
	
	
	

	
	
	

Test Automation for Automotive Embedded Systems

Master’s thesis in Embedded Electronic System Design

DINGYUAN ZHENG, SHUYUE ZHANG

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY AND UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2017

Master’s thesis 2017

Test Automation for Automotive Embedded
Systems

DINGYUAN ZHENG, SHUYUE ZHANG

Department of Computer Science and Engineering
Embedded Electronic System Design

Chalmers University of Technology and University of Gothenburg
Gothenburg, Sweden 2017

Test Automation for Automotive Embedded Systems
DINGYUAN ZHENG, SHUYUE ZHANG

© DINGYUAN ZHENG, SHUYUE ZHANG, 2017.

Supervisor: Jan Jonsson, Chalmers University of Technology
Examiner: Per Larsson-Edefors, Chalmers University of Technology

Master’s Thesis 2017:01
Department of Computer Science and Engineering
Embedded Electronic System Design
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

iv

Test Automation for Automotive Embedded Systems
DINGYUAN ZHENG, SHUYUE ZHANG
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
With an increasing software complexity, it becomes a huge challenge to guarantee
quality and reliability in automotive systems. However, the extensive use of manual
testing is time consuming, costly and error prone, which leads to lack of product
quality. Also it has a limited coverage due to its countable combinations. Thus,
test automation for automotive systems has started to play a more important role
nowadays. The main objective of this thesis work is to find out a automatic test
framework for automotive systems, including information retrieval, test activity ex-
ecution, result analysis and making decisions for next test phase. Interfaces that
connect the above parts in the framework are built up to have communications and
data exchange between isolated software systems. We show that this automated
testing framework can realize different kinds of test case combinations and function-
alities with dummy test cases.

Keywords: Test automation, software testing, automotive systems

v

Acknowledgements
The thesis becomes the reality with the support, encouragement and support by
many individuals.
Firstly, we want to express my sincere gratitude to our supervisor Prof. Jan Jonsson
in Chalmers for his unwavering support, patience and enthusiasm during the thesis
project. He provides us so many valuable advices on how to polish our writing.
Besides, we would like to extend my gratitude to our supervisor in Volvo Car Group,
Mattias Hillhammar and Ehsan Zaeimzadeh for offering us the opportunities to work
with this topic and leading us on the project when we get stuck with their patience.

DINGYUAN ZHENG, SHUYUE ZHANG, Gothenburg, 01 2017

vii

Contents

List of Figures xi

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 2
1.3 Project Goals . 3
1.4 Automatic Testing Framework Overview 3
1.5 Challenges . 4
1.6 Delimitation . 4
1.7 Overview . 5

2 Theory 7
2.1 Software Testing . 7

2.1.1 Different levels of software testing 8
2.1.2 Model-Based Testing . 8
2.1.3 Test Automation . 9

2.2 Web Service . 10
2.2.1 "Big" Web Services . 10

2.2.1.1 Transport Protocol 11
2.2.1.2 Messaging services 11
2.2.1.3 Service Identification 11
2.2.1.4 Service Description 12

2.2.2 REST . 12
2.3 Software Version and Revision Control System 13

2.3.1 Centralized version control system 13
2.3.2 Distributed version control system 14

2.4 Automotive Embedded System . 15
2.4.1 Bus System . 15

3 Methodology 17
3.1 Requirements Management . 18
3.2 Test Cases Review . 19
3.3 Test Core . 20
3.4 Analysis Tool . 20
3.5 Decision . 21
3.6 Interface . 21

ix

Contents

4 Implementation 23
4.1 Requirements Management . 24
4.2 Test Case Auto-Review . 25
4.3 Test Core . 26

4.3.1 Test Cases Selection . 28
4.3.2 Test Cases Execution Sequence 29

4.4 Analysis Tool . 33
4.5 Decision . 42
4.6 Log . 42
4.7 Result to User . 43
4.8 Interface . 43

5 Results 45
5.1 Test Activity with Sequential Order and Available Time 46
5.2 Test Activity with Sequential Order and Max Failure 48
5.3 Test Activity with Reversed Order and Test Loop 49
5.4 Test Activity with Random Order and Max Failure 51
5.5 Test Activity with More Than One Ramdom Combination 53
5.6 Customization . 53

6 Discussion 55
6.1 Features of Automatic Testing Framework 55
6.2 Future work . 56

7 Conclusion 57
7.1 Achievements . 57
7.2 Experience . 58

Bibliography 63

x

List of Figures

1.1 The overview of automatic testing framework 3

3.1 Three approaches of designing automatic testing framework 18

4.1 The detailed design of the automatic testing framework. 23
4.2 The implementation of Requirements Management. 24
4.3 The flow chart showing how "URL process" function works. 25
4.4 The flow chart of test case Auto-Review. 26
4.5 The overview of the panel . 27
4.6 The flow char of Testing Process in the framework. 28
4.7 The flow chart of automatic execution selection. 29
4.8 The flow chart of automatic execution sequence with sequential order. 30
4.9 The method of automatic execution sequence with reversed order. . . 31
4.10 The method of automatic execution sequence with random order. . . 31
4.11 The flow chart of automatic execution sequence with functionalities

of available time and maximum failure. 32
4.12 The flow chart of automatic execution sequence with functionalities

of test loops and maximum failure. 33
4.13 The implementation of customization functionality. 33
4.14 The flow chart of analysis tool. 34
4.15 The flow chart of information process. 34
4.16 The flow chart used to search XML file and generate XML tree. . . . 35
4.17 The flow chart to describe how to extract information from achieved

XML files. 35
4.18 The flow chart to show what xml file looks like 36
4.19 The flow chart to show how to sort information of test case and test

procedure due to start time . 37
4.20 The flow chart showing how to achieve the sequence order of executing

test cases . 38
4.21 The flow chart showing how to calculate the loop number of current

test cycle . 38
4.22 The flow chart showing how to obtain the failed sequence 39
4.23 The flow chart showing how to obtain the result information of test

cases . 40
4.24 The flow chart showing how to achieve the result information of test

procedures . 41
4.25 The flow chart of implementation of the decision block. 42

xi

List of Figures

4.26 The flow chart of implementation of the interface. 43

5.1 The chart to show the result after failure in auto-review function . . . 45
5.2 The test settings of the test activity with sequential order and avail-

able time. 47
5.3 The result of the test activity with sequential order and available time. 47
5.4 The excel file of the test activity with sequential order and available

time. 47
5.5 The log file of the test activity with sequential order and available time. 48
5.6 The test settings of the test activity with sequential order and max

failure. 48
5.7 The result of the test activity with sequential order and max failure. . 49
5.8 The excel file of the test activity with sequential order and max failure. 49
5.9 The log file of the test activity with sequential order and max failure. 49
5.10 The test settings of the test activity with reversed order and test loop. 50
5.11 The result of the test activity with reversed order and test loop. . . . 50
5.12 The excel file of the test activity with reversed order and test loop. . 50
5.13 The log file of the test activity with reversed order and test loop. . . 51
5.14 The test settings of the test activity with random order and max failure. 51
5.15 The result of the test activity with random order and max failure. . . 52
5.16 The excel file of the test activity with random order and max failure. 52
5.17 The log file of the test activity with random order and max failure. . 52
5.18 The test settings of the test activity with random combination. 53
5.19 The result of the test activity with random combination. 53
5.20 The test settings of the test activity with customization. 54
5.21 The result of the test activity with customization. 54

xii

1
Introduction

With an increasing software complexity it has become important to guarantee qual-
ity and reliability in automotive systems. This has led to the need for systematic
software testing. In most automotive industries, software testing is implemented
manually, which is time-consuming, costly and error-prone. Also, by manual test-
ing, the combination of test cases that can be executed is very limited, causing
warranty and maintenance problems. Therefore, test automation has started to
play an important role in improving systematic software testing in industries.

1.1 Background

Volvo Cars Corporation(VCC) is a car manufacturer developing luxury cars and
human-centric car technology. The section Switches and Comfort Electronics is
responsible for the control systems in a car, such as Climate Control, Parking Cli-
mate, Seat-, Window-, Mirror- and Roof-Control, User Input and Interior Lights.
The group Analysis and Verification is a part of this section and is mainly respon-
sible for functional testing, acceptance testing and system verification of embedded
systems or subsystems with the different technical aspects mentioned above. While
manual testing is currently used for these systems, fully automated testing is neces-
sary for reducing or eliminating the shortcomings of manual testing to achieve time-
and cost-efficiency and high performance of testing process.

This master thesis project aims to create an automated testing framework for the
control systems mentioned above. The framework should include fairly unlimited
combinations of test cases in order to reduce warranty and maintenance problems.
Some algorithms should be designed to take decisions for next testing phase ac-
cording to previous testing results and should support different test types, such as
smoke tests, regression tests, long-term tests and stress tests. Another purpose of
this project is to create or provide different tools that could automatically review
test scripts and analyze test results.

1

1. Introduction

1.2 Motivation

In test automation, a software framework is designed to provide an optimized verifi-
cation flow to control the execution of test activities and to compare actual outcomes
with predicted outcomes. The software framework should be designed to automati-
cally perform repetitive, but necessary, tasks or test activities that would be difficult
to achieve in manual testing [1]. Large parts of existing test processes provide auto-
mated test execution and monitoring in practical software development. In contrast,
most test cases are still generated by labor-intensive manual tasks [2]. Therefore,
the automated generation of test cases is one major challenge. One approach to
solve this problem is to utilize model-based testing using models to represent the
desired behavior of a system under test (SUT) for test case generation [3]. In this
master thesis project, several test types(such as smoke tests, regression tests, long-
term tests and stress tests) will be generated using test automation. One direction
of our focus is to find appropriate physical models suitable for the aforementioned
test cases within automotive embedded systems.

Usually, the decision regarding how to test the system in a subsequent phase is made
by a test engineer’s experience, which leads to several problems: Firstly, limited test
case combinations cannot give a comprehensive testing result, which could make test
engineers take inappropriate decisions in some cases. Secondly, new test cases will
be generated to test newly developed software; in this case, experience is not suffi-
cient to make decision for future testing phase. Thirdly, entirely relying on human
experience will lead to human errors, which could cost time and money. Therefore,
this project should focus on generating unlimited combinations of test cases and de-
signing algorithms that can make a decision according to previous testing results. A
further complication is that testing tools used at VCC are mutually isolated, mak-
ing automatic testing more difficult. Building communication interfaces between
different tools is therefore another key point that we should focus on.

Embedded systems similar to the ones in this master thesis project have a complex
construction that requires the co-design of software and hardware components in a
testing development. Hence, it would be advantageous if flaws in the development
or verification process could be revealed in earlier phases in order to reduce costs
in the automotive industry [1]. Additionally, automated testing should provide the
same, or even better, accuracy compared to the manual testing approach. The
approaches should focus on providing an optimized work flow to detect problems in
earlier verification stages and on achieving high accuracy and performance of test
automation.

A testing system should also integrate function libraries, test data sources, object
details and reusable modules. Many existing frameworks, such as Framework for
Integrated Test, provide support for automated software testing [4]. Thus, the test
automation framework/tool in this project is required to give an integrated testing
system that could provide different test specifications based on test cases.

2

1. Introduction

1.3 Project Goals

In this master thesis project, the following two overall goals should be achieved: (i)
to create a test automation framework including unlimited test case combinations
and algorithms that can make decision for the next testing phase, and (ii) to create
a tool chain for executing test cases and analysing the test results in a systematic
way automatically. The detailed goals of the project are as follows:

• Design an automatic testing framework and a tool chain including the following
procedures: managing test requirements, review test cases, automatic testing
process and test reports analysis.

• Add functionalities to make the testing framework more intelligent compared
with manual testing. The functionalities to be added are: test loops, available
time, random combinations.

• Design algorithms that support smoke test, regression test, long-term test and
stress test. The algorithms should also provide suggestions for the next testing
phase based on previous test results. (Optional)

1.4 Automatic Testing Framework Overview

The overview of the testing framework is shown in Figure 1.1. The framework should
be able to perform within Hardware-in-Loop (HIL) environment [5].

