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We show that the engineering of tunnel barriers forming at the interfaces of a one-dimensional spin valve
provides a viable path to a strong gate-voltage tunability of the magnetoresistance effect. Specifically, we
investigate theoretically a carbon nanotube (CNT) spin valve in terms of the influence of the CNT-contact
interface on the performance of the device. The focus is on the strength and the spin selectivity of the tunnel
barriers that are modeled as Dirac-δ potentials. The scattering matrix approach is used to derive the
transmission coefficient that yields the tunneling magnetoresistance (TMR). We find a strong nontrivial
gate-voltage response of the TMR in the absence of spin-orbit coupling when the energy of the incident
electrons matches the potential energy of the barrier. Analytic expressions for the TMR in various limiting
cases are derived. These expressions are used to explain previous experimental results, and also to predict
prospective ways for device optimization with respect to the size and tunability of the TMR effect in the
ballistic transport regime by means of engineering the tunnel barriers at the CNT-contact interfaces.
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I. INTRODUCTION

The already-vast and still-growing research area of
spintronics offers an alternative functionality for solid-state
devices based on the spin of the electrons rather than their
charge [1,2]. In this context, graphene and carbon nano-
tubes (CNTs) are regarded as extremely promising materi-
als [3–5] since the spin lifetime is long due to the small
spin-orbit coupling and due to a low natural abundance of
C13 nuclear spins [6–10]. Additionally, the Fermi velocity
of these materials is very high, resulting in short dwell
times within a device. This combination can, in turn, lead to
a large magnetoresistance (MR) effect as well as to a large
absolute change of resistance—both important for a good
performance of spin-valve devices [4]. A key issue for such
devices is to enhance the spin-injection efficiency by
optimizing both the contact material [3] and the tunnel
barrier [4,10,11].
Another major point, not yet discussed in depth, regards

the fact that many interesting effects in spintronic devices
stem from the spin-orbit coupling [12,13]. To tune the MR
effect efficiently with a gate voltage, for instance, as in a
spin transistor, a strong spin-orbit coupling (SOC) is
desired. Though the SOC is very weak in graphene
[14], it can be strongly enhanced by adatoms that induce
local sp3 hybridization in the carbon bonds [15]. On the

other hand, the spin-orbit interaction in CNTs is stronger,
for the same reason, due to their curvature [16,17] and has
been found to be even larger in some devices [18]. A gate
voltage will tune the MR effect in such materials rather
efficiently; however, this tuning is usually achieved at the
expense of the spin relaxation time, which is the great
asset of carbon materials.
In this paper, we present model calculations that reveal

another option for gate-controlled spin devices that avoids
enhancing the spin-orbit coupling and, therefore, the spin
relaxation. We demonstrate that, in quasi-one-dimensional
devices, the MR effect can show a strong tunability with
gate voltage, depending on the properties of tunnel
barriers arising at the interfaces of the electrodes.
Specifically, we systematically analyze how the strength
and spin selectiveness of these tunnel barriers affect
magnetotransport characteristics of a ballistic one-
dimensional spin valve employing a CNT as model
system. This aspect seems to be of key importance for
a full understanding of the injection of spin-polarized
electrons into a CNT, and it has not been examined in full
detail hitherto. Actually, although spin-dependent trans-
port through a CNT attached to ferromagnetic metallic
electrodes has been the subject of extensive experimental
studies for almost two decades [19–24], only recently has
the role of the tunnel-barrier strength in this process been
addressed [10]—showing that the MR of a device is
significantly influenced by this factor.*misiorny@amu.edu.pl
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For the purpose of this study, we consider a CNT-based
spin valve that basically acts as an electronic interferometer,
a setup employed formerly both in experiments [25–27]
and theoretically [28,29]. In order to capture the effect of
electrode-CNT interfaces, at which tunnel barriers form, we
treat them as spin-dependent Dirac-δ potentials. A similar
approach has been used to study spin injection between a
ferromagnetic metal and a two-dimensional electron system
[30,31]. Then, calculations of spin-dependent transport
through a device are derived by means of the scattering-
matrix approach. We find that the engineering of the
strength and spin-selective properties of the tunnel barriers,
in combination with the gate-voltage tuning, provides a
path for obtaining devices in which the magnitude of the
MR effect can be adjusted in a broad range extending from
−15.5% up to þ40%.
The paper is organized as follows. First, in Sec. II, we

introduce the model of a CNT-based spin valve and define
the concept of a tunnel barrier at the electrode-CNT inter-
face. Next, in Sec. III, we provide a theoretical description of
spin injection through the interface and derive the corre-
sponding transmission coefficient for conduction electrons.
This derivation enables us to determine the linear transport
through the device, as outlined in Sec. IV. Numerical results
are presented in Sec. V, where we discuss cases of both
single (Sec. VA) and many orbital (Sec. V B) transport
channels. In that section, we also consider in detail the limit
of strong tunnel barriers (Sec. VA 1), as well as the situation
where a device is characterized by the asymmetric (Sec. VA
2) and spin-selective (Sec. VA 3) barriers. Finally, we
conclude the paper in Sec. VI with a discussion about
possible implementations of such barriers regarding the
essential effects and the general performance to be expected
from prospective devices.

II. MODEL OF A CNT-BASED SPIN VALVE

A device under consideration consists of two ferromag-
netic (FM) metallic leads interconnected by a CNT which
we approximate as a ballistic and noninteracting one-
dimensional (1D) quantum wire [29,32,33]; see Fig. 1(a).
Importantly, at both CNT-lead interfaces, a tunnel barrier
can form whose exact shape, generally different for each
interface, is unknown. For this reason, we model scattering
of tunneling electrons at the interfaces by means of a spin-
selective repulsive Dirac-δ potential Uq

σδðzqÞ for q ¼ L
(left), R (right); see Fig. 1(b). Such an approach has already
been shown to suffice in capturing key transport features
of the interface [30,31,34,35], but it has not yet been
systematically applied to analyze how its properties affect
one-dimensional spin transport.
In the model to be analyzed, two identical FM leads are

described as a reservoir of noninteracting, itinerant elec-
trons within the Stoner model, with the dispersion relation
given by

εσ ¼
ℏ2ðkσÞ2
2m� − ησ

ΔS

2
− EF: ð1Þ

Here, ΔS denotes the Stoner splitting, η↑ð↓Þ ¼ �1, and EF

represents the Fermi energy—note that the energy εσ is
measured relative to the Fermi level. Additionally, we
assume the effective mass to be equal to the electron’s
mass, m� ≈me. Generally, in a bulk system with a para-
bolic dispersion (i.e., for the free-electron model) the
spin-dependent density of states (DOS) ρσ at the Fermi
level (per unit volume and per spin channel) is related to the
spin-dependent Fermi wave vector, kFσ ≡ kσðεσ ¼ 0Þ, as
ρσ ¼ 2mekFσ=ð4π2ℏ2Þ, as shown on the left side of
Fig. 1(b). With such a definition of DOS, we introduce
the spin-polarization coefficient p for the material of which
leads are made [36],

p ¼ ρþ − ρ−
ρþ þ ρ−

; ð2Þ

with the spin index η ¼ � referring now to spin-majority
(þ) and spin-minority (−) electrons. Note that the notion of
spin-majority and -minority electrons is useful in the
present case because two different collinear configurations
of spin moments of electrodes—that is, parallel (P) and
antiparallel (AP)—will be considered. Specifically, the
orientation of a spin moment of the left electrode will be
kept fixed so that the relation between “spin-up” and “spin-
down” electrons and spin-majority and -minority electrons
in the left electrode takes the following form:

(a)

(b)

FIG. 1. (a) A graphic depiction of the model device: a gated
CNT inserted between two ferromagnetic (FM) metallic leads
whose spin moments are oriented either parallel or antiparallel.
(b) Schematic representation of a tunnel barrier arising at the left
CNT-lead interface that is modeled as a spin-selective repulsive
Dirac-δ potential UL

σ δðzLÞ. In the left (right) side of (b), a sample
dispersion relation for a FM lead (a CNT around the Fermi point
K) is shown. Here, CNP stands for the charge-neutrality point
with respect to which energy is measured. For a detailed
description, see Sec. II.
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P=APðσLÞ≡
�þif σ ¼ ↑;

−if σ ¼ ↓:
ð3Þ

This fixed orientation of a spin moment in the left electrode
also sets the reference frame for spin orientations of
electronic spins in the right electrode. As a result, when
a spin moment of the right electrode is parallel or anti-
parallel with respect to the left one, we get, respectively,

PðσRÞ≡
�þif σ ¼ ↑;

