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Abstract Simulation of the resistivity in the normal state of
doped La2−xSrxCuO4 has been performed using a hopping
model based on Marcus theory. The results are in substantial
agreement with experimental results. At oxidative doping,
Cu(III) sites are formed and electron mobility possible due
to hopping: Cu(III)Cu(II) → Cu(II)Cu(III) (one-electron
exchange). In the underdoped, non-metallic region, the
resistivity (ρ) decreases from almost insulation at T = 0 to
a minimum at about T = 100 K. ρ then increases more than
linearly with T (∼ T 3/2) in the region 100 < T < 500 K. A
photo-induced metal-metal (MM) charge transfer transition
at 2 eV 2Cu(II) + hν → Cu(I) + Cu(III) is responsi-
ble for the strong absorption in the visible spectrum of
La2CuO4. The down-shift of spectral density with doping
(x) in La2−xSrxCuO4 depends on the appearance of Cu(III)
sites which makes optical as well as thermal one-electron
exchange transitions possible with lower energy. Dispro-
portionation occurs spontaneously for x > 0.06, opening
up for electron pair formation. Configuration interaction
between two-electron states of low chemical potential, but
strong vibrational coupling, gives rise to the superconduc-
tor and pseudogaps. Data from photo-induced conductivity
and absorption spectra are used in the simulation, which
gives results in good agreement with experiments. Possi-
ble explanations for Raman and MIR absorption suggest
themselves.
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1 Introduction

The slow advent of a consistent theory for cuprate super-
conductivity (SC) has to a large extent been caused by a
failure to realize the importance of structural dependence on
the number of electrons at a site in a crystal with localized
electronic structure. In this paper, such couplings have been
included using the Marcus model [1–5]. Another reason for
lack of progress is that conductivity has been incorrectly
identified with ligand-metal (LM) charge transfer (CT).
Conductivity is related to metal-metal (MM) CT between
adjacent, equivalent sites in different oxidation states, in
the present case the three oxidation states of copper Cu(I),
Cu(II), and Cu(III) [6]. The neglect of negative terms in
the expression for Hubbard-U [7] made it impossible for a
long time to explain U < 0 [8] and why spectral density
at 2 eV is moved to lower energies (<0.8 eV) after dop-
ing [9]. Finally, the electronic configuration interaction (CI)
between the charged and spin-coupled states, which is a nec-
essary condition for a superconducting (SC) phase [10], has
not been widely recognized.

Hubbard-U , for example in CuO or La2CuO4, can be
defined phenomenologically as the free-energy difference
between the spin-coupled ground state and a CT state, where
an electron has moved from one site in a crystal to the next.
U refers either to adiabatic motion between free energy min-
ima (Uad) or excitation at the fixed ground state geometry
(Uvert). Adiabatic Uad is considerably smaller than Uvert.
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Uvert can be obtained from the optical conductivity spectrum
[9].

Attractive Cu(III) sites appear after doping (x > 0),
and the Cu(II)/Cu(III) transitions in the upper-left corner
in Fig. 1 become possible [(1)]. This explains the transfer
of spectral density to energies below 1 eV. For x < 0.055
in La2−xSrxCuO4, the stable phase is spin-coupled with x

additional Cu(III) sites. Increased doping leads to a negative
U state. For x > 0.055, the “charged state” with alternating
Cu(I)/Cu(III) sites + x additional Cu(III) charges is lower
in energy than the spin-coupled state [8]. The SC phase
appears in the doping range 0.055 < x < 0.26. In this range,
the ground state wave function is a quantum mechanical mix
of the spin-coupled and charged wave functions [10].

The resistivity (ρ) in La2−x SrxCuO4 has been measured
by Takagi et al. for x-values up to x = 0.34 from T = 0
to T = 1000 K [11]. For dopings increasing from x = 0 to
x = 0.05, the resistivity has a minimum at Tmin ≈ 100 K. For
T → 0 and x = 0, ρ tends to large values (see Section 7). If
T > Tmin, T increases as T 3/2, but above 600 K, linearly in
T [11].

At a low doping level, the conductivity increases pro-
portional to doping, and the mechanism is likely of self-
exchange-type:

Cu(II) + Cu(III) ↔ Cu(III) + Cu(II)(�G0 = 0) (1)

Corresponding optical CT reaction may be written (Fig. 1,
upper left corner):

Cu(II) + Cu(III) + hν ↔ Cu(III) + Cu(II) (2)

Equations 1 and 2 describe transfer of one single electron (or
spin). Cu(III) sites with unoccupied 3d(x2 − y2)-orbitals in
the Cu3d-subshell (Zhang-Rice singlets) are clearly observ-
able in “stripes” [12]. Heikes and Johnston studied conduc-
tivity in doped transition metal oxides, for example CuO
doped to LixCu(1−x)O [13]. Li+ is the dopant and replaces
some Cu(II) sites whereby other Cu(II) sites are oxidized
to Cu(III) sites. At x = 0.2 in CuO, the conductivity is

caused mainly by self-exchange Cu(II)/Cu(III). The activa-
tion energy is 0.087 eV (2 kcal/mol; for x = 0.02 [13]). It
is reasonable to interpret the absorption in La2−xSrxCuO4

(≈0.13 eV) [14] as due to (2). The activation energy in
(1) is then 1/4·0.13 in the Marcus model (≈0.035 eV),
in La2CuO4+y , consistent with the experimental resistivity
minimum for underdoped cuprates [11] (see below).