Requirements
Management

Test Cases
Generation

Test Cases
Review Test Core Analysis Tool Test Complete

Figure 1.1: The overview of automatic testing framework

In Requirements Management, test specifications and parameters should be obtained
from a database management system. Elektra is a software system commonly used
at VCC to provide data management. This software system is an application for
product life-cycle management, based on the Vector Informatik GmbH 1 product
"eASEE Automotive Solution", and is developed by VCC with the cooperation of
Vector [6]. Elektra provides a web application programming interface (API) by
which web services could be implemented to acquire all the information about test
specifications, test cases and test parameters from a VCC server.

After requirements are managed, test engineers generate test cases by creating sets of
source code and storing them into a version and revision control system (Test Cases
Generation step in Figure 1.1). Before executing a test case, the corresponding

1Vector Informatik GmbH is a company providing software tools, services and components for
networking of embedded electronic systems. https://www.vector.com

3

https://www.vector.com

1. Introduction

source code should be reviewed automatically to check if it meets standard templates
and manually to check whether the logic in the code is correct or not (Test Cases
Review step in Figure 1.1).

When Test Cases Review is finished, those test cases will be executed in Test Core,
the core part in this framework. Test Core should be able to select test cases, decide
execution sequence order, execute test cases and generate test reports. In addition,
some functionalities, such as random combination, test loops, available time and etc.,
should be added into Test Core to make the framework more intelligent. Moreover,
the Test Core should be compatible with automotive systems.

After test reports are generated, an Analysis Tool should analyze the reports and
generate a result or conclusion automatically. In this step, some algorithms should
be designed to help a user understand the result or conclusion and make a decision
for the next testing phase.

Finally, when the entire testing event is complete, a final report should be generated
and sent to Team Center, which is the step Test Complete in Figure 1.1.

1.5 Challenges

In accordance to the introduction from previous sections, several challenges will be
addressed in this project.

Firstly, although some industries have made some progress on test automation, fully
automatic testing with artificial intelligence is still a difficult field. Hence, how to
build such test framework is one of challenges in this project.

Secondly, with an increase in number of test cases, random combinations could lead
to an intractable number of tests. How to control the number of combinations in
order to avoid breaking the HIL rig is therefore another challenge.

Finally, since the algorithms need to substitute human experience, how to design
algorithms to provide high accuracy is also a challenge.

1.6 Delimitation

The HIL Software/Hardware framework and the version control system SVN are
currently tools and equipment used by the group. This should be considered as
fixed infrastructures during the thesis work, which means no changes can be made
in these parts.

4

1. Introduction

1.7 Overview

The rest of the report is organized as follows: Chapter 2 introduces the principles
that will be applied in the project. Next, Chapter 3 compares different method-
ologies that have been considered for the entire framework as well as for each part
of the framework. In Chapter 4, detailed implementations of the framework are
described. Chapter 5 shows some preliminary results of the basic framework with
simple functionalities implemented. Chapter 6 discusses the features and the merits
of the automatic testing framework and the improvements that could be made in
the future development. Finally, conclusions are given in Chapter 7.

5

1. Introduction

6

2
Theory

In order to understand how the goals mentioned in Chapter 1 are fulfilled, it is nec-
essary to get familiar with the principles of software testing. The project aims to
improve software testing, thus the principles of this domain are essential to study.
The basics of software testing is described in Section 2.1. Apart from software test-
ing, other concepts are also inevitable to be studied. For example, in Requirement
Management, Elektra is used to manage test specifications and offers Web API. Web
service can be utilized to get test specifications by making requests to the VCC server
via the defined API. Web service will be introduced in Section 2.2. After Test Cases
Generation, a software version and revision control system is required to store the
created test cases and to perform Test Cases Review. These parts are introduced
in Section 2.3. Finally, the framework should be compatible with the automotive
systems. Hence, electronic control units (ECUs) and bus systems are fundamentals
that will be described in Section 2.4.

2.1 Software Testing

Different definitions of existing software testing highlight various aspects of such
testing. Firstly, software testing is used to evaluate attributes of the system and
check whether the designed system meets specific requirements. This kind of soft-
ware testing is deemed as positive testing, which primarily pays attention to the
requirement [7]. Secondly, software testing is defined as the process of finding de-
fects by executing the system. This kind of software testing is considered as negative
testing, which aims at looking for defects besides the discrepancy of requirements [8].
Thirdly, software testing is the process where we could check the status of benefits
and the risk associated with the release of software systems. This kind of software
testing is used to reduce or migrate the risk of failure of the system, keeping system
more robust and reliable [9]. In practice, software testing usually combines positive
and negative testing. That is to say, software testing is used to not only check
whether a system fulfills all requirements but also find errors which will reduce the
robustness of the system [10].

Software testing is quite important in the industry since the price of not testing
may be a failure of the system. Consequently, customers may lose confidence in the

7

2. Theory

company, which will lead to further loss of profit [10].

Four properties could be used to judge the quality of test cases which are deemed
as a critical element to show how good this testing is. These four properties are its
defect detection effectiveness, cost, maintenance effort and exemplariness. Specifi-
cally, defect detection effectiveness means whether it is likely to find defects or not.
Cost here shows how economical the test case is to perform, analyze and debug.
Maintenance effort illustrates how much effort is needed to keep executing testing,
especially when the software changes. Exemplariness shows the coverage of one test
case. Basically, an exemplary test case could test more than one thing, thus reducing
the total number of test cases required. This will help further reduce the cost in the
testing. Different levels of software testing and its corresponding testing techniques
are described in the following subsection.

2.1.1 Different levels of software testing

Unit testing is used to identify errors in the program logic. It is a process of testing
individual units. The unit here could be a predefined reusable component, such
as sub-programmes or sub-routine [8]. The aim of unit testing is to check whether
expected results for each state could be achieved after testing. Integration testing is
used to check the interface among separately test units and to show the structural
relationship of the system with respect to its units. Three basic integration struc-
tures of functional tree; top-down, bottom-up and sandwich can be used to describe
the order how units are integrated [11]. For unit and integration testing, functional
testing is used as testing technique to check the functionality.

System testing aims to evaluate whether the outcome of a product or system fulfills
our expectation, that is, to demonstrate correct behaviors. In this master thesis
project, System Testing is focused on designing an automatic testing framework.
For System Testing, Model-based testing (MBT) is an appropriate technique for test
automation on system level [11]. It will be described in details in the next subsection.

2.1.2 Model-Based Testing

Model-based testing (MBT) is a relatively new approach to software testing that
extends test automation from test execution to design testing using automatic test
case generation from models [12]. GOTCHA-TCBeans, mbt, MOTES, TestOpti-
mal, AGEDIS, ParTeG, Qtronic, Test Designer and Spec Explorer are examples of
commonly-used tools for MBT [13, 14, 15]. In the following, we will compare the
pros and cons of these tools and assess how well suited they are for test automation.
The tool Spec Explorer does not provide GUI support to select test cases, which
seems not so flexible when connecting to other tools, increasing the risk of unreliable
integration. For GOTCHA-TCBeans, input values could only be selected manually
by testers to create the adapter. Usually, this kind of adapter is used to generate

8

2. Theory

pieces of code automatically [13]. Thus, GOTCHA-TCBeans is not suitable to work
as a tool in test automation.

Moreover, most tools, including GOTCHA-TCBeans, mbt, MOTES and ParTeG,
only have partial support for model creation. That is to say, in order for these
MBT tools to be extended to other tools, newly-created models have to be im-
ported manually, which increases the difficulty of test automation. Hence, such
interface between MBT tool and other tools may introduce problems, which will re-
duce the reliability and robustness of the MBT. With respect to model verification,
GOTCHA-TCBeans, AGEDIS and Spec Explorer do not support test case debug-
ging [16]. Thus, some other software should be introduced to reduce the risk of not
finding defects of MBT tools.

With respect to model verdicts, ParTeG and Test Designer are not good choices for
test automation, since they do not provide the verdict of executing test cases. Verdict
here means the result of test cases, pass, warning or fail. This involves a difficulty
in analyzing test results and deciding the test cycle for the next phase [13]. Qtronic
does not support offline testing, which means that the tool does not generate test
cases as human-readable assets that can later assist in manual testing. Meanwhile,
online testing of Qtronic requires an extended test execution engine through a DLL
plug-in [17]. This increases the risk of test failure since it will increase the difficulty
of integration associated with different tools.

In summary, we have found that most MBT tools in the industry cannot be used in a
fully automated testing system because they lack support for extracting information,
executing test cases, analyzing test results or determining how to test for the next
phase.

2.1.3 Test Automation

Test automation is a special form of testing. It has a special software, which is con-
sidered as the control to the test case execution, the comparison of actual outcomes
with predicted ones, and test analysis. The advantage to use the test automation is
to reduce the cost in the long term, get larger coverage during the same or shorter
time and reuse the resource more efficiently. Moreover, whether the test automation
is good or bad relies a lot on the selection of test cases. As described before, four
properties are used to identify good test cases. Cost and maintenance effort are two
main features that should be focused on when selecting test cases in test automa-
tion. This will help users to decide when test automation could be a good choice.
Usually test automation is not suitable for tasks with little repetition such as late
development verification. It is more likely to apply test automation for repetitive
tasks such as unit testing or regression testing considering the fact that it is quite
expensive to build up or maintain a test automation framework. Thus, it is much
better to consider long term use for test automation in advance.

9

2. Theory

2.2 Web Service

Before introducing Web service technology, we should define the concept of service-
oriented architecture (SOA). SOA is an abstract architectural style that is able to
build software systems with loosely coupled and dynamically bound services. The
basic principle of SOA is centered around three aspects: 1) abstract definitions of
services should be provided, including the detailed appropriate approach to binding
the service dynamically, 2) details of services need to be published in order to allow
users to understand how they can obtain the desired information, 3) users need to
have some approaches to finding what services are available and can meet their needs
[18]. Loose coupling is the main feature of SOA. The definition of loose coupling is
that services or components are within a relationship with minimum dependencies
and retain an awareness of each other [19]. Also, the services should be described
in an uniform way and it should be possible for the services to be discovered and
composed.

Web service is a virtualized technology that offers services and is therefore an im-
portant approach for realizing an SOA [18]. The World Wide Web Consortium
(W3C) defines Web services as systems designed to support interoperability via
machine-to-machine interaction over a network. It also has an interface described
in a machine-processable format. Other systems can interact with the Web service
by conveying messages using transport protocols with machine-readable languages
in conjunction with other Web-related standards. Web service technology is basi-
cally composed of several loosely coupled components, including transport services,
messaging services, service description, discovery services, service security, reliable
messaging, transactions, service composition and payload format [20].

In this report, two of the most prevalent Web service technologies, "Big" and Rep-
resentation State Transfer (REST), will be introduced. "Big" Web service is a tra-
ditional solution that is frequently used currently, and is a combination of different
techniques for the loosely coupled components aforementioned. REST is defined as
an architectural style for building large-scale distributed network systems [21]. It
is currently the recommended method of Web service. The two Web services are
further described in the following sections.

2.2.1 "Big" Web Services

The "Big" Web services technology is a widely used solution for designing applica-
tions over a network. The components that are elementary to compose an operative
Web service will be introduced in the following sections.

10

2. Theory

2.2.1.1 Transport Protocol

For "Big" Web services, message transport technologies constitute the foundation
of an interoperable messaging architecture that are the basic abstract architecture
of Web services. Normally, HyperText Transport Protocol (HTTP) and Secure
HTTP (HTTPS) can cover most support for transport protocols in World Wide
Web, but other transport protocols can also be used to transmit messages. The
supported protocols in "Big" Web services are Transmission Control Protocol (TCP),
Simple Mail Transfer Protocol (SMTP), Java Message Service (JMS), IBM Message
Queue (MQ), Blocks Extensible Exchange Protocol (BEEP) and Internet Inter-
Orb Protocol (IIOP) [22]. As HTTP and HTTPS are generally employed in the
majority of Web service applications or systems, other communication protocols
will not be described. Transport protocols are fundamental for acquiring a larger
scope of interoperability, but details behind those protocols are hidden from the
design of Web services [18].