−if σ ¼ ↓;
ð4Þ

and

APðσRÞ≡
�þif σ ¼ ↓;

−if σ ¼ ↑:
ð5Þ

Moreover, in the limit of moderate spin polarizations
observed in typical materials used for electrodes [36,37]
ΔS=ð2EFÞ < 1, so that a wave vector can be approximated
as kFη ≈ k0½1þ ηΔS=ð4EFÞ�, with k0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2meEF

p
=ℏ, and,

consequently, one can use the following parametrization of
the Stoner splitting parameter ΔS ¼ 4EFp. Note that the
above approximation remains valid only for moderate
values of the spin polarization of the electrodes (p < 0.5).
Next, essential features of a CNT in the vicinity of the

Fermi point K (K0) are captured by a dispersion relation
[32,33,38],

εwn ¼ �ℏvwF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkwn − kwFÞ2 þ ðn=rÞ2

q
þ Eg − Ew

F; ð6Þ

typical for 1D conductors [39], with the þ (−) sign
corresponding to the conduction (valence) band; see the
right side of Fig. 1(b). In Eq. (6), vwF stands for the Fermi
velocity and n=r represents the quantized transverse
momentum of a metallic CNT [38], with r denoting the
radius of a CNT and n ¼ 0; 1; 2;… being the subband
index. As above, the energy εwn is defined relative to the
Fermi level Ew

F. Recall that, for an undoped CNT, it
coincides with the charge-neutrality point (CNP), i.e.,
Ew
F ¼ 0, so that only one orbital channel (n ¼ 0) can

contribute to transport at low temperature. However, owing
to modification of the immediate environment of a CNT,
Ew
F can be shifted by as much as �1 eV [40,41], and more

channels thus become available for transport. The Fermi
level can be further adjusted by application of an external
gate voltage, which leads to the shift Eg due to the
capacitive coupling between the gate and a CNT [40].
Note that Eq. (6) remains valid as long as the variation in Eg

is small; that is, the Fermi level is moderately shifted
around Ew

F. It is assumed that transport of electrons along a
CNT is ballistic and no mixing of channels occurs.
Finally, before we turn to the discussion of electron

tunneling through the electrode-CNT interface, we would

like to briefly comment on applicability limits of the model
under consideration. We recall that electrodes are here
approximated by only free (s-band) electrons, and tunnel
barriers are treated as a Dirac-δ potential. In fact, the tunnel
barrier forming at the electrode-CNT interface can be of a
much more complex nature, with a potential profile
determined by additional factors not included in the present
considerations, like the interface roughness and adsorbates
[42,43]. Furthermore, materials typically used for electro-
des involve transition metals and their alloys, in the case of
which the free-electron model may be insufficient to
capture all key features. For example, for these materials,
a more complicated band structure is expected to underlie
the tunneling of electrons across the interface [44]. In order
to accommodate fully all of these intricacies—that is, the
complex electrode-CNT hybridization and the exact mor-
phology of the interface—a model from first principles is
needed [45,46]. Nevertheless, the present approach already
shows great potential for one-dimensional CNT spin valves
in the ballistic transport regime with respect to the size and
tunability of the MR effect.

III. TUNNELING THROUGH
A FM-METAL–CNT INTERFACE

Spin injection across an interface with the band
structure mismatch at the Fermi energy has already been
addressed, e.g., for FM-metal–metal [47] and FM-metal–
semiconductor heterojunctions [30,31]. Here, we consider
a spin-dependent tunneling of electrons through the FM-
metal–CNT interface, as illustrated in Fig. 1(b). The
relevant transmission coefficient T can be derived by
means of standard quantum-mechanical methods. The
key problem one has to face is then how to match the
wave functions at the interface. Let us focus on the left
interface for the moment.
For an ideal interface (i.e., without spin-flip and inelastic

or interchannel scattering) the particle current jzσn along the
z axis across the interface has to be conserved in each spin
(σ) and orbital (n) channel. This requirement basically
means that the current in the vicinity of the barrier on its left
side, jzσnðz−LÞ, has to match that on the right side, jzσnðzþL Þ,
namely, jzσnðz−LÞ ¼ jzσnðzþL Þ, with z�L ≡ zL � 0þ and 0þ

denoting an infinitesimally small displacement. Close to
the interface, on its left side (z < zL), corresponding to a
FM metal, this current is given by

jzσnðz < zLÞ

¼ iℏ
2me

f½∂zΨ†
σnðzÞ�σ0ΨσnðzÞ −Ψ†

σnðzÞσ0½∂zΨσnðzÞ�g;

ð7Þ

whereas on the right side (z > zL)—that is, in a CNT—it
takes the form
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jzσnðz > zLÞ ¼ vwFΦ
†
σnðzÞσzΦσnðzÞ; ð8Þ

with σz (σ0) denoting the Pauli (identity) matrix, and the
wave functions Ψ and Φ defined as

ΨσnðzÞ ¼
�

ψ→
σneikσz

ψ←
σne−ikσz

�
; ð9Þ

and

ΦσnðzÞ ¼
�

ϕ→
σneik

w
n z

ϕ←
σne−ik

w
n z

�
: ð10Þ

Here, ψd
σn and ϕd

σn generally represent the respective
probability amplitude for right- (d ¼→) and left- (d ¼ ←)
moving electrons. Inserting Eqs. (9) and (10) into the
expressions for jzσnðzÞ, one obtains jzσnðz < zLÞ ¼
ðℏkσ=meÞ½jψ→

σnj2 − jψ←
σnj2� and jzσnðz > zLÞ ¼ vwF½jϕ→

σnj2−
jϕ←

σnj2�. Consequently, one can define the transmission
amplitude for electrons incident on the left interface from
the left (→) or right (←) in terms of the flux amplitude as

T L→
σn ¼

����
ffiffiffiffiffiffi
vwF

p
ϕ→
σnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏkσ=me

p
ψ→
σn

����2 ð11Þ

and

T L←
σn ¼

����
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏkσ=me

p
ψ←
σnffiffiffiffiffiffi

vwF
p

ϕ←
σn

����2: ð12Þ

Analogous definitions also hold for the right inter-
face. Interestingly, one can note that the same result for
jzσnðz > zLÞ can be reached if one uses the free-electron
model, for which

jzσnðz > zLÞ

¼ iℏ
2m�

n
f½∂zΦ†

σnðzÞ�σ0ΦσnðzÞ −Φ†
σnðzÞσ0½∂zΦσnðzÞ�g;

ð13Þ
with the effective mass m�

n ¼ ℏkwn=vwF. For this reason, the
continuity of the current across the qth interface between a
FM lead and a CNT can be ensured by imposing the
following boundary conditions for wave functions [48–50]:ffiffiffiffiffiffiffi

Mn

me

s
Tr½σ0ΨσnðzqÞ� ¼

ffiffiffiffiffiffiffi
Mn

m�
n

s
Tr½σ0ΦσnðzqÞ�; ð14Þ

ffiffiffiffiffiffiffi
Mn

m�
n

s
Tr½σ0∂zΦσnðzÞjzq � −

ffiffiffiffiffiffiffi
Mn

me

s
Tr½σ0∂zΨσnðzÞjzq �

¼ 2MnU
q
σ

ℏ2

ffiffiffiffiffiffiffi
Mn

m�
n

s
Tr½σ0ΦσnðzqÞ�; ð15Þ

with Mn ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
mem�

n
p

. The transmission coefficient T q
σn≡

T q→
σn ¼ T q←

σn , which characterizes the tunneling of an

electron with spin σ to or out the nth channel of a CNT
across the qth interface, takes thus the following form
(ε ¼ εσ ¼ εwn ):

T qc
σnðεÞ ¼

4kcðσqÞðεÞkwn ðεÞ
½kcðσqÞðεÞ þ kwn ðεÞ�2 þ ½Zq

σ �2kwn ðεÞκ
: ð16Þ

The action of the magnetic configuration index cðσqÞ,
which, for a given configuration c ¼ P, AP, relates spin-σq
electrons to spin-majority or -minority electrons in the qth
electrode, should be interpreted by means of Eqs. (3)–(5).
Furthermore, κ ¼ 2EF=ðℏvwFÞ, and Zq

σ ¼ k0U
q
σ=EF is the

spin-selective dimensionless barrier strength, defined as
the ratio of the spin-dependent potential energy of the
barrier k0U

q
σ to the energy of an incident electron from

the Fermi level of a lead. Here, we additionally introduce
the spin-asymmetry parameter αq for the qth barrier,

αq ¼
Zq
↑ − Zq

↓

Zq
↑ þ Zq

↓

; ð17Þ

so that Zq
σ ¼ Zqð1þ ησαqÞ and Zq ¼ ðZq

↑ þ Zq
↓Þ=2, with

−1 < αq < 1. Note that a positive (negative) αq means that
the probability for spin-down (spin-up) electrons to tunnel
through the barrier is higher due to a smaller barrier
strength. The limit of αq → þ1ð−1Þ corresponds, then,
to a vanishingly small barrier, i.e., almost perfect trans-
mission, for spin-down (spin-up) electrons. Importantly, the
spin selectiveness of a tunnel barrier, characterized by the
parameter αq, is an inherent property of the barrier and is
not associated with the magnetic configuration of the
electrodes. For example, note that, in Eq. (16), the
magnetic-configuration index cðσqÞ affects only the wave
vectors of electrons in the electrode. This effect should not
be confused with the spin dependence of the transmission
coefficient T qc

σnðεÞ of a barrier, which involves both the
effects of the barrier spin selectiveness (determined by
the spin asymmetry αq) and the magnetic properties of the
electrodes (characterized both by the spin polarization p
and the magnetic configuration of the valve).