The results of Heikes and Johnston [13] support the elec-
tron exchange hopping mechanism (1) originally suggested
by De Boer and Verwey for NiO [15] and discussed by Mott
and Peierls [16]. The other mechanism is the disproportion-
ation suggested by Mott [7] (see below). In other words, the
doping results by Heikes and Johnston support two different
mechanisms for conductivity: for x = 0, disproportionation,
and for x > 0 also electron exchange.

Pekar was the first one to point out that electrons do not
always move freely in solids, but as “polarons” [17]. In a
later paper, Landau and Pekar pointed out the “internal con-
tradiction” that ions are not fixed at lattice sites but are in
a motion, coupled to the motion of the electrons in local-
ized systems such as the cuprates [18]. In the present paper,
the internal contradiction is properly accounted for using the
Marcus-Hush-Sutin model [1–3].

For x = 0 in CuO, the activation energy is
0.43 eV > > 0.087 eV (10 kcal/mol in ref. [13]) and there-
fore not due to a mechanism where �G0 > 0 (thermal
disproportionation):

2Cu(II) → Cu(I) + Cu(III) (�G0 = Uad) (3)

Corresponding optical disproportionation:

2Cu(II) + hν → Cu(I) + Cu(III) (4)

changes the spin-coupled state to a charged state, without
changing the spin of the system (Fig. 1, lower part). Equa-
tion 4 is the MMCT transfer transition at hν = 2.0 eV
[19].

In the optimally doped system, there is a minimum in
the far infrared optical conductivity at about 300 cm−1 in

III

III

h•

h•

h•

Excitation

h•

Cu(III)

Cu(II)

Cu(I)

III

I 

III

III

III

I III

Final state

Fig. 1 Four different possibilities for MMCT excitation in the CuO2
plane (left picture). The two excitations on the left upper corner
are due to one-electron exchange. In the lower left corner, the

disproportionation transition at 2 eV in undoped La2CuO4 is shown.
In the lower right corner, the same transition close to a hole is shown.
The final results are indicated in the right figure
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YBa2Cu3O6.95 [20–23] and La2−xSrxCuO4 [9], probably
due to the SC gap. For 800>ν̃>300 cm−1, the absorption is
due to (4) since it cannot be due to (2), which is independent
of doping and at 0.135 eV (∼ 1100 cm−1) [14].

After doping, MMCT transitions appear at lower ener-
gies (Fig. 1, lower right corner) due to the nearby hole.
This decrease is seen in the spectrum of La2−xSrxCuO4 [9].
Continued lowering leads to CI between spin-coupled and
charged state [13, 24].

As will be discussed below, we also find conductivity
due to electron pair hopping of the following type with
activation energy in the 0.5 eV region:

Cu(I) + Cu(III) → Cu(III) + Cu(I) (5)

This mechanism contributes of course in the SC region, but
also in the under- and overdoped regions outside the SC
region. The pseudogap (see below) involving two-electron
states will be of importance for high temperatures. In the
overdoped region, there are very few Cu(II) sites and con-
ductivity will be mainly due to coherent and incoherent
two-electron transfer (ET).

Creation of Cu(III) sites is called “hole doping”. In “elec-
tron doping” Cu(I), sites are created. The same model may
be used as will be commented on later.

2 Electron Transfer Between Sites

ET rate depends on bond-length fluctuations caused by
the varying number of electrons [1–3] in a local system.
The Marcus model is based on the free energy potential
surface (PES) of the Born-Oppenheimer approximation. It
follows from the model that there are activation barriers up
to one fourth of the vertical excitation energy λ [1]. The
nuclear and electronic motions are coupled via structural
fluctuations.

The Marcus model describes ET between two molecules
(M + M−), two sites in a crystal or polymer, or two ions in
a solvent. PES should not be mixed up with potentials for
individual electrons. The x-axis (Fig. 2) is a collective reac-
tion coordinate for the nuclear positions, one where the CuO
bond-length deceases at one site and increases at another. hν

in (2) corresponds to a vertical excitation (λ). The avoided
crossing is treated using the Landau-Zener method [3, 25].
The electrons are coupled to nuclear coordinates by breath-
ing and half-breathing modes. In a cuprate, the most relevant
vibrations are found between 400 and 800 cm−1.
It follows from Fig. 2 that if the coupling |H12| = �/2 is
large, the barrier is eliminated. We refer to ref. [3] for a
detailed derivation. The ratio |H12|/λ determines whether
the activation barrier disappears and the system becomes
delocalized [2, 4].
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Fig. 2 Potential free energy surfaces in the Marcus model for one-
electron transfer; λ is reorganization energy, � = 2H12 is cou-
pling, and Ea activation energy. (n, n + 1) etc. refers to site orbital
occupation

At a Cu(III) site, the antibonding molecular Cu-
3d(x2 − y2)-O2p orbital is empty. At a Cu(II) site, the
same orbital is occupied by one electron. The CuO bond in
the CuO2 plane is therefore larger by about 0.1 Å. Due to
this difference in bond-length, the electron life time is quite
large (ps-ns range), and the conductivity low in CuO and
cuprates in the normal state. The greater the difference in
bond-length between the two valence states, the more the
two parabolas are separated along the x-axis (Fig. 2) and the
larger the activation barrier and deeper the trapping.

