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Models for Self-Gravitating Photon Shells
and Geons
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Abstract. We prove existence of spherically symmetric, static, self-
gravitating photon shells as solutions to the massless Einstein–Vlasov
system. The solutions are highly relativistic in the sense that the ratio
2m(r)/r is close to 8/9, where m(r) is the Hawking mass and r is the area
radius. In 1955 Wheeler constructed, by numerical means, so-called ideal-
ized spherically symmetric geons, i.e., solutions of the Einstein–Maxwell
equations for which the energy momentum tensor is spherically symmet-
ric on a time average. The structure of these solutions is such that the
electromagnetic field is confined to a thin shell for which the ratio 2m/r
is close to 8/9, i.e., the solutions are highly relativistic photon shells. The
solutions presented in this work provide an alternative model for photon
shells or idealized spherically symmetric geons.

1. Introduction

In the last 25 years, the existence problem for the static Einstein–Vlasov sys-
tem has been studied intensively. Several works have established the exis-
tence of mainly static but also of stationary solutions modeling ensembles
of self-gravitating collisionless massive particles in equilibrium. The results
include spherically symmetric, asymptotically flat, globally regular solutions
with energy density of compact support [4,16–18,20,21], solutions with black
holes [17], axially symmetric static [6] and stationary solutions [7], and static
solutions of several types for non-vanishing cosmological constant [5]. These
works have in common that they consider the case of massive particles and
thereby primarily provide models for large scale objects such as galaxies or
galaxy clusters.

By setting the rest mass in the Einstein–Vlasov system to zero one obtains
the corresponding massless system, which describes an ensemble of uncharged
self-gravitating massless particles, e.g., photons. The Cauchy problem for the
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massless Einstein–Vlasov system has been studied for small spherically sym-
metric perturbations of Minkowski space by Dafermos [13]. Recently numerical
evidence for the existence of static solutions to this system was given by Akbar-
ian and Choptuik [1]. It is the purpose of this work to prove that a class of
static solutions to the massless Einstein–Vlasov system indeed exists.

Photon Shells as Particle-like Solutions

The results presented in this paper may also be considered in the wider context
of the theory of static solutions to the Einstein equations. For the vacuum Ein-
stein equations and the Einstein–Maxwell equations classical rigidity theorems
imply that the only regular, asymptotically flat, static solution is Minkowski
space. Due to this, the construction of models for isolated self-gravitating
objects resorts to other types of matter coupled to the Einstein equations.
While classical matter models such as fluids, massive collisionless particles,
and elastic matter are primarily used for describing macroscopic objects, one
motivation for considering field theoretical equations is to construct models
for elementary particles—so-called particle-like solutions. In 1955, Wheeler
introduced the concept of geons which are singularity free solutions of the
Einstein–Maxwell equations, cf. also [10] and [12]. His main purpose was to
construct solutions which describe effectively a localized particle-like object
without introducing mass or charge into the system—the expressions mass
without mass and charge without charge originate from [25]. In order to obtain
tractable equations Wheeler considered the case of, what he called, idealized
spherically symmetric geons. These solutions are spherically symmetric only
on time average. In Wheeler’s treatment the details of the electromagnetic
field are, thus, replaced by the time average of the components of the electro-
magnetic stress-energy tensor. The resulting equations are solved numerically,
cf. [25], and a thin shell of self-gravitating electromagnetic radiation is obtained
for which the ratio 2m/r is close to 8/9, where m is the Hawking mass and
r is the area radius. In fact, Wheeler’s numerical solution is closely related
to the result we prove in this work because the physical interpretations of
these solutions are very similar. Indeed, if the massless particles are photons,
the solutions we construct describe thin photon shells. As in Wheeler’s study,
the ratio 2m/r of the shells is close to 8/9 also in our case. We point out
that necessarily 2m/r < 8/9 for any static solution of the Einstein–Vlasov
system, cf. [2]. This bound also applies in Wheeler’s case since the form of
the energy momentum tensor for the Maxwell field studied in [25] satisfies the
assumptions in [2]. In conclusion, the massless Einstein–Vlasov system and
the Einstein–Maxwell system may in this case be considered as two different
mathematical models describing the same physical phenomena, where the for-
mer is a particle model and the latter is a field theoretical model. We are not
aware of any rigorous mathematical relation between static solutions of the
massless Einstein–Vlasov system and Wheeler’s geon solutions.

More recently, the existence of a different type of particle-like solutions
has been established, i.e., regular spherically symmetric static solutions of
the Einstein–Yang–Mills system. Numerical evidence for their existence was
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first found by Bartnik and McKinnon [11]. Eventually, a rigorous proof was
obtained by Smoller et al. [24]. It is important to point out that all particle-like
solutions discussed above are likely unstable, cf. [1,8,11,25].

Difficulties and Idea of Proof

As mentioned above, for the massive Einstein–Vlasov system, several results
on existence of static spherically symmetric solutions are available that cover
classes of different generality. An essential part in these proofs is to show that
the matter quantities are compactly supported. This is clearly a necessary
condition for modeling isolated objects.

The majority of the existing proofs works indirectly and rely on the
asymptotic behavior of the metric, and they have in common that they show
the existence of a radius that bounds the support of the matter. The value of
this radius however remains undetermined.

For the massless Einstein–Vlasov system the situation is different. In
Sect. 4 we introduce what we call the characteristic function

γ(r) = y(r) − 1
2

ln
[
m2

p +
L0

r2

]
, (1.1)

where y is defined in (2.14), mp is the particle mass, and L0 is a fixed constant.
This function has the property that if and only if γ(r) ≤ 0 all matter quan-
tities vanish at this radius r. Equation (2.15) implies that y is monotonically
decreasing in r. Consider now the massive case with mp = 1. In this case the
logarithm in (1.1) is positive for all r and it is known [16] that there exists a
radius R̃ such that y(R̃) = 0. Hence γ(r) ≤ 0 for all r ≥ R̃. In the massless
case however, when mp = 0, the term containing the logarithm behaves com-
pletely differently. Assume now that there is a radius R1 such that γ(R1) = 0
and γ′(R1) < 0. For r > R1 and as long as �(r) = p(r) = 0, y is given by the
Schwarzschild component (4.86) and we have

γ(r) = ln(E0) − 1
2

ln
[
1 − 2m(R1)

r

]
− 1

2
ln

[
L0

r2

]
. (1.2)

In view of [2] we have 2m(R1)
r ≤ 8

9 . So we see that γ(r) becomes positive again
at some radius and matter reappears. In particular, there exists no radius
R̃ such that γ(r) ≤ 0 for all r ≥ R̃. The asymptotic behavior resembles an
infinitely extended thin atmosphere of massless Vlasov matter.