IV. LINEAR TRANSPORT THROUGH
A CNT-BASED SPIN VALVE

Within the scattering-matrix approach, the linear-
response conductance at temperature T is given by [51]

GP=AP ¼
�
e2

h

�
1

4kBT

X
nσ

Z
dεT P=AP

σn ðεÞcosh−2
�

ε

kBT

�
;

ð18Þ

where T P=AP
nσ ðεÞ stands for the transmission coefficient of

an electron with spin σ passing through the nth channel of a
device in the P or AP magnetic configuration [28,51],
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T c
σnðεÞ ¼

T Lc
σnðεÞT Rc

σnðεÞ
j1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1 − T Lc

σnðεÞ�½1 − T Rc
σnðεÞ�

p
eiθ

c
σnðεÞj2 : ð19Þ

In the equation above, θcσnðεÞ ¼ 2δnðεÞ þ φLc
σnðεÞ þ φRc

σnðεÞ
is the quantum-mechanical phase an electron acquires
during its resonant transport through a CNT. Here, the

first term, δnðεÞ¼l½kwFþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðεþEw

F−EgÞ2=ðℏvwFÞ2−ðn=rÞ2
q

�
[cf. Eq. (6)], corresponds to the phase stemming from the
ballistic propagation of an electron between the opposite
interfaces of a CNT of the length l, while the second one,
φLc
σnðεÞ þ φRc

σnðεÞ, represents the spin-dependent interfacial
phase shift [28] that arises when an electron is scattered at
the left (L) and right (R) interface back into a CNT. This
shift is basically related to the reflection amplitudes as
φL
σnðεÞ ¼ arg½rL←σn ðεÞ� and φR

σnðεÞ ¼ arg½rR→σn ðεÞ�, with the
amplitudes at the interfaces defined as rL←σn ¼ ϕ→

σn=ϕ←
σn and

rR→σn ¼ ϕ←
σn=ϕ→

σn, so that one finds

φqc
σnðεÞ ¼ arg

�−kcðσqÞðεÞ þ kwn ðεÞ − iZq
σ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kwn ðεÞκ

p
kcðσqÞðεÞ þ kwn ðεÞ þ iZq

σ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kwn ðεÞκ

p �
: ð20Þ

Finally, one can note that, in the limit of low temperature,
only electrons from the vicinity of the Fermi level (ε ¼ 0)—
that is, from the energy window of a few kBT around the
Fermi level—contribute to transport; cf. Eq. (18). At such an
energy scale, wave vectors kσðεÞ and kwn ðεÞ vary insignifi-
cantly and, as a consequence, the change of T q

σnðεÞ and
φq
σnðεÞwith the energy is negligibly small. Therefore, in the

following discussion, we assume T qc
σnðεÞ ≈ T qc

σnð0Þ≡ T qc
σn

and φqc
σnðεÞ ≈ φqc

σnð0Þ≡ φqc
σn.

V. NUMERICAL RESULTS AND DISCUSSION

In order to discuss the dependence of spin-dependent
transport through a CNT-based spin valve on the strength
and properties of tunneling barriers at the interfaces, we
consider a model CNT of the length l ¼ 100 nm and the
radius r ¼ 2 nm, characterized by vwF ¼ 8 × 106 m=s and
kwF ¼ 8.5 nm−1 [25]. As a result, the spacing between the
subbands at the Fermi point amounts to ΔE ≈ 260 meV.
Furthermore, we assume that electrodes are described by
the Fermi energy EF ¼ 8.5 eV and the spin-polarization
parameter p ¼ 0.25. Such a value of p is very realistic since
common contact materials for CNTs, such as permalloy
and CoPd, exhibit this degree of spin-polarized injection of
electrons [10,52].
The change of transport properties of a spintronic device

when switching between the parallel and antiparallel
magnetic configuration is generally captured by the tun-
neling magnetoresistance (TMR),

TMR ¼ GP −GAP

GAP
: ð21Þ

If the TMR is positive (negative), it basically means
that conductance of the device is higher in the parallel
(antiparallel) magnetic configuration than in the antiparallel
(parallel) one.
In order to gain better insight into the expected effects,

first, in Sec. VA, we consider the simplest conceptual case,
that is, one with only one orbital channel (n ¼ 0) available
for transport. Such a case remains physically valid as long
as the Fermi level of a CNT lies in the vicinity of the
charge-neutrality point, jEw

Fj ≪ ΔE, so that, at low temper-
atures, the contribution of orbital channels (subbands) with
n ≠ 0 to transport can be neglected; see the right side of
Fig. 1(b). Later on, in Sec. V B, we abandon this constraint
and also discuss the case of many orbital channels by
assuming that the Fermi level is shifted away from the
charge-neutrality point.

A. The case of a single orbital channel

The hallmark of the model under discussion is the
presence of the interference pattern in transport character-
istics, as one can see in Fig. 2, where the TMR and
conductance are plotted for a device with two identical
tunnel barriers (ZL

σ ¼ ZR
σ ¼ Z). It is clear that such a pattern

in TMR stems directly from the periodic behavior of
conductance as a function of the shift of the Fermi level
due to a gate voltage Eg; see Figs. 2(d) and 2(f). Since the
conductance of the device G, Eq. (18), is essentially
determined by its transmission coefficient T , Eq. (19),
one can analyze T to obtain some basic information about
the nature of such oscillations.
From Eq. (19), one immediately finds that, for a given Z,

the transmission coefficient reaches its maximal achievable
value at resonant energies for p ∈ Z,

~εcσp ¼ Δεr
�
p −

1

2π
ðφLc

σ þ φRc
σ Þ

�
− ℏvwFk

w
F þ Eg; ð22Þ

with Δεr ¼ πℏvwF=l denoting the distance between con-
secutive resonances. Recall that here Ew

F ¼ 0, which
basically means that only one orbital channel (n ¼ 0) is
active in transport. Thus, for the sake of notational clarity,
in the remaining part of the present section, we omit the
orbital channel (subband) index n. Importantly, one should
notice that the position of these resonant states with respect
to the Fermi level can be adjusted by application of a gate
voltage, contributing via Eg. As a result, whenever ~εcσp ¼ 0,
one observes resonant tunneling of an electron through a
device, which manifests as increased conductance, as
shown in Figs. 2(d) and 2(f). Moreover, it should be
emphasized that ~εcσp depends indirectly also on the strength
of tunnel barriers Z via the spin-dependent interfacial phase
shifts φq

σ [see Fig. 3(b)] and, consequently, also on the
magnetic configuration of the electrodes. This effect is
especially observable in the nontrivial behavior of the TMR
for small values of Z; see, e.g., the long-dashed line for
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Z ¼ 1 in Fig. 2(c), where the energy of an incident electron
matches the potential energy of the barrier. In the opposite
limit of a large Z, on the other hand, only sharp resonant
dips in the TMR can be observed; see the double-dotted-
dashed line for Z ¼ 15 in Fig. 2(c). Note that, for small
barriers where Z ¼ 1, the TMR can be tuned between −8%
and 4%; see the long-dashed line in Fig. 2(c). These values
are rather large considering the high conductance in this
regime compared to the results in Man et al. [24]. It is,
therefore, important, while fabricating devices, to keep in

mind that the length and the barrier strength will affect the
tuning of the TMR effect with the gate voltage. In general,
it can be seen that the maxima in conductance, and
consequently also in a TMR signal, arise owing to the
phase factor θcσðεÞ occurring in the transmission coefficient
(19). It is, thus, essential to keep track of this phase when
simulating experimental data, and the present approach,
which straightforwardly relates both the interface trans-
mission (16) and the interfacial phase shift (20) to the
strength of a tunnel barrier forming at the interface, proves
to be useful for doing it consistently.
To understand how the strength of the tunnel barriers

affects the TMR, as shown in Figs. 2(a) and 2(b), let us
analyze the dependence of the spin-dependent transmission
T σ and the interfacial phase shift φσ of a single tunnel
barrier; see Figs. 3(a) and 3(b). First, in Fig. 2(a), one can
distinguish three generic regions with respect to the barrier
strength Z: for small Z ≲ 0.1 and large Z ≳ 10 regions
where the TMR remains roughly constant, and a transi-
tional region (0.1≲ Z ≲ 10) where TMR changes signifi-
cantly. Interestingly, the occurrence of these regions can be