2.2.1.2 Messaging services

Messaging services is another foundation component in forming "Big" Web services
specifications and technologies. For most of Web service applications, Simple Object
Access Protocol (SOAP) is the ubiquitous usage for messaging. SOAP gives a simple
mechanism for exchanging structured information between components or services.
It can reduce the complexity of integrating applications or systems built on different
platforms. In other words, SOAP messaging can create a communication channel
for transmitting information between services on different platforms [23]. A SOAP
message is represented in the eXtensible Markup Language (XML) format which is
a metalanguage for defining new languages, which is platform-independent and does
not use Unicode for definition [24]. XML Schema is another data representation to
define specification and documents developed by W3C. It uses XML syntax and is
capable of elaborating data types and give a preferable structure. XML or XML
Schema is commonly known as payload format in Web services[25].

A SOAP message is an XML document containing three elements: an envelope, a
header and a body. An envelope is the root element that consists of a header and a
mandatory body. A header can extend features for SOAP [23].

2.2.1.3 Service Identification

The exchanging messages need to be identified both by senders and receivers. Two
techniques, uniform resource identifiers (URIs) and Web service addressing (WS-
Addressing), are widely applied in message identification.

A URI is a string of characters for identifying an abstract or concrete resource (mes-
sage). It can enable interaction with representations of a resource over a network

11

2. Theory

via specific protocols. Uniform Resource Locators (URLs) are a universal form of
URIs and are typically used for referring to a web address.

WS-addressing is an interoperable and transport-independent solution for identify-
ing resources or messages. It segregates the address information from a transport
protocol but allows Web service applications to communicate with address infor-
mation directly, which identifies Web services endpoints and secures end-to-end
endpoint identification in messages. This ultimately enables messaging systems to
support message transmission through networks [18]. WS-addressing is a structure
for conveying a reference to a Web service endpoint and a set of message addressing
properties combining addressing information with a specific message. Thus, WS-
addressing normalizes the corresponding information into a uniform format handled
independently in Web service applications [26].

2.2.1.4 Service Description

Metadata is normally defined to fully describe the characteristics of services deployed
on a network, and is essential to manage loose coupling. Web Service Description
Language (WSDL) is the most widespread technique of metadata. WSDL offers the
possibility for developers to depict functional features of a Web service [18].

WSDL uses the XML format to define a set of endpoints operating either document-
oriented or procedure-oriented messages. A WSDL document normally contains two
parts: abstract definitions and concrete descriptions. The first part defines SOAP
messages with a language- and platform-independent manner, whereas the second
part can provide serialization [27].

WSDL offers a standard, language-independent view of services for clients, and
therefore constitutes a future-oriented method for applications and services. More-
over, interoperability across diverse programming paradigms is allowed [28].

2.2.2 REST

REST was initially defined as an architectural style for networking with several con-
straints, such as client-server communication, statelessness, cacheability, uniform
interface, layered system and code-on-demand [29, 30]. A resource and the repre-
sentation of this resource is the most important foundation of REST. A resource
could be a product, a document, a homepage or anything that is an abstraction of
information in a server. The resource can be represented by a document with a spe-
cific format, a library image and so forth, which is defined as the representation of
the resource [31]. Resources can be identified by URIs over two transport protocols:
HTTP and HTTPS. In other word, a REST Web services can be simply designed
by combining HTTP or HTTPS protocols and URIs.

A representation is a sequence of bytes and the format of the metadata describing

12

2. Theory

those bytes [29]. Several formats are supported in REST to represent resources.
Apart from XML, REST also supports JavaScript Object Notation (JSON), Multi-
purpose Internet Mail Exchange (MIME) and YAML [21]. This allows developers
to have more choices in order to select a format suitable to a particular application.

REST has two main features. One feature is statelessness, meaning that the server
does not need to care about which state a client is in, and vice versa. This im-
proves reliability and scalability because the recovery process in case of failures is
simplified and the memory consumption can be reduced without persisting state
[18]. The other feature is uniform interface. This interface basically supports cre-
ate, retrieve, update and delete methods [18, 21, 30]. These methods correspond to
the HTTP methods: GET, POST, PUT, DELETE, which greatly simplifies the interface
design. RESTful Web service has been currently supported by various program-
ming language like Python and Java, and is considered to be a simple but powerful
approach to Web services design [21].

2.3 Software Version and Revision Control Sys-
tem

A version control system is a software package which can help trace file documen-
tations after every change by using different tags. Moreover, such tags could be
organized to identify into different levels of changes, providing opportunity to re-
visit such tagged stages when needed. Rather than simply overwriting a changed
file or storing different versions of the same file under different file names, version
control system can simplify the work flow of changing file documentation. Tracing
back to the old version becomes much easier and time-efficient in this system.

A version control system can be classified based on its operation mode – local version
control system, centralized version control system (CVCS) and distributed version
control system (DVCS) [32].

2.3.1 Centralized version control system

CVCS holds a central server connected with different clients, which means that
all files that are stored in that specific server can be shared. More specifically,
each client in such control system can request the latest or any specific version
from the server and make a working copy on their local machine through the com-
mand "checkout". Moreover, each client could push their latest changes to create
a new version on the server through the command "checkin" [33]. The advantage
of CVCS is that it is very easy to trace the history of changes on a central server,
which leads to a direct top-down management of teamwork and a straight-forward
back-up of data, especially for a large repository with huge amounts of files. In
addition, CVCS allows partial checkout of a sub-tree from the repository tree which

13

2. Theory

provides flexibility. Moreover, CVCS is highly integrated with other tools and quite
mature, thus different software can be used with CVCS. However, CVCS has also
its disadvantages. For example, there is always a risk to get in trouble when the
centralized server is corrupted, meaning that no information stored in the server
can be accessed. Moreover, even though some software versions of CVCS have ap-
plied a copy-modify-merge model instead of lock-modify-unlock model to reduce the
risk of overwriting, it still becomes more complicated to complete merge operation
compared to the automatic merges used in DVCS.

Subversion (SVN), as a centralized system for collaborative editing and sharing of
information, is one type of version control software. A repository is the core of
SVN, which works as the central store of data with a typical hierarchy of files and
directories. Any client who connects to this repository is able to read or write data.
One of the advantages of SVN is that it is possible to view a previous version of the
file-system if a specific parameter (e.g. revision number, date, author) is provided
[34]. Since SVN can track all changes in the data stored over time, it is very efficient
when comparisons among different version are needed.

Moreover, due to the copy-modify-merge model of CVCS, the risk of overwriting
the latest change by another client occasionally is reduced. In this model, every
client should create his/her own working copy. Private changes in the working copy
are then merged into a new and final version in SVN repository. The advantage of
this model is that it can ensure that different clients can work in parallel, without
waiting for one another [34].

2.3.2 Distributed version control system

DVCS, being a hybrid system of local version control system and centralized version
control system, has its own advantage. Not only can it avoid the high risk of
losing the entire history of files caused by corrupted server in centralized version
control system, but can also provide opportunity to work collaboratively on the
same project since it does not rely on a user’s individual machine as is done in
a local version control system [33]. Moreover, DVCS provides a higher reliability
since partial operations will never occur in DVCS, which will reduce the risk of data
loss. Additionally, DVCS has a better performance due to its special mechanics
where it takes snapshots of entire sets of files instead of storing difference of each
file, which will increase the speed of DVCS system. However, DVCS still has some
disadvantages. For example, it stores the entire repository in each user machine
locally and shares information among different users connected to that server by
transferring local changes. This approach of storing the entire repository may lead
to a problem of time inefficiency when the repository is huge. It is particularly
inconvenient for a large company to use DVCS if too much information is stored in
the repository. Moreover, DVCS does not use revision numbers, which means that
traces of the latest file become difficult to generate [35].

Git is a typical DCVS software with properties of high speed and good support

14

2. Theory

for distributed, non-linear work flow [33]. Non-linear work flow provides improved
support for merging and branching, which will encourage local users to keep their
branches up-to-date with the mainline, and reduce the risk of their branches be-
coming out-of-date. Moreover, such non-linear work flow provides improvement on
merging, further reducing the burden of space.

2.4 Automotive Embedded System

An automotive embedded system is a very complicated system, yet tremendous
progress has been achieved in vehicle industries in recent decades. Not only has
hardware been improved, but software has been applied in a vehicle to create many
functionalities that are beneficial for the human user and that helps control elec-
tronics components such as sensors and actuators. Hence, software development has
played an important role in vehicle design.

All software are executed by ECUs. An ECU is an embedded electronic device that
controls various electronic systems or subsystems in a vehicle. The control device
and its electronic components are located on the hardware that contains a micro-
controller and memories. The control software, stored in memories and performed
in the micro-controller, is lower-level programming code that can read signals from
sensors, evaluate signals and react on a set of events based on received signals in
actuators. Consequently, the ECUs act as digital computers in vehicles [36, 37].

There are a variety of types of ECU, including Engine Control Module (ECM),
Electronic Brake Control Module (EBCM), Vehicle Control Module (VCM), Body
Control Module (BCM), Powertrain Control Module (PCM), Transmission Control
Module (TCM), Central Control Module (CCM), Central Timing Module (CTM),
General Electronic Module (GEM), etc [36]. In modern vehicles, more than 100
ECUs are distributed in the different parts of the vehicle and the complexity and
sophistication of software in ECUs is expected to increase [38].

2.4.1 Bus System

As ECUs are distributed over an entire vehicle, a network should be used to enable
communications among different ECUs. Several network topologies are widely used
nowadays, for example, bus topology, star topology, ring topology, mesh topology
and hybrid topology. Among these, the bus topology is one of the most widespread
approach in the automotive industry.

The core element of the bus topology is a single and linear bus that connects with
different nodes via short cables. Then nodes connect with distributed subsystems
or components within an entire system. Nodes receive and send messages across
the network. If one node fails, the messages on this node will not available to

15

2. Theory

other nodes anymore. However, the remaining nodes can still exchange information.
Nevertheless, if the core bus fails, the entire bus system will not work [37].

The Controller Area Network (CAN) bus is widely employed in the vehicle industry.
Other bus systems, such as Local Interconnect Network (LIN) bus, Media Oriented
systems Transport (MOST) bus and FlexRay bus, are also commonly used in modern
automotive systems [37].

Currently, various tools simulating bus systems have been developed to allow for the
design and verification of vehicle systems. CANoe and CANalyzer, both developed
by Vector, are two of the most prevalent tools as they can simulate most types of
bus systems [39]. They both use CAPL programming language to generate software
or test cases. CAPL programming is similar to C programming but supports limited
functions compared to C or C++.

16

3
Methodology

Based on the theory described in Chapter 2, methodologies for the whole system
associated with detailed sub-systems will be introduced in this chapter. We start
by discussing how to choose the programming language which is used to design the
whole system.

Based on the pre-study phase performed early in the project, Python programming
and CAPL programming are two alternatives that can be used to build a frame-
work. Python is a high-level, interactive, interpreted, object-oriented programming
language. It is simple and powerful and there are many third-party modules as
open source that can provide helpful functions [40, 41]. CAPL is a programming
language, similar to C programming, that has been developed by Vector. This lan-
guage is commonly used in bus system applications such as CANoe and CANalyzer
and provides many functions specific for automotive system testing [42]. These two
programming languages are both suitable for this project. Three approaches can
now be considered, as shown in Figure 3.1.

The first approach (Figure 3.1a) is to use CAPL programming to design the frame-
work. CAPL is powerful at CAN networking and provides many functions for mes-
sage communication between different buses, which is beneficial for automotive sys-
tems. Moreover, CANoe or CANalyzer are tools that are commonly used at VCC,
thus no third party tools need to be learned by test engineers. However, there are
many functions that are supported in C programming but not supported in CAPL
programming, which makes other parts of framework difficult to design.