In this work, we use the approach in [4] which shows the existence of static
spherically symmetric arbitrarily thin shell solutions of the massive Einstein–
Vlasov system. More precisely, in [4] it is shown that the matter quantities
are supported in an interval [R0, R1], where the ratio R1/R0 can be made as
close to 1 as desired. The motivation for the study [4] was to show that the
inequality 2m(r)/r ≤ 8/9 can be saturated arbitrarily well by solutions of
the massive Einstein–Vlasov system. In fact, thin shell solutions correspond to
highly relativistic solutions for which the ratio 2m(r)/r is close to 8/9. To show
that the interval of support [R0, R1] has the property that R1/R0 is close to 1,
it is of course necessary to obtain detailed control of the radius R1, which is the
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smallest radius greater than R0 for which the matter quantities vanish. When
such a radius has been established the ansatz for the matter distribution can
be dropped and the matter quantities are set to zero for r ≥ R1. The metric in
this–now infinitely extended–vacuum region is the Schwarzschild metric with
a mass parameter corresponding to the mass of the enclosed matter shell. In
this way, a pure matter shell is obtained. We remark that if the solution in
the massive case is not continued by a Schwarzschild solution at r = R1, other
types of solutions can be constructed, e.g., solutions which contain several
shells separated by vacuum regions or separated by thin atmospheres, cf. [9].
These solutions are nevertheless asymptotically flat, i.e., there exists a radius
R2 > R1 such that the matter quantities vanish for r ≥ R2. Furthermore, in
the massive case the ratio 2m/r does not have to be close to its upper bound
8/9 but can be small. Thus static solutions of the massive Einstein–Vlasov
system with matter quantities of bounded support do not have to be highly
relativistic.

In this work, we modify the method in [4] to the massless case and obtain
solutions supported in an interval [R0, R1] such that the solutions agree with
the Schwarzschild solution for r ≥ R1. As was outlined above, it is here neces-
sary to continue the solution with a Schwarzschild solution at a radius where
the matter quantities become zero since the solution given globally by an
ansatz of the form (2.12) is not asymptotically flat.

Criteria for Shell Formation

A crucial condition for proving the existence of a radius R1, where the matter
quantities vanish, is that the there is a radius, called r2, such that the ratio
2m(r2)/r2 ≥ 4/5. Hence the solutions we construct are highly relativistic. It is
an important question to decide whether or not this is a necessary condition for
the existence of static photon shells. The answer to this question is essential for
the physical interpretation of the solution. We conclude the paper by providing
numerical evidence for the following conjecture which says that photon shells
are necessarily highly relativistic.

Conjecture 1.1. Let m(r) be the Hawking mass of a solution of the massless
Einstein–Vlasov system given in (2.16) and r ∈ [0,∞) be the area radius. Fur-
thermore, assume that the matter distribution is of the form specified in (2.12)–
(2.13). Then a necessary condition for the existence of massless, asymptotically
flat solutions is

Γ := sup
r∈[0,∞)

2m(r)
r

≥ 0.8. (1.3)

Remark 1.2. Conjecture 1.1 is confined to solutions of the massless Einstein–
Vlasov system with f given by (2.12)–(2.13) because recently solutions with Γ
slightly smaller than 0.8 have been constructed by Carsten Gundlach.1 How-
ever, for their construction different ansatz functions are needed that lead to
solutions that are possibly less regular. Nevertheless, we believe that the spirit

1 Personal communication.
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of Conjecture 1.1, namely that massless shell solutions necessarily are highly
relativistic, holds true generally.

Outline of the Paper

This work is organized as follows. In Sect. 2 we introduce the massless Einstein–
Vlasov system in spherical symmetry and review known results that this work
relies on. In Sect. 3 we state our main result, and Sect. 4 is devoted to its
proof. Finally, in Sect. 5, we solve the equations numerically to investigate
which conditions on the parameters are necessary for the existence of photon
shells.

2. Preliminaries

For a given space-time (M, g), the mass shell of massless particles is defined
to be

P = {(x, p) ∈ TM : g(p, p) = 0, p future directed, p �= 0}. (2.1)

In general the particle rest mass mp is given by the expression g(p, p) = −m2
p.

So this relation constitutes the essential difference to the massive system.
We consider the static, massless Einstein–Vlasov system in spherical sym-

metry. First, we introduce the system of equations. In Schwarzschild coordi-
nates the metric is of the form

g = −e2μ(r)dt2 + e2λ(r)dr2 + r2dϑ2 + r2 sin2 ϑdϕ2, (2.2)

where r ∈ [0,∞), ϑ ∈ [0, π], and ϕ ∈ [0, 2π). Throughout this work units are
chosen such that c = G = 1, where G is the gravitational constant and c is the
speed of light. The Einstein equations reduce to

e−2λ (2rλ′ − 1) + 1 = 8πr2�(r), (2.3)

e−2λ (2rμ′ + 1) − 1 = 8πr2p(r). (2.4)

A prime denotes the derivative with respect to the coordinate r. Since we are
interested in asymptotically flat solutions we impose the boundary conditions

lim
r→∞ μ(r) = lim

r→∞ λ(r) = 0. (2.5)

A regular center at r = 0 is guaranteed by the boundary condition

λ(0) = 0. (2.6)

The matter considered in this work consists of an ensemble of free falling
particles of zero rest mass. These particles are modeled by a density function
f : P → R+, (t, x, v) �→ f(t, x, v), where t ∈ R, x ∈ R

3, v ∈ R
3\{0}. In

a static setting this function is not depending on t and spherical symmetry
means f(x, v) = f(Ax,Av) for any matrix A ∈ SO(3). The matter distribution
function f satisfies the Vlasov equation

eμ−λ

|v| va ∂f(x, v)
∂xa

− eμ−λ xa

r
|v|μ′ ∂f(x, v)

∂va
= 0 (2.7)
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where |v| =
√

δabvavb and we are using coordinates v such that we have an
orthonormal frame on the mass shell P. See [19] for a definition of v and a
derivation of the full system in spherical symmetry. The equations are coupled
via the matter quantities � and p which are given by

�(r) =
∫
R3\{0}

f(x, v)|v| dv1dv2dv3, (2.8)

p(r) =
∫
R3\{0}

f(x, v)
|v|

[
δabx

avb

r

]2

dv1dv2dv3. (2.9)

The quantity � can be seen as the particle distribution’s energy density and
p as its radial pressure. Furthermore, we introduce the tangential pressure pT

which is given by

pT (r) =
1
2

∫
R3\{0}

∣∣∣∣x × v

r

∣∣∣∣
2

f(x, v)
|v| dv1dv2dv3. (2.10)

Consider the quantities E and L, defined by

E = eμ|v| and L = |x|2|v|2 − (x · v)2. (2.11)

The quantity E can be seen as the particle energy and L is the square of the
angular momentum of the particles. Observe that they are conserved along
the characteristics of the Vlasov equation (2.7). Moreover if one takes f to be
a sufficiently regular function Φ(E,L) of these quantities E and L the Vlasov
equation is automatically satisfied. In this paper, we choose

f(x, v) = Φ(E,L) =
[
1 − E

E0

]k

+

[L − L0]
�
+ , (2.12)

where


 ≥ −1
2
, k ≥ 0, L0 > 0, and E0 > 0. (2.13)

Furthermore [x]+ = x if x > 0 and [x]+ = 0 if x ≤ 0. Note that in contrast
to Newtonian gravity in the relativistic case not all solutions of the Vlasov
equation can be written in this form [23].

