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MOMENTUM-SPACE DYNAMICS OF RUNAWAY ELECTRONS IN PLASMAS

Adam Stahl
Department of Physics
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Abstract
Fast electrons in a plasma experience a friction force that decreases with in-
creasing particle speed, and may therefore be continuously accelerated by suf-
ficiently strong electric fields. These so-called runaway electrons may quickly
reach relativistic speeds. This is problematic in tokamaks – devices aimed at
producing sustainable energy through the use of thermonuclear fusion reac-
tions – where runaway-electron beams carrying strong currents may form. If
the runaway electrons deposit their kinetic energy in the plasma-facing com-
ponents, these may be seriously damaged, leading to long and costly device
shutdowns.

Crucial to the runaway phenomenon is the behavior of the runaway electrons
in two-dimensional momentum space. The interplay between electric-field
acceleration, collisional momentum-space transport, and radiation reaction
determines the dynamics and the growth or decay of the runaway-electron
population. In this thesis, several aspects of this interplay are investigated,
including avalanche multiplication rates, synchrotron radiation reaction, mod-
ifications to the critical electric field for runaway generation, rapidly changing
plasma parameters, and electron slide-away. Two numerical tools for study-
ing electron momentum-space dynamics, based on an efficient solution of the
kinetic equation, are presented and used throughout the thesis. The spec-
trum of the synchrotron radiation emitted by the runaway electrons – a useful
diagnostic for their properties – is also studied.

It is found that taking the electron distribution into account properly is crucial
for the interpretation of synchrotron spectra; that a commonly used numeri-
cal avalanche operator may either overestimate or underestimate the runaway-
electron growth rate, depending on the scenario; that radiation reaction modi-
fies the critical electric field, but that this modification often is small compared
to other effects; that electron slide-away can occur at significantly weaker elec-
tric fields than expected; and that collisional nonlinearities may be significant
for the evolution of runaway-electron populations in disruption scenarios.

Keywords: fusion-plasma physics, tokamak, runaway electrons, synchrotron
radiation, critical electric field, slide-away, non-linear collision operator
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Synchrotron radiation from a runaway electron distribution in tokamaks,
Physics of Plasmas 20, 093302 (2013).
http://dx.doi.org/10.1063/1.4821823
http://arxiv.org/abs/1308.2099

B M. Landreman, A. Stahl, and T. Fülöp,
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P T. Fülöp, O. Embréus, A. Stahl, S. Newton, I. Pusztai, and G. Wilkie,
Kinetic modelling of runaways in fusion plasmas, Proceedings of the
26th IAEA Fusion Energy Conference, Kyoto, Japan, TH/P4–1 (2016).
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calculation of ion runaway distributions, Proceedings of the 57th Annual
Meeting of the APS Division of Plasma Physics 60, 19, CP12.00118
(2015). http://meetings.aps.org/link/BAPS.2015.DPP.CP12.118

U I. Pusztai, E. Hirvijoki, J. Decker, O. Embréus, A. Stahl, and T. Fülöp,
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1 Introduction

In plasma physics, many interesting phenomena occur that are outside of
our everyday experience. One of these is the generation of so-called runaway
electrons (or simply runaways) – electrons that under certain conditions are
continuously accelerated by electric fields [1, 2]. The dynamics of the process
is such that the runaways quickly reach relativistic energies; they move with
speeds very close to that of light. The study of runaway electrons therefore
combines two fascinating areas of physics: Einstein’s special relativity [3], and
plasma physics; giving rise to interesting dynamics (as well as complicated
mathematics). As we shall see, runaways appear in a variety of atmospheric,
astrophysical and laboratory contexts.

Apart from their intrinsic interest, these highly energetic particles are also a
cause for concern in the context of fusion-energy experiments [4]. Generating
electric power using controlled thermonuclear fusion reactions is a promising
concept for a future sustainable energy source [5–7], but stable and controllable
operating conditions are required for a successful fusion power plant. The
presence of runaway electrons in the plasmas of fusion reactors under certain
circumstances is one of the main remaining hurdles on the road to realization
of fusion power production [8], as the runaways have the potential to severely
damage the machine when they eventually leave the plasma and strike the
wall [9]. In order to accurately assess the frequency of such events, as well
as the resulting damage in a given situation, there is a great need to improve
the understanding of the mechanisms that generate and suppress runaway
electrons, and to better describe their dynamics [10].

In order for runaways to be generated, a comparatively long-lived electric
field is needed. Due to the natural tendency of the plasma particles to re-
arrange in order to screen out such fields, they are not normally present in
unmagnetized plasmas. However in certain situations, for instance if a cur-
rent running through the plasma changes quickly or if the magnetic field lines
in a magnetized plasma reconnect, an electric field is induced which may be
sufficient to lead to runaway formation. Runaway electrons do form in atmo-
spheric plasmas – they have been linked to for instance lightning discharges
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Figure 1.1: A tokamak plasma (pink), together with various common terms
and concepts.

[11], impulsive radio emissions [12], and terrestrial gamma-ray flashes [13] –
and in the mesosphere [14]. In astrophysical plasmas, they are expected to
form in for instance solar flares [15] and large-scale filamentary structures in
the galactic center [16]. Under certain circumstances, other plasma species
may also run away. Both ion and positron runaway have been investigated in
recent work (see Refs. [17–19], as well as Paper J, not included in the thesis).
Our main interest in this thesis is however electron runaway in the context of
magnetic-confinement thermonuclear fusion.

The most common type of fusion device is called a tokamak (see for instance
[7, 20]). It uses strong magnetic fields to confine a plasma in which the fusion
reactions between hydrogen-isotope ions take place. The charged particles in
the plasma follow helical orbits (spirals) around the magnetic field lines due
to the Lorentz force [21, 22], and are thus (to a first approximation) prevented
from reaching the walls of the device. In a tokamak, the “magnetic cage” (and
thus the plasma) has the form of a torus (a doughnut), as shown in Fig. 1.1.
The torus shape can be thought of as being formed from a cylinder, bent
around so that its two ends connect. The direction along the axis of this
cylinder is referred to as toroidal (and the axis itself the magnetic axis), while
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the direction around the circumference of the cylinder is called poloidal and
its radius is the minor radius. The radius of the circle defined by the magnetic
axis is called the major radius, and the relation between the major and minor
radii is referred to as the aspect ratio. The plasma temperature and density
are maximized close to the magnetic axis, and this is also where the runaways
predominantly form. Due to the loop-like toroidal geometry, the magnetic
field acts as an “infinite racetrack” for the runaways, which make millions of
toroidal revolutions of the tokamak each second.