Conductivity due to ET hinges on the parameters in
Fig. 2. The electron is localized where the antibonding is the
least and the bond lengths the largest. The energy is further
lowered by polarization of the medium. In a mixed-valence
crystal, the system oscillates between the two minima with
a rate equal to the electron exchange rate. In an electric
field directed between donor and acceptor, there is a net
free energy difference �Gθ for conductivity. If the barri-
ers (Figs. 2, 3, and 4) are below the vibrational energy, the
system may be regarded as delocalized and itinerant with
metallic conductivity.

λ is the vertical excitation energy from the Cu2+/Cu3+
to the Cu3+/Cu2+ energy surfaces (Fig. 2). For example in
the Fe2+/Fe3+ mixed valence system, λ corresponds to 12
000 cm−1, just below the visible region [3]. In the case of a
cuprate, there are four rather than six bonds, and hence, we
may expect λ to correspond to 8000 cm−1 or about 1 eV,
which is also in the IR region. Increased coupling H12 tends
to eliminate the barrier and form a system with ordinary
metallic conductivity.

Figures 3 and 4 show how to apply the Marcus model to
electron pair transfer. The outer, local minima refer to two
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Fig. 3 Potential energy surfaces for electron pair transfer; Uad <0

electrons being at one of the sites and the central minimum
to one electron on each sub-system, in our case Cu(II) sites.
The disproportionation energy in (3) is equivalent to adia-
batic Hubbard-U (Uad). Figures 3 and 4 make it clear that
there is a vertical Hubbard-U , seen as a wide and strong
absorption in a spectrum (around 2 eV). The vibrational
breathing or half breathing modes are coupled to the CuO
bond-length coordinates along the x-axis, in its turn coupled
to disproportionation. Figure 3 shows disproportionation
(Uad < 0), while Fig. 4 shows the case typical for cuprates
with Uad > 0. A major difference to the traditional Marcus
case for one-electron exchange is that we need the Hubbard-
U parameter for the difference in total free energy between
the charged state and the spin-coupled state. This Hubbard-
U parameter can become negative by oxidative or reductive
doping [8].
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Fig. 4 Potential energy surfaces for the cuprate ground state; Uad >0

3 Mobility in the Marcus Model

To obtain the conductivity, we will use a model for hop-
ping where each step is an ET transfer step in Marcus theory
[1–3]. The latter model has been used extensively for transi-
tion metal systems and all experience suggests that complete
vibrational relaxation takes place in ET step even in the
fastest ET reactions. In the spin-coupled and charged phase,
we may also assume that there is no interaction between
the transferring electrons. We may therefore use a model of
Drude type.

With hopping a distance and hop probability k, the
average drift velocity is

vd = a · k k = (k+ − k−) (6)

We may think of this as a one-dimensional motion in the
direction of an electric field �E. The hop probability in the
direction of the field k+ is different from the probability
against the field, k−. In a continuous system, we may think
of the drift velocity (vd) as the velocity of a fully accelerated
particle with mobility μ:

vd = μ �E (7)

The conductivity σ is directly related to the mobility
through

σ = nevd/E = neμ = J/E (8)

where n is the number of charge carriers per volume unit, e

the charge of the electron, and J = nevd the current density.
Electron mobility (vd) is given in cm2/Vs. The current

in the conductor is I = J · A, where A is the cross section
surface area. In a conductor of length �

R = ρ · �

A
(9)

where R is the resistance. The resistivity (ρ) is inverted con-
ductivity (σ). According to (7), the conductivity may be
written as

σ = 1/ρ = J/E = I/EA (10)

From (7–10) follows:

IR = ρ�I

A
= E� = V (11)

I = JA is thus the current (in Ampère) and V the voltage (in
Volts). Equation 10 is Ohms law.

In hopping conductivity, the electrons leap step-wise
from a lattice point to another. Small changes of geome-
try when the number of electrons at a site changes cause
activation energy and resistance. In the Marcus model, the
height of the barrier will be different for forward (k+) and
backward (k−) transfer.

In the Marcus model (Fig. 2), the electron exchange is
between two sites and is fully symmetrical (�Gθ = 0), as
long as the field is equal to zero. When the electric field
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is switched on, the parabola acting with the field is moved
down compared to the other one, in such a way that the
height of the barrier is decreased.

The height of the barrier for forward (E+) and backward
transfer (E−) in the presence of a field E can be expressed
as [5]

E± = λ

4

(
1 ± eEa

λ

)2

= λ

4
± eEa

2
+ (eEa)2

4λ
(12)

The rate of ET between the two molecules is:

k± = νnκ · exp

(
− E±

kBT

)
(13)

νn is the frequency for the vibrational mode that is cou-
pled to till ET (we assume one unique mode). T is the
temperature and kB the Boltzmann constant. Correspond-
ing modes induce ET. In the case of metal complexes, the
relevant mode is the breathing or half-breathing mode at
500–600 cm−1.

