The main objective of this thesis has been to reach a detailed understanding of catalytic

methane oxidation over the PdO(101) surface. This has been done by investigating the

elementary surface reactions that occur when methane and other reactants interact with

the surface. The used methodology is based on first-principles calculations using density

functional theory (DFT), with different connections to experiments.

Several steps towards the objective have been achieved. By combining DFT calculations

with photoemission measurements, it is shown that PdO(101) provides sites for adsorption

of H2 and CO. H2 dissociates easily to form H atoms bound to undercoordinated Pd

and O atoms, whereas adsorbed CO is mainly found on top of the undercoordinated

Pd atoms of the surface. Additionally, the important role of the oxygen atoms below

the undercoordinated Pd atoms for methane oxidation is shown in a joint theoretical

and experimental study. The ligand effect on the local electronic structure at the

undercoordinated Pd surface atoms effectively explains the difference in activity between

single- and multilayer PdO(101) thin films on Pd(100).

This work also contains an investigation of the full reaction mechanism by which

methane is converted into carbon dioxide and water over the PdO(101) surface. A detailed

kinetic model of this mechanism has been constructed that is able to describe many

features of the methane oxidation kinetics in terms of of elementary reactions on the

PdO(101) surface.

Lastly, methodological contributions are made that highlight the sometimes limited

accuracy of gradient-corrected density functionals in calculating reaction energies, energy

barriers and core-level shifts involving the PdO(101) surface. Hybrid functionals are found

to generally provide an improved description of these properties, though at a considerable

additional computational cost.

In conclusion, the present work shows that it is possible to follow surface reactions and

identify adsorbed species on palladium oxide surfaces by combining DFT calculations and

carefully controlled experiments (most notably core-level spectroscopy). The combination

of theory and experiment proved to have symbiotic effect. On one hand, the calculations

have assisted in the interpretation of the experiments. On the other hand, the experimental
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measurements have made it possible to evaluate the theoretical methodology. In this

way, these combined studies have contributed to the understanding of the different types

of binding sites on, in particular, the PdO(101) surface, as well as to progresses in the

employed computational methodology. These two contributions, in turn, have allowed the

subsequent construction of a detailed theoretical model for the oxidation of methane.

7.1 Next steps

Currently ongoing work aims at further extending the kinetic model for methane oxidation

over PdO(101). The reaction network, for example, is being expanded to include surface

reactions relevant to low-temperature poisoning by CO2. Preliminary results indicate that

site blocking by HCO3-H pairs is responsible for this effect. Also the possible influence

of transport limitations will be examined by coupling the microkinetic simulations to a

model for pore and film transport. Additionally, the activity of oxidized versus metallic

Pd for methane oxidation will be revisited in a combined experimental and theoretical

study. Experimental reaction rates on metallic and oxidized Pd foil will then be compared

to calculated turnover frequencies on Pd(100) and PdO(101).

Another current line of research involves the development and application of genetic

algorithms for resolving surface structures. Alternative pairing and mutation operators

are being considered, as well as strategies to take advantage of the presence of symmetry.

A second computational topic will be to assess the performance of Perdew-Zunger self-

interaction-corrected functionals for adsorption properties of metal oxide surfaces. Lastly,

charged supercell correction schemes are being implemented to enable the study of charged

adsorbates on insulating surfaces. This would allow the computation of e.g. the dilute-

limit ionization potentials, electron and proton affinities and core-level shifts of adsorbates

in a periodic electronic structure code.

7.2 Outlook

The results obtained so far have several implications. The detailed understanding of

the different elementary surface reactions and their kinetic properties, for example, can

provide inspiration for the design of new materials with improved catalytic activity. Also

the advances in the understanding of the connection between the structure and the activity

of the PdO(101) surface can be useful to this end.

Next, the methodological contributions have raised awareness about the limited

accuracy of the generalized gradient approximation in the description of transition metal

oxides such as PdO. This highlights the current need for density functionals which bring
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DFT closer to chemical accuracy. To this end, also high-quality benchmark data are

needed, which are presently lacking due to both theoretical and experimental difficulties.

Reaction energies and activation energies on the PdO(101) surface may be a valuable

component of such a future data set.

Furthermore, the work shows that care needs to be taken in modelling surface kinetics

on insulating and semiconducting oxide surfaces, where the presence of strong adsorbate

interactions leads to a breakdown of the mean-field approximation. This necessitates the

use of methods that take into account the correlations between adsorbed particles. This

information can also be of interest to experimental activity when kinetic parameters are

deduced from reactor data.
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[95] P. E. Blöchl. Phys. Rev. B 50, 24 (1994), 17953–17979. doi: 10.1103/PhysRevB.

50.17953.

[96] G. Kresse and D. Joubert. Phys. Rev. B 59, 3 (1999), 1758–1775. doi: 10.1103/

PhysRevB.59.1758.

[97] M. Marsman and G. Kresse. J. Chem. Phys. 125, 10 (2006), 104101. doi: 10.

1063/1.2338035.

[98] G. Kresse and J. Furthmüller. Phys. Rev. B 54, 16 (1996), 11169–11186. doi:

10.1103/PhysRevB.54.11169.