(b) (e)

(c) (f)

(a) (d)

FIG. 2. Density maps of (a) tunneling magnetoresistance
(TMR) and (d) conductance GP in the parallel magnetic
configuration shown as functions of the barrier strength Z and
the shift of the Fermi level due to a gate voltage Eg in the case of
two identical tunnel barriers at T ¼ 2 K. Here, Δεr ¼
πℏvwF=lð≈16.5 meVÞ stands for the period of oscillations.
Horizontal thin dashed lines indicate two sample values,
Eg=Δεr ≈ 0.56 and 1.56, at which resonant dips in TMR occur
for a large Z. The middle panels, (b) and (e), display the cross
sections of (a) and (d), respectively, for selected values of Eg=Δεr
[see the legend in (b)], whereas the bottom panels, (c) and (f), are
analogous cross sections, but now ones for chosen values of Z
[see the legend in (c)]. The other parameters are as specified in the
main text.

(a)

(b)

(c) (d)

FIG. 3. The effect of spin-polarized electrodes, quantified by
the spin-polarization coefficient p, on transport properties of a
CNT-based spin valve with two identical tunnel barriers. (a) Spin-
dependent transmission coefficient T σ and (b) interfacial phase
shift φσ of a single barrier shown as functions of the barrier
strength Z. Here, σ ¼ ↑ð↓Þ refers to spin-majority (-minority)
electrons. For a description of the lines, see the legend in (a).
(c) Dependence of the tunneling magnetoresistance (TMR) on the
barrier strength Z for Eg=Δεr ≈ 0.09—the solid line is identical to
the solid line in Fig. 2(b). (d) TMR plotted as a function of
Eg=Δεr for Z ¼ 1—the solid line is identical to the long-dashed
line in Fig. 2(c). The corresponding lines in (c) and (d) represent
the same value of p as given in (c). The remaining parameters are
the same as in Fig. 2.
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explained by considering the behavior of T σ and φσ as a
function of Z.
For a small Z, a single barrier is characterized by a

high transmission coefficient, with T ↑ ≠ T ↓ if p ≠ 0

[Fig. 3(a)], and the interfacial phase shifts being close to
−π [Fig. 3(b)]. As a result, resonances in the TMR, which
originate from T ↑ ≠ T ↓, become only weakly shifted with
respect to Eg as Z is increased; see Eq. (22). Note that, even
in the absence of spin polarization (p ¼ 0), the interface
does not become fully transparent; that is, the transmission
coefficient is still less than 1 [see the solid line in Fig. 3(a)].
This result has its origin in the mismatch of the electronic
band structure between a lead and a CNT, which effectively
manifests as different wave vectors for the lead, kcðσqÞ, and
the CNT, kwn , in Eq. (16). A further increase of Z into the
transitional region leads to a rapid drop of T σ , and to an
increase of φσ . The maximum of φσ shifts with Z depend-
ing on p and σ [Fig. 3(b)]. Notably, in this region a
significant difference between φ↑ and φ↓ develops, which,
in turn, means that resonant energies ~εcσp get markedly
different for different spin orientations and magnetic
configurations. This difference, in combination with the
fact that, in the Z range under consideration, a transition
from T ↑ < T ↓ to T ↑ > T ↓ occurs, leads to great changes
in the TMR preceded with a large shift of the resonances
with respect to Eg. Finally, for large Z’s, the barriers
become almost nontransparent, with the interfacial phase
shift again approaching −π and φ↑ ¼ φ↓. Consequently,
for asymptotically large Z’s, one observes a constant TMR
with narrow resonant dips appearing at exactly the same
values of Eg as the resonant peaks in the limit of Z → 0.
To conclude the present discussion, in Figs. 3(c)

and 3(d), we additionally show how the main features of
the TMR as a function of Z considered above depend on the
spin polarization of the electrodes. The TMR effect
increases with the polarization of the contacts for strong
barriers just as in conventional spin valves; see Fig. 3(c).
Interestingly, the nontrivial behavior of the TMR around
Z ¼ 1 is also more pronounced for a larger polarization
and, thus, the tunability of the TMRwith the gate voltage as
shown in Fig. 3(d).
Finally, we would like to comment on the behavior of the

TMR in the limit of Z → 0. In general, one expects that, in
the experimental situation of electrical spin (diffusive)
injection from a ferromagnet into a nonmagnetic material,
the spin polarization of the injected current can be
quenched due to the conductance mismatch of these two
materials—the effect being especially pronounced if the
spin injection occurs in a semiconductor (SC) [53,54].
Moreover, the conductance mismatch then essentially
means that the transmission coefficient becomes spin
independent. This problem, however, can be circumvented
if a spin-dependent interface resistance (e.g., due to a tunnel
barrier), with some threshold value related to the resistivity

and spin-diffusion length of a SC, is introduced [55,56]. In
the present considerations, on the other hand, such an effect
is not captured by the model under investigation, that is, a
CNT treated as a ballistic 1D conductor. Here, it is assumed
that, once an electron is tunneled into the CNT, its spin
remains coherent until it tunnels out, which basically
corresponds to the situation of both the spin-diffusion
length and the mean free path being sufficiently long.
As shown by Valet and Fert [57], in such a ballistic limit,
the usage of the Landauer approach is justified, without the
need of applying the description of spin-dependent electro-
chemical potentials by means of the diffusion equation.
Importantly, for that reason, in the current case, the spin
dependence is preserved also in the limit of a vanishingly
small tunnel barrier and, consequently, a nonzero TMR
signal is obtained. We note that a similar effect was also
derived for a spin injection into a SC in a ballistic
picture [30,31].

1. Limit of strong tunnel barriers

In order to develop the complete physical picture, let us
now briefly analyze transport in the case of a large Z, which
has already been widely studied [25,28,29]. To begin with,
in such a limit, one generally derives

T qc
σ ≈ Tq

σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2cðσqÞp

q
; ð23Þ

with

Tq
σ ¼ Tq

ð1þ ησαqÞ2
and Tq ¼

4

ðZqÞ2
vwF
v0

; ð24Þ

where v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EF=me

p
. In the equations above, Tq

σ repre-
sents the transmission coefficient of the qth interface
(q ¼ L, R) whose spin dependence stems exclusively
from the spin selectiveness of the barrier. This effect is
analyzed in full detail in Sec. VA 3, and in the following
discussion we assume spin nonselective barriers (αq ¼ 0).
Interestingly, in such a case and for a small degree of spin
polarization of electrodes, one obtains T q

σ ≈ Tqð1þ ησpÞ.
Moreover, in the limit of weakly transparent barriers,
T qc

σ ≪ 1, and expanding cos½θcσðεÞ� around the resonant
energy ~εcσp, one finds that the expression for the trans-
mission coefficient T c

σðεÞ of the device takes the form of
the Breit-Wigner formula [58,59]

T c
σðεÞ ¼ T c

max;σ
ðΓc

σÞ2=4
ðε − ~εcσpÞ2 þ ðΓc

σÞ2=4
: ð25Þ

In the equation above, Γc
σ ¼ ΓLc

σ þ ΓRc
σ , and T c

max;σ ¼
4ΓLc

σ ΓRc
σ =ðΓc

σÞ2 denotes the maximal value of the trans-
mission coefficient at resonance, whereas Γqc

σ ¼ ℏνT qc
σ is

the decay width of the resonant level due to the tunneling of
electrons with spin σ through the qth interface. It is
expressed in terms of the attempt frequency ν defined as
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ν−1 ¼ ℏ½dθcσðεÞ=dε�jε¼~εcσp
¼ 2l=vwF [60], which basically

describes the number of chances per unit time an electron
that enters a CNT through the qth interface has to leave it
through the same interface.
Using Eq. (25) with Eq. (18), one can then find the

asymptotic values of the TMR for large Z’s to be (i) off
resonance, i.e., when ε − ~εcσp ≫ Γc