For the metric coefficient μ, the use of a different variable which we call
y is advantageous. We define

y(r) := ln(E0) − μ(r) ⇔ eμ = E0e
−y. (2.14)

The variable y has the following advantage. If the boundary conditions (2.5)
and (2.6) are prescribed for a solution of the Einstein–Vlasov system (2.3),
(2.4), (2.7) with a given initial value μ0 the cut-off energy E0 in the ansatz
(2.12) cannot be chosen freely but must have a specific value, yet not known.
However, the variable y permits to eliminate E0 from all equations and to
construct a solution y(r). This function y will not approach zero for large r
but using (2.14) one can determine E0 such that the solution is asymptotically
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flat, i.e., (2.5) is satisfied. Note that the Einstein–Vlasov system (2.3), (2.4),
(2.7) in the considered setting is equivalent to the initial value problem

y′(r) = − 1

1 − 2m(r)
r

[
4πrp(r) +

m(r)
r2

]
, y(0) = y0, (2.15)

where the Hawking mass m(r) is defined to be

m(r) := 4π
∫ r

0

s2�(s)ds. (2.16)

We return to the matter quantities given by (2.8)–(2.10). If one inserts the
ansatz (2.12) for f one obtains by a change of variables in the integrals the
expressions

�(r) = c�r
2�

∫ ey

√
L0
r2

(
1 − εe−y

)k
ε2

[
ε2 − L0

r2

]�+ 1
2

dε, (2.17)

p(r) =
c�

2
 + 3
r2�

∫ ey

√
L0
r2

(
1 − εe−y

)k
[
ε2 − L0

r2

]�+ 3
2

dε, (2.18)

where

c� = 2π

∫ 1

0

s�

√
1 − s

ds. (2.19)

To have good control of the support of the matter quantities, we define for
r ∈ (0,∞) the characteristic function

γ(r) := y(r) − 1
2

ln
[
L0

r2

]
. (2.20)

Note that the matter quantities vanish if and only if γ(r) ≤ 0 as can be seen
by the limits of the integration in (2.17)–(2.18). Those limits are in turn a
consequence of the cutoff energy E0 and angular momentum L0 in the ansatz
function (2.12). So γ(r) ≤ 0 is already equivalent to f(x, v) = 0. We define the
radius

R0 :=

√
L0

e2y0
. (2.21)

This radius characterizes an inner vacuum region, which can be seen as follows.
If L0 > 0 we have γ(r) < 0 for small r since y is approaching the finite initial
value y0 but the logarithm is unbounded. By equation (2.15) we have y(R) = y0

as long as there is vacuum for all r ≤ R. So the characteristic function is given
by γ(r) = y0 − 1

2 ln(L0/r2) and its first zero will be exactly at R0.
In an analogous way as described in [17] for the massive Einstein–Vlasov

system one can derive the Tolman-Oppenheimer-Volkov (TOV) equation

p′ = y′(� + p) − 2
r
(p − pT ) (2.22)

from the expressions (2.8)–(2.10) of the matter quantities. It will be used in
an integrated form in the proof of Proposition (4.5).
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3. Main Result

The existence of C1-solutions, not necessarily of compact support, of the mass-
less Einstein–Vlasov system follows in an analogous way to the case where
massive particles are considered. To make this precise we define quasi shell
solutions whose existence can be taken as a starting point for the arguments
presented in the following sections.

Definition 3.1. A quasi shell solution of the massless Einstein–Vlasov system is
a triple of functions λ, μ ∈ C1([0,∞)) and f ∈ L1

(
R

6
)

such that the Einstein–
Vlasov system (2.3), (2.4), (2.6), (2.7) is fulfilled and the matter quantities (2.8)
and (2.9) are differentiable functions. Furthermore, there exists 0 < R0 < ∞
such that the support of f and thus also of � and p is contained in (R0,∞).

Remark 3.2. Since the matter quantities of quasi shell solutions are not neces-
sarily of bounded support, the corresponding metric is not necessarily asymp-
totically flat, i.e., the boundary conditions (2.5) are not necessarily satisfied
and they do not belong to the definition of a quasi shell solution.

In [17] the existence of spherically symmetric, static solutions of the
Einstein–Vlasov system for a non-vanishing rest mass is proved. The argu-
ments and techniques presented in this work also yield the existence of these
quasi shell solutions. It is of course important to note that they do not yield
solutions with matter quantities of compact support. In virtue of [17] we can,
thus, state the following lemma.

Lemma 3.3. Suppose the solution f of the Vlasov equation (2.7) is given by an
ansatz of the form (2.12) where L0 > 0. Then for every initial value μ0 ∈ R

of the lapse function there exists a unique quasi shell solution of the massless
Einstein–Vlasov system (2.3)–(2.7).

The following theorem is the main result of this work and establishes the
existence of spherically symmetric solutions of the massless Einstein–Vlasov
system with compactly supported matter quantities.

Theorem 3.4. There exist static, spherically symmetric, asymptotically flat
solutions to the massless Einstein–Vlasov system, with compactly supported
matter quantities. These solutions have the property that

4
5

< sup
r∈[0,∞)

2m(r)
r

<
8
9
. (3.1)

Remark 3.5. The upper bound in (3.1) results from the Buchdahl inequal-
ity [2]. The lower bound in (3.1) is a property that all constructed solutions
must share and that becomes apparent in the proof. The question whether
it is necessary is addressed in Conjecture 1.1 and investigated numerically in
Sect. 5.