The second approach (Figure 3.1b) is to use Python programming to design the
entire framework. COM server could be applied to develop an automatic testing
framework using Python programming. Hence, we could produce our own applica-
tion to perform test automation, which will give the possibility to limit the mainte-
nance cost. Nevertheless, using COM server means that the controlling of test cases
should be programmed in Python. In this case, all source code of test cases also
need to be modified, meaning no reuse of generated test cases.

The third approach (Figure 3.1c) is to combine CAPL and Python to design the
framework, that is, using CAPL to control test cases in Test Core and using Python
to achieve other functionalities, such as Analysis Tool, Web Service for Requirements
Management. This approach could both reuse the generated test cases and make

17

3. Methodology

CANoe/CANalyzer (CAPL)

Requirements
Management

Test Cases
Generation

Test Cases
Review Test Core Analysis Tool Test Complete

(a)

COM Server (Python)

Requirements
Management

Test Cases
Generation

Test Cases
Review Test Core Analysis Tool Test Complete

(b)

Python CANoe (CAPL)

PythonRequirements
Management

Test Cases
Generation

Test Cases
Review

Test Core

Test Analysis Test Complete

(c)

Figure 3.1: Three approaches of designing automatic testing framework

the design of other parts simpler. Accordingly, constructing an interface to connect
Python and CAPL would be a goal in this project.

When this project started, a large amount of test cases had already been generated.
Hence, it would be advantageous to reuse the existing test cases. Meanwhile, there
are both people who are good at Python programming and engineers who have much
experience of programming CAPL. We could have good support from this group.
Therefore, we chose to use the third methodology in the end. The methodologies of
each block in Figure 3.1c will be discussed in the following sections.

3.1 Requirements Management

As introduced in Section 2.2, "Big" and REST web services technologies are two
common approaches for web services. "Big" web service can support more com-
prehensive functions and WSDL can model a flexible and custom-defined interface,
which can make SOAP commendable for complex web service implementations.
Compared with "Big" Web service, REST provides less functions. For instance,
"Big" Web service can support several transport protocols such as HTTP, HTTPS,
TCP, SMTP, JMS, MQ, BEEP and IIOP, while REST only supports HTTP and
HTTPS. Hence, less options are available when using REST. Moreover, due to the
uniform interface in REST, the interface design is restricted. The developers have

18

3. Methodology

to manually write code to assemble resources and encode or decode the exchanged
resource representations.

However, REST still have some advantages that are appropriate for many web service
implementations. First of all, REST is simple to implement, which is very suitable
for beginners. Also, the uniform interface implies that developers do not need to
make decisions of interface design if the Web APIs are already defined. Furthermore,
REST supports several format of resource representations such as XML, JSON,
YAML and MIME, which means that there are more choices for developers based
on different requirements. Although REST only provides HTTP transport protocols,
most of web services are based on HTTP or HTTPS. Therefore, REST can have the
guarantees of these two basic protocols.

In our project, HTTPS protocol is required for Web service to Elektra. REST is ad-
equate for HTTP request operations: PUT, GET, POST and DELETE. The "requests"
module provided by Python can be used to perform these operations. Also, a Web
API was already defined in Elektra and can be used directly. The API is formed
by URLs constructed with the parameters given in Elektra. Additionally, Elek-
tra supports resource representation with JSON format. JSON-formatted data has
the same data structure as the dictionary data structure in Python, meaning that
information from Elektra can be easily processed in Python. According the afore-
mentioned reasons, Restful web service was chosen to perform the Requirements
Management block. It is designed in three steps: 1) constructing URLs based on
parameters in Elektra; 2) making web requests by using the module "requests" and
3) processing the information acquired from Elektra.

3.2 Test Cases Review

According to Section 2.3, CVCS and DVCS are good choices for storing different
version of files and information sharing. Considering the low cost of using, SVN and
Git, as free open-source software, they will be a good choice. SVN is much more
suitable for the big company with a big repository due to its flexibility of partial
checkout. In this case, less space inefficiency will occur in each local user since they
could only choose the needed sub-tree files from the repository.

On the other hand, Git is much more flexible for smaller teams with smaller reposi-
tories. It provides more flexible communication and commitment among developers
since each developer could have its own repository that they can save incrementally.
Moreover, Git enhances the ability of non-commitment on experimental change be-
fore submitting, which provides the possibility to revert with uncertain outcomes,
improving the reliability and the performance of the work.

Since the repository of VCC has become quite large over the years, SVN seems like
a better choice. Moreover, the reality is that the Test Group has already created
a repository to store all test case scripts in SVN, thus it needs a huge effort to

19

3. Methodology

transform scripts from SVN to Gits. Consequently, SVN will be used to store scripts
of test cases. Python programming will be used to perform Test Cases Review block
in SVN.

When the project started, a Python script that can review source code of test
cases had already been provided. In this Python script, a golden template provided
by VCC is used as a standard to check the structures of test case scripts. The
implementation of Test Cases Review could be divided into three steps. Firstly,
by using SVN commands, log files of changed test case scripts in SVN should be
checked due to different revision numbers or dates. After this, the needed scripts
can be selected according to checked log files. The "Subprocess" module in Python
offers functions for executing SVN commands. Since the log files are represented in
XML format, the "xml.etree.ElementTree" module in Python will be applied to
parse information (authors, file names) from those log files. Secondly, the selected
test case scripts should be reviewed via the Python script mentioned above. Thirdly,
different actions shall be taken to inform the authors of test case scripts according
to different results we get from the previous step.

3.3 Test Core

Test Core will mainly be designed using four stages. The first stage is to create a
framework that automatically performs a testing process that includes selecting test
cases, deciding sequence of test cases and executing test suites. Initially, dummy
test cases could be used to verify this testing process. The second stage is to add
simple functionalities, such as test loops, available time and so forth. Next, real test
cases with different control systems, such as seat control, light control, etc, will be
applied to verify the designed framework. Finally, more advanced functionalities are
considered to add into the framework to make it more intelligent.

3.4 Analysis Tool

For Analysis Tool, two alternatives were considered at the earlier phase in the
project. One alternative is to analyze the testing report while Test Core is run-
ning. The main idea is that once each test case finishes its execution and generates
a testing report, the Analysis Tool will analyze the generated testing report. How-
ever this method might affect the Test Core and cause a burden on the hardware in
HIL experimental environment.

The other method is to collect all generated test reports after Test Core finishes
running. The tool can then analyze all reports and give a conclusion that can be
used to design algorithms that can make decisions for the subsequent testing phase.
The advantage of this method is that it can separate the analysis process, which will
not impact the implementation of Test Core. It also provides simplicity of design of

20

3. Methodology

Analysis Tool and will not lead to a burden on the hardware. Therefore, we decided
to use the second method.

The Analysis Tool will be designed using Python. It is divided into four steps: 1)
reading testing reports and extracting the useful information in reports; 2) sorting
the obtained information; 3) analyzing the sorted information and calculate pass
rate, failed test case and etc; 4) generating a refined report with analyzed result.

3.5 Decision

For Decision, the main idea in this block is to decide a new test cases list for next
testing phase. A basic approach is that if the failure rate of one test case is over
10%, the test case should be executed more times. This test case would be inserted
after each element except itself in the original list. If the number of the test case
with failure rate over 10% is more than one, this process will be repeatedly. To be
specific, if executed test cases are test2, test4 and test5, and the failure rate of test2
and test5 has a failure rate over 10 %, then the new test case list would be test4,
test2, test5, test2, test2, test5, test4 and test5. If not any test case with failure rate
over 10% is found, the test cases will be implemented in another different sequence
order.

The Decision part will also be designed using Python. It is divided into two steps:
1) checking original sequence and whether any test case with failure rate over 10%
is available and 2)giving a new test case sequence by inserting the failed test cases
after each passed test case.

3.6 Interface

As introduced in the third approach (Figure 3.1c), interfaces should be designed
to connect Python programming and CANoe. From pre-study phase, we discov-
ered that CANoe support CAPL dynamic-link library (DLL) to perform complex
tasks or calculations using other programming languages if the functions in CAPL
cannot support such calculations or tasks [42]. DLLs are executable files that act
as shared libraries containing functions and resources in Microsoft Windows. By a
DLL, calling functions and using resources are enabled from a separate file loaded to
the application. Hence, in this project, the components, such as Requirement Man-
agement, Test Cases Review, Analysis Tool and Decision, can be implemented by
Python programming and connected to CANoe via a DLL file. CAPL export table
is used to export the functions created by other languages to CAPL programming.
CAPL DLLs are usually implemented using C/C++ programming, thus a solution
should be applied to embed Python into C application. Python programming pro-
vide APIs that gives C and C++ programmers access to the Python interpreter at
a variety of levels.

21

3. Methodology

Using the approaches described above, the interface will be designed in the following
stages: 1) creating a static function to embed Python programming into C applica-
tion using Python/C APIs, 2) creating a function that can call the static function
and return the output to CAPL, 3) export the built function with CAPL export
table and 4) building the DLL files using Visual Studio.

22

4
Implementation

Based on the methodology chosen in Chapter 3, the detailed design of automatic
testing framework is shown in Figure 4.1.

CANoe (CAPL)

TEST CORE

Max Failure

Test Loops

Available Time

FUNCTIONALITY

TESTING PROCESS

Select Test Cases

Decide Test
Cases Sequence

Execute Test
Cases

Generation
Test Report

TEST CASES GENERATION

Interface

Interface

Interface

Interface

Interface

FUNCTIONALITY

Customization

Random

RESULT ANALYSIS

Analysis ToolDecision
TEST COMPLETE

REQUIREMENTS
MANAGEMENT

TEST CASES
REVIEW

Manual Review

Auto-Review

Python

Figure 4.1: The detailed design of the automatic testing framework.

Test Core is designed in CANoe. The Test Core should automate the testing process
including test case selection, deciding sequence and executing test cases using the
selected execution order. Also, the functionalities, such as test loops, available time
and max failure, are added into the testing process. The testing process and func-
tionalities are implemented in CAPL programming. Some complex functionalities,
such as random combinations and customization are implemented in Python and
connected to CANoe by an interface. Test cases are also generated in CANoe.

Other blocks are implemented using Python. In Requirements Management, a Web
service is used to obtain test specifications from Elektra to Test Core. In Test Cases
Review, a review tool is designed to review the test scripts stored in SVN.

After Test Core is complete, a Result Analysis is performed. It has two elements.
Analysis Tool is created to analyze test reports and gives a conclusion to Decision
element. Algorithms are designed in Decision to make a decision for next testing
phase, like give a new test cases list to CANoe. After each test cycle, a result report
and a log file need to be generated so that both can be viewed by test engineers (in

23

4. Implementation

Test Complete). Finally, several interfaces are created to connect these parts with
Test Core. The implementations of each part in the framework will be introduced
in the following sections.

4.1 Requirements Management

As mentioned in Section 3.1, the requests module is used to make requests to
Elektra and URLs are used as the Web API. The requests module provides two
functions requests.get and requests.post to implement GET and POST HTTP
methods respectively. The parameters used to produce URLs can be viewed directly
from Elektra.

The detailed implementation of Requirements Management is shown in Figure 4.2.

Input file
(.excel)

URL Process

Make Requests

API

Desired Data

Figure 4.2: The implementation of Requirements Management.

Firstly, test engineers write the desired URL parameters in an Excel file as an
input. A function "URL process" will be performed to produce a URL based on the
parameters in the file. Figure 4.3 shows the details about this function. The file is
firstly read by the function csv.reader() provided in the csv module in Python.
A dictionary data structure is then created to store all the parameters’ names and
values read from the file. If the parameters’ values exist, they will be used to build
the URL. The result of "URL process" function is a URL string.

After "URL process", a request will be made to get data from Elektra or post data
to Elektra. Two functions mentioned at the beginning of this section will be used
to perform GET and POST methods. If a GET method is required, the code r
= requests.get(url, auth=(’username’, ’password’)) needs to be performed
and username and password are necessary to get access to Elektra. r.json() can
be used to get the JSON-formatted data. If a POST method is required, the code
r = requests.post(url, auth=(’username’, ’password’), data) needs to be
performed. The data is the information that needs to be posted and should also be
a JSON-formatted data.