σ=2,

TMRoff-res ¼
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4p2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4p2

p ; ð26Þ

which for p ¼ 0.25 yields TMRoff-res ≈ 15.5%; (ii) at
resonance, i.e., when ε ¼ ~εcσp,

TMRres ¼
1

2
TMRoff-res: ð27Þ

The variation of TMR between these two limiting values
can be seen as a double-dotted-dashed line in Figs. 2(c),
where the dips correspond to resonant tunneling of elec-
trons—this variation also manifests as peaks in conduct-
ance given by the double-dotted-dashed line in Fig. 2(f).
More numerical examples of TMRoff-res for a large Z and a
different p can be seen in Fig. 3(c). Furthermore, it is worth
noting that if, in derivation of the formula above instead of
Eq. (23), one employs its counterpart for low spin polar-
izations of electrodes, the Jullière value of tunneling
magnetoresistance [61], TMRoff-res ¼ 2p2=ð1 − p2Þ, is
recovered.
Another observation one can make is that the position of

the resonances in conductance in Fig. 2(d) is independent
of Z for large Z’s, whereas as Z gets diminished, their
position becomes sensitive to Z. As already mentioned, this
effect stems from the fact that, when Z increases, the spin-
dependent interfacial shifts φq

σ for both spin orientations
become equal at some point, and for even larger Z’s they
remain independent of the barrier strength, taking a con-
stant value of −π, as can be seen in Fig. 3(b). Furthermore,
it is clear that, for almost fully transparent (very-small-Z)
and nontransparent (large-Z) interfaces, the part of the
phase factor θcσðεÞ in Eq. (19) corresponding to the spin-
dependent interfacial phase shift is φLc

σ þ φRc
σ ≈ −2π [see

Fig. 3(b)], regardless of the magnetic configuration of the
spin valve. In contrast, for the intermediate regime of the
barrier strength Z, where φLc

σ þ φRc
σ < −2π, this phase shift

is different for the parallel (c ¼ P) and antiparallel
(c ¼ AP) magnetic configurations, so that the effect of
spin-dependent backscattering of electrons into a CNT
becomes visible in the TMR signal. For this reason, it is
justified to neglect the spin-dependent interfacial phase
shift for very small and large Z’s, and one can use this
phase shift as an indication for an intermediate barrier
strength (0.1≲ Z ≲ 10).
To complete the discussion of asymptotic values of the

TMR for a large Z, we note that one should be careful when

estimating the spin-polarization coefficient p of the electro-
des. If one adjusts the gate voltage in such a way that the
device is in the transport regime close to the resonant one
but still off resonant [cf. the dashed lines in Fig. 4(a)], the
TMR signal can become dependent on temperature; see
Fig. 4. Specifically, the thermal broadening of the resonant
peak in conductance leads also to a wider dip in the TMR,
as shown in Fig. 4(a). When analyzing the TMR as a
function of the barrier strength Z [Fig. 4(b)], this broad-
ening, in turn, can be observed for large Z’s as a thermally
induced transition of the TMR between the two limiting
values discussed above. Since the period of the oscillations
Δεr is inversely proportional to the length l of a CNT, one
expects such an effect of temperature on the TMR to be
more profound for longer CNTs.

2. Asymmetry of tunnel barriers

Let us now go beyond the assumption that both of the
tunnel barriers are identical and consider the asymmetrical
situation (ZL ≠ ZR). This situation is illustrated in Fig. 5(a),
which in a similar fashion to Fig. 2(a) presents the evolution
of the TMR in response to increasing now only the strength
of the right barrier ZR, while the strength of the left barrier
is kept constant, ZL ¼ 1. Note that, for the sake of clarity,
only one period in Eg=Δεr has been plotted here.
Noticeably, while, for a vanishingly small right barrier
(ZR ≪ ZL), the TMR remains qualitatively the same as in
the case of the symmetric barriers, for the strong asym-
metry of tunnel barriers—that is, ZR ≫ ZL—a significant
modification of the TMR is observed. Specifically, a
distinctive sawlike pattern develops in this limit with large
negative values of the TMR; see Fig. 5(c). In fact, such an
asymmetry in the strength of the tunnel barriers was
essential to take into account in order to explain the

(a) (b)

FIG. 4. (a) Dependence of the tunneling magnetoresistance
(TMR) on temperature in the vicinity of the resonant transmission
in the case of a large barrier strength (Z ¼ 40). The solid line
corresponds to T ¼ 1 K and the gray arrow indicates the increase
of temperature with the step of ΔT ¼ 1 K up to 6 K for the
double-dotted-dashed line. (b) Evolution of the TMR as a
function of the barrier strength Z shown for different tempeatures
and Eg=Δεr ¼ 0.45, which is schematically represented by a
vertical dashed line in (a). Note that the same pattern scheme for
temperatures as in (a) is used.
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occurrence of a negative TMR signal in the experimental
study of a spin-polarized transport through a CNT by
Sahoo et al. [26]—see the lines for ZR ¼ 5 (dotted dashed)
and ZR ¼ 15 (double dotted dashed) in Fig. 5(c), which
qualitatively reproduces their result.
Next, to gain a better insight into how the asymmetry of

the barriers affects the TMR, in Fig. 5(b) we show the
dependence of the TMR on the strength of both the left (ZL)
and right (ZR) barriers for the gate-induced energy shift
Eg=Δεr ¼ 0.09 corresponding to the off-resonant limit
from Fig. 2(a). The dashed line serves here merely as a
guide for the eye denoting the case of identical barriers,
with corresponding cross sections along this line given by a
solid curve in Fig. 2(b). Departing in either direction
perpendicular to the dashed line represents the situation
where one of the barriers increases, whereas the other one
gets smaller and smaller. A dramatic change in the TMR
occurs when one of the barriers becomes very small.

Noticeably, the TMR can take then large negative values,
which means that the device displays higher conductance in
the antiparallel magnetic configuration of the electrodes.
Employing the Breit-Wigner formula (25) for the sit-

uation when the strength of one tunnel barrier is signifi-
cantly larger than the other one (i.e, asymmetric barriers,
referred to as “as”) and assuming, e.g., ZR ≫ ZL, which
corresponds to ΓLc

σ ≫ ΓRc
σ [recall that Γqc

σ ∝ T qc
σ and

T qc
σ ∝ 1=ðZqÞ2; see Eqs. (23) and (24)], we find the

asymptotic form for the TMR at resonance,

TMRas
res ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4p2

q
− 1; ð28Þ

whereas the low-spin-polarization expression for the trans-
mission coefficients of the barriers yields TMRas

res ¼ −2p2=
ð1þ p2Þ, in agreement with previous studies [29]. On the
other hand, in the off-resonant case, the analogous asymp-
totic formula for TMRas

off-res is identical to Eq. (26).
Importantly, we recall that these two asymptotic expres-
sions for the TMR are, in general, valid only if ZL,
ZR ≳ 10, that is, for weakly transparent barriers
(T qc

σ ≪ 1); cf. Fig. 3(a). Nevertheless, one can already
see that the negative value of the TMR in Fig. 5(a) is very
close to TMRas

res, whereas, in Fig. 5(b), the asymptotic value
TMRas

off-res is reached as soon as ZL, ZR > 2 (see the top-
right corner of the plot). As one can see in Fig. 5(c), the
tunability with respect to the gate response of the TMR
signal is strongest in the asymmetric case, if one barrier is
very strong (here ZR ¼ 15), while the strength of the
second barrier assumes a value of about ZL ¼ 1.
Concluding the results for barriers without spin selectivity,

it is now clear that the largest TMR signal of 15.5% is
obtained if a device with realistic parameters, as specified at
the beginning of Sec. V, is tuned to be off resonant and if the
tunnel barriers are strong (Z ≳ 10).Additionally, the response
to a gate voltage is strongest if the barriers are asymmetric
(again tuned off resonant). For instance, for ZL ¼ 1 and
ZR ¼ 15 [see the double-dotted line in Fig. 5(c)] and
assuming a realistic gate coupling of cgate ¼ 0.33, the
TMR signal can be tuned from approximately 14% to
approximately−12%within a 5-mV shift of the gate voltage.
Such devices can be fabricated using CoPd as ferro-

magnetic leads that mainly show low or intermediate tunnel
barriers with Z ≲ 10 (cf. Ref. [10]), adding a thin insulating
layer between the CNT and one contact (both contacts) for
asymmetric (symmetric) barriers. If a spin-selective insu-
lator is used, the barriers will, additionally, become spin
selective.