The major step in the proof of the main theorem is the following proposi-
tion, which has been established for the massive system in [4]. It is generalized
here to the massless Einstein–Vlasov system and slightly improved in the sense
that a larger class of ansatz functions is considered.
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Proposition 3.6. Consider a quasi shell solution of the massless Einstein–
Vlasov system with a sufficiently small inner radius of support R0. The distri-
bution function f then vanishes within the interval

[
R0

(
1 + B0R

2
q+1
0

)
, R1

]
, where R1 = R0

1 + B2R
1

q+1
0

1 − B1R
2

q+1
0

, (3.2)

and B0, B1, B2, and q are positive constants which only depend on the ansatz
function for the matter distribution. The solution can be joined with a Schwarz-
schild solution at the point where f vanishes and a static shell is obtained with
support within [R0, R1]. The mass parameter of this Schwarzschild solution
corresponds to the mass of the matter shell and the metric components μ and
λ as well as the matter quantities (2.8)–(2.10) are continuously differentiable.

Remark 3.7. Note that these shell solutions can be made infinitely thin as they
are moved towards the origin, i.e., R1

R0
→ 1 as R0 → 0.

4. Proof of the Main Theorem

We verify that the corresponding result to [4] in the massive case holds similarly
in the massless case. The result is slightly refined to cover a larger class of
ansatz functions. For the sake of completeness we give the entire adapted
proof in detail. Eventually we show that a gluing method yields solutions of
the claimed regularity.

4.1. Bounds on the Matter Quantities

A precise control of the matter quantities will be crucial for the proof of the
main theorem. First we derive explicit bounds for the matter quantities in
terms of γ and r.

Lemma 4.1. Let R0 be defined as in (2.21) and γ as in (2.20). Moreover, let
k ≥ 0 and 
 ≥ − 1

2 . Then for r ∈ [R0, 2R0] there are positive constants Cl and
Cu depending on k, 
, and L0 such that when γ ≥ 0,

Cl
γ�+k+ 3

2

r4
≤ �(r) ≤ Cu

γ�+k+ 3
2

r4
, (4.1)

Cl
γ�+k+ 5

2

r4
≤ p(r) ≤ Cu

γ�+k+ 5
2

r4
, (4.2)

Cl
γ�+k+ 3

2

r2
≤ z(r) ≤ Cu

γ�+k+ 3
2

r2
, (4.3)

where z := � − p − 2pT and �, p, and pT are as in (2.8)–(2.10).

Proof. We will only carry out the proof in detail for (4.1) since the other two
bounds, (4.2) and (4.3), follow in a very similar way. By inserting the ansatz
(2.12) into the expression (2.8) for � we obtain the form (2.17). We consider
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the integral over ε in more detail. First, we rewrite it in a convenient way.
Observe that by definition of γ given in (2.20) we have

ey = eγ

√
L0

r2
. (4.4)

We substitute this and set in addition a =
√

L0/r2 and b = eγ . We obtain

�(r) = 2πc�r
2�

∫ ba

a

[
1 − ε

ba

]k

ε2
(
ε2 − a2

)�+ 1
2 dε. (4.5)

A further change of variables given by t = ε/a−1
b−1 in the integral yields

�(r) = 2πc�
L�+2

0

r4
b−k(b − 1)k+�+ 3

2

×
∫ 1

0

t�+
1
2 (1 − t)k(t(b − 1) + 1)2(t(b − 1) + 2)�+ 1

2 dt. (4.6)

We call this integral Ik,� (eγ). Note that eγ = b and Ik,� (eγ) is always positive
since b ≥ 1 in view of the assumption γ ≥ 0. Moreover, the integral has bounds
from below and from above given by

Ik,� ≥
∫ 1

2

1
4

(
1
4

)�+ 1
2

(
1
2

)k

2�+ 1
2 dt = 2−(k+�+3) (4.7)

and

Ik,� ≤
∫ 1

0

b2(b + 1)�+ 1
2 dt = b2(b + 1)�+ 1

2 . (4.8)

The last quantity (4.8) will of course be bounded if b is bounded. We will
observe in the following that this is in fact the case for r ∈ [R0, 2R0]. Note
that these bounds do not depend on R0 if this radius is considered as being
determined by a choice of y0. We have obtained that � is of the form

�(r) = C�
k,�

L2�
0

r4
e−kγ (eγ − 1)�+k+ 3

2 Ik,� (eγ) (4.9)

with a positive constant C�
k,� only depending on k and 
.

In the remainder of the proof, we make use of the assumption that r ∈
[R0, 2R0]. We calculate the derivative of the function γ(r) and obtain

γ′(r) = y′(r) +
1
r

= −e2λ

[
m(r)
r2

+ 4πrp(r)
]

+
1
r
. (4.10)

Note that in particular γ′(r) ≤ 1
r . Since γ(R0) = 0 this implies that

γ(r) ≤ ln (r/R0) ≤ ln(2) < 1 (4.11)

for r ∈ [R0, 2R0]. As an immediate consequence, it follows that the factor
e−kγ is bounded from below and from above, namely we have e−k ≤ e−kγ ≤ 1.
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Finally, we want to estimate the expressions of the form (eγ − 1)�+k+ 3
2 by

powers of γ. In view of the Taylor expansion

eγ =
∞∑

j=0

γj

j!
≤ 1 + γ +

1
2

∞∑
j=2

γj = 1 + γ +
γ2

2(1 − γ)
(4.12)

we have
γ(r) ≤

[
eγ(r) − 1

]
≤ Cγ(r) (4.13)

for a positive constant C since γ(r) ≤ ln(2) on [R0, 2R0]. For the other matter
quantities similar bounds can be derived using the form (2.18) for p and a
similar form for pT . The corresponding expression for pT obtained by the same
succession of variable transformations is less compact than (2.17) and (2.18)
but the structure is similar. In [17] this form is derived explicitly. Hence one
can take Cl as the minimum of these constants and Cu as their maximum. �

4.2. Estimates on the Characteristic Function

In the remainder of this work, it will be useful to have the abbreviation

q := 
 + k +
3
2

≥ 1 (4.14)

at hand. A direct consequence of Lemma 4.1 is that on the interval [R0, 2R0]
the characteristic function γ(r) can be estimated by a power of r as stated by
the following lemma.

Lemma 4.2. Given k ≥ 0 and 
 ≥ − 1
2 there is a constant Cγ > 0 such that

γ(r) ≤ Cγr
2

q+1 (4.15)

for all r ∈ [R0, 2R0], if R0 is chosen sufficiently small.

Proof. We show that for r ∈ [R0, 2R0]

γ(r)q+1 ≤ r2

4πCl
(4.16)

by a contradiction argument. Cl is the constant in Lemma 4.1. Recall that by
its definition (2.20) we have γ(R0) = 0, so for r = R0 the inequality (4.16) is
trivially fulfilled. Assume that there is a subinterval [r1, r2] ⊂ [R0, 2R0] such
that

γ(r1)q+1 =
r2
1

4πCl
, and γ(r)q+1 >

r2

4πCl
for r ∈ (r1, r2).