In order to achieve satisfactory plasma confinement, it is necessary to drive a
strong current in the plasma. The poloidal magnetic field induced by the cur-
rent introduces a helical twist to the magnetic field lines, and it can be shown
that each field line covers a toroidal surface of constant pressure. The tokamak
plasma can therefore be viewed as being made up of a series of such nested flux
surfaces. The plasma current is generated using transformer action: a chang-
ing current is driven through a conducting loop interlocked with the tokamak
vessel, and the change in this current induces a voltage (the so-called loop volt-
age) which drives a current in the plasma. Since a hot plasma is a very good
conductor, the loop-voltage does not need to be particularly strong during nor-
mal operation (it is usually of order 1 V), and tokamak plasmas (discharges
or “shots”) are routinely maintained for several seconds, and sometimes for
several minutes or more. Inductive current drive does not enable continuous
(steady-state) operation, however, and the tokamak is fundamentally a pulsed
device (in the absence of auxiliary current-drive systems).

During the start-up of a tokamak discharge, a plasma is formed by the ion-
ization of a gas. For this process, a strong electric field is usually needed.
Runaways may form in this situation [23–25], however their formation can
usually be avoided by maintaining a high enough gas/plasma density. The
case of a changing current is more problematic. Abrupt changes in plasma
current occur during so-called disruptions, in which the plasma becomes un-
stable, rapidly cools down due to a loss of confinement, and eventually ter-
minates [8, 26, 27]. As the plasma cools, the resistivity increases drastically
(since it is proportional to T−3/2), and a large electric field is induced which
tries to maintain the current (in accordance with Lenz’s law [28]). Near the
magnetic axis, this field is often strong enough to lead to runaway generation,
and runaway beams in the center of the plasma have been observed during
disruptions in many tokamaks (for instance JET [29–31], DIII-D [32, 33], Al-
cator C-Mod [34], Tore Supra [35], KSTAR [36], COMPASS [37], ASDEX
Upgrade [38] and TCV [39]). Runaways can also be generated in so-called
sawtooth crashes [40], and even during normal stable operation if the density
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is low enough [39, 41, 42] (the accelerating field in this case is the normal
loop voltage). Some auxiliary plasma-heating schemes produce an elevated
tail in the electron velocity distribution which can lead to increased runaway
production, should a disruption occur [39, 43].

The runaways predominantly form close to the magnetic axis of the tokamak,
where the flux-surface radius is small compared to the major radius. Many
aspects of the fundamental runaway dynamics can therefore be studied in
the large–aspect-ratio limit where transverse spatial effects can be neglected.
Since the plasma is essentially homogeneous in the direction along the mag-
netic field, the spatial dependence can be neglected entirely, and for an under-
standing of the basic mechanisms it is sufficient to treat the runaway process
purely in momentum-space. As discussed in Sec. 3.1, one of the momentum-
space coordinates (the angle describing the gyration around the field lines),
can be averaged over, reducing the problem to two momentum-space dimen-
sions. These simplifications are done throughout this thesis, except for parts
of Paper A (where a radial dependence is included). In practice, the situation
is more complicated, however, and spatial effects are often important, as will
be discussed in Sec. 2.3. Several numerical tools that take magnetic-trapping
and radial diffusive-transport effects into account (such as LUKE [44–46] and
CQL3D [47, 48]) also exist.

The main reason for the interest in runaway research is that the runaways pose
a serious threat to tokamaks. During disruptions, a large fraction of the initial
plasma current (which is often several megaamperes) can be converted into
runaway current. The runaways are normally well-confined in the tokamak,
but a variety of mechanisms (such as instabilities or a collective displacement
of the entire runaway beam) can transport them out radially. Unless their
generation is successfully mitigated, or runaway-beam stability can be exter-
nally enforced, the runaways eventually escape the plasma and strike the wall
where they can destroy sensitive components or degrade the wall material [49].

In present-day tokamaks, runaways are a nuisance, but usually not a serious
threat (although there are exceptions, see for instance Ref. [31]). However,
the avalanche multiplication (see Sec. 2.2.3) of a primary runaway seed is pre-
dicted to scale exponentially with plasma current [50], and it is believed that
in future devices which will have a larger current (such as the International
Thermonuclear Experimental Reactor ITER [51, 52] and eventually commer-
cial fusion reactors), the problem will be much more severe. In these devices,
disruptions can essentially not be tolerated at all and much effort is devoted
to research on runaway and disruption mitigation techniques [10, 33, 49, 53].
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This thesis focuses on the dynamics of the runaway electrons in momentum
space, their generation and loss, and the forces that affect them. Most of
the results presented herein are not specific to fusion plasmas or a tokamak
magnetic geometry, however we will make use of fusion-relevant plasma pa-
rameters throughout. The majority of the work described in this thesis was
conducted using two numerical tools developed as part of the thesis work:
CODE, described in Papers B and C; and NORSE, described in Paper E. With
these tools, all three major runaway-generation mechanisms (Dreicer genera-
tion, hot-tail generation and avalanche generation through knock-on collisions
– to be discussed in Sec. 2.2), as well as two important energy-loss mecha-
nisms (synchrotron and bremsstrahlung radiation emission) can be studied in
detail. Synchrotron radiation is particularly important, and will be discussed
in Chapter 4. It is also the main subject of Papers A and D – as a diagnos-
tic for the runaway distribution and as a damping mechanism for runaway
growth, respectively.

Let us now turn to discussing the basic mechanisms responsible for the run-
away phenomenon, and the quantities characterizing the runaway dynamics.
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2 Runaway-electron generation
and loss

In short, a runaway electron is an electron in a plasma which experiences a net
accelerating force during a substantial time – enough to give it a momentum
significantly larger than that of the electrons in the thermal population.

The accelerating force on the electron is supplied by an electric field E, so that
FE = −eE, where e is the elementary charge. Meanwhile, Coulomb interac-
tion with the other particles in the plasma (commonly referred to as collisions)
introduces a friction force FC(v). The origin of the runaway phenomenon is
that FC,‖, the component of the friction force parallel to the electric (or mag-
netic, if the plasma is magnetized) field, is a nonmonotonic function of the
particle velocity, with a maximum around the electron thermal speed (vth)
[54], as illustrated in Fig. 2.1. Therefore ∂FC,‖/∂v < 0 for particles that are
faster than vth – the friction force on these particles decreases with increasing
particle velocity. The physical origin of this effect is that the faster particles
spend less time in the vicinity of other particles in the plasma; as the particle
speed increases, the impulse delivered to the fast particle in each encounter
decreases more rapidly than the number of encounters increases, leading to
a reduction in the friction [54]. This implies that if the accelerating force is
sufficient to overcome the friction at the current velocity v0 of the particle,
|FE| > FC,‖(v0), it will be able to accelerate the particle for all v > v0, i.e.
the particle will be continuously accelerated to relativistic energies – it will
run away – as long as the electric field persists.