24

4. Implementation

csvAreader<+fileAexcel+D dialect=+excel+S;

Parameter = { +parameter_1+ : +value1+D
+parameter_2+ : +value2+D

AAAAAAA
};

if <Parameter[+parameter_i+] R= NULLS

url=Uhttps:RRserverAcomRparamter_1=value1;
parameter_2=value2;AAAAU;

i = i E 1;

if <i<=Paramter_SizeS

END

START

YES

NO

Figure 4.3: The flow chart showing how "URL process" function works.

Finally, if a GET method is performed, the data obtained will be sent to Test Core.
For POST methods, the data will be sent to Elektra.

4.2 Test Case Auto-Review

Test cases are created in CANoe with CAPL programming and generated with CAN
files (shown as .can files). The Test Case Auto-Review block is implemented in three
steps. Figure 4.4 shows the whole work flow of this process.

Firstly, path information and basic information such as revision number and author
used to control the range of log data should be checked to ensure which corresponding
SVN commands should be applied. "SVN log" is applied to go through all previous
specific version of files and directories in given path. Through this command, log
messages with date, author information and the path where changes occur could
be checked. Moreover, since XML file is much easier to extract information by
python module "xml.etree.ElementTree", "SVN log –xml" is used to create a
XML format of log data. Date and revision number, as the possible input parameter,
are defined to control the range of files we check, increasing the efficiency to find
information needed. For example, "-r" could not only help us to check files with
revision in a particular order, but also decide the date range of changed files we
will check. In this step, we need to make sure which input parameter is taken as
the control of range. If a revision number is given, then all files from this revision
number to the latest one could be checked automatically to make sure whether it is

25

4. Implementation

Figure 4.4: The flow chart of test case Auto-Review.

a test case script file. Also, this revision number shall be updated to avoid checking
the unchanged test case script files repeatedly. Moreover, if a date is given, then all
files changed or created after this date should be checked automatically.

Secondly, those selected CAN files shall be reviewed by a Python script which aims
to check whether CAN files accord with the golden template whose target is to give
a standard structure to show how indentation, header, tag and comment works in
this situation. The result of code review will be stored in a CSV file and could be
dealt with different actions. During this part, the data, such as revision, path and
author, which we extract from generated XML log files should be used to help us
execute the actions to deal with errors found in CSV file after code review process.

The third step is to take different actions according to different results we get from
previous step. If no error occurs in the result file, nothing special need to be done.
If error occurs in the result file, two actions shall be implemented. We could either
store this file as an attachment and email the programmer who changed this CAN
file latest, or list log results directly. What’s more, if error is caused only due to
indentation, direct changes could be made in that CAN file.

4.3 Test Core

The Test Core is designed in CANoe and three basic functionalities, that are Max
Failure, Test Loops and Available Time, are achieved in CAPL programming. The
other functionalities, Random Combination and Customization, are achieved in
Python programming and connected to CANoe using interfaces.

26

4. Implementation

In Test Core, a control panel is firstly designed to control testing process, shown in
Figure 4.5. At the top of the panel, a path dialog is used to import the Excel file
containing all URL parameters. Two click buttons are designed to achieve GET and
POST HTTP methods in order to manage requirements. Then the panel for Test
Cases Review is achieved by having a path dialog to import the test scripts and a
button "Check" for triggering the reviews.

The entire testing process is controlled by two click buttons: Start and Stop buttons.
The third button "Get Exe Time" is given to get the execution time of every test
cases. The functionalities are set in Test Settings, which are used to give the test
parameters before test activities start. All vehicle control systems are set in the
botton of the panel. There are three columns. In the first column, the check boxes
are used to select the wanted test cases. The second column is used to start or stop
the test cases. The third column is given to indicate the status of test cases.

Control the management
of test requirement

Control test case
script review

Control the
functionalities

Control the test
case selection

Control the execution of test cases.
TStartT means start execution,
TStopT means finish execution.

Indicate the status of
the running test cases

Start button: Start the testing cycle;
Stop button: Stop the testing cycle;
Get Exe Time: Get the execution time of test cases

Figure 4.5: The overview of the panel
.

Each setting on the control panel designed above is controlled by a system variable
in CANoe. Those system variables can be utilized in CAPL for achieving automatic
testing process. The detailed implementation is shown in Figure 4.6.

Three memories are created to store system variable names. "Selection_Mem" is
the memory of storing system variable names for selecting test cases, the memory
"Execution_Mem" is used to store the system variable names for executing test cases,
and the memory "Status_Mem" is used to store the system variable names for test
case status. These memories share the same pointer. Besides, two buffers are also
created to store the selected system variables: one buffer ("Exe_buff") for storing
execution system variables and the other ("Status_buff") for storing status system
variables. Two buffers also share the same pointer.

27

4. Implementation

"Seat_Test_1_Select"

"Seat_Test_2_Select"

"Seat_Test_n_Select"

.

.

.

Selection_Mem

"Start_Seat_Test_1"

"Start_Seat_Test_2"

"Start_Seat_Test_n"

.

.

.

Execution_Mem

"Seat_Test_1_Status"

"Seat_Test_2_Status"

"Seat_Test_n_Status"

.

.

.

Status_Mem

Pointer

Memories for Storing System Variables

Test Cases Selection

"Start_Seat_Test_3"

"Start_Seat_Test_4"
.
.
.

"Start_Seat_Test_1"

Exe_buff

"Seat_Test_1_Status"

"Seat_test_3_Status"

"Seat_Test_4_Status"
.
.
.

Status_buff

Pointer

Buffers for storing system variables
of selected test cases

Execute test cases in sequence.
Different functionalities can be applied.

Test Loops Available Time Max Failure

Reversed Order

Random Order

Customization

Figure 4.6: The flow char of Testing Process in the framework.

Firstly, the system variables in the memory "Selection_Mem" are checked by the
function defined for Test Case Selection. If the test cases are selected, the corre-
sponding variables for test case execution and test case status are stored in the
buffers. Different execution orders and "Customization" functionality are also im-
plemented by re-ordering the variables in buffers. Finally, the selected test cases
stored in the buffers are executed in sequence with desired functionalities.

4.3.1 Test Cases Selection

A function is created to select wanted test cases. System variables in "Selection_Mem"
are checked in this function. A system variable for selection has two values. The
value 1 means the test case is selected, and the value 0 means the test case is
unselected. CAPL also provides two functions that can get values from system
variables and set values to system variables, for example, "sysGetVariableInt()"
and "sysSetVariableInt()". Figure 4.7 shows the implementation of Test Case
Selection.

To begin with, the pointers, both for memories and buffers, are initialized. The
value of each system variable in the memory is obtained and checked. If a test case
is selected, the variables for test case execution and test case status are put into the
buffers. After this, the pointer moves to the next element in memories and buffers.
If the test case is not selected, the pointer will move to the next element directly.
When all test cases are inspected, Test Case Selection is finished.

28

4. Implementation

Initialization:
SelectValue = 0;
MemPointer = 0;
BuffPointer = 0;

START

if (MemPointer < MemSize)

SelectValue = sysGetVariableInt()

if (SelectValue == 1)

Execution_Mem(MemPointer) -> Exe_buff(BuffPointer);
Status_Mem(MemPointer) -> Status_buff(BuffPointer);

BuffPointer -> BuffPointer + 1

MemPointer -> MemPointer+1YES

YES

NO

return BuffPointer-1

NO

Figure 4.7: The flow chart of automatic execution selection.

4.3.2 Test Cases Execution Sequence

When the selection is finished, the test cases in the buffers are executed with re-
quired execution orders. To execute a test case, the system variables for test case
execution and test case status are used, for example, "Start_Seat_Test_1" and
"Seat_Test_1_Status" in Figure 4.6. The system variables for test case execu-
tion have two values defined: 1 means "START" and 0 means "STOP". The system
variables for test case status have five status defined: "Idle", "RunningPassed", "Run-
ningFailed", "FinishedPassed" and "FinishedFailed". The corresponding values for
status are 0,1,2,3 and 4.

In CANoe, test cases can be executed in sequence manually, whereas CAPL pro-
gramming provides timers to trigger a sequential execution automatically. A timer
is triggered by the function setTimer(TimerName, time). Implementing a periodic
timer can be achieved by recalling this function and be created in the following steps
[42]:

• Declare the timer as a variable in a CAPL code.

• Set the timer at the beginning of the testing event by calling the function
setTimer(TimerName, time).

• Define the event that needs to be executed in the timer. The timer event is
triggered by code "on Timer TimerName".

• Reset the timer by re-calling the same function at the end of the task.

• Re-calling the timer functions to achieve period events.

29

4. Implementation

According to the thesis requirements, three different execution orders should be
implemented. They are sequential order, reversed order and random combination.
The rest of this section will introduce the implementations of three execution orders
firstly. The functionalities, such as Max Failure, Available Time, Test Loops and
Customization, will be introduced afterwards.

The implementation of sequential order is shown in Figure 4.8. Firstly, a timer is set
and the variables are initialized. Then, the first test case in the buffer is executed.
After that, the timer "SeqTimer" is called and events defined is performed. The
event defined in the timer are shown in the grey box. The status of executed test
case is checked when entering the timer. If the status is showing "FinishedPassed"
and "FinishedFailed", the next test case will be executed. This procedure will be
repeated until every test case in the buffer has been executed.

START

Timer SeqTimer;
int Pointer = 0;
StatusValue = 0;

setTimer(SeqTimer,time)

StatusValue = sysGetVariableInt(Status_buff[Pointer]);

if (StatusValue==3 || StatusValue==4) Pointer = Pointer + 1

sysSetVariableInt(Exe_buff[Pointer],1);

sysSetVariableInt(Exe_buff[Pointer+1],1);

cancelTimer(SeqTimer)

YES

YES

NO
if (Pointer < BuffSize)

on Timer SeqTimer

Figure 4.8: The flow chart of automatic execution sequence with sequential order.

The other two orders use the same method above but with different buffer inputs.
To have a reversed order, the test cases in the buffer are reversed, shown in Figure
4.9. Two pointers are set for two buffers, one is pointing to the first elements and the
other is pointing to the last element. After that, the pointed elements are exchanged.
Next, the first pointer is increased by one and the last pointer is decreased by one.
This process will be repeated until the two pointers are pointing the same element.

Random combination is performed using Python. Python programming provides a
module "random" to shuffle a given list. The basic method of random combination
is shown in Figure 4.10. The index number of the selected test cases and the com-
bination number shall be provided as inputs. The two inputs are sent to Python
script and a randomized index list is generated and sent back to CAPL. Finally,

30

4. Implementation

"Start_Seat_Test_1"

"Start_Seat_Test_2"

"Start_Seat_Test_3"

"Start_Seat_Test_n"

.

.

.

Exe_buff/Status_buff

pointer1

pointer2

Figure 4.9: The method of automatic execution sequence with reversed order.

the selected test cases in the buffers are re-ordered according the generated random
index.

Index Number of
last element in buffer

Index[]

Combination Number

Random

Interface

A list of
random index

Figure 4.10: The method of automatic execution sequence with random order.

The functionalities aforementioned are added into the execution sequence imple-
mentation. Max failure is the basic functionality and available time and test loops
are two other independent functionalities.

Figure 4.11 shows the implementation of available time with max failure. This uses
almost the same method shown in Figure 4.8. Before calling the timer, the test loop
number, max failure number and the available time are obtained from the control
panel or from "Customization". In the timer "SeqTimer_AvaiTime" (grey box), some
more actions are added to perform max failure and test loop fuctionalities. Before
executing the next test case, the execution time and failure number are accumulated
firstly. Next, the failure number is compared with the max failure number and
the execution time is compared with the available time. If the failure number or
the available time does not reach the parameters from control panel, the next test
case will be executed. When the failure number or the execution time reaches the
parameters, the testing process will be terminated. Then the Analysis() will start.
In this Analysis function, a new test case list, a new available and a new max failure
will be given. Finally, the next test phase will be executed based on the parameters
obtained from Analysis function.