Note that by virtue of Lemma 4.1 we have

p(r1) ≥ Cl
γ(r1)q+1

r4
1

=
1

4πr2
1

. (4.17)

Consider γ′ given in (4.10) at r = r1:

γ′(r1) ≤ −
[
m(r1)

r2
1

+
1
r1

]
e2λ +

1
r1

≤ −m(r1)
r2
1

e2λ ≤ 0. (4.18)
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But on the other hand

γ(r)q+1 >
r2

4πCl
(4.19)

requires γ′(r1) > 0 which yields a contradiction. So on [R0, 2R0] we have

γ(r)q+1 ≤ r2

4πCl
⇔ γ(r)q+1 ≤ (4πCl)− 1

q+1 r
2

q+1 =: Cγr
2

q+1 (4.20)

and the proof is complete. �

We proceed with a lower bound on the derivative of the characteristic
function.

Lemma 4.3. Let Cm = max{1, Cu, 4πCu} and let

δ ≤ R
q+3
q+1
0

Cm8
1

q+1
. (4.21)

Then
γ′(r) ≥ 1

2r
(4.22)

for r ∈ [R0, R0 + δ] if R0 is chosen small enough.

Proof. First we observe that for R0 small enough we have δ < 2R0 which
enables us to use Lemma 4.1. We have γ′(r) = y′(r) + 1

r . Let σ ∈ [0, δ]. Since
γ(R0) = 0, the mean value theorem implies that

γ(R0 + σ) = γ(R0 + σ) − γ(R0) ≤ σγ′(ξ) ≤ δ

R0
(4.23)

for a ξ ∈ [R0, R0 +σ]. This implies γ(r) ≤ δ
R0

. We substitute this in the upper
bound (4.1) for � stated in Lemma 4.1 and obtain

� ≤ Cu
δq

Rq
0r

4
. (4.24)

Since � = 0 when r < R0 we obtain for σ ∈ [0, δ]

m(R0 + σ) ≤
∫ R0+σ

R0

s2 Cuδq

Rq
0s

4
ds =

C�
uδq

Rq
0

σ

R0(R0 + σ)

⇒ m(R0 + σ)
R0 + σ

≤ Cuδq

Rq+1
0

σ

(R0 + σ)2
≤ Cuδq+1

Rq+3
0

. (4.25)

We also have for the pressure p the upper bound given in (4.2) and therefore
the estimate

p = Cu
γq+1

r4
≤ Cuδq+1

r4Rq+1
0

, for r ∈ [R0, R0 + δ]. (4.26)

Since by assumption δ ≤ R
q+3
q+1
0

Cm8
q

q+1
and Cm ≥ Cu we have

δq+1 ≤ Rq+3
0

8Cq+1
m

≤ Rq+3
0

8Cm
(4.27)
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and thus
m(R0 + σ)

R0 + σ
≤ Cu

8Cm
≤ 1

8
. (4.28)

Hence
e2λ(R0+σ) =

1

1 − 2m(R0+σ)
R0+σ

≤ 1
1 − 1

4

=
4
3

(4.29)

and also

4πr2p ≤ 4π

r2

Cuδq+1

Rq+1
0

≤ 4π

r2

CuRq+3
0

8Rq+1
0 Cq+1

m

≤ R2
0

8r2
≤ 1

8
. (4.30)

Thus for r ∈ [R0, R0 + δ] we have obtained

ry′(r) = −e2λ(r)

[
4πr2p(r) +

m(r)
r

]
≥ −1

3
(4.31)

and so we have

γ′(r) = y′(r) +
1
r

=
1
r

(ry′(r) + 1) ≥ 1
r

2
3

≥ 1
2r

(4.32)

as desired. �

4.3. Existence of Characteristic Radii

The previous lemma reveals that the quantity γ increases relatively steeply
after the inner vacuum region. In the following, we show that this quantity
will also decrease in a controlled way and eventually reach zero. To formulate
this, some constants are defined. By virtue of Lemma 4.3 we have for σ ∈ [0, δ]
the estimate

γ(R0 + σ) ≥ γ(R0) + σ inf
s∈[0,σ]

γ′(R0 + s) ≥ σ

2(R0 + σ)
.

Now let
σ∗ := C0R

1+ 2q+1
q(q+1)

0 , (4.33)

where C0 = min
{

1
4 ,

(
Cm8

1
q+1

)−1
}

. Since

1 +
2q + 1

q(q + 1)
≥ q + 3

q + 1
(4.34)

we have by construction

σ∗ = C0R
1+ 2q+1

q(q+1)
0 ≤ 1

Cm8
1

1+q

R
1+ 2q+1

q(q+1)
0 ≤ R

q+3
q+1
0

Cm8
1

1+q

(4.35)

since R0 can be chosen small. Since σ∗ ∼ R
1+ 2q+1

q(q+1)
0 and δ � R

q+3
q+1
0 one has

σ∗ < δ for R0 small enough. We define

γ∗ :=
σ∗

2(R0 + σ∗)
. (4.36)

One easily checks that

γ(R0 + σ∗) ≥ σ∗
1

2(R0 + δ)
≥ γ∗. (4.37)
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Since γ started at γ(R0) = 0, it has reached the value γ∗ already at least once.
We call this radius r1. The following lemma states that this value γ∗ will be
attained a second time shortly after the radius R0 + σ∗.

Lemma 4.4. Let κ = 9 22q

ClC
q
0

and let K = max{C0, κ}, and consider a solution
with R0 such that

R
1

1+q

0 K ≤ 1. (4.38)
Then there is a point r2 such that γ(r)↘γ∗ as r↗r2, and

r2 ≤ R0 + σ∗ + κR
q+2
q+1
0 .

Proof. Since γ(R0 + σ∗) ≥ γ∗, and since Lemma 4.3 gives that γ′(R0 + σ∗) ≥
1

2(R0+σ∗) > 0, the radius r2 must be strictly larger than R0+σ∗. Let Δ > 0 such
that γ ≥ γ∗ on the interval [R0+σ∗, R0+σ∗+Δ] and also [R0+σ∗, R0+σ∗+Δ] ⊂
[R0, 2R0]. We will show that

Δ ≤ κR
q+2
q+1
0 (4.39)

which implies the assertion. Since Lemma 4.1 provides on [R0, 2R0] the esti-
mate � ≥ Cl

γq

r4 we have for r ∈ [R0 + σ∗ + Δ, 2R0]

m(r) = 4πCl

∫ r

R0

γq(s)
s2

ds

≥ 4πCl

∫ R0+σ∗

R0

γq(s)
s2

ds + 4πCl

∫ R0+σ∗+Δ

R0+σ∗

γq(s)
s2

ds

≥ 4πCl

∫ R0+σ∗+Δ

R0+σ∗

(γ∗)q

s2
ds

≥ Cl

∫ R0+σ∗+Δ

R0+σ∗

σq
∗

2q(R0 + σ∗)qs2
ds

= Cl
σq

∗
2q(R0 + σ∗)q+1

Δ
R0 + σ∗ + Δ

. (4.40)