2.1 The runaway region of momentum space

For an electric field of intermediate strength (Ec < E < Esa, with the critical
field Ec and slide-away field Esa to be defined in this section), there exist
some velocities for which the acceleration by the electric field overcomes the
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v

 F

cvth

 FC,||

Figure 2.1: Friction force on an electron due to collisions, as a function of
its velocity (schematic).

collisional friction. These velocities constitute the runaway region Sr in ve-
locity space, indicated in Fig. 2.2. If only collisional friction is considered,
this region is semi-infinite in momentum space, extending from some lowest
critical momentum pc to arbitrarily high momenta, due to the dependence of
the friction force on velocity, as discussed above. The particles that are not
in the runaway region are only to a lesser extent affected by the electric field,
since the collisions dominate their dynamics.

Due to the directivity of the electric field, the force balance is not homoge-
neous in velocity. Several other forces also affect the dynamics, in particu-
lar radiation-reaction forces associated with synchrotron and bremsstrahlung
emission. In these cases, the force balance is altered, ultimately preventing
the electrons from reaching arbitrarily high momenta (this is the motivation
for the use of the slightly vague definition of runaway at the beginning of
this chapter). How to determine the runaway region in these more general
situations is discussed in Sec. 2.1.3.

Furthermore, the picture is complicated by the fact that not only friction due
to Coulomb collisions (collisional slowing down) contributes to the dynamics.
The collisions also lead to diffusion of the electrons in velocity space: both par-
allel to the particle velocity and perpendicular to it (referred to as pitch-angle
scattering). The diffusion is caused by velocity-space gradients in the distri-
bution of particle velocities (see Sec. 3.1), parallel and perpendicular to v for
the two effects, respectively. Pitch-angle scattering does not directly affect the
energy of the electron, but is important for the behavior in two-dimensional
velocity space (see for instance [54] for a comprehensive introduction to colli-
sional phenomena). In general, the full evolution of the runaway population
can only be obtained using numerical simulations.

8



2.1 The runaway region of momentum space

v

 |F|

eEsa

eEc

eE

vc c

eE>Fee,||

 Fee,||

vth Sr

Figure 2.2: Forces corresponding to collisional friction against electrons
(Fee,‖), the critical field (Ec) and the slide-away field (Esa). The runaway
region in velocity space (Sr) associated with the electric field E is shown as
the gray part of the velocity axis.

2.1.1 Critical electric field and critical momentum

The critical electric field for runaway electron generation, Ec, is the weakest
field at which runaway is possible, see Fig. 2.2. The accelerating force due
to Ec is simply equal (and opposite) to the sum of all the forces acting to
slow the particle down, at the speed vmin where they are minimized: eEc =
min

(∑
iFf,i(v)

)
=
∑
iFf,i(vmin). In the simplest case, the only retarding

force is due to collisions with electrons (due to the mass difference, the energy
lost by the electrons in collisions with ions is neglected, as are all other forces):
eEc = Fee,‖(v = vmin). In this case, it is easy to obtain an expression for Ec.
The friction force on a highly energetic electron is given by [54]:

Fee,‖(v) =
1

v2
mec

3νrel, (2.1)

where v is the speed of the particle, c is the speed of light, me is the electron
rest mass and

νrel =
nee

4 ln Λ

4πε20m
2
ec

3
(2.2)

is the collision frequency for a highly relativistic electron. Here ne is the num-
ber density of electrons, ln Λ is the Coulomb logarithm (see for instance Refs.
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[54, 55]) and ε0 is the vacuum permittivity. The collision frequency is defined
such that 1/ν is (approximately) the average time for a particle to experience
a 90◦ deflection due to an accumulation of small-angle Coulomb interactions
(which are much more frequent than large-angle collisions in fusion plasmas).

The friction force in Eq. (2.1) is minimized as v → c (we have already men-
tioned that Fee,‖ is monotonically decreasing for large velocities)1. We thus
have that the critical field is Ec = Fee,‖(v → c)/e, or

Ec =
mec

e
νrel =

nee
3 ln Λ

4πε20mec2
, (2.3)

which was obtained by Connor and Hastie in 1975 [56]. As discussed in Pa-
per D and Sec. 4.2.2, synchrotron radiation reaction leads to an increase in the
critical field as the minimum of the friction force is effectively raised. Since
the synchrotron radiation-reaction force vanishes along the parallel axis, this
is however an effect of dynamics in 2D momentum-space and cannot be easily
accounted for in the simple model considered here.

For any E > Ec, there exists some speed vc above which the electric field
overcomes the friction force. Particles with a velocity greater than this critical
speed will run away, and vc thus marks the lower boundary of the runaway
region (in the parallel direction), as illustrated in Fig. 2.2. It is customary
to study runaways in terms of momentum rather than velocity. The critical
momentum is a simple function of the electric field strength if expressed in
terms of the normalized momentum p = γv/c, where γ = 1/

√
1− v2/c2 is the

relativistic mass factor:

pc =
1√

E/Ec − 1
, (2.4)

if the electron is assumed to move parallel to the electric field [56]. Similarly,
the corresponding critical γ is γc =

√
(E/Ec)/(E/Ec − 1).

2.1.2 Dreicer and slide-away fields

The critical field Ec corresponds to the field balancing the minimum of the
collisional friction force. The Dreicer field, ED [1, 2], on the other hand,

1Like much of plasma physics, this result assumes that the Coulomb logarithm ln Λ is a
constant. In reality, it is energy dependent and increases logarithmically with p for large
p. The minimum of the friction force is correspondingly found at v somewhat below c,
however the value of Ec is only moderately affected.
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approximately balances the maximum of the friction force, which is located
around v = vth, with vth =

√
2Te/me the electron thermal speed and Te the

electron temperature2. The critical and Dreicer fields are related by the ratio
of the thermal energy to the electron rest energy:

ED =
mec

2

Te
Ec =

nee
3 ln Λ

4πε20Te
. (2.5)

For fields stronger than the slide-away field Esa'0.214ED [1], the accelerating
force overcomes the friction at all particle velocities, and the whole electron
population thus runs away. This phenomenon is called slide-away [57].

In practice, the electric field in a fusion plasma is almost always much smaller
than the Dreicer and slide-away fields. Therefore runaway dynamics can usu-
ally be studied in the regime where Ec < E � Esa is fulfilled, in which case
the runaways can be treated as a small perturbation to a velocity distribution
that is close to local thermal equilibrium (i.e. a Maxwellian). If the electric
field is comparable to Esa, however; the distribution will deviate strongly from
a Maxwellian shape. This will in turn lead to a reduction in the friction in the
bulk and a corresponding decrease in the slide-away field. Thus – as discussed
in Sec. 5.2 – even though E < Esa initially, a transition to slide-away can
quickly occur due to the distortion of the distribution caused by the strong
electric field.

2.1.3 General calculation of the runaway region

Let us now discuss how to define the runaway region in the full two-dimensional
momentum space. The two momentum-space dimensions are conveniently
parametrized by the coordinates (p, ξ), where p = γv/c is the normalized
momentum and ξ = p||/p is the cosine of the particle pitch angle (which
characterizes the pitch of the helix that describes the particle orbit around
a magnetic field line). These coordinates are suitable for analytical as well
as numerical calculations, and will therefore be used throughout much of the
remainder of this thesis. In the definition of ξ, p‖ is the component of the
momentum parallel to the magnetic field and similarly p⊥ is the perpendic-
ular component. The coordinates (p‖, p⊥) are convenient for visualizing the
distribution and will therefore be used in several figures throughout the thesis.
Note also that the relativistic mass factor is related to p through γ2 = p2 + 1.