The implementation of test loop with max failure is shown in Figure 4.12 and is sim-
ilar with the implementation of available time with max failure. The only difference
is the event defined in the timer. In this timer (SeqTimer_Loop), the execution time
and the failure number will be also calculated. Next, only the failure number will
be compared with max failure number. If the failure number is smaller, the next

31

4. Implementation

AnalysisP]:
| New Sequence;
| New Max Failure;
| New Available Time;

Customization

START

StatusValue=sysGetVariableIntPStatus_buff[Pointer]];

if PPointer < BuffSize]

if PStatusValue==L || StatusValue==p]]

sysSetVariableIntPExe_buff[PointerB1]3 1];

Loop_Nr=sysGetVariableIntP=AmountOfTestLoops=];
MaxFailure=sysGetVariableIntP=MaxFailure=];
Avai_Time=sysGetVariableIntP=AvailableTime=];

Pointer = Pointer B 1;

YES

YES

NO

YES

on Timer SeqTimer_AvaiTime

Declaration
Initialization

sysSetVariableIntPExe_buff[Pointer]31];

Initialize variable values;
Pointer = +;

Fail_Nr = Fail_Nr B 1

if PsysGetVariableIntPStatus_buff[Pointer]]==p]

Exe_Time B= time;

if PFail_Nr<=MaxFailure || Exe_Time<=Avai_Time]

setTimerPSeqTimer3time];

YES

Initialization;
Pointer = +;

NO

Figure 4.11: The flow chart of automatic execution sequence with functionalities
of available time and maximum failure.

test case will be executed. After all test cases in the buffer are executed, the loop
number will be checked. If the loop number is larger than 0, the pointer will be reset
and the test cases in the buffer will be executed in turn again. The loop number will
then decreased by one. When the failure number reaches the max failure parameter
or the loop number becomes 0, the current test phase will be terminated and the
analysis starts.

The functionality "Customization" is performed in Python. The test case list and
the testing setting parameters are written in an Excel file. The reading function
can read all the content, extract all the information and store them in a dictionary.
Some APIs are created to sort the parameters and sent them to CAPL. These APIs
are connected to CANoe by interfaces. The main implementation is indicated in
Figure 4.13

32

4. Implementation

AnalysisP]:
| New Sequence;
| New Max Failure;
| New Available Time;

Customization

NO

NO

START

StatusValue=sysGetVariableIntPStatus_buff[Pointer]];

if PPointer < BuffSize]

if PStatusValue==L || StatusValue==p]]

sysSetVariableIntPExe_buff[PointerB1]3 1];

Loop_Nr=sysGetVariableIntP=AmountOfTestLoops=];
MaxFailure=sysGetVariableIntP=MaxFailure=];
Avai_Time=sysGetVariableIntP=AvailableTime=];

Pointer = Pointer B 1;

YES

YES

NO

YES

on Timer SeqTimer_Loop

Declaration
Initialization

sysSetVariableIntPExe_buff[Pointer]31];

Initialize variable values;
Pointer = +;

Fail_Nr = Fail_Nr B 1

if PsysGetVariableIntPStatus_buff[Pointer]]==p]

Exe_Time B= time;

if PFail_Nr<=MaxFailure]

setTimerPSeqTimer3time];

YES

Initialization;
Pointer = +;

if PLoop_Nr > +]

YES

Loop_Nr = Loop_Nr | 1

Figure 4.12: The flow chart of automatic execution sequence with functionalities
of test loops and maximum failure.

API

a dictInput a file
(.excel)

Test case list

The number of test cases

Loop number

Maximum failure number

Available time

Combination number

Read File

Figure 4.13: The implementation of customization functionality.

4.4 Analysis Tool

All test reports, represented in XML format, are generated automatically after test
cases are executed. These test reports are stored in a specific path.

Any XML document under this specific path consists of the information of test
cases and test procedures during one test cycle. The whole system can be seen in
Figure 4.14. The input of the analysis tool is the path storing test reports and the
number of test cases which are executed in current Testing Process. Three outputs,

33

4. Implementation

Figure 4.14: The flow chart of analysis tool.

basic information to control the result which will be sent to the Decision block,
information of test cases and information of test procedures are generated. The
basic information to control includes the start time, original sequence, loop number
of each test case, and failed sequence. Here, failed sequence stores the title of test
cases with the pass rate lower than 90 percent. The information of test case includes
the title, the pass rate, the number of pass, the number of failed and the number
of warning of test cases. Similarly, the information of test procedure includes the
title, the pass rate, the number of passes, the number of failed and the number of
warning of test procedure.

Figure 4.15: The flow chart of information process.

Figure 4.15 shows the work flow of information process. Three steps should be
completed during this process. The output of this process shall be the sorted infor-
mation, which includes the title and verdict of test cases, due to the start time. The
first step of the information process is to read all XML files from the given path and
to employ "xml.etree.ElementTree" module in Python to generate XML trees.
This XML tree includes a header and a body containing many smaller elements.

Figure 4.16 shows the process to check XML files in the specific path. If any XML
file is found, then the method "ElementTree.parse" is used to parse these XML
files into an element tree. If not, then a reminder would be printed to tell people
that no XML file could be found in this specific path.

34

4. Implementation

Figure 4.16: The flow chart used to search XML file and generate XML tree.

Figure 4.17: The flow chart to describe how to extract information from achieved
XML files.

The second step is to extract information of test cases and test procedures from
XML. Figure 4.17 shows the function of extracting information of test cases and
test procedures. This information includes start time, title and verdict. Each type
of information will be put into different memory lists. These different types of
information will be gathered into one dictionary and be used in the further analysis
process. Some basic introduction will be described here to make a clear idea of how
to realize the process of extracting information by using different functions.

The method "Element.findall()" can find all child elements within a desired ele-
ment tree by specifying a keyword. The method"Element.find()" is used to find
the first child with a particular keyword. The method"Element.text" is used to ac-

35

4. Implementation

cess the element’s text content. The method"Element.get()" can be used to access
the element’s attributes. Figure 4.18 gives us an example what created XML tree
looks like after the execution of Test Core. The information should be divided into

Figure 4.18: The flow chart to show what xml file looks like

two parts: information for test case and information for test procedure.

The third part is to sort information. Different test cases and test procedures are
sorted according to the order of start time. "Sequence_list" is created as a memory
to store the title of sorted test case. Figure 4.19 shows that the work flow used to
sort information. Two dictionaries are created to store all information of test case
and test procedure.

All generated results of information will be used to achieve the five outputs of
analysis tool described above, e.g. original sequence and loop number. After the
information process, the original sequence will be firstly generated. Figure 4.20
shows how to achieve the output original sequence list. In detail, since we have
already achieved the number of executable test cases in this cycle as an input, sorted
title which are stored in the "Sequence_list" of this number should be appended
in the memory.

What’s more, loop number of each test case can be calculated separately by dividing
the number of elements in "Sequence_list" and the number of elements in dictio-
nary of each test case. Specifically, if the remainder is not equal to zero, another
formula shall be used automatically to get correct loop number. In this case, the
loop number will be counted as following:

If the index of the element in the dictionary of test cases smaller than the remainder,
then

loop =(len(Sequence_List) − (len(Sequence_List) mod len(dict_tm_list)))
÷ len(dict_tm_list) + 1

Otherwise,

loop =(len(Sequence_List) − (len(Sequence_List) mod len(dict_tm_list)))
÷ len(dict_tm_list)

36

4. Implementation

Figure 4.19: The flow chart to show how to sort information of test case and test
procedure due to start time

The process to calculate loop number should be completed after the achievement
of the original sequence since original sequence act as the input of loop function.
Figure 4.21 shows the flow chart of this function. Then an analysis of test case
is implemented to obtain the title of test cases with the pass rate lower than 90
percent. This will become a very important foundation to get basic conclusions and
to give tips for how to decide which test cases should be executed in the next phase.

Figure 4.22 shows how this conclusion function works to get the output failed se-
quence. The input of this function shall be the sequence and the gathered infor-

37

4. Implementation

Figure 4.20: The flow chart showing how to achieve the sequence order of
executing test cases

Figure 4.21: The flow chart showing how to calculate the loop number of current
test cycle

mation of test cases. As seen in Figure 4.22, the analysis of test cases should be
implemented in the Conclusion function. In the function analysis_tm, the failure
rate of test cases is calculated individually using the formulation: pass_rate =
Nr_fail/(Nr_fail + Nr_pass + Nr_warning).

A dictionary is used to store the result information of test cases, which should be
easily traced back by users. Such information includes title, pass rate, number of
pass, number of fail and number of warning. Figure 4.23 shows the work flow of this
function.

In the next step, the function analysis_tc is created. The result information of test
procedure will be stored in a dictionary firstly. Moreover, all information in this
dictionary will be combined into the regarding result information of test cases if the

38

4. Implementation

Figure 4.22: The flow chart showing how to obtain the failed sequence

title of test case is one part of the title of test procedure. Figure 4.24 shows the
process of this combination of result information.

39

4. Implementation

Figure 4.23: The flow chart showing how to obtain the result information of test
cases

40

4. Implementation

Figure 4.24: The flow chart showing how to achieve the result information of test
procedures

41

4. Implementation

4.5 Decision

An algorithm is designed with simple logic in this function. According to the ana-
lyzed results, including the control information, information of test cases and infor-
mation of test procedures, from the analysis tool, new sequence will be formed and
sent back to the Test Core. Thus new test cycles will be executed in the following
according to this sequence.

What’s more, an API is created during the Decision. One function in API helps re-
turn one parameter which could be obtained in the Analysis Tool. These parameters
could be directly used in different functions to deal with varying algorithms. This
action is helpful if an idea to create new functions to deal with another type of testing
is created. For example, with the help of function called get_para_original_seq,
the parameter original sequence is obtained. With the help of function called
get_para_failed_seq, the parameter sequence with the failure rate over 90 % is
obtained. Figure 4.25 shows the work flow of the decision block part.

Figure 4.25: The flow chart of implementation of the decision block.

4.6 Log

A log file in html format will be generated in a given path, which is used to help
record the actions that occur in each test cycle. These actions include the status of
execution, the analysis result and the decision made due to that result. For different
situations, different kinds of log files will be generated. For example, whether this
test cycle is aborted due to the limit of the maximum failure number, whether this
test cycle is executed by the control of available time or loop number and whether
test case with pass rate under 90 percent is executed during this test cycle, which
of above all affect the content of log files.

42

4. Implementation

4.7 Result to User

An Excel table, including the result information of test cases and test results that
is transformed from Python scripts, will be generated in a given path. This file
helps users to get the result information much quicker and easier. Several steps and
actions are needed to generate such file. First step is to define keys as the keyword
of elements that should be written in the first row. Second step is to put the value
of these elements as described: First action is to put the value of information of the
first test case in the first row. Then following action is to put the value information
of the first test procedure of this test case in the next row. This second action
should be repeated until the value information of all test procedures of this test case
is written. After that, another action is executed to put the value information of the
next test case in the next row. Repeat all these actions until the value information
of all test cases is written.

4.8 Interface

The implementation of interface is shown in Figure 4.26. Visual Studio is used to
generate CAPL DLL files.

Static Functions

CAPL Export
Functions

Python/C API

CAPL DLLs (.dll files)

CAPL Export Table

Python Script

Figure 4.26: The flow chart of implementation of the interface.

The Python script is imported by Python/C API. Static functions are generated
to import Python modules and return the desired result. After that, a function is
created to export the result to CAPL. CAPL export table is then used to export the
defined functions. Finally, a CAPL DLL file is generated by using "Build" in Visual
Studio.

43

4. Implementation

44

5
Results

In this chapter, the result of our project is given. Firstly, the outcome and the
achievements of the automated testing framework we developed are described. Next,
some figures are presented to show the achievements of our thesis.

In this project, we developed an automatic testing framework with mandatory re-
quirements. The complete framework is built by the required components that are
Requirement Management, Test Cases Generation, Test Case Review, Test Core,
Result Analysis and Test Complete. Also, the required functionalities were also ac-
complished and added to this framework. Besides, a simple algorithm that can take
simple decision for next testing phase is achieved. Interfaces that connect Python to
CANoe were created. Therefore, an entire tool chain that connects different compo-
nents is finally achieved in this framework. The rest of this section introduces how
the developed framework works.