We thus calculate the difference between the forward and
backward rates for ET. If E is small, the third term in (12)
may be neglected, and we obtain after Taylor expansion:

k+ − k− = νnκ

[
exp

(
− E+

kBT

)
− exp

(
− E−

kBT

)]

≈ νnκ · eEa

kBT
· exp

(
− λ

4kBT

)
(14)

κ is called the electronic factor and is equal to [3]

κ = 2

[
1 − exp (−νel/2νn)

2 − exp (−νel/2νn)

]
; νel = �2

4π�

(
π3

λkBT

)1/2

(15)

νel is called the “electronic frequency”, while νn is the
nuclear frequency. κ and νel will be derived below.

According (9), (11), and (14) the total current can be
expressed as

σ = J

E
= νnκ · ne2a2

kBT
· exp

(
− λ

4kBT

)
(16)

provided that � is small.
In the case νel < < νn, we obtain κ = νel/νn in (15). If this

is inserted in (29), we obtain a conductivity proportional to
the square of the coupling (�2), independent of the nuclear
frequency νn

σ = J

E
= ne2a2

kBT
· �2

4πh

(
π3

λkBT

)1/2

· exp

(
− λ

4kBT

)
(17)

where n is the concentration of carriers.
The result in (17) is shown in Fig. 5. We notice that the

same equation is used both in the activated region up to
T ≈ 200 K, as in the higher temperature region where the
conductivity is decreased for increased temperature, as for a
metal.
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Fig. 5 Calculated conductivity according to (9). Applies to under-
doped cuprate as a function of temperature in the case of localized
carriers

For the case νel > > νn, we may set κ = 1 in (15) and
obtain

σ = J

E
= νn

ne2a2

kBT
exp

(
− Ea

kBT

)
(18)

In the case when the activation energy tends to zero and
hence the exponential may be replaced by unity, σ is propor-
tional to 1/T in (18), reminding about the Einstein relation
for diffusion [26].

In a crystalline ET-system, the conductivity is first
increasing as a function of absolute temperature to a max-
imum and then decreases with temperature as in the case
of a metal. Bloch conduction may be regarded as a limit
value for a disappearing barrier. In the latter case, we
are talking about Hush-Reimers delocalization [27], where
delocalization happens if λ < 2|H12|(U < 2|H12|).

Using ρ = 1/σ , we may calculate a minimum (ρmin) in

ρ = T m exp

(
Ea

kBT

)
(19)

for Tmin = 1

m
· Ea

kB

(20)

m is the power of T in the expression for the conductivity.
m = 3/2 in the present case if the Marcus model holds, as in
(17). For low temperatures, the Marcus model needs updat-
ing (see below, Section 7). In the case of semi-conductors,
m = 0, and hence, there is no minimum. In the plain Einstein
case [26], m = 1, and in the case of (17) above, m = 3/2.
In the case of electron pair transfer, there are two successive
Landau-Zener avoided crossings (Figs. 3 and 4), and hence,
m = 2. The existence of a minimum in the results of Takagi
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et al. [11] is ample proof that the activation is not due to a
semi-conductor gap.

This temperature-independent minimum of resistivity in
the underdoped region is thus derived from one-electron
Cu(II)/Cu(III) exchange and has nothing to do with dispro-
portionation and electron pair transfer. As we approach the
SC region, there is a change to a phase with ρ = 0 and
electron pair transfer in the ground state.

The conductivity in an infinite ET-system is the product
of carrier mobility and carrier concentration (n). In the case
νn > > νel:

σ = n · const. · �2

4πh

(
π3

λkB

)1/2

·
(

1

T

)3/2

exp

(
− λ

4kBT

)

(21)

The activation energy is λ/4 and the resistivity (ρ = 1/σ)

ρ = const.−1 · 1

n
· 4πh

�2
·
(

λkB

π3

)
· T 3/2 exp

(
λ

4kBT

)
(22)

In the low-doping region, we may associate the carrier con-
centration with the molar fraction of Cu(III) carriers, thus
n ∼ p = x.

For the case when νe > > νn, we may use (18) and derive

ρ = ν−1
n const.−1 · 1

p
· T exp

(
Ea

kBT

)
(23)

There are thus two different cases depending on the ratio
between coupling � and reorganization energy λ. This also
affects Ea directly since one may derive, if |�| < < λ [3]

Ea = λ

4
·
(

1 − �

λ

)2

(24)

Ea = λ/4 for � = 0 and Ea = 0 for λ = �. Except for short
distances between the interacting sites, we have, however,
|�| < < λ. In that case the activation energy depends only
on λ and is equal to λ/4. If |�| = λ, on the other hand, the
barrier disappears (Ea = 0):

ρ = ν−1
n const.−1 · 1

p
· T (25)

Equation 25 holds only in the case of very strong coupling.
This may be compared to the Einstein case when ρ ∼ T

[26]. In the Einstein case, there is only a 1/T in (14) since the
electrons are always hopping if the barrier is overcome. This
is the case in (25) too. If the particles move fast, however,
there is a slow-down originating from the Landau proba-
bility for hopping rate. In reality, electrons follow quantum
mechanics, however, and have to collect probability for the
hopping event. Therefore, the nuclei should move slowly,
and therefore, there is an additional factor T −1/2 in (17).