2It is customary in plasma physics to let Te ≡ kBTe, so that the “temperature” actually is
the thermal energy, and to express it in eV.
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In general, the object of interest when studying runaway-electron dynamics
is the distribution function f of electron momenta, which will be thoroughly
introduced in Sec. 3.1. For the following discussion, we just note that the
runaways normally form a narrow tail in the distribution function, centered
around the parallel axis (i.e. at ξ ≈ 1), whereas the contours of the equilibrium
(Maxwellian) distribution form concentric half circles in the (p‖, p⊥)-plane, as
illustrated in Fig. 2.3.

The lower boundary of the runaway region in 2D momentum-space is often
called the separatrix, as it separate two regions with distinct dynamical prop-
erties. It is well-defined in the parallel direction where it takes the value p = pc

[56], however there are several ways to express its dependence on the pitch
angle. In the following discussion, an unambiguous separatrix in momentum
space is obtained by neglecting the effect of collisional diffusion.

A common definition of the separatrix divides momentum space into two re-
gions based on whether the accelerating electric field or the friction from
Coulomb collisions dominate. The boundary between these regions is de-
scribed by p = ps, with

p2s(ξ) = (ξE/Ec − 1)
−1

(2.6)

(see for instance Paper H). At the parallel axis (ξ=1), we find ps(1) = pc, as
expected.

Equation (2.6) does not take into account the fact that in 2D, the electric field
can accelerate a particle into the runaway region, even though it experiences
a net slowing-down force (i.e. is not in the runaway region initially). This is
possible because of the anisotropy of ps, and the use of Eq. (2.6) leads to an
underestimation of the fraction of particles that will run away. A more per-
tinent definition can be obtained by looking at particle trajectories in phase
space [58]. The trajectory which terminates at ξ = 1 and p= pc is the sepa-
ratrix, since particles on it neither end up in the bulk population nor reach
arbitrarily high energies. This trajectory is given by [59]

p2s,traj(ξ) =

(
ξ + 1

2

E

Ec
− 1

)−1
. (2.7)

The two separatrices in a typical scenario are shown in Fig. 2.3. In many cases,
the runaways form a narrow beam close to the parallel axis, in which case ps

and ps,traj give similar results. In fact, in these cases an isotropic runaway
region (ps,iso(ξ) = pc) also is a good approximation (as discussed in Paper C),

12



2.1 The runaway region of momentum space

Figure 2.3: Runaway-region separatrices ps, ps,traj and ps,iso at an electric
field E/Ec = 800, overlayed on contours of a Maxwellian distribution with
Te = 5.1 eV and ne = 5 · 1019 m−3. F is the distribution f normalized to its
maximum value (F = f/max[f ]).

and such a separatrix has been included in the figure as well. In certain cases,
such as when hot-tail generation dominates (see Sec. 2.2.2), the details of the
separatrix are however of importance for the size of the runaway population.

The separatrices discussed so far are valid in the limit where the bulk of
the distribution is well described by a nonrelativistic Maxwellian, and when
including only friction due to Coulomb collisions. As is suggested by the results
in Paper D, however; synchrotron radiation reaction may have a significant
impact on the separatrix (see also Refs. [60–62]).

In general, the separatrix for an arbitrary electron distribution can be obtained
by considering the forces that affect a test particle:

dp

dt
= F pE − F

p
C − F

p
Syn, (2.8)

dξ

dt
= F ξE − F

ξ
C − F

ξ
Syn, (2.9)

where the expressions for the force associated with the electric field, F iE (with
i ∈ {p, ξ}), and the synchrotron radiation-reaction force F iSyn are discussed in
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Sec. 3.1 and Sec. 4.2, respectively. The expressions for the collisional electron-
electron friction F iC are given in Paper E (see also Sec. 5.1 of that paper).
Although other reaction forces (such as bremsstrahlung) may also contribute
to the force balance, here we include only the synchrotron radiation-reaction
force as it is the dominant contribution in most plasmas of interest. The
critical momentum in the parallel direction can be determined from dp/dt = 0
at ξ = 1, since the separatrix becomes purely perpendicular to the parallel axis
as ξ → 1. The separatrix can then be traced out by numerically integrating
the above equations from ξ = 1 to ξ = −1. In the appropriate limit, the result
agrees with ps,traj(ξ). In general, the separatrix depends on the distribution
through the terms F iC and should be updated as the distribution changes.

It should be noted that in certain situations, additional regions in momen-
tum space emerge which cannot be characterized as either bulk or runaway
regions. The example of bump-on-tail formation induced by synchrotron or
bremsstrahlung emission, where relativistic electrons accumulate around a
certain multi-MeV energy, is discussed in Papers G, H and I (not included
in the thesis). The momentum space dynamics leading to the formation of
the bump is complicated and involves the interaction between acceleration,
pitch-angle scattering and subsequent synchrotron or bremsstrahlung emission
back-reaction, forming structures akin to convection cells in the high-energy
electron distribution [Paper H]. Such phenomena are not described by the
above definition for the separatrix (although generalized models exist that do
take them into account, see for instance [60, 63]).

2.2 Runaway-generation mechanisms

There are two main mechanisms for generating runaways, referred to as Dre-
icer [1, 2] and avalanche [50, 64–66] generation. In the former, initially ther-
mal electrons become runaways by a gradual diffusion through momentum
space until they reach a velocity where they run away. Dreicer generation is
an example of a primary mechanism, as it generates runaways without the
need for a pre-existing fast population. Once some runaways exist, one of
them may impart a large fraction of its momentum to a thermal electron in a
single event, known as a knock-on collision. This generates a second runaway
if both electrons are in the runaway region after the collision. This process
is also called secondary runaway generation, as it requires the presence of a
seed, and leads to an exponential growth of the runaway population (hence
the name avalanche). In this section, we will look more closely at these two

14



2.2 Runaway-generation mechanisms

mechanisms. We will also discuss another primary runaway mechanism: hot-
tail generation, which can dominate if the plasma temperature decreases on
a short timescale.