A Web API is built in Requirement Management and can transmit test specifica-
tions, test parameters and test description from Elektra to CANoe. An Excel file
that contains URL parameters needs to be loaded in CANoe. Then functions created
in the interface can be used to obtain information like the name of a test case, the
procedure of a test case and so forth. When the necessary information is obtained,
test cases (CAPL script) can be generated in CANoe and then stored in SVN. In
this project, dummy test cases are generated.

Before a test activity, a test engineer may want to review the script and to check
whether these scripts fulfill the requirement. By inputting the path of the script
which is needed to check and calling the function for script reviewing the script, the
errors will be printed if there are any. Afterwards, emails can be sent to the author
of the reviewed script with an attachment of errors. Figure 5.1 shows the result
when failure happens after executing test auto-review function.

Figure 5.1: The chart to show the result after failure in auto-review function

45

5. Results

The testing process is performed in Test Core. Firstly, test cases should be selected
and the sequence order (including Front to Back, Back to Front and Random Com-
bination) needs to be chosen next. Afterwards, the test settings need to be set, such
as setting the loop number, available time or max failure. By clicking the Start
button, this test activity starts and the test cases are executed with the selected
sequence automatically. When the amount of the desired test cases are enormous,
the functionality Customization can be implemented. An Excel file with the list
of test cases can be created and loaded into framework. The function defined in
Customization then reads the name of test cases and stores them into a buffer. A
test engineer can start the testing process directly after loading this Excel file. Once
a test case is executed, a test report of this test case is generated automatically.

After this test activity is finished, the analysis event can be implemented by call-
ing the corresponding functions in the interface. The analysis event contains two
elements: Analysis Tool and Decision. The generated test reports are analyzed by
the analysis tool we designed and a conclusion is then given to the Decision. Based
on the given conclusion, a decision is taken and a new list of test cases is finally
provided.

Test Complete is the last step in this framework. An Excel file that indicates the
details of the conclusion from analysis is generated. Meanwhile, a log file that keeps
a record of details of each implementation within a testing cycle is produced.

In the rest of this chapter, different situations are verified and the outcome of veri-
fication is indicated.

5.1 Test Activity with Sequential Order and Avail-
able Time

In the project, five dummy test cases are created, in which Test 2 and Test 5 are
failed test cases and the others are passed test cases. Firstly, a test activity with
sequential order and available time is verified. In this case, Test 1, 2, 3 and 4 are
selected. The available time is set to 30 seconds, and the max failure is set to 3.
The execution order is set to "Front_to_Back" which means sequential order. All
the settings are shown in Figure 5.2

Figure 5.3 indicates the result of this test activity. The selected test cases are exe-
cuted in sequential order. When entering "Loop 2", only Test 1 is executed because
the execution time reaches to 30 seconds. Hence, this test cycle stops and the anal-
ysis starts. The new test case list are given by the Analysis function and executed
with sequential order. Meanwhile, an Excel file is generated to give the detailed
conclusion of analyzed results. Also, a log file is created to show the actions that
have made in this test cycle. The Excel file is shown in Figure 5.4. Six columns
are generated and they are "Title", "PassRate", "PassNumber","FailNumber", "Warn-
ingNumber" and "ExecutionNumber". "Title" column is used to have all executed

46

5. Results

Figure 5.2: The test settings of the test activity with sequential order and
available time.

Execution before
analysis

Analyzed output

Figure 5.3: The result of the test activity with sequential order and available
time.

the name of test cases. "PassRate" is used to give the percentage of passed test
cases. "PassNumber" is used to show the number of passed test cases. Similarly,
“FailNumber” and "WarningNumber" are used to indicate the number of failed test
cases and test cases that get warnings. Finally, "ExecutionNumber" is used to record
how many times each test case has executed. The log file is shown in Figure 5.5.

Figure 5.4: The excel file of the test activity with sequential order and available
time.

Two parts are included in the log file. In "Execution part", the list of executed test
case and how many times each test case has executed are included. Next, the test
cases that have a pass rate below 90% are also listed. Currently, this pass rate

47

5. Results

number is hard coding. However, the number can easily become configurable in the
framework in the future development. In "Decision part", the new test cases given
by Result Analysis are listed. This Excel file and log file will be given during each
test cycle based on the test results.

Figure 5.5: The log file of the test activity with sequential order and available
time.

5.2 Test Activity with Sequential Order and Max
Failure

In this section, a test activity with sequential order and max failure is verified.
Figure 5.6 shows the test setting. The available time is set to 1 minute and the max
failure is set to 2.

Figure 5.6: The test settings of the test activity with sequential order and max
failure.

In the execution result shown in Figure 5.7, the test cycle is stopped when Test 2 is
executed in Loop 2 because the failure number has reached to 2. After analysis, a
new test case list is given and the next test cycle starts. The Excel file and the log
file of this test situation are shown in Figure 5.8 and Figure 5.9.

48

5. Results

Analyzed output

Execution before
analysis

Figure 5.7: The result of the test activity with sequential order and max failure.

Figure 5.8: The excel file of the test activity with sequential order and max
failure.

Figure 5.9: The log file of the test activity with sequential order and max failure.

5.3 Test Activity with Reversed Order and Test
Loop

A test activity with reversed order and test loop are verified in this section. Test 3,
4 and 5 are selected. The test settings are shown in Figure 5.10. The test loop is set
to 2 and the max failure is set to 3. The execution order is set to "Back_to_Front"
which means reversed order. The result of this test activity is shown in Figure 5.11.
The selected test cases are executed backwards with two test loops. In this test

49

5. Results

activity, Test 5 is failed. Hence, the new test case list is shown in the bottom of the
Figure 5.11. The Excel file and the log file are shown in Figure 5.12 and Figure 5.13

Figure 5.10: The test settings of the test activity with reversed order and test
loop.

Execution before
analysis

Analyzed output

Figure 5.11: The result of the test activity with reversed order and test loop.

Figure 5.12: The excel file of the test activity with reversed order and test loop.

50

5. Results

Figure 5.13: The log file of the test activity with reversed order and test loop.

5.4 Test Activity with Random Order and Max
Failure

A test activity with random order and max failure are verified also. The test settings
are shown in Figure 5.14. All test cases are selected, the max failure are set to 3
and the test loop are set to 2.

Figure 5.14: The test settings of the test activity with random order and max
failure.

The result is shown in Figure 5.15. The test cases are executed in a random order.
When Test 2 is finished in Loop 2, the failure number reaches to 3 and the test cycle
is stopped. After the analysis function, a new test case list is given, as shown in the
bottom of Figure 5.15. Figure 5.16 and Figure 5.17 display the generated Excel file
and log file.

51

5. Results

Execution before
analysis

Analyzed output

Figure 5.15: The result of the test activity with random order and max failure.

Figure 5.16: The excel file of the test activity with random order and max failure.

Figure 5.17: The log file of the test activity with random order and max failure.

52

5. Results

5.5 Test Activity with More Than One Ramdom
Combination

With random orders, more than one random combination can be performed. The
next test activity, a test cycle with two combination are implemented. Therefore, the
test case list is constructed by two randomized test case sets, which is 10 executing
test cases in total. The result is shown in Figure 5.19.

Figure 5.18: The test settings of the test activity with random combination.

Figure 5.19: The result of the test activity with random combination.

5.6 Customization

Finally, the functionality "Customization" is also tested. The customization infor-
mation is written in an Excel file, as shown in Figure 5.20. In this file, seven columns
are created to have the desired test cases, the loop number, max failure, available
time and combination number. In this case, Test 1, 2 and 3 are selected. Max failure
is 3 and the available time is 36 seconds.

53

5. Results

Figure 5.20: The test settings of the test activity with customization.

The result is shown in Figure 5.21. The test cases listed in the customization file
are executed with a sequential order. The test cycle is stopped because execution
time reaches 36 seconds.

Figure 5.21: The result of the test activity with customization.

54

6
Discussion

This chapter will discuss the features and the merits of the automatic testing frame-
work "Test Me"compared to the manual testing that is currently used in Volvo Car.
Next, the improvements that could be done based on this framework are discussed.

6.1 Features of Automatic Testing Framework

In this project, we accomplished several useful functionalities in the framework.
These functionalities make the automatic testing more intelligent and more accurate
than manual testing. Features enabled by these functionalities are introduced in the
following.

Firstly, test case sequence design is one achievement in this project. Previously, the
test cases could only be executed in a predefined sequence order manually, leading
to few combinations of test cases. Hence, in system-level testing, the situations that
a HIL rig can simulate are seriously limited,potentially hiding problems. This will
finally result in waste of time and money for the industry. In this framework, the
selected test cases can be executed automatically in different sequence orders. More-
over, random combination mitigates the problem of limited combinations, which
provides a comprehensive testing activity.

Secondly, functionalities including test loops, max failure and available time let
testing process execute without human supervision. With testing methodology used
currently, test engineers are still necessary to supervise a test activity. Therefore,
the time that can be used for testing is limited. By these three functionalities, test
engineers are able to implement testing outside working hours and during weekends.

Customization is another functionality that can increase the convenience in the
testing. When the amount of test cases is enormous, selecting test cases one by one
takes much time, which is not convenient. While with customization, test engineers
can write the names of test cases and all test settings in an Excel file and load this
file into the framework. The framework could read the names and settings, and then
start the testing process automatically.

Furthermore, analysis tool is an important feature in the framework. Currently,

55

6. Discussion

test reports are still analyzed manually. Also, the amount of executed test cases is
normally very large, leading to a great deal of analysis work. In this framework,
the report analysis is implemented automatically, which is time-saving and more
accurate.

Finally, taking decision is the most important design in the framework. Right now,
designer’s experience still plays an important role on making decisions for the next
testing phase. Hence, the machine learning in making decisions makes the entire
framework more intelligent. When more and more algorithms are designed in this
framework, the machine can substitute human experience with making decision,
which may increases accuracy.

6.2 Future work

As a follow up project, some effort could be made to make the automatic testing
system more intelligent. Even with this framework, test engineers need to make test
settings manually before starting a test activity. Also, test cases are still generated
manually. Hence, some effort could be spent on functionalities that automate test
settings and generate test cases. In this framework, the algorithm implemented
can only make very simple decision. Therefore, more advanced algorithms should
be implemented to allow for more comprehensive analysis of test reports and more
intelligent decision for the next testing phase. For example, future work could
focus on machine learning. Overall, only five functionalities were achieved in this
framework. Other interesting functionalities could consequently be added to this
framework, such as setting the history verdicts of test cases. For example, if the
history verdict is set to 10000, then the test cases that have passed for 10000 times
can be moved out from the test list. The above example can also be applied to a set
of test cases. If a combination of test cases have passed for more than 10000 times,
this combination can also moved out. In this project, dummy test cases are used
to verify the outcome of the framework. However in the future work, the test cases
for real control systems will be applied to this framework. For some simple control
systems, such as doors and windows, the simple test algorithms are sufficient. But
for complicated control systems such as climate control, more advanced algorithms
and functionalites might be necessary. For instance, in climate control systems, the
relation between subsystems are much more complex, random combination might
not appropriate for giving different situations. Therefore, different test algorithms
and functionalities are necessary for different control systems.

56

7
Conclusion

In this chapter, the goals that have been achieved in this master thesis are described
firstly. After that, the experience that we have obtained during the project will also
presented.

7.1 Achievements

At the beginning, several goals are defined for this project.

• Design an automatic testing framework and a tool chain including the following
procedures: managing test requirements, review test cases, automatic testing
process and test reports analysis.

• Add functionalities to make the framework more intelligent. The functionali-
ties to be added are: test loops, available time, random combinations.

• Design algorithms supporting smoke test, regression test, long-term test and
stress test. The algorithms should also provide suggestions for the next testing
phase based on previous test results. (Optional)

To follow up, we have completed the first two goals. The optional goal has however
not been achieved. This would be the next step to let make framework more intel-
ligent to provide specific suggestions for the next testing phase as an improvement.