Hence
m(R0 + σ∗ + Δ)

R0 + σ∗ + Δ
≥ Cl

σq
∗

2q(R0 + σ∗)q+1

Δ
(R0 + σ∗ + Δ)2

. (4.41)

The assumption (4.38) guarantees σ∗ ≤ R0. Inserting this into the upper
inequality (4.41) yields

m(R0 + σ∗ + Δ)
R0 + σ∗ + Δ

≥ Cl
Cq

0R
q(1+ 2q+1

q(q+1) )
0

2q2q+1Rq+1
0

Δ
(R0 + σ∗ + Δ)2

=
ClC

q
0R

q
q+1
0 Δ

22q+1(R0 + σ∗ + Δ)2
. (4.42)

Assume now that the assertion of the lemma does not hold, i.e. in particular

Δ ≥ κR
q+2
q+1
0 . On the radial axis we of course have to remain in the domain
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R0+σ∗ +Δ < 2R0 but (4.38) guarantees that this is always possible. It follows
(also by σ∗ ≤ R0)

m(R0 + σ∗ + Δ)
R0 + σ∗ + Δ

= ClC
q
0

R
q

q+1
0 κR0R

1
1+q

0

22q+1(R0 + σ∗ + Δ)2

≥ ClC
q
0κ

R2
0

22q+1(3R0)2

=
ClC

q
0κ

22q+132
. (4.43)

And the definition of κ implies that

m(R0 + σ∗ + Δ)
R0 + σ∗ + Δ

≥ ClC
q
0κ

3222q+1
=

1
2
. (4.44)

But this leads to a contradiction since it is known that all static solutions fulfill
m(r)

r ≤ 4
9 < 1

2 [2]. So we deduce

Δ < κR
q+2
q+1
0

and the proof is complete. �

4.4. A Lower Bound for m/r

By now we have characterized the behavior of the quantity γ(r) in some detail.
Piling on those lemmas we can prove the following proposition giving a lower
bound on the quantity m

r at the radius r2 where γ(r2) = γ∗ a second time.

Proposition 4.5. Let r2 be as in Lemma 4.4 for a sufficiently small R0. Then
the corresponding solution satisfies

m(r2)
r2

≥ 2
5
. (4.45)

Proof. In the first part of the proof, we investigate the expression m(r2)
e(λ−y)(r2). First note that the Einstein Eqs. (2.3) and (2.4) imply

λ′ − y′ = 4πre2λ(� + p). (4.46)

Using this and the TOV equation (2.22) we can calculate the r-derivative of
the expression eλ−y

(
m(r) + 4πr3p(r)

)
and obtain

d
dr

eλ−y
(
m(r) + 4πr3p(r)

)
= 4πr2eλ−y(� + p + 2pT ). (4.47)

So we have

eλ−y
[m

r2
+ 4πrp

]
=

1
r2

∫ r

0

4πs2e(λ−y)(s)(� + p + 2pT )ds. (4.48)

We consider this equality at r = r2. Furthermore we substitute z = �−p−2pT

and use the fact that all matter quantities are zero for r ≤ R0. We obtain

m(r2)e(λ−y)(r2) =
∫ r2

R0

4πs2e(λ−y)(s)(2� − z)ds − e(λ−y)(r2)4πr3
2p(r2). (4.49)
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Lemma 4.1 implies

z ≤ Cu
γ�+k+ 3

2

r2
≤ Cu

Cl
r2Cl

γ�+k+ 3
2

r4
≤ Cu

Cl
r2�(r). (4.50)

Inserting this relation into (4.49) yields
∫ r2

R0

4πs2e(λ−y)(s)z(s) ds ≤ 4πCr3
2e

−y(r2)

∫ r2

R0

seλ(s)�(s)ds (4.51)

for a positive constant C. The y-factor can be taken in front of the integral
since y is monotonically decreasing. In the remainder of the proof, C shall be
understood as a symbolic notation for a positive constant whose value may
change from line to line.

We estimate the integral in (4.51) further. Observe that the first Einstein
equation (2.3) implies 4πr�eλ = − d

dr

(
e−λ

)
+ eλ m

r2 . We write
∫ r2

R0

4πs�(s)eλ(s)ds =
∫ r2

R0

[
− d

ds
e−λ

]
ds +

∫ r2

R0

m(s)eλ(s)

s2
ds

≤ 1 −
√

1 − 2m(r2)
r2

+ Cm(r2)R
q+2
q+1−2

0

≤ 2m(r2)
R0

+
Cm(r2)

R
q

q+1
0

≤ C
2m(r2)

R0
. (4.52)

Here it was used that e−2λ = 1 − 2m
r , m(r) is increasing in r, and that

r2 ≤ R0 + σ∗ + κR
q+2
q+1
0 ⇒ r2 − R0 ≤ CR

q+2
q+1
0 (4.53)

for a positive constant C (cf. also the definitions (4.33) and (4.14) and κ is
defined in Lemma 4.4).

The next step of the proof is to show that r2 ≤ 4m(r2). Therefore we first
observe that γ′(r2) ≤ 0 since at r2, γ(r) approaches γ∗ from above as stated
in Lemma 4.4 and also

r2p(r2) ≤ Cu
γq+1

∗
r3
2

≤ C

R
q−1
q

0

(4.54)

by Lemma 4.1. By the definition (2.20) of γ we have y′(r2) = γ′(r2)− 1
r2

≤ − 1
r2

.
Now assume that 4m(r2) < r2. Then e2λ ≤ 2 and we get

y′(r2) = −e2λ

[
m(r2)

r2
2

+ 4πr2p(r2)
]

≥ −2

⎡
⎣ 1

4r2
+

4πC

R
q−1
q

0

⎤
⎦ . (4.55)

This expression is certainly larger than −r−1
2 if R0 is chosen small enough,

since a small R0 also implies a small r2 by its definition in Lemma 4.4. This
is a contradiction to the previous simple observation. Hence r2 ≤ 4m(r2).
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Coming back to the expression (4.49) we apply the estimates (4.51) and
(4.52) and use r2 ≤ 4m(r2). We have

m(r2)e(λ−y)(r2)

≥
∫ r2

R0

4πs2e(λ−y)(s)2�(s)ds − Cr3
2e

−y(r2)

∫ r2

R0

4πs�(s)eλds − 4πr3
2pe(λ−y)(r2)

≥ 2
∫ r2

R0

4πs2e(λ−y)(s)�(s)ds − Ce−y(r2)r2
2m(r2) − Cr2

2m(r2)pe(λ−y)(r2)

≥ 2e−y(R0)R0

∫ r2

R0

4πseλ(s)�(s)ds − CR2
0m(r2)

(
e−y(r2) + p(r2)e(λ−y)(r2)

)
.