4 One-Electron Exchange in the Underdoped Case

Oxidative doping of a cuprate leads to a Cu(II)/Cu(III)
mixed-valence system and possible exchange of electrons,
and hence conductivity. The conductivity is activated like in
semiconductors, but due to structural relaxation rather than
a band gap. Activation due to structural relaxation [m = 3/2
(rather than m = 0) in (20)] leads to a minimum in the
resistivity as a function of temperature. Simulation based
on (23–24) is shown in Fig. 6. The visible agreement with
the results of Takagi et al. [11] below 400 K suggests that
one-electron exchange is in operation.
In Fig. 6, activation energy is 0.035 eV [14], which corre-
sponds to Cu(III)/Cu(II) exchange, since there is a photo-
conductivity peak at 4 × 0.035 = 0.14 eV [14]. The coupling
parameter between two Cu ions, through an oxygen ion, has
quite arbitrarily been chosen as H12 = 0.0065 eV which
gives the gap � = 0.013 eV. We obtain the full-drawn curve
in Fig. 6. Incidentally, the activation energy for the Hall fac-
tor is also 0.035 eV [14]. The Einstein diffusion model [26]
for non-interacting particles is thus invalid in this region.
Ando et al. [28] have plotted the experimental resistivity
from zero to 240 K and found a T 2 behaviour (rather than
T 3/2). It is unclear whether this disagreement with (17) is
significant.

Above T = 400 K the resistivity bends down (dashed
line), signaling a novel conductivity mechanism, probably
due to the pseudogap (see Section 5). The pseudogap has
been determined from NMR spectra via a characteristic tem-
perature T * and the Knight shift [29]. Due to an odd number
of electrons, the Cu(II) sites and surrounding oxygen sites
are spin polarized. The number of Cu(II) sites is decreasing
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Fig. 6 Calculated resistivity for La2−xSrxCuO4 with x = 0.04. Full-
drawn curve shows the contribution from one-electron exchange alone.
In the dashed curve, the contribution to conductivity from the pseudo-
gap has been added. The activation energy has been set to 0.175 eV
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with increased doping and disappears for T > TC. The elec-
tronic states forming the pseudogap will be discussed in the
next section.

For T → 0 the resistivity of the Marcus model tends to
infinity. The reason is that the nuclei move classically in
this model. The nuclear motion has to be treated quantum
mechanically, as will be discussed in Section 6.

The resistivity minimum and the value of the resistivity
proportional to 1/p according to (22, 25) are in agreement
with the experiments [11] (Fig. 7).

Since the SC gap has nothing to do with one-electron
exchange, it cannot be treated within the same simulation.
SC depends on CI between the charged state and the spin-
coupled states [10, 26]. SC appears when the charged state
has lowered its energy sufficiently (because of doping) to
have the largest quantum weight in the ground state. The SC
of this mixed state has been discussed in earlier publications
[10, 24].

We conclude that (1) is an important conductivity mech-
anism where single electrons (spins) are transferred. In the
case of electron doping Cu(I), sites are created and the reac-
tion corresponding to (1) is exchanged between Cu(I) and
Cu(II):

Cu(II) + Cu(I) ↔ Cu(I) + Cu(II) (�G0 = 0) (26)

Equation 3 is the same in both cases. Next, we will con-
sider another type of transfer, (5), where charge, but not
spin, is transferred (Fig. 1, lower right corner).
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Fig. 7 Calculated resistivity as a function of temperature (T ) for two
different low-doping cases

5 Contribution from Disproportionation.
Pseudogap

In a local system, Cooper pairing is replaced by dispro-
portionation (3). The phonons are coupled to the electron
motion as is evident by the shifts of the nuclear coordinates.
After sufficient doping, the Hubbard free energy gap devel-
ops into a SC gap and a pseudogap [8, 19]. In the SC phase,
excitation from the SC ground state destroys SC. Thermal
excitation across the pseudogap contributes to conductivity.
In the simulations of the previous section, the pseudogap
has been included in a simple way by adding an activation
energy to fit the experimental curve. A rather good fitting is
obtained (the dashed curve in Fig. 6) with Ea’= 0.2 eV, a
value taken from Fig. 7 of ref. [9] (appropriate for x = 0.1).