[99] I. Chorkendorff and J. W. Niemantsverdriet. Concepts of Modern Catalysis and

Kinetics. John Wiley & Sons, 2006.

[100] Drawn with help from the TikZ example ‘Clusters of atoms’ by A.E. Bolzan. url:

http://www.texample.net/tikz/examples/clusters-of-atoms/.

[101] K. Siegbahn and C. Nordling. ESCA, Atomic, Molecular and Solid State Structure

Studied by Means of Electron Spectroscopy. 1967.

[102] S. Mobilio, F. Boscherini, and C. Meneghini, eds. Synchrotron Radiation - Basics,

Methods and Applications. Springer, 2015.

[103] J. N. Andersen et al. Phys. Rev. Lett. 67, 20 (1991), 2822–2825. doi: 10.1103/

PhysRevLett.67.2822.

[104] E. Lundgren et al. Phys. Rev. Lett. 88, 24 (2002), 246103. doi: 10 . 1103 /

PhysRevLett.88.246103.

[105] M. Todorova et al. Surf. Sci. 541, 1–3 (2003), 101–112. doi: 10.1016/S0039-

6028(03)00873-2.

74

http://dx.doi.org/10.1007/s10853-012-6570-4
http://dx.doi.org/10.1007/s10853-012-6570-4
http://dx.doi.org/10.1103/PhysRevB.71.035109
http://dx.doi.org/10.1088/0953-8984/22/25/253202
http://dx.doi.org/10.1088/0953-8984/22/25/253202
http://dx.doi.org/10.1007/BF01339455
http://dx.doi.org/10.1103/PhysRevB.13.5188
http://dx.doi.org/10.1103/PhysRevB.16.1748
http://dx.doi.org/10.1007/BF03014877
http://dx.doi.org/10.1103/PhysRevB.50.17953
http://dx.doi.org/10.1103/PhysRevB.50.17953
http://dx.doi.org/10.1103/PhysRevB.59.1758
http://dx.doi.org/10.1103/PhysRevB.59.1758
http://dx.doi.org/10.1063/1.2338035
http://dx.doi.org/10.1063/1.2338035
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://www.texample.net/tikz/examples/clusters-of-atoms/
http://dx.doi.org/10.1103/PhysRevLett.67.2822
http://dx.doi.org/10.1103/PhysRevLett.67.2822
http://dx.doi.org/10.1103/PhysRevLett.88.246103
http://dx.doi.org/10.1103/PhysRevLett.88.246103
http://dx.doi.org/10.1016/S0039-6028(03)00873-2
http://dx.doi.org/10.1016/S0039-6028(03)00873-2


[106] N. M. Martin et al. J. Phys. Chem. C 118, 28 (2014), 15324–15331. doi: 10.1021/

jp504387p.

[107] G. Onida, L. Reining, and A. Rubio. Rev. Mod. Phys. 74, 2 (2002), 601–659. doi:

10.1103/RevModPhys.74.601.

[108] L. Hedin. Phys. Rev. 139, 3A (1965), A796–A823. doi: 10.1103/PhysRev.139.

A796.

[109] O. Takahashi and L. G. M. Pettersson. J. Chem. Phys. 121, 21 (2004), 10339–

10345. doi: 10.1063/1.1809610.

[110] D. Nagel. “Interpretation of Valence Bond X-ray Spectra”. Advances in X-ray

Analysis. Vol. 13. New York: Plenum Press, 1970, pp. 182–236.

[111] F. C. Brown. “Ultraviolet Spectroscopy of Solids with the Use of Synchrotron

Radiation”. Solid State Physics. Ed. by F. S. a. D. T. Henry Ehrenreich. Vol. 29.

Academic Press, 1974, pp. 1–73.

[112] F. Bechstedt. Phys. Status Solidi (B) 112, 1 (1982), 9–49. doi: 10.1002/pssb.

2221120102.

[113] C. Noguera, D. Spanjaard, and J. Friedel. J. Phys. F: Met. Phys. 9, 6 (1979), 1189.

doi: 10.1088/0305-4608/9/6/022.

[114] E. Pehlke and M. Scheffler. Phys. Rev. Lett. 71, 14 (1993), 2338–2341. doi:

10.1103/PhysRevLett.71.2338.

[115] J. N. Andersen et al. Phys. Rev. B 50, 23 (1994), 17525–17533. doi: 10.1103/

PhysRevB.50.17525.

[116] A. Pasquarello et al. “Core-Level Shifts in Si(001)-SiO2 Systems: The Value of

First-Principle Investigations”. Fundamental Aspects of Ultrathin Dielectrics on

Si-based Devices. Ed. by E. Garfunkel, E. Gusev, and A. Vul. NATO Science Series

47. Springer Netherlands, 1998, pp. 89–102.

[117] H. Grönbeck et al. Phys. Rev. B 85, 11 (2012), 115445. doi: 10.1103/PhysRevB.

85.115445.

[118] W. L. Jolly and D. N. Hendrickson. J. Am. Chem. Soc. 92, 7 (1970), 1863–1871.

doi: 10.1021/ja00710a012.

[119] W. F. Egelhoff Jr. Surf. Sci. Rep. 6, 6–8 (1987), 253–415. doi: 10.1016/0167-

5729(87)90007-0.
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