2.2.1 Dreicer generation

Due to momentum-space transport processes, new particles steadily diffuse
into the runaway region, increasing the runaway density. This is known as
Dreicer generation, and is caused by the gradient ∂f/∂p that develops across
the separatrix as particles in the runaway region are accelerated to higher
energies. An approximate expression [56, 67–69] for the steady-state growth
rate of the runaway population due to this effect is

dnr

dt
= Cneνth ε

−3(1+Zeff)/16 exp

[
− 1

4ε
−
√

1 + Zeff

ε

]
, (2.10)

where ε = E/ED, nr is the runaway number density,

νth =
nee

4 ln Λ

4πε20m
2
ev

3
th

(2.11)

is the electron-electron collision frequency of thermal particles, C is a constant
of order unity [4, 56] (not determined by the analytical model), and Zeff is the
effective ion charge, which is a measure of the plasma composition (Zeff = 1
is a plasma consisting of pure hydrogen, or otherwise singly charged ions).
Equation 2.10 is valid when the distribution is close to a Maxwellian, i.e. when
ε is small; and for E � Ec. Closer to the critical field, correction factors are
introduced in the exponents so that the growth rate vanishes for E ≤ Ec [56],
but these are neglected here for simplicity.

Note that the growth rate depends on (and is exponentially small in) E/ED,
not E/Ec. This means that even if the field is significantly larger than Ec, the
runaway production rate may be very small if E � ED. This effect, which is
in essence a temperature dependence, can partly explain recent observations
indicating that E/Ec & 10 is required for runaway acceleration [41, 42]. Its
importance is discussed and quantified in Paper D.

2.2.2 Hot-tail generation

Primary runaways can also be produced by processes other than momentum-
space diffusion, for instance by highly energetic γ-rays through pair produc-
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tion, or in tritium decay (in fusion plasmas). In a typical fusion plasma, these
two processes are usually insignificant, however if the conditions are right they
may provide a sufficient seed for avalanche multiplication [70]. There is how-
ever an additional primary-runaway mechanism – hot-tail generation [47, 71]
– which relies on a rapid cooling of the plasma. If the plasma-cooling timescale
is significantly shorter than the collision time at which particles equilibrate,
electrons that initially constituted the high-energy part of the bulk distribu-
tion can remain as a drawn-out tail at the new lower temperature. This is
because they take a longer time to equilibrate, as their collision time is signifi-
cantly longer than that of the slow particles. If an electric field is also present,
some of these tail electrons may belong to the runaway region of momentum
space and will therefore be accelerated.

Under certain circumstances, hot-tail generation can be the dominating run-
away-generation mechanism – albeit for a short time – and may provide a
strong seed for multiplication by the avalanche mechanism. This is partic-
ularly the case in disruptions in tokamaks, where the plasma quickly loses
essentially all stored thermal energy due to a sudden degradation in confine-
ment. Approximately, hot-tail generation dominates over Dreicer generation
in a disruption if

νth,0 tT <
1

3

(
3
√
π

4

µ0enevth,f qaR

Ba

)3/2

(2.12)

is fulfilled [59], where νth,0 is the initial thermal collision frequency, tT is the
temperature-decay time, µ0 is the vacuum permeability, vth,f is the thermal
speed at the final temperature, R is the major radius of the tokamak, and Ba

and qa are the magnetic field and so-called safety factor [20] on its magnetic
axis. This estimate was obtained by assuming the temperature drop to be
described by Te(t) = Te,0(1− t/tT)2/3, with Te,0 the initial temperature.

The hot-tail mechanism is discussed in Paper C. See also Refs. [59, 72–74] for a
more in-depth discussion of hot-tail growth rates in various cooling scenarios.

2.2.3 Secondary generation

Secondary runaways are formed when existing runaways collide with thermal
electrons, if the collision imparts enough momentum to the thermal electron to
kick it into the runaway region while the incoming (primary) electron remains
a runaway itself [50, 64–66]. Such events are referred to as close, large-angle or

16



2.3 Damping and loss mechanisms for runaways

knock-on collisions, and are normally rare in a fusion plasma (their contribu-
tion to the collisional dynamics is a factor ln Λ smaller than that of small-angle
collisions). In the context of runaway generation they become important due
to the special characteristics of the runaway region, since once a particle is
a runaway it can quickly gain enough energy to cause knock-on collisions of
its own. For it to be able to contribute to the avalanche process, the kinetic
energy of the incoming runaway must be at least twice as large as the critical
energy: γ − 1 > 2(γc − 1).

The avalanche growth rate was calculated by Rosenbluth & Putvinski [50], who
also derived an approximate operator for avalanche generation (see Paper C
and Sec. 3.3 for a detailed discussion of avalanche operators and their influence
on runaway dynamics). In a cylindrical plasma, the growth rate takes the form

dnr

dt
' nrνrel

(E − 1)

cz ln Λ

(
1− E−1 +

4(Zeff + 1)2

c2z(E2 + 3)

)−1/2
, (2.13)

where E = E/Ec and cz =
√

3(Zeff + 5)/π. In the limit where E � Ec and
Zeff = 1, this simplifies to

dnr

dt
'
√
π

2
nrνrel

(E − 1)

3 ln Λ
. (2.14)

The growth rate is proportional to the runaway density nr, meaning that the
growth is exponential (hence the name avalanche). We also note that the
dependence on E is linear in Eq. (2.14), and nearly so in the more general
expression (2.13), whereas it is exponential in Eq. (2.10) for the Dreicer growth
rate. Therefore, avalanche generation tends to dominate for weak fields (as
long as there is some runaway population to start with), but for strong fields
primary generation becomes more important.

2.3 Damping and loss mechanisms for runaways

The discussion so far has focused on the interplay between the electric field and
elastic Coulomb collisions in a quiescent, homogeneous, fully ionized plasma.
In practice, runaway electrons do not reach arbitrarily high energies or per-
sist indefinitely. Many processes contribute to the damping of their growth,
slowing them down, or transporting them out of the plasma.

Of particular importance when it comes to limiting the energy achieved by
the runaways are radiative processes: synchrotron-radiation emission due to
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(predominantly) the gyro motion, and fast-electron bremsstrahlung due to in-
elastic scattering off the much heavier ions. The emitted radiation takes away
momentum, and the electron must therefore lose a corresponding amount.
This radiation reaction effectively introduces an additional force which can
counteract the accelerating electric field. Synchrotron radiation is discussed
in more detail in Chapter 4 and the effect of bremsstrahlung emission was
studied in Paper G.

Another factor that can increase the effective friction compared to the classical
estimate is partially ionized atoms. The highly energetic runaway electrons
may penetrate (parts of) the electron cloud surrounding the nucleus and thus
effectively scatter off a charge larger than the net charge of the ion. For
heavy ions such as argon or tungsten, which are often present during or after
disruptions, this can have a significant effect on the runaway slowing-down
[75–79]. The runaways may also lose energy in ionizing collisions.