The wave function for a two-site model (Fig. 8) may
be written (ab + ba)(αβ − βα), where αβ − βα is the
spin singlet function. a and b are active (highest occupied)
spatial orbitals: Cu3d(x2 − y2) mixed with O2p(x) and
O2p(y), on sites A and B, respectively. This is well known
in the chemistry of copper and has been confirmed to hold
also for cuprates. The charged state uses the same “active”
orbitals to form aa and bb, i.e. site paired wave functions.
In an asymmetric form, we may write the CT transition as
ab → aa, emphasizing CT from b to a. The correspond-
ing symmetric, projected functions aa + bb and aa − bb
both have the spin function (αβ − βα) [10]. This type of
wave function (aa or bb) forms an excited state but becomes
energetically available by doping [8] (Fig. 8).
When SC appears, the two upper states have moved down
in energy and interact with the spin-coupled ground state [8,
10, 24]. The two holes in a pair of Cu(II) ions are related
by the same type of wave function as the two electrons in
the H2 molecule [10] (except that in H2, aa and bb are

aa±bb

Uvert

ab+ba

aa+bb+δ(ab+ba)

aa bb

ab+ba δ (aa+bb)

aa± bb

ab+ ba

SG

PG

PG

SG

underdoped region SC-region overdoped region

Fig. 8 SC gap and pseudogap in La2−xSrxCuO4. SG superconducting
gap, PG pseudogap
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unstable). The extended system has been treated in ref. [24].
For x = 0.07 La2−x SrxCuO4, the resistivity goes to zero

at T = 0 and the SC dome. The two symmetric states in
Fig. 8 mix (ab + ba) and (aa + bb). The new SC phase
is due to interaction between the spin-coupled phase and the
charged phase [10, 24]. The two states are both states with
paired electrons and the new conducting ground state wave
function is then also paired. Contrary to the self-exchange
process in the previous section, the number of electrons
involved in the excitation is even. The excitations, marked
out in Fig. 8, are allowed as long as spin is conserved
(S = 0).

The SC gap is opened by interaction between aa + bb
and ab + ba in the SC region. When the tempera-
ture has increased above TC, the aa−bb level is well
occupied and transitions to the higher spin-coupled state
possible.

There is a clear distinction between orbital or band gaps
on one hand, and total energy gaps on the other. The
connection between band gaps and total energy gaps, mea-
sured experimentally, is not at all clear. A measured gap
is always a total energy gap. For example the Hubbard
gap has to be defined as the total energy gap to the low-
est MMCT state and has nothing to do with any “ligand
field gap” or LMCT gap. Only interaction between ground
state and MMCT state leads to conductivity. It is impossi-
ble to describe the local Hubbard gap in any form of Bloch
model.

The spin-coupled ground state is the type of ground state
seen in all Mott insulators, which can be said to be due to
correlation between the two electrons in the original sense
of Löwdin [30] (cf. hydrogen molecule). SC appears in the
ground state, due to CI between the spin-coupled state and
the charged state Cu+, Cu3+. The latter two states are also
localized, but the final CI-state may be delocalized, if the
final CI is strong. Hush-Reimers delocalization [27] means
that a PES becomes flat between two total energy minima
in the Marcus model. This leads to vibrational mode trans-
fer [31]. “Correlation energy” is the error when calculating
energy and wave function using Hartree-Fock or DFT, rather
than a physical effect. The final SC state cannot be a single
configuration state.

If the interpretation in Fig. 8 is correct, the temperature
has to be high enough to populate the aa−bb before the
pseudogap can be seen in the spectrum. This appears to
agree with the state ordering in ARPES spectra [32].

For temperatures T > TC, the resistivity raises more than
linearly in the overdoped region. At these doping levels
and temperatures, there are mainly Cu(I) and Cu(III) sites
available, since the disproportionated state forms the ground
state (Fig. 8 to the right). Electron pair exchange of the type
in (5) is possible, however.

Sutin et al. derived the T −1/2 factor in the rate of ET reac-
tions [3], due to the increased kinetic energy of the electron,
typical for a Landau-Zener avoided crossing [25]. The fac-
tor T −1 arises from (14). Its appearance can be traced back
to Einstein [26]. A T 3/2 factor thus appears for the resistiv-
ity in the underdoped region, when conductivity is caused
by ET. This visibly agrees with the experiments [11] and
Tmin, if the activation energy is obtained from the absorption
spectrum.

Similarly, the resistivity increases with T as T 2 in the
overdoped region [33–36]. Here, conductivity should be
caused by electron pair transfer, since there are no Cu(II)
ions available. The rate should then be quadratic in T , since
there are two consecutive avoided crossings (Figs. 3 and 4)
and a T 1/2 for each of them [and in addition the Einstein fac-
tor T due to (14)]. Thus, this type of exchange leads to a T 2

behaviour for the increase of resistivity as long as coherence
remains in the ground state. Other possible mechanisms are
scattering mechanisms leading to ρ ∼ T 5 for small T . [37].
In the SC region for temperatures above TC, there will first
be T 2 dependence of the resistivity, then linear Einstein
behaviour when coherence is lost.