3. Spin-selective barriers

Finally, we address the situation where tunnel barriers
at the interfaces between electrodes and a CNT are, addi-
tionally, spin selective, that is, αL ≠ 0 and/or αR ≠ 0. Such
a situation can arise when spin-selective insulators like EuO

(c) (d)

(a) (b)

FIG. 5. The effect of the left-right barrier-strength asymmetry
on the tunneling magnetoresistance (TMR). (a) Analogous to
Fig. 2(a) except that, at present, the strength of only the right
barrier ZR is changed over one periodΔεr for ZL ¼ 1. (b) Density
map of TMRðZR; ZLÞ for Eg=Δεr ≈ 0.09, which corresponds to
the off-resonance limit for a large Z, and, in particular, to the
position in the middle between two neighboring dips in the TMR
[see the double-dotted-dashed line in Fig. 2(c)]. Note that the
bright color in (a) and (b) represents TMR ≈ 0, whereas the
dashed line in (b) denotes the symmetric case of ZL ¼ ZR.
(c) Cross sections of (a) for indicated values of the right barrier
strength ZR. Here, the long-dashed (green) line represents the
symmetric case (ZL ¼ ZR); cf. Fig. 2(c). (d) Dependence of the
TMR on ZL shown for Eg=Δεr ≈ 0.09 and values of ZR given in
the legend of (c)—i.e., the vertical cross sections of (b). All other
parameters are the same as in Fig. 2.
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[62] or EuS [63] or chiral molecules [64–66] are used as
tunnel barriers. For the simplicity of the following dis-
cussion, we return to the situation of the symmetric barriers
(ZL ¼ ZR ¼ Z), and only at the end of the section do we
consider the case of asymmetric barriers (ZL ≠ ZR), which
is expected to be more common for real devices.
Numerical results illustrating how the spin selectiveness

of tunnel barriers affects the TMR are shown in Fig. 6 for
identical barriers (αL ¼ αR ¼ α). Adding insulators
between the CNT and the ferromagnetic leads will increase
the barrier strength. Therefore, in our discussion, we will
focus on large tunnel barriers (Z ≳ 10). As is visible in
Figs. 6(a) and 6(d) [cf. Fig. 2(a)], tunnel barriers that filter

incident electrons based on their spin orientation lead to
significant, both qualitative and quantitative, changes
in the TMR signal which become especially visible at
large barrier strength Z. Furthermore, this spin-filtering
process, characterized by the spin-asymmetry parameter α
[Eq. (17)], depends essentially on whether more spin-up
[α < 0, as in Figs. 6(d), 6(e), and 6(f)] or spin-down [α > 0,
as in Figs. 6(a), 6(b), and 6(c)] electrons are passed through
the barriers. Note that the spin orientation is defined with
respect to the majority spins of the left electrode, which are
defined as spin up (cf. Fig. 1). Since the main quantitative
difference between the two cases under discussion occurs
in the limit of transitional and large Z’s [for small Z’s, there
are neither qualitative nor quantitative differences between
Figs. 6(a) and 6(d)—note the different scale ranges for the
TMR], it may be instructive at this point to derive some
asymptotic expressions for the TMR.
We use the Breit-Wigner formula, Eq. (25), to derive the

following asymptotic expressions. In the off-resonance
limit for two symmetric barriers (referred to by a super-
script “s”), i.e., αL ¼ αR ¼ α, one obtains

TMRs
off-res ¼ TMRoff-res þ ΔTMRs

off-res; ð29Þ
with

ΔTMRs
off-res ¼ −

4pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4p2

p F 1ðαÞ ð30Þ

and

F 1ðαÞ ¼
2αð1þ α2Þ

4α2 þ ð1þ α2Þ2 : ð31Þ

On the other hand, at resonance for identical barriers, one
finds that

TMRs
res ¼ TMRres; ð32Þ

which basically means that the resonant transport of
electrons through the device is insensitive to the spin
selectiveness of the tunneling barriers, a fact that is
discussed in more detail at the end of this section.
In general, if at least one barrier is spin selective, this

characteristic leads to a correction to the off-resonance
TMR. This correction is determined both by the spin
polarization of the electrodes p and by the spin asymmetry
of the barriers α. What is more, the correction is positive
[negative] if spin-up (α < 0) [spin-down (α > 0)] electrons
are preferred. In the following, we assume the spin
selectivity of the barriers to be jαj ≤ 0.25, which is a very
moderate choice regarding the fact that, for EuO, a spin-
filter efficiency as large as 80% has been observed in tunnel
junctions [62]. It can be checked that, for p ¼ 0.25, one
expects to achieve a TMR signal up to TMRs

off-res ≈ 37%

for strong barriers and spin-up electrons [see Fig. 6(e)] and
corrections as large as ΔTMRs

off-res ≈ 40% compared to

(b) (e)

(c) (f)

(a) (d)

FIG. 6. Analogous to Figs. 2(a)–2(c), except that it is assumed
here that the tunnel barriers are spin selective (αL ¼ αR ¼ α).
Results for two different values of the barrier-spin-asymmetry
parameter α are shown: for α ¼ 0.1 in panels (a)–(c), where spin-
down electrons are preferred, and for α ¼ −0.1 in panels (d)–(f),
where spin-up electrons are preferred. Note that, to facilitate the
comparison of (a) to (d), the color scale in (a) matches that of
(d) in the corresponding range of the TMR. Finally, we assume
here again that ZL ¼ ZR ¼ Z and that the remaining parameters
are the same as in Fig. 2.
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TMRoff-res. Also, the gate-voltage response of the TMR
signal is strongest for strong barriers [see Fig. 6(f)], and
tuning between 10% and 37% within a gate voltage of
5 mV, assuming again a gate coupling cgate ¼ 0.33. In
contrast to spin-up electrons, the maximum value, as well
as the strongest gate response for the TMR signal for a spin-
selective barrier that prefers spin-down electrons, is, in
total, not only smaller but also found for small or
intermediate barrier strength [see Figs. 6(b) and 6(c)].
Importantly, note that the spin moment of EuS aligns
antiferromagnetically with respect to the spin moment of
Co in Co/EuS multilayers [67]. For this reason, using EuS
as a spin-selective barrier with ferromagnetic leads from
CoPd will, most likely, lead to a selection of spin-down
electrons.
Though the fabrication of such a device is more tedious

compared to symmetric barriers, it is possible to have only
one spin-selective barrier q, i.e., αL ¼ α and αR ¼ 0 for
q ¼ L or αL ¼ 0 and αR ¼ α for q ¼ R, and in the off-
resonant case, one obtains

TMRq
off-res ¼ TMRoff-res þ ΔTMRq

off-res; ð33Þ
with

ΔTMRq
off-res ¼ −

4pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4p2

p F 2ðαÞ ð34Þ

and

F 2ðαÞ ¼
α

1þ α2
: ð35Þ

Clearly, only the dependence on α is affected by
whether one or both barriers are spin selective
[cf. Eqs. (30) and (34)]. For α ≠ 0 and jαj < 1, one gets
jF 1ðαÞj > jF 2ðαÞj, and the change in the TMR signal is
reduced to ΔTMRL=R

off-res ≈ 25%.
However, if only one barrier is spin selective, the

resonant TMR signal is also changed:

TMRq
res ¼ TMRres þ ΔTMRq

res; ð36Þ

where

ΔTMRq
res ¼ 1

2
½F 3ðαÞ − 1� þ F 3ðαÞF q

4ðα; pÞ − 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4p2

p ; ð37Þ

with

F 3ðαÞ ¼
16þ 4α2½α2ð1þ α2Þ − 4�

ð4þ α4Þ2 ð38Þ

and

FL=R
4 ðα;pÞ¼2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−4p2

p
ð1þα2∓4pαÞ½1þð1−α2Þ2�þð1−4p2Þ½1þð1−α2Þ4�þP

η¼�ð1þη2pÞ2ð1∓ηαÞ4
2ð1þα2∓4pαÞ½1þð1−α2Þ2�þ4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−4p2

p
ð1−α2Þ2

: ð39Þ

Note that limα→0F 3ðαÞ ¼ 1 and limα→0F
L=R
4 ðα; PÞ ¼ 1,

so that, in the limit of vanishingly small spin selectiveness
of barriers, we recover the previously found result: that
is, TMRq

res ¼ TMRres.
Figure 7 presents the evolution of the off-resonance TMR

as a function of the barrier strength Z for selected values of
the spin-asymmetry parameter α in three specific cases: (a)
and (b) when both tunnel barriers are identical (αL ¼ αR) or
when only one of the barriers is spin selective: the left in (c)
and (d) and the right in (e)–(f). There is no dependence of the
TMR on α seen for a small Z, whereas, for a large Z, a
significant variation of the TMR occurs, with the asymptotic
values of the TMR given by the expressions above.
Moreover, in the latter limit one observes a general trend
that, for positive α (spin-down electrons preferred), the TMR
decreases, so that for a sufficiently largeα, it can get negative,
whereas for a negative α (spin-up electrons preferred), the
TMR increases. Interestingly, for the transitional values ofZ,
we find that the TMR varies nonmonotonically in the case
with identical barriers and only the right barrier being spin
selective. On the other hand, in the case with only the left
barrier being spin selective, the TMR remains rather

unaffected by α ≠ 0, and only as Z is further increased does
the TMR start to gradually approach its asymptotic values.
As shown previously, this behavior can be understood in
terms of a spin-dependent transmission coefficient and
interfacial phase shift for a single tunnel barrier.
Importantly, if only the left barrier is spin selective, its effect
is the same for bothmagnetic configurations of electrodes, so
that the TMR is only slightly influenced. This result is due to
the fact that the orientation of the spin moment of the left
electrode defines here the reference frame. The situation
is different when the right barrier is spin selective. In
such a case, depending on the magnetic configuration, the
barrier prefers either spin-up or spin-down electrons, and
thus conductances in both magnetic configurations are
affected differently, which ultimately reveals itself in the
TMR signal.
Finally, we note that, in real devices, one should

generally expect that the combination of the two
effects studied above will occur; that is, the two tunnel
barriers will be asymmetric in terms of both strength
(ZL ≠ ZR) and spin selectiveness (αL ≠ αR). We find that,
in such a case, the previously derived asymptotic formulas
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for strongly asymmetric barriers (ZR ≫ ZL)—see Sec. VA
2—become modified as follows to incorporate the effect
of different spin-selective properties of each barrier (we
use a prime to distinguish this case): off resonance, one
obtains

ðTMRas
off-resÞ0 ¼ TMRoff-res þ ΔTMRas

off-res; ð40Þ

with

ΔTMRas
off-res ¼ −

4pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4p2

p SþðαL; αRÞ; ð41Þ

whereas, at resonance, one gets

ðTMRas
resÞ0 ¼

TMRas
res

1 − 4pS−ðαL; αRÞ
þ ΔTMRas

res; ð42Þ

with

ΔTMRas
res ¼

4pS−ðαL; αRÞ
1 − 4pS−ðαL;αRÞ

: ð43Þ

The coefficient S�ðαL; αRÞ, defined as

S�ðαL; αRÞ ¼
ðαL � αRÞð1� αLαRÞ

ðαL � αRÞ2 þ ð1� αLαRÞ2
; ð44Þ

describes the asymmetry of the tunnel barriers due to the
difference in spin-asymmetry parameters between the left
(αL) and the right (αR) barrier. One can then notice that, for
the symmetric case—that is, when αL ¼ αR ¼ α—one
obtains Sþðα; αÞ≡ F 1ðαÞ [see Eq. (31)], so that the
asymptotic equations for the TMR given by Eqs. (29)
and (40) become identical. Similarly, one finds the relation
between Eqs. (33) and (40) for only a single barrier being
spin selective, Sþðα; 0Þ ¼ Sþð0; αÞ≡ F 2ðαÞ; see Eq. (35).
The analysis of SþðαL; αRÞ brings us to the conclusion that
ðTMRas

off-resÞ0 can be effectively maximized by ensuring that
the barriers are symmetric (αL ¼ αR) and engineering them
in such a way that spin-up electrons are favored (i.e.,
αL; αR < 0).
On the other hand, in the resonant case, we notice that if

both barriers are identical (αL ¼ αR ¼ α), the spin selec-
tiveness of the barriers plays no role, as S−ðα; αÞ ¼ 0 and
Eq. (28) is recovered. This striking difference can be
qualitatively understood by considering how the spin
selectiveness of the barriers affects the conductance. In
the case of the strongly asymmetric barriers under dis-
cussion, one finds that the spin-resolved conductance in the
magnetic configuration c ¼ P, AP depends on the trans-
mission coefficients (23) of the left (T Lc

σ ) and right (T Rc
σ )

barriers approximately

½Gc
σ�off-res ∝ T Lc

σ T Rc
σ and ½Gc

σ�res ∝
T Rc

σ

T Lc
σ

: ð45Þ

Consequently, one can see that, for resonant transport,
contributions due to the spin selectivity of the barriers
cancel each other out if these barriers exhibit identical
properties in terms of spin-dependent transparency.
Interestingly, by optimizing the barriers, one also expects
to observe a positive ðTMRas

resÞ0 in the resonant transport
case, which is generically negative as given by Eq. (28).
This positive value can be achieved by forcing αL > αR,
with a further constraint put on αL determined by the value
of p. Large positive values of ðTMRas

resÞ0 are especially
expected for αL > 0, which means that the left barrier
should favor minority (spin-down) electrons. For instance,
let us assume that only the left barrier is modified to be spin

(a) (b)

(c) (e)

(d) (f)

FIG. 7. The effect of the spin selectivity of the tunnel barriers
on the tunneling magnetoresistance (TMR) shown as a function
of the barrier strength Z for Eg=Δεr ¼ 0.09 and several values of
the spin-asymmetry parameter α. (a),(b) Represent the situation
with identical barriers (αL ¼ αR ¼ α), whereas, in (c)–(f), the
case of only one barrier being spin selective is shown—that is, the
left one (αL ¼ α and αR ¼ 0) in (c) and (d) and the right one
(αL ¼ 0 and αR ¼ α) in (e)–(f). Note that the solid line corre-
sponds to α ¼ 0 and serves as the reference line for the
comparison of different plots. This line is also identical to the
solid line in Fig. 2(b). All other parameters as the same as in
Fig. 2.
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selective, that is, αL ≡ α and αR ¼ 0. We find numerically
(for p ¼ 0.25) that ðTMRas

resÞ0 > 0 as soon as α > α0, with
α0 ≈ 0.14, and the increase of α is followed by the
monotonic growth of ðTMRas

resÞ0 up to a value approxi-
mately equal to 73% for α ¼ 1—the maximal achievable
value for a given p. Interestingly, if one could fabricate a
device with αL ¼ −αR ¼ α—that is, with the tunnel bar-
riers of perfectly antisymmetric spin-selective properties—
doing so would allow for achieving α0 ≈ 0.07 and
ðTMRas

resÞ0 ≳ 50% already at α ¼ 0.3.

B. The case of many orbital channels

In this section, we relax the assumption regarding the
position of the Fermi level around the charge-neutrality
point (i.e., Ew

F ¼ 0) and assume that the level has been
shifted; see the right side of Fig. 1(b). For illustrative
purposes, we consider two cases, Ew

F ¼ 400 meV and
Ew
F ¼ 650 meV, which means that 2 (n ¼ 0, 1) and 3

(n ¼ 0, 1, 2) orbital channels (subbands), respectively, are
available for charge and spin transport through the device.
The key difference with respect to the single-channel

case stems from the fact that now conductance GP=AP

[Eq. (18)] for each magnetic configuration has to be
summed over all orbital transport channels. Since each
channel is described by a different transmission coefficient
T P=AP

σn [Eq. (19)], the characteristic energies ~εcnσp at which
the resonant tunneling of electrons occurs are uniquely
associated with the subband index n,