(4.56)

We have already observed that the first Einstein equation (2.3) implies 4π�eλ =
− d

dr (e−λ) + eλ m
r2 . We estimate∫ r2

R0

4πs�(s)eλ(s)ds =
∫ r2

R0

[
− d

ds
e−λ

]
ds +

∫ r2

R0

m(s)eλ(s)

s2
ds

≥ 1 −
√

1 − 2m(r2)
r2

=
2m(r2)

r2

[
1 +

√
1 − 2m(r2)

r2

] . (4.57)

Substituting this in (4.56) we obtain

m(r2)e(λ−y)(r2)

≥ e−y(R0)
R0

r2

4m(r2)

1 +
√

1 − 2m(r2)
r2

− CR2
0m(r2)

(
e−y(r2) + p(r2)e(λ−y)(r2)

)
.

(4.58)

Again we use the estimate (4.54) for p(r2) and the facts that eλ ≥ 1 and that
y(r) decreases in r. We get

m(r2)e(λ−y)(r2) ≥ e−y(R0)
R0

r2

4m(r2)

1 +
√

1 − 2m(r2)
r2

− Ce−y(r2)R2
0m(r2) − CR

1
q

0 m(r2)e(λ−y)(r2)

⇒ ey(R0)−y(r2) ≥ R0

r2

4e−λ(r2)

1 +
√

1 − 2m(r2)
r2

− Cey(R0)−y(r2)R2
0 − CR

1
q

0 ey(R0)−y(r2)

⇒ 1 ≥ ey(r2)−y(R0)
R0

r2

4e−λ(r2)

1 +
√

1 − 2m(r2)
r2

− CR2
0 − CR

1
q

0 . (4.59)

Furthermore we have

y(r2) − y(R0) = −
∫ r2

R0

e2λ(s)

[
4πsp(s) +

m(s)
s2

]
ds. (4.60)
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We show that this integral (4.60) goes to zero as R0 goes to zero.
From the estimate in Lemma 4.2 it follows that p(r) ≤ C

r2 for a posi-
tive constant C. Moreover it is known that for every static solution of the
Einstein–Vlasov system we have the inequality 2m(r)

r ≤ 8
9 , [2]. This implies

that e2λ =
[
1 − 2m(r)

r

]−1

is bounded from above by 9. We get for the inte-
grand of (4.60)

[m

r2
+ 4πrp

]
e2λ ≤ 9

[
4
9r

+
4πC

r

]
=:

Cp

r
. (4.61)

Hence

y(r2) − y(R0) ≥ −
∫ r2

R0

Cp

s
ds = [−Cp ln(s)]r2

R0
= −Cp ln

[
r2

R0

]
. (4.62)

This implies that (4.59) can be written as

1 ≥
[
R0

r2

]Cp+1 4
√

1 − 2m(r2)
r2

1 +
√

1 − 2m(r2)
r2

− CR2
0 − CR

1
q

0 . (4.63)

Since R0
r2

↗ 1, as R0 → 0 we can write this inequality as

1 ≥ (1 − Γ(R0))
4
√

1 − 2m(r2)
r2

1 +
√

1 − 2m(r2)
r2

− CΓ(R0) (4.64)

with a function Γ(R0) fulfilling 0 < Γ(R0) → 0, R0 → 0. This yields

1 +

√
1 − 2m(r2)

r2
≥ (1 − Γ(R0))4

√
1 − 2m(r2)

r2
− CΓ(R0), (4.65)

so that

1 ≥ 3

√
1 − 2m(r2)

r2
− CΓ(R0). (4.66)

We square this inequality and obtain

1 + 2CΓ(R0) + C2Γ2(R0) ≥ 9
[
1 − 2m(r2)

r2

]

⇒ 2m(r2)
r2

≥ 8
9

− CΓ(R0). (4.67)

By choosing R0 small one can let the quotient m(r2)
r2

become arbitrarily close

to 4
9 , in particular one can attain m(r2)

r2
≥ 2

5 which completes the proof of the
proposition. �
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4.5. Proof of Proposition 3.6

Proof of Proposition 3.6. The matter quantities are different from zero if and
only if γ(r) > 0. Since γ(R0) = 0 and on [R0, R0 + δ] we have γ′(r) ≥ 1

2r > 0.
By virtue of Lemma 4.4 we can observe that f cannot vanish for

r ≤ R0 +
R

q+3
q+1
0

Cm8
1

1+q

. (4.68)

Thus the claim that the matter quantities do not vanish before r = R0 +

B0R
q+3
q+1
0 follows with B0 = 1

Cm8
1

q+1
.

The main issue in this proof is to show that the matter quantities vanish
before some radius

R1 =
R0 + B2R

q+2
q+1
0

1 − B1R
2

q+1
0

(4.69)

where B1 and B2 are positive constants. We will show that γ necessarily van-
ishes close to the point r2 if R0 is sufficiently small. For this purpose, the
variable

x :=
m(r)
rγ(r)

(4.70)

is defined. Observe that x → ∞ implies γ → 0 and therefore also f → 0. So
we want to prove that x diverges at a finite radius. We consider

rx′ =
4πr2�

γ
− x +

x2

1 − 2γx
− x

γ
+

4πr2px

γ(1 − 2γx)
. (4.71)

for r ∈ [R0, r2] and γ(r) > 0 and we will show that γ(r) = 0 for some r < (1+
Γ(R0))r2, where Γ is some function having the property that 0 < Γ(R0) → 0,
as R0 → 0. Since γ > 0 and �, p ≥ 0 the first term and the last term in (4.71)
can be dropped and we have

rx′ ≥ x2

3(1 − 2γx)
− x +

2x2

3(1 − 2γx)
− x

γ
. (4.72)

Take R0 sufficiently small so that m(r2)
r2

≥ 2
5 by Proposition 4.5. Let r ∈[

r2,
16r2
15

]
, then since m is increasing in r we get

m(r)
r

≥ m(r2)
r

=
r2

r

m(r2)
r2

≥ 3
8
. (4.73)

We wish to estimate rx′ in (4.72) further. Observe that by (4.73) and (4.70)
we have

x

1 − 2γx
= e2λ m

rγ
≥ 3

2γ
. (4.74)

Thus on
[
r2,

16r2
15

]
we have

2x2

3(1 − γx)
− x

γ
≥ 0. (4.75)
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Inserting this into (4.72) we obtain on this interval

rx′ ≥ x2

3(1 − 2γx)
− x ≥ 4

3
x2 − x. (4.76)

By virtue of Lemma 4.2 we have for r ∈ [R0, 2R0] the estimate γ ≤ Cγr
2

q+1 .
So we get

x(r2) =
m(r2)

r2

1
γ(r2)

≥ 2
5

C

r
2

q+1
2

. (4.77)

Thus x(r2) → ∞ as R0 → 0, and we take R0 sufficiently small so that

x(r2)
x(r2) − 3

4

≤ 16
15

. (4.78)

In particular we have x(r2) ≥ 12 > 3
4 .