6 Behaviour of Resistivity as T → 0

The 1/T-like behaviour of ρ for T → 0 involves more
drama than Figs. 6 and 7 reveal. Ando, Boebinger et al.
[38–40] have studied the behaviour of resistivity when the
temperature tends to zero, by eliminating SC by alternating
magnetic fields. Resistivity appears and can be measured. It
turns to a finite value as T → 0. The trend is consistent with
the resistivity in the underdoped region, which also tends to
finite values as T → 0. However, the Marcus result tends to
∞ for T → 0 [(22)]. In the Marcus model, the nuclei move
classically, and hence for low temperatures, the system must
be thermally excited across the barrier to obtain conduc-
tivity. In reality, there is conductivity at T = 0, caused by
nuclear tunneling (Fig. 9). The Jortner model may be used
to treat this problem [41–43].

classical
nuclear 

tunnelling

Boltzmann-

distribution

Fig. 9 Quantum nuclear tunneling versus classical activated motion
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According to (22), the logarithm of the conductivity
tends to

ln ρ = − ln σ ∼ 3

2
ln (T ) + λ

4kB

1

T
∼ λ

4kB

1

T
(T → 0)

(27)

The last step is because ln(T ) is negligible compared to 1/T
as T → 0. This behaviour holds only in the classical limit
of nuclear motion, however. In the present case, a number of
publications show that the resistivity tends to a finite value
as T → 0 [38–40]. Theoretically, there are corrections that
arise due to the Born-Oppenheimer approximation, since
quantum mechanically, the nuclei may tunnel through the
barrier.

In the Jortner model [41–43], the Fermi golden rule is
used to derive the probability per second that a system in
an electronic state m and vibrational levels w will make a
transition to another electronic state n with vibrational levels
v as

Wnv = π

2
�2

∑
m,w

|〈χnv|χmw〉|2 δ(εnv − εmw) (28)

� is the electronic coupling matrix element that we have
defined earlier. The Marcus model permits the system to
reach the right parabola only if there is energy enough to
pass the barrier. In the Jortner model, the right parabola can
be reached also by tunneling. In particular for T = 0 from
the lowest vibrational state, {n0} is the final vibronic state,
i.e. the lowest vibrational state (v = 0) in the electronic state
n represented by the right parabola. The precursor states
{mv} are the vibronic states of the left parabola. The prob-
abilities are obtained by assuming a Boltzmann distribution
over the vibrational levels v in the left parabola

k = 1

Z

∑
n,v

exp

(
− εnv

kBT

)
Wnv

= π

2

�2

Z

∑
n,v

∑
m.w

exp

(
− εnv

kBT

)
|〈χnv|χmw〉|2 δ(εnv − εmw)

(29)

Z is the partition function

Z =
∑
n,v

exp

(
− εnv

kBT

)
nv

(30)

Clearly if the temperature tends to zero, only the lowest
vibrational state {0v}can make a small but non-zero contri-
bution to the reaction rate k. log k is then a linear function
of 1/T with the slope −ε10/kB. The slope is zero, since we
are in the lowest vibrational state. For higher temperatures,
there are contributions from the other vibrational states.
Finally, the slope will be −Ea /kB as in the classical case.

The final rate often resembles the function T −1/3. T −1/3

behaviour goes against experimental results in the present
case, however, since the limit value as T → 0 is less than
infinity. The Jortner model [41–43] represents the correct
physics for very low temperatures, replacing the T −1/3-
variable range hopping model by a model where ρ is finite
at T = 0.

7 Possible Explanations of Raman and MIR
Absorption for Cuprates

All cuprates, hole or electron doped [44, 45], appear to
have a MMCT at 1.5–2 eV, almost independent of struc-
ture around the copper(II) ions, not counting the always
present four oxygen atoms in the plane [46]. Hubbard-U
is thus well defined and almost the same for all cuprates.
In YBa2Cu3O6+x , U has been measured up to 5 eV [47,
48]. There is another sharp and strong absorption at 4 eV,
apparently due to O2p→Cu3d, where the O2p orbitals are
strongly mixed with Cu3d. Normally (in aqueous solution),
these transitions are forbidden but become allowed when
different Cu sites are involved. (This mixing with O2p of
course also occurs in the MMCT transition at ≈2 eV.) The
LM transition between pure O2p and Cu3d orbitals appears
at ≈3 eV.

The Raman spectra of La2CuO4, particularly the strong
absorption at 3000 cm−1 [49], was studied by Lyons et al.
and later by Tokura, Onose et al. for a number of hole doped
and electron doped cuprates [46, 50, 51]. Perkins et al.
[52] and Grüninger et al. [53, 54] have studied the MIR
absorption at about 0.4 eV, equivalent to about 3000 cm−1.
Remarkably enough, the Raman and MIR absorptions are at
the same energy. In the doped cuprates, the Raman absorp-
tion hangs on until SC is achieved and there is no longer any
dependence on the nuclear coordinates [19, 49–51]. MIR
absorption occurs as long as there is disproportionation.

Tokhura, Onose et al. have studied resistivity in the elec-
tron doped Nd2−x CexCuO4 and found approximately the
same pattern as in La2−x SrxCuO4 [46, 49–51]. The MMCT
absorption peaks in other undoped cuprates are found at
1.5–2 eV as for La2CuO4. [9]. Clearly, the properties are
due to the CuO2 plane and the four ligands of each copper
atom [46, 49–51].