The above mechanisms are pure momentum-space effects. The runaway beam
will however eventually occupy a sizable fraction of the tokamak cross-section,
and magnetic trapping effects may become important. They typically lead to
a reduction in both the Dreicer and avalanche growth rates, which can be
as large as 50% already at r/R = 0.1, with r and R the minor and major
radii [46]. Additionally, stochastic field-line regions (caused by for instance
overlapping magnetic-island structures) can lead to radial transport of the
runaways towards the edge of the plasma, where they are eventually lost to
the wall [49]. This can be both beneficial (if it occurs early in the acceleration
process, before the runaways have reached high energies) and detrimental
(if a fully formed, substantial runaway beam is transported into the wall).
By applying external magnetic fields with a well-defined periodicity, so-called
Resonant Magnetic Perturbations (RMPs), the stochasticity of the edge region
of the plasma can be purposefully increased. This can lead to a more rapid
radial transport of the runaways, resulting in a reduction in their kinetic
energy upon impact with the wall, however since the runaways predominantly
form in the center of the plasma, efficient mitigation can be hard to achieve
[80–82].

The runaways are also subject to outward radial transport because of another,
more fundamental effect: the acceleration of a runaway particle implies a
change in its angular momentum with respect to the symmetry axis of the
torus. This causes a shift of the runaway orbit away from the flux surface, as
the canonical angular momentum of the particle should be conserved [83, 84].

18



2.3 Damping and loss mechanisms for runaways

At high enough particle energies, the runaways will simply drift out of the
plasma and into the wall.

Another effect not captured by a pure momentum-space treatment is the in-
teraction of the runaways with various waves in the plasma. There is evidence
that existing waves, such as toroidal Alfvén eigenmodes, can disperse the run-
away beam [85–88]. Due to their highly anisotropic momentum distribution,
the runaways may also destabilize and act as a drive for plasma waves, such
as the whistler [89–91] and EXtraordinary ELectron (EXEL) waves [92, Pa-
per K], which in turn can affect the runaway distribution and reduce the
runaway growth.

The picture is thus complicated in practice, however even the basic dynamics of
the runaway process are not always well understood. Significant experimental
and theoretical effort is spent on improving that understanding and it is the
aim of this thesis to contribute to this endeavor.
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3 Simulation of runaway-electron
momentum-space dynamics

Although the single-particle estimates considered in Chapter 2 can be useful
in describing some of the phenomena associated with runaways, a complete
and thorough understanding of their dynamics can only be gained through a
treatment of the full kinetic problem. In some idealized situations the equa-
tions can be solved analytically, however in general the interplay between the
various processes involved in the momentum-space transport of electrons must
be studied using numerical tools.

The runaways often comprise a small fraction of the total number of elec-
trons, and features in the distribution of electrons many orders of magnitude
smaller than the bulk population must be accurately resolved. Continuum
discretization methods (i.e. finite difference, element, and volume methods)
are well adapted for problems of this type, whereas Monte Carlo methods be-
come inefficient and have problems with numerical noise. In this thesis, two
finite-difference tools for studying runaway-electron dynamics are described:
CODE (Papers B and C, Sec. 3.4) and NORSE (Paper E, Sec. 3.5). Microscopic
Coulomb interaction between particles (collisions) are very important for the
runaway dynamics and we will discuss the treatment of both small (Sec. 3.2)
and large-angle (Sec. 3.3) collisions. Another important effect is synchrotron
radiation reaction, however we postpone the description of the corresponding
operator to Sec. 4.2.3.

We begin by discussing the equations governing the evolution of the electron
population.

3.1 The kinetic equation

When it comes to describing plasma phenomena, several theoretical frame-
works of varying degrees of complexity (and explanatory power), have been
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developed. Fluid theories, although tractable, numerically efficient, and use-
ful in other contexts, are based on the assumption that the plasma particles
are everywhere in local thermal equilibrium and can be described by near-
Maxwellian distributions. In order to treat the runaway-electron phenomenon,
such a model is inadequate1, as the runaways by definition constitute a high-
energy (non-thermal) tail of the particle distribution. It is therefore necessary
to use kinetic theory, where the distribution of particle positions and velocities
is the prime object of study.

The so-called kinetic equation describes the evolution of a distribution of
plasma particles of species a, fa(x,p, t), according to

∂fa
∂t

+
∂

∂x
(ẋfa) +

∂

∂p
(ṗfa) =

∑

b

Cab{fa, fb}+ S, (3.1)

where x and p denote the position and momentum, respectively, and ṗ de-
scribes the macroscopic equations of motion (given for instance by the Lorentz
force due to the presence of macroscopic electric and magnetic fields). The
collision operator Ca describes microscopic interactions between the plasma
particles (collisions), which are normally treated separately from the macro-
scopic equations of motion. In general, the collision operator depends on the
distributions of all the particle species b in the plasma and includes contribu-
tions from both elastic and inelastic Coulomb collisions. In the latter (which
are often neglected), photons are emitted and carry away some of the energy
and momentum – this radiation is referred to as bremsstrahlung (see for in-
stance Paper G). S represents any sources or sinks of particles or heat, such as
ionization and recombination of neutral atoms, fueling in laboratory plasmas
or heat lost from the plasma, due to radiative processes.

Under certain conditions, the collisions can be neglected, in which case Eq. (3.1)
(with S = 0) is known as the Vlasov equation. With a two-particle collision
operator valid for arbitrary momentum transfer (or equivalently collision dis-
tance), it is called the Boltzmann equation, although in practice several simpli-
fications must be made to be able to treat the collisions. Under the assumption
that the momentum transfer in each collision is small, the Boltzmann collision
operator simplifies to the Fokker-Planck collision operator, and Eq. (3.1) is
correspondingly called the Fokker-Planck equation [93, 94]. This operator is
sufficient to treat primary runaway generation, but is not able to describe the

1Interestingly, in his seminal papers on electron runaway, Dreicer derived the basic runaway
dynamics using a two-fluid treatment [1]. He did however recognize the limitations of
this description and the follow-up paper uses a kinetic approach [2].
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3.1 The kinetic equation

avalanche process in which the momentum transfer to the secondary particle
in a knock-on collision is significant. Avalanche generation is instead treated
by including a special source term Sava, discussed in Sec. 3.3.

In general, the distribution fa is defined on a six-dimensional phase-space,
and is very demanding to treat in its entirety. Various approximations are
routinely employed to reduce the kinetic equation to a manageable number of
dimensions (see for instance Ref. [54]). In many situations, the fundamentals
of the runaway problem can be studied in a homogeneous plasma, so that
the spatial dependence can be ignored. In addition, one of the momentum-
space dimensions (describing the rapid gyro motion around the magnetic field
lines) can be averaged over if a sufficiently strong magnetic field is present (so
that the gyro radius is ignorable in comparison to the typical length scale of
the gradients in the plasma and the gyration time is short compared to the
timescales of other processes). The tools developed here therefore solve the
kinetic equation in two momentum-space dimensions only, allowing for fast
calculation while most of the relevant physics is retained.