~εcnσp ¼ Δεr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
p −

1

2π
ðφLc

σn þ φRc
σnÞ −

lkwF
π

�
2

þ
�
ln
rπ

�
2

s

þ Eg − Ew
F; ð46Þ

for p ∈ Z. Consequently, resonances in conductance for
channels characterized by various n’s appear at different
intervals, which, in turn, leads to a complex pattern of total
conductance as a function of Eg. This effect is illustrated in
the top panels of Fig. 8, where, as an example, the total
conductance in the parallelmagnetic configuration (the solid
line) for (a) two and (b) three orbital channels participating in
transport has been decomposed into contributions from
specific channels. Furthermore, the resultant TMR no
longer exhibits a clear periodic pattern: see the bottom
panels of Fig. 8, where theEg range is purposely assumed to
be the same as in Fig. 2(a) to enable an easy comparison of
the results. Nevertheless, one can still distinguish three
distinctive regions with respect to the barrier strength Z,
whose origin can be explained analogously as in the
single-channel case; see Sec. VA. Importantly, it should
be noted that, in the limit of a large Z, the TMR varies
between two characteristic values—TMRoff-res [Eq. (26)]
and TMRres ¼ TMRoff-res=2—corresponding to the off-
resonant and resonant electron tunneling through a CNT,

respectively. As the number of orbital channels participating
in transport increases, the chance of resonant tunneling also
becomes larger because each channel has its own unique set
of resonant energies (46). As a result, one expects that, with
an increasing channel number, the TMR should take a
resonant value more often, as observed when comparing
Figs. 8(c) and 8(d).
Next, we analyze how the asymmetry of the strength

between the left and right barriers (ZL ≠ ZR) affects the
TMR signal. For this purpose, we assume that the left
barrier is fixed at ZL ¼ 1 and we alter the strength of the
right barrier ZR; see Fig. 9. The cross section of Fig. 9(a)
along ZR ¼ 1 corresponds then to the cross section along
the thin dashed line in Fig. 8(c), and it represents the case of
symmetric barriers. For ZR ≪ 1, which represents the
situation of the right barrier being almost fully transparent,
one can see a softening of TMR features which is
accompanied by a smearing out of some resonances; see

(a) (b)

(c) (d)

FIG. 8. The effect of many orbital channels on the transport
properties of a CNT-based spin valve. The number of such
channels participating in transport is modified here by assuming
different shifts of the Fermi level Ew

F. In the left column, Ew
F ¼

400 meV (two orbital channels included), whereas, in the right
column, Ew

F ¼ 650 meV (three orbital channels included). (a),(b)
Conductance GP in the parallel magnetic configuration (the solid
line) decomposed into contributions from different orbital chan-
nels (the dashed and dotted-dashed lines) shown as a function of
the shift of the Fermi level Eg and ZL ¼ ZR ¼ Z ¼ 1. (c),(d)
Density map of the tunneling magnetoresistance (TMR) plotted
as a function of Eg and the barrier strength Z. Note that the cross
sections of (c) for Z ¼ 1 (that is, along the horizontal thin dashed
line) and Z ¼ 100 are shown in Fig. 9(b). All other parameters are
the same as in Fig. 2.
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the relevant lines in Fig. 9(b). On the other hand, in the
opposite limit (ZR ≫ 1)—that is, for a strong asymmetry
between the barriers, with the right barrier being of
vanishingly small transmission—TMR features become
generally much sharper, forming a sawlike pattern, and
TMR values vary in a broader range. Interestingly, it can be
seen that peaks and dips developing in the TMR evolve
from the same features which survive also in the low ZR
limit. In addition, an especially stark contrast between
symmetric (dashed line) and asymmetric (thin solid line)
tunnel barriers is seen in the ZR limit under consideration.
Finally, to make the present discussion complete, we also

investigate the effect of spin-selective barriers. Since this
aspect is extensively analyzed in Sec. VA 3 for the case of a
single orbital channel, here we focus only on a specific
situation with two identical barriers, that is, when ZL ¼
ZR ¼ Z and αL ¼ αR ¼ α. In Fig. 10, we show the evolution
of the TMR as a function of the spin-asymmetry parameter α
and the shift of the Fermi level Eg for two representative
values of the barrier strength: Z ¼ 1 [Fig. 10(a)] and Z ¼
100 [Fig. 10(c)], with selected cross sections for chosen
values ofα given in Figs. 10(b) and 10(d), respectively. It can
be seen that additional spin filtering of electrons by tunnel
barriers can substantially modify the observed TMR. In the
limit of a largeZ, illustrated in the bottom panel of Fig. 10, it
can be seen that, for the off-resonance regions, marked in
Fig. 10(d) as shaded areas, the TMR suffers significant
changes when α is appreciably large, while in the resonant
regions the observed variation of the TMR effect is more
moderate. Moreover, in the former case, the dependence of

the TMR on α is described by Eq. (29), exactly the same as
with a single orbital channel.

VI. CONCLUSIONS

With this paper, we provide a complete physical picture
of the TMR effect in CNT-based spin valves. We particu-
larly focus on the influence of the tunnel-barrier strength
and the spin selectivity of the barrier on the TMR. The
largest TMR signals are generally found in the strong-
barrier case where the device is tuned to be off resonant
with regard to the Fabry-Pérot resonances in the one-
dimensional wire. For a realistic CNT-based spin valve, we
find a TMR signal of 15.5%, a value we realized in a recent
experiment [10]. In general, the off-resonant TMR is more
sensitive toward changes in the barriers that the on-resonant
TMR. For instance, the off-resonant TMR increases by
ΔTMRoff-res ¼ 40% if spin-selective barriers are added that
prefer majority (spin-up) electrons from electrode, while
the resonant TMR signal does not change at all. Such a

(b)(a)

FIG. 9. Influence of the barrier-strength asymmetry on the
tunneling magnetoresistance (TMR). Assuming a fixed value of
the left barrier strength ZL ¼ 1, the change of the TMR as a
function of the right barrier strength ZR is presented in (a).
Characteristic cross sections of (a) for selected values of ZR are
shown in (b). Note that the case of ZR ¼ 1 corresponds to
symmetric barriers (ZL ¼ ZR), and thus it also represents the
cross section of Fig. 8(c) along the horizontal thin dashed line.
Moreover, the result for asymptotically large, symmetric barriers
(ZL ¼ ZR ¼ 100) is also shown (the dashed line). Here, we
assume that Ew

F ¼ 400 meV and two orbital channels are taken
into account, whereas the remaining parameters are the same as in
Fig. 2.

(b)

(d)

(a)

(c)

FIG. 10. The effect of spin-selective barriers on the tunneling
magnetoresistance (TMR) in the case of two identical barriers
characterized by the same strength (ZL ¼ ZR ¼ Z) and the spin-
asymmetry parameter αL ¼ αR ¼ α. (a),(b) The results for Z ¼ 1.
(c),(d) The results for Z ¼ 100. Plots in the right column contain
selected cross sections of the respective density plots from the left
column. The solid lines in (b) and (d) correspond to a situation
where the barriers are spin nonselective (α ¼ 0). Note, addition-
ally, that the solid line in (b) [(d)] is identical to the solid line for
ZR ¼ 1 [the dashed line] in Fig. 9(b). All other parameters are the
same as in Fig. 9.
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spin-selective barrier might be implemented by spin-
selective insulators as EuS or EuO.However, thesematerials
are likely to couple antiferromagnetically to the ferromag-
netic leads. Therefore, using spin-selecting molecules as a
barrier is believed to be more promising with regard to
enhancing the TMR signal, especially since a moderate
selectivity of approximately 10% already yields a strong
enhancement of theTMRsignal up to 37%and since double-
stranded DNA has been shown to exhibit high spin-filter
efficiency [68]. Using DNA as a spin filter will require a
perpendicular orientation of the magnetization of the con-
tacts. This perpendicular orientation can be implemented by
the proper choice of contact material and contact shape.
As shown before, the barrier strength in CNT spin valves

can be asymmetric due to fabrication, resulting in negative
values of the TMR signal [26].We find that it is, in principle,
possible to correct these negative values if the barrier of the
injection contact favors minority (spin-down) electrons
leading to a large positive TMR of up to 50%–70%. In this
case, adding insulation of EuSor EuO to the lead used for the
spin injection will likely yield the desired result.
In the case of intermediate barrier strength—i.e., the

potential energy of the barrier matches the energy of
the incident electrons at the Fermi level—we show that
the magnitude of the TMR has a strong response to the gate
voltage, varying from 14% to −12% within a 5-mV gate
voltage for a realistic device and without spin-selective
barriers. It is important to note that this tunability of theTMR
signal is effective in the absence of spin-orbit coupling, thus
preserving the long spin relaxation time inherent for carbon
materials. The tunability of the TMR signal is strongest for
asymmetric barriers. Adding more transport channels, e.g.,
byworking at larger gate voltages, the number of resonances
increases, leading to a less periodic pattern of the TMRwith
gate voltage. Changes of the TMR signal with respect to
barrier strength, asymmetry, and spin selectivity, however,
remain qualitatively the same.
In conclusion, we show in this paper that the feasibility

of modification of the tunnel barriers in a controlled way,
together with the electrical tuning of a CNT, could open up
the possibility of building CNT-based devices exhibiting a
large TMR effect with a strong response to the gate voltage.
Specifically, a prospective way to achieve this goal lies in
the application of highly asymmetric and/or spin-selective
tunnel barriers. This application paves the way for spin-
tronic devices that work without spin-orbit coupling and
thus preserve long spin relaxation times.
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