We have developed a framework that can perform a test activity automatically.
This framework can automate the testing process, execute test cases in different
combinations, analyze test results and take decisions for the next testing phase. The
framework can provide more situations that can happen to customers, which helps
test engineers have a more full-scale system-level testing. Interfaces between isolated
software systems (like Elektra and CANoe in this case) increase the convenience of
test activities and solve problems of data exchange. The most important property of
the framework is that it can perform the test activities without human supervision,
which means system-level testing can take place outside working hours. This greatly
decreases the workload of test engineers. However, it should be noted that the work
this framework can perform is fairly simple. More effort is needed to make the

57

7. Conclusion

framework more advanced.

7.2 Experience

During the project, we came across some challenges and problems. By overcoming
these challenges, we obtained much experience of designing an automatic testing
framework.

First of all, object-oriented programming has been a challenge during the whole the-
sis work. Compared to functional programming, the object-oriented programming
has its advantage when a more generic system is constructed. However, object-
oriented programming requires a lot of work to create, especially a great deal of
planning on how to design the whole system, which presented us with difficulties.
Moreover, the lack of experience brought us difficulty to understand what object-
oriented programming is at the beginning. To overcome this problem, online course
study provided us a general information of the basic concept of object-oriented pro-
gramming. What’s more, an adequate planning phase before programming gave
us more understanding of the whole system and reduced flaws to achieve a better
design. During the planning phase, we considered the whole program in the system
level, especially for the analysis and decision part. Also, the work flow for different
functionalities was drawn during this phase to help understand the whole system,
thus making it much easier to achieve object-oriented programming. To be specific,
during the system level, what we considered should be what the input and output
parameters are, what the outer parameter is needed to execute the object, how
different parameters should be connected and how to identify and react different
objects through different behaviors or methods.

Secondly, it is quite important to find the way how to deal with the program more
generically. Because the way to connect Python programming and CAPL program-
ing to build up the system is a bit complex, thus it is much better for us to set
a more generic programming in Python. Here, we take analysis tool part as an
example to explain what the meaning of generic is. For example, when counting
loop number, the result of this functionality should be suitable for all executable se-
quence, including customization, random, sequential order and reversed order. The
way we used to solve this problem is to create the basic version of system which
matched one testing mode. Then changes could be applied after practical testings.
Algorithm helps us to further improve the accuracy and intelligence of the system
and check its performance.

Moreover, how to connect Python and CANoe is the biggest challenge we had in
the project. Data transmission is also necessary, which increases the difficulty of
creating interfaces. We decided to use CAPL DLL to build the interface, but CAPL
DLL only support C and C++ programming, which makes the interface design more
complicated. A solution of embedding Python programming into C application is
needed. At the beginning, we considered to settle Python embedding and CAPL

58

7. Conclusion

exporting into only one function. This solution didn’t work and caused hardware
problems in CANoe when simulating in HIL rig. Then we decided to define two
functions, one for embedding Python into C Application and one for exporting the
desired output to CAPL. From solving this challenge, we have obtained the experi-
ence of how to create interface between different software systems. Firstly, we should
check what support we can get from the software systems that are using. Then, we
should look for solutions based on the support we can get. To increase the compat-
ibility, different functions should be defined for different software systems. In our
case, we defined two different functions that can support Python and CAPL respec-
tively. One function is used for importing Python programming and give the desired
outputs. The other one is used for exporting the outputs to CAPL. Furthermore,
reference learning and are always beneficial before design and implementation.

During the project, we faced the situation that progress lagged behind the plan
because of optimistic estimation of time and the occurrence of new problems. When
we run other projects in the future, this situation can be improved by two aspects.
Firstly, a comprehensive pre-study is necessary before the project starts, which can
give a more comprehensive overview of the project. Secondly, a good estimation of
time for each task is needed since the time spent is always longer than you thought.
Besides, when the progress lags behind, the plan needs to be modified according to
the real situation. Finally, risk analysis is very important for the entire project.

59

7. Conclusion

60

Bibliography

[1] D. Huizinga and A. Kolawa, Automated defect prevention: best practices in
software management. John Wiley & Sons, 2007.

[2] J. Rushby, “Automated test generation and verified software,” in Verified Soft-
ware: Theories, Tools, Experiments. Springer, 2008, pp. 161–172.

[3] E. Bringmann and A. Kramer, “Model-based testing of automotive systems,”
in 2008 1st International Conference on Software Testing, Verification, and
Validation. IEEE, 2008, pp. 485–493.

[4] E. H. Kim, J. C. Na, and S. M. Ryoo, “Implementing an effective test automa-
tion framework,” in 33rd Annual IEEE International Computer Software and
Applications Conference, vol. 2. IEEE, 2009, pp. 534–538.

[5] L. Heidrich, B. Shyrokau, D. Savitski, V. Ivanov, K. Augsburg, and D. Wang,
“Hardware-in-the-loop test rig for integrated vehicle control systems,” in Ad-
vances in Automotive Control, vol. 7, no. 1, 2013, pp. 683–688.

[6] C. Ebert, Improving Electronic Engineering and Efficiency with Automated Pro-
cesses, 1st ed., Vector, 2010.

[7] W. C. Hetzel and B. Hetzel, The complete guide to software testing. John
Wiley & Sons, Inc., 1991.

[8] G. J. Myers, C. Sandler, and T. Badgett, The art of software testing. John
Wiley & Sons, 2011.

[9] J. Bach, “James bach on risk-based testing,” STQE Magazine, vol. 1, p. 6, 1999.

[10] J. Watkins and S. Mills, Testing IT: an off-the-shelf software testing process.
Cambridge University Press, 2010.

[11] P. C. Jorgensen, Software testing: a craftsman’s approach. CRC press, 2013.

[12] T. Pajunen, T. Takala, and M. Katara, “Model-based testing with a general
purpose keyword-driven test automation framework,” in Software Testing, Ver-
ification and Validation Workshops (ICSTW), 2011 IEEE Fourth International
Conference on. IEEE, 2011, pp. 242–251.

61

Bibliography

[13] M. Shafique and Y. Labiche, “A systematic review of model based testing tool
support,” Carleton University, Canada, Tech. Rep. Technical Report SCE-10-
04, 2010.

[14] M. Utting and B. Legeard, Practical model-based testing: a tools approach.
Morgan Kaufmann, 2010.

[15] P. Skruch, M. Panek, and B. Kowalczyk, “Model-based testing in embedded
automotive systems,” Model-Based Testing for Embedded Systems, pp. 293–308,
2011.

[16] A. Hartman and K. Nagin, “The agedis tools for model based testing,” ACM
SIGSOFT Software Engineering Notes, vol. 29, no. 4, pp. 129–132, 2004.

[17] A. Huima, “Implementing conformiq qtronic,” in Testing of Software and Com-
municating Systems. Springer, 2007, pp. 1–12.

[18] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D. F. Ferguson,
Web services platform architecture: SOAP, WSDL, WS-policy, WS-addressing,
WS-BPEL, WS-reliable messaging and more. Prentice Hall PTR, 2005.

[19] T. Erl, Service-oriented architecture: concepts, technology, and design. Pearson
Education India, 2005.

[20] D. Booth, H. Haas et al., “Web services architecture, w3c working group note
11 february 2004,” http://www. w3. org/TR/2004/NOTE-ws-arch-20040211/,
2004.

[21] C. Pautasso, O. Zimmermann, and F. Leymann, “Restful web services vs.
big’web services: making the right architectural decision,” in Proceedings of
the 17th international conference on World Wide Web. ACM, 2008, pp. 805–
814.

[22] K. Mockford, “Web services architecture,” BT Technology Journal, vol. 22,
no. 1, pp. 19–26, 2004.

[23] K. Gottschalk, S. Graham, H. Kreger, and J. Snell, “Introduction to web ser-
vices architecture,” IBM Systems journal, vol. 41, no. 2, p. 170, 2002.

[24] F. Yergeau, T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler, “Ex-
tensible markup language (xml) 1.0,” W3C Recommendation, third edition,
February, 2004.

[25] T. Bray, C. Frankston, and A. Malhotra, “Document content description for
xml,” 1998.

[26] D. Box, E. Christensen, F. Curbera, D. Ferguson, J. Frey, M. Hadley, C. Kaler,
D. Langworthy, F. Leymann, B. Lovering et al., “Web services addressing (ws-
addressing),” 2004.

62

Bibliography

[27] E. Christensen, F. Curbera, G. Meredith, S. Weerawarana et al., “Web services
description language (wsdl) 1.1,” 2001.

[28] R. Chinnici, J.-J. Moreau, A. Ryman, and S. Weerawarana, “Web services
description language (wsdl) version 2.0 part 1: Core language,” W3C recom-
mendation, vol. 26, p. 19, 2007.

[29] R. T. Fielding, “Architectural styles and the design of network-based software
architectures,” Ph.D. dissertation, University of California, Irvine, 2000.

[30] L. Richardson, M. Amundsen, and S. Ruby, RESTful Web APIs. " O’Reilly
Media, Inc.", 2013.

[31] G. Reese, “The rest api design handbook,” Amazon Digital Services, 2012.

[32] D. Spinellis, “Version control systems,” Software, IEEE, vol. 22, no. 5, pp.
108–109, 2005.

[33] R. Somasundaram, Git: Version control for everyone. Packt Publishing Ltd,
2013.

[34] B. Collins-Sussman, B. W. FITZPATRICK, and C. M. PILATO, “Version con-
trol with subversion for subversion 1.5 (compiled from r3305),” Ben CollinsSuss-
man, Brian W. Fitzpatrick, C. Michael Pilato, c2008, Modified: Mon, vol. 5,
p. 08, 2008.

[35] B. De Alwis and J. Sillito, “Why are software projects moving from centralized
to decentralized version control systems?” in Cooperative and Human Aspects
on Software Engineering, 2009. CHASE’09. ICSE Workshop on. IEEE, 2009,
pp. 36–39.

[36] “Ecu designing and testing using national instruments products,”
http://www.ni.com/white-paper/3312/en/, 2009.

[37] K. Reif, Automotive Mechatronics: Automotive Networking, Driving Stability
Systems, Electronics. Springer Vieweg, 2015.

[38] C. Ebert and C. Jones, “Embedded software: Facts, figures, and future,” Com-
puter, no. 4, pp. 42–52, 2009.

[39] Product Information CANoe, 3rd ed., Vector, 2015.

[40] M. Hammond and A. Robinson, Python Programming on Win32: Help for
Windows Programmers. " O’Reilly Media, Inc.", 2000.

[41] A. Downey, Think Python. " O’Reilly Media, Inc.", 2012.

[42] Programming With CAPL, 1st ed., Vector, 2004.

63

Bibliography

64

	List of Figures
	Introduction
	Background
	Motivation
	Project Goals
	Automatic Testing Framework Overview
	Challenges
	Delimitation
	Overview

	Theory
	Software Testing
	Different levels of software testing
	Model-Based Testing
	Test Automation

	Web Service
	"Big" Web Services
	Transport Protocol
	Messaging services
	Service Identification
	Service Description

	REST

	Software Version and Revision Control System
	Centralized version control system
	Distributed version control system

	Automotive Embedded System
	Bus System

	Methodology
	Requirements Management
	Test Cases Review
	Test Core
	Analysis Tool
	Decision
	Interface

	Implementation
	Requirements Management
	Test Case Auto-Review
	Test Core
	Test Cases Selection
	Test Cases Execution Sequence

	Analysis Tool
	Decision
	Log
	Result to User
	Interface

	Results
	Test Activity with Sequential Order and Available Time
	Test Activity with Sequential Order and Max Failure
	Test Activity with Reversed Order and Test Loop
	Test Activity with Random Order and Max Failure
	Test Activity with More Than One Ramdom Combination
	Customization

	Discussion
	Features of Automatic Testing Framework
	Future work

	Conclusion
	Achievements
	Experience

	Bibliography