The kinetic equation implemented in CODE and NORSE can be expressed as

∂fe

∂t
− eE

mec
· ∂fe

∂p
+

∂

∂p
·(Fsynfe) = Cee{fe}+Cei{fe}+Sava +Sp +Sh, (3.2)

where the second term describes the acceleration due to the electric field,
the third term describes the effects of synchrotron radiation reaction (see
Sec. 4.2), Cee and Cei describe collisions with electrons and ions, respectively,
and Sp and Sh are sources of particles and heat. The two momentum-space
dimensions are conveniently described by the coordinates (p, ξ) introduced in
Sec. 2.1.3. In these coordinates, the electric-field term becomes

eE

mec
· ∂fe

∂p
=
eE‖

mec

(
ξ
∂fe

∂p
+

1− ξ2
p

∂fe

∂ξ

)
. (3.3)

Equation (3.2) is then solved for the electron distribution. Both CODE and
NORSE can calculate the time evolution of fe, starting from some initial (of-
ten Maxwellian) distribution, and CODE is also able to determine the (quasi)
steady-state distribution directly (in the absence of an avalanche source). In
general, parameters such as the electric field, effective charge, temperature,
and density may vary in time, and both tools have the ability to model this.
Such capability is necessary in order to describe hot-tail runaway generation
and other dynamic scenarios.
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Throughout the rest of this thesis, we will omit the subscript e, and let f
denote the distribution function of electrons. We will also assume an implicit
minus sign in the electric field, so that the runaway electrons are accelerated
in the positive-p direction.

The evolution of the distribution function in a typical runaway case is shown
in Fig. 3.1. Starting from a Maxwellian distribution, the electric field pulls out
a high-energy tail centered around p⊥ = 0 (but with significant spread in p⊥
due to pitch-angle scattering). In 500 thermal collision times, the tail of the
distribution reaches p‖≈8, which corresponds to a kinetic energy of 3.6 MeV.

3.2 Collision operator

As discussed in the previous section, the two tools CODE and NORSE have
many of the same capabilities. The main difference between them lies in the
treatment of the electron-electron Coulomb collisions. CODE uses a collision
operator linearized around a Maxwellian, taking advantage of the fact that the
runaways in many cases constitute a small part of the electron distribution,
so that the collisions between runaways may be neglected. This approach
allows for very efficient numerical evaluation of the problem as long as the
plasma parameters remain constant. NORSE, on the other hand, uses a fully
nonlinear relativistic collision operator [95–97], which makes it possible to
treat distributions of arbitrary shape. Thus, NORSE can be used in situations
where the runaways make up a sizable fraction of the distribution, or where
the electric field is strong enough that the electron population is in the slide-
away regime (E > Esa). For a thorough discussion of collision operators in
general, see Ref. [54].

The generally valid collision operator in NORSE accurately treats the elastic
electron-electron collisions in the Fokker-Planck limit. However, in the linear-
ization procedure used to derive the operator in CODE, some properties of the
full operator are compromised. In particular, the linearized operator is often
written as a sum of so-called test-particle and field-particle terms:

Cee{f} ' C l
ee{f} = Ctp

ee + Cfp
ee, (3.4)

where the test-particle term Ctp
ee = Cee{f1, fM} describes collisions of the

perturbation f1 with the bulk plasma (fM), and the field-particle term Cfp
ee =

Cee{fM, f1} describes the reaction of the bulk to the perturbation. Here,
f = fM + f1 with f1 � fM, and thus collisions between particles represented
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3.2 Collision operator

Figure 3.1: Evolution of the electron distribution under a constant electric
field of E = 0.4 V/m (corresponding to E/Ec = 9.6 and E/ED = 0.056).
Contours of the distribution (F = f/max[f ]) in 2D momentum space are
shown at a) the initial time, b) τth = 167, c) τth = 333, and d) τth = 500
thermal collision times. The parameters were: T = 3 keV, n= 5 · 1019 m3,
Zeff =2 and B=0, and the results were obtained using CODE with avalanche
generation disabled.
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by the perturbation (Cee{f1, f1}) have been neglected as they are second order
in the small quantity f1.2 It is common in runaway studies to neglect the field-
particle term, as it only affects the bulk plasma and complicates the problem.
If this is done, however, the conservation properties of the linearized operator
C l

ee are compromised as the test-particle term only conserves particles, not
momentum or energy. This does not significantly affect the runaway dynamics,
but is important for the accurate determination of properties of the bulk
(such as the conductivity). CODE includes both test-particle and field-particle
terms, as discussed in Paper C, however unlike in NORSE, the latter term is
nonrelativistic (i.e. the bulk temperature is assumed to be small compared to
the electron rest energy). The test-particle term in CODE, which is valid for
arbitrary energies, was derived in Ref. [80].

Electron-ion collisions can be described by a much simpler operator, due to
the mass difference between the species involved in the collision (and assuming
the ions to be immobile on the timescales of interest). Both CODE and NORSE
use an electron-ion collision operator which describes pitch-angle scattering,
but neglects the energy transfer to the much heavier ion [54].

As part of the work on Paper G (not included in this thesis), an operator for
inelastic (bremsstrahlung) Coulomb collisions was developed, and is available
in CODE [98].

3.3 Avalanche source term

The avalanche process due to large-angle Coulomb collisions between existing
runaways and thermal electrons cannot be captured using the Fokker-Planck
formalism, and a special source term – derived from the Boltzmann collision
operator – must be included to treat this process. In a linearized formulation,
several avalanche sources describing the creation of the secondary runaway
particles can be formulated (using various assumptions, as will be discussed
shortly), however in the case of a strongly non-Maxwellian distribution func-
tion f , no such easily tractable operator is available. For this reason, the
avalanche operators described below are included in CODE but not in NORSE.

2Note that for the runaway problem, it is not required that f1(p, ξ) � fM(p, ξ) for all p
and ξ – only that the perturbation is small in a global sense, so that collisions between
runaway particles can be ignored. In the tail, the perturbation is usually many orders
of magnitude larger than the Maxwellian at the corresponding momentum.
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3.3 Avalanche source term

The generally-valid Boltzmann collision operator is notoriously difficult to
handle numerically, and an efficient solution of the runaway problem requires
the use of reduced models. Work on a simplified conservative treatment of the
avalanche process is ongoing [Conf. Contrib. S], but no practical such operator
is yet available. From the kinematics of a single large-angle collision, a source
term for the generated secondary particles can however be derived, taking
the energy distribution of the incoming electrons into account by utilizing the
full Møller scattering cross-section [99]. This was demonstrated by Chiu et
al. in 1998 [47]. This operator obeys the kinematics of the problem (in the
sense that the momentum of the generated particle is restricted by that of the
incoming particle), however since no sink of particles is included, it violates
the conservation properties of the full Boltzmann operator. No modification
to the momentum of the incoming particle is made and no particle is removed
from the thermal population. Nevertheless, the operator in Ref. [47] is able to
accurately capture the exponential growth of the avalanche. The source term
at a point (p,ξ) takes the form

SCh(p, ξ) =
1

2

νrel

ln Λ

p4inf̃(pin)Σ(γ, γin)

γpξ
, (3.5)

where pin and γin are the normalized momentum and relativistic mass factor
of the incoming primary runaway, γ is the relativistic mass factor for the
generated secondary runaway, f̃ is the angle-averaged electron distribution
(i.e. all incoming particles are assumed to have vanishing pitch-angle), and Σ
is the Møller cross section. Note that due to the kinematics of the problem,
the coordinates are related in such a way that only primary particles with a
single pin can contribute to the source at a point (p, ξ).