The theory used here suggests a direct coupling between
Raman and MIR, which would explain the same absorp-
tion energy. The conductivity spectrum for La2CuO4 shows
vibrational resolution up to about 1000 cm−1 (Fig. 10). In
a normal vibrational spectrum, only the lowest transition
for each symmetry appears, due to selection rules. In the
gap between the lower and upper PES in Figs. 2 and 3,
which appears at the 5th vibrational level in Fig. 10 (marked
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Ucross

Uad

Uvert

2Cu(II)Cu(I)+Cu(III)

(Charged state)

2Cu(II)

(Spin coupled state)

Fig. 10 Intersecting Cu(I)/Cu(II) and Cu(I)/Cu(III) potential curves

Ucross), the symmetry leading to the selection rule is obvi-
ously broken since Cu(I)/Cu(III) states are mixed into the
Cu(II)/Cu(II) state. This explains the first of the transi-
tions at about 0.4 eV of the MIR spectrum. Assuming that
Uad = 0, the MIR absorption should then occur at 1/4U

which is in rough agreement with the experiments.
The modes of the vibrational levels in the Marcus dia-

gram are all of the breathing or half-breathing type, allowed
in the Raman spectrum. Due to the loss of symmetry in the
gap level, the electron motion becomes strongly coupled to
the vibrations, making the absorption allowed, and explain-
ing the equal energies. The explanation lies in the crossing
of the two parabolas in Fig. 10 and the vibronic level marked
as Ucross. Both MIR absorption and Raman absorption occur
for the some higher vibrational levels, but with less intensity.

It is interesting that the given explanation is possible only
if the “internal contradiction” pointed out by Landau and
Pekar [18] is taken into account. Many properties depend on
the nuclear coordinates in Fig. 10 and cannot be explained if
the x-axis dependence is left out. In the conducting or super-
conducting systems, there is no longer any x dependence
because of delocalization and this explains why the strong
Raman absorption at 0.4 eV disappears [51].
Uad cannot be too large if Fig. 10 is going to exist at all as
a basis for the explanation. A small Uad requires that three
oxidation states are possible with similar geometry and with
a low free energy for disproportionation [55, 56].

Heikes and Johnston also studied conductivity in doped
nickel oxide LixNi(1−x)O [13]. Li+ is the dopant and
replaces some Ni(II) sites whereby other Ni(II) sites are oxi-
dized to Ni(III) sites [13]. The corresponding doped cuprate,
La2−xSrxNiO4, is isostructural with La2−xSrxCuO4. By
doping (x > 0), Ni3+ sites are created, which explains con-
ductivity [57]. Since Hubbard-U is considerably larger for
the nickelate than for the cuprate, the scenario is differ-
ent, however. Apparently, Uad cannot be brought to zero in

this case to make SC possible. Raman and MIR absorption
remain and there is one-electron exchange conductivity of
the same kind as for the cuprates. The MIR absorption also
exist [57–60].

8 Discussion

La2CuO4 and CuO are both systems with localized electron
structure and U > 0. The ground state wave function can-
not be formed from one-electron Bloch functions. Instead,
each site is best described using the local ligand field model.
To describe conductivity, it is necessary to consider hopping
between sites. In both La2CuO4 and CuO, the MMCT tran-
sitions cover a large part of the visible region [6, 9]. The
ultimate reason for the large width is difference in equilib-
rium geometry before and after CT. In NiO on the other
hand, the charge transfer spectrum appears completely in
the UV region. The colour is the same as in aqueous Ni(II)
solutions and is due to ligand field transitions. There is no
SC in any Ni oxide or in nickelates.

After doping to La2−xSrxCuO4, a mixed valence spin
system is formed with Cu(III) sites among the Cu(II)
sites, closely related to the appearance of stripes [12]. The
appearance of Cu(III) sites decreases Uad and increases
the interaction between the spin-coupled ground state and
the Cu(I)-Cu(III) charged state. At a certain doping level,
there is a spontaneous disproportionation of Cu(II) to a
Cu(I)-Cu(III) (charged) system. There are thus two differ-
ent “charged states”, the striped (spin) state with Cu(II) and
Cu(III) sites and the charged state with Cu(I) and Cu(III)
sites. The corresponding phases interact and form a new SC
phase [4].

Conductivity appears as one-electron hopping or two-
electron singlet pair hopping. If disproportionation of Cu(II)
becomes exergonically possible, the available electronic
states at low energy make SC possible. The SC gap and the
pseudogap are formed [61]. Bose-Einstein statistics is fol-
lowed and the system may become SC. In the slightly doped
cuprate or copper(II)oxide systems, a mixed valence state
of type Cu(III)/Cu(II) is present. One-electron transitions
are the only ones available and the statistics of Fermi-Dirac
type.

The peak intensity maximum at 0.135 eV (≈1100 cm−1)

[14] is very likely due to one-electron transfer [19], i.e. λ for
the one-electron exchange reaction. This is consistent with
the well-resolved data for YBa2Cu3O7 [20-23,47,48].

We find two physically different mechanisms for con-
ductivity in the limit of delocalization: ordinary metallic
conductivity or SC. The remarkable fact that cuprates,
oxidatively or reductively doped, are important supercon-
ductors is after all understandable. It may be traced back to
the occurrence of three different oxidation states for copper,



J Supercond Nov Magn (2017) 30:275–285 285

Cu(I), Cu(II), and Cu(III), with approximately the same free
energy [55, 56].
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53. Grüninger, M., Münzel, J., Gaymann, A., Zibold, A., Geserich,
H.P., Kopp, T.: Europhys. Lett. 35, 55–60 (1996)
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