We solve the differential inequality (4.76) with the method of separation
of variables and obtain

x(r) ≥ 3
4

1

1 − r( 4
3x(r2)−1)
4
3 r2x(r2)

. (4.79)

We observe that the right hand side diverges if r approaches
4
3r2x(r2)

4
3x(r2) − 1

≤ r2
16
15

. (4.80)

Note that this upper bound is already smaller than 2R0 for R0 small. The
estimate (4.77) yields

x(r2)
x(r2) − 3

4

≤
2
5

C

r
2/(q+1)
2

2
5

C

r
2/(q+1)
2

− 3
4

=
1

1 − 15
8

r
2/(q+1)
2

C

. (4.81)

Lemma 4.4 provides

r2 ≤ R0 + σ∗ + κR
q+2
q+1
0 . (4.82)

Hence it is possible to choose a constant B1 such that

x(r2)
x(r2) − 3

4

≤ 1

1 − B1R
2

q+1
0

→ 1, as R0 → 0. (4.83)

Finally, since σ∗ ≤ κR
q+2
q+1
0 , if R0 is sufficiently small, it is clear that there is a

positive constant B2 such that

r2 ≤ R0 + B2R
q+2
q+1
0 . (4.84)

In total

R1 ≤ R0 + B2R
q+2
q+1
0

1 − B1R
2

q+1
0

, (4.85)

as desired.
�
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4.6. Proof of the Main Theorem

With those lemmas and propositions at hand, we can prove the main theorem.

Proof of the main theorem. Suppose y, �, and p belong to a quasi shell solution
with sufficiently small inner radius R0. Proposition 3.6 yields the existence of
a radius, say r1 ≤ R1, such that �(r1) = p(r1) = 0. At this point the matter
distribution function f can be continued by constant zero and the function
y = ln(E0) − μ can be continued with

yS(r) = ln(E0) − 1
2

ln
[
1 − 2M

r

]
, (4.86)

which corresponds to the Schwarzschild metric where the mass parameter M
is chosen to be

M = m(R1) = 4π
∫ R1

R0

s2�(s)ds. (4.87)

A few words on the regularity of the functions y, �, and p are in order. By the
same reasoning as in Lemma 2.1 in [20] one obtains that � can be differentiated
�
+ 3

2� times with respect to r and the derivative will be continuous. For p one
finds that it is �
 + 5

2� times continuously differentiable. The derivative of y is
given by (2.15). One observes that the derivative y(n) is given by an expression
containing the functions p, . . . , p(n−1), m, and, �, . . . , �(n−2). So by the upper
observations one concludes that y can be continuously differentiated �
 + 7

2�
times.

All existing derivatives of the matter quantities contain integrals over the
same domain as in (2.17) and (2.18). Thus they vanish if and only if γ(r) ≤ 0.
So since γ(r1) = 0 all existing derivatives of the matter quantities � and p are
zero and all existing derivatives of y equal the corresponding derivatives of the
Schwarzschild component yS . The function y gives rise to a full solution to the
Einstein–Vlasov system as for example discussed in [19] for the massive case.
This ends the proof of the main theorem. �

5. Criteria for Shell Formation

In this section, we present numerical support for Conjecture 1.1. To this end
we construct spherically symmetric solutions of the Einstein–Vlasov system
numerically. A typical energy density containing a shell of massless matter can
be seen in Fig. 1. The peak is enclosed by two vacuum regions. Note that the
energy density is not zero for large radii even though it is very small. However,
not all solutions show matter regions that are separated by vacuum, as for
example the solution depicted in Fig. 2.

In Conjecture 1.1 the quantity

Γ = sup
r∈[0,∞)

2m(r)
r

(5.1)

was introduced. Our numerical calculations indicate that Γ ≥ 0.8 is a necessary
condition for that a solution with separated matter regions as in Fig. 1 occurs.
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Figure 1. A typical shell configuration. k = 0, 
 = 1
2 , L0 =

0.8, y0 = 0.51

Figure 2. The matter peaks are not separated by vacuum.
k = 0, 
 = 3

2 , L0 = 0.2, y0 = 0.22

There are four parameters that determine a solution of the Einstein–Vlasov
system if the matter distribution function is chosen to be of the form (2.12).
These parameters are the initial value y0 for the function y emerging from
the metric and the constants k, 
, and L0 in the ansatz (2.12). We observe
that this parameter space is separated by a hypersurface into a region where
matter shells occur and a region where the support of the matter quantities is
connected. Figure 3 shows a part of the plane in this space that is spanned by

 and y0. Shells only occur if Γ ≥ 0.8.

Also the influence of increasing k or L0 has been investigated. One
observes in both cases that for each value of 
 a shell as in Fig. 1 only forms for
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y0:
:

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2

0.43 • • • • × × ×
0.86 0.85 0.83 0.82 0.80 0.78 0.77

0.36 • • • • × × ×
0.86 0.84 0.83 0.81 0.8 0.77 0.76

0.29 • • • • × × ×
0.86 0.84 0.82 0.80 0.79 0.77 0.75

0.22 • • • • × × ×
0.85 0.84 0.82 0.80∗ 0.78 0.76 0.75

0.16 • • • × × × ×
0.85 0.83 0.81 0.80 0.77 0.76 0.74

0.11 • • • × × × ×
0.85 0.83 0.81 0.79 0.77 0.75 0.73

Figure 3. Behavior for different parameter choices. In (2.12)
we fix k = 0, L0 = 0.05 and vary 
 and y0. If a shell is
obtained we set a •, if not a ×. The small numbers represent
the quantity Γ = supr

2m
r and the shell solution with minimal

Γ is indicated with a ∗

larger values of y0. The qualitative behavior however—including the observa-
tion that all shells have Γ ≥ 0.8—does not change. This behavior was expected
since the proof of Theorem 3.4 works for general k and L0.
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[2] Andréasson, H.: Sharp bounds on 2m/r of general spherically symmetric static
objects. J. Differ. Equ. 245(8), 2243–2266 (2008)
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