By taking the high-energy limit of the Møller cross section, i.e. assuming
that the incoming primaries are all highly relativistic, the source term can be
simplified further. The resulting operator, first derived by Rosenbluth and
Putvinski the year before [50], is widely used and given by

SRP(p, ξ) =
nr

4π

νrel

ln Λ
δ(ξ − ξs)

1

p2
∂

∂p

(
1

1− γ

)
. (3.6)

Due to the assumptions used, the kinematics are restricted further, and all
secondary runaways are generated on a parabola given by ξs = p/(1 + γ).
However, since every runaway is assumed to have very large momentum, sec-
ondary particles can be generated with momenta larger than that of any of
the particles in the actual distribution. This is illustrated in Fig. 3.2, where
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Figure 3.2: Electron distribution (F = f/max[f ]) after 10 thermal collision
times with a) the source in Eq. (3.5) and b) the source in Eq. (3.6). This
early in the evolution, the result with only primary generation included is
indistinguishable from that in a). The parameters were: T = 300 eV, n =
5 · 1019 m3, E = 0.5 V/m (corresponding to E/Ec = 12 and E/ED = 0.07),
Zeff = 1 and B = 0, and the results were obtained using CODE.

an unphysical horn-like structure is created, extending to large momenta. In
some situations, the Rosenbluth-Putvinski model therefore tends to overesti-
mate the avalanche growth rate, compared to the source term of Chiu et al.
However, as is shown in Paper C; in certain parameter regimes, the opposite
tendency is seen. This is due to the non-trivial dependence of the Møller cross
section on the momenta of the colliding particles.

If secondary generation dominates, the quasi-steady-state runaway distribu-
tion function can be calculated analytically (assuming a growth rate consistent
with the Rosenbluth–Putvinski source), and is given by

fava(p‖, p⊥) =
nrÊ

πczp‖ ln Λ
exp

(
− p‖

cz ln Λ
− Ê p

2
⊥
p‖

)
, (3.7)

where Ê = (E/Ec − 1)/2(1 + Zeff) and cz =
√

3(Zeff + 5)/π [89]. Equation
(3.7), which is valid when γ � 1 and E/Ec � 1, was used extensively in the
calculation of synchrotron spectra in Paper A, and also as a benchmark in
Paper B. An example distribution is plotted in Fig. 3.3.
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3.4 CODE

Figure 3.3: Contour plot of the tail of the analytical avalanche distribution
in Eq. (3.7) for Te = 1 keV, ne = 1 · 1020 m−3, Zeff = 1.5 and E/Ec = 15.
The distribution is not valid for the bulk plasma, and is therefore cut off at
low momentum (in this case at p‖ = 5).

3.4 CODE

CODE (COllisional Distribution of Electrons) was developed to be a lightweight
tool dedicated to the study of the properties of runaway electrons. It solves
the kinetic equation (3.2) using a finite-difference discretization of p together
with a Legendre-mode decomposition of ξ, and an implicit time-advancement
scheme. The discretization is advantageous as the Legendre polynomials are
eigenfunctions of the collision operator, allowing for a straight-forward im-
plementation and an efficient numerical treatment. In particular, time ad-
vancement can be performed at low computational cost, as it is sufficient
to build and invert the matrix representing the system only once, provided
that the plasma parameters are independent of time. The system can then
be advanced in time using just a few matrix operations in each time step.
For small to moderately-sized problems, such as the scenario considered in
Fig. 3.1, CODE runs in a couple of seconds on a standard desktop computer.
More involved set-ups involving time-dependent plasma parameters or low
temperatures in combination with large runaway energies execute in minutes
or sometimes hours. Memory requirements range from a few hundred MB
(or less) to tens of GB, depending on resolution. CODE, which is written in
Matlab, has contributed to a number of studies and is used at several fusion
sites around the world.

The original version, described in Paper B, included the relativistic test-
particle collision operator [80] and the Rosenbluth-Putvinski avalanche op-
erator in Eq. (3.6), as well as the ability to find both time-dependent and
steady-state solutions for f . Subsequent extensions include: time-dependent
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plasma parameters, the field-particle term of the collision operator and an as-
sociated heat sink, the Chiu et al. avalanche operator (all described in Paper
C), and operators for synchrotron (Paper D, Sec. 4.2.3) and bremsstrahlung
(Paper G) radiation reaction. Various other technical features, such as ef-
ficient non-uniform automatically extending finite-difference grids, have also
been added [Conf. Contrib. V].

3.5 NORSE

Building on the experience gained from the work on CODE, NORSE (NOnlinear
Relativistic Solver for Electrons) was developed to extend the range of applica-
bility of runaway-modeling tools to the regime where the runaway population
becomes substantial; i.e. the regime of greatest concern in practice. The fully
nonlinear treatment also makes it possible to consistently study phenomena
such as heating by the electric field, which is discussed in Paper F and Sec. 5.1.

The numerical implementation of NORSE – described in detail in Paper E –
differs substantially from that in CODE. In particular, a linearly implicit time-
advancement scheme is used to treat the nonlinear problem. The electron-
electron collision operator implemented in NORSE is formulated in terms of
five potentials (analogous to the two so-called Rosenbluth potentials [94] in the
nonrelativistic case), which are functions of the distribution [96, 97]. By calcu-
lating the potentials explicitly in each time step from the known distribution,
the remainder of the kinetic equation can be formulated as a matrix equation,
which can be solved implicitly using standard techniques. Unlike in CODE, this
scheme requires the formation and inversion of a matrix in each timestep, and
is therefore in general more computationally demanding. If time-dependent
parameters are used, however; NORSE is marginally faster than CODE due to
an improved numerical implementation.

NORSE, also written in Matlab, uses a discretization scheme different to that in
CODE, as required by the nonlinear problem. Momentum space is discretized
on a two-dimensional non-uniform finite-difference grid, which allows for im-
proved numerical efficiency as the grid points can be chosen in a way suited
to the problem at hand (i.e. smaller grid spacing close to ξ = 1 where the run-
away tail forms, but larger grid spacing around ξ = 0 where the distribution
lacks fine-scale features). For the explicit calculation of the five potentials,
however; a mixed finite-difference–Legendre-mode representation is employed
(similar to CODE), as in this basis the potentials become one-dimensional in-
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tegrals over p. This representation is only used to calculate the potentials –
which are integral moments of f – and a small number of Legendre modes
are often sufficient for an accurate treatment. The mapping between the two
representations can be performed to machine precision at little computational
cost.

NORSE includes time-dependent plasma parameters, an operator for synchrotron
radiation reaction, a runaway region determined from the distribution in ac-
cordance with Eqs. (2.8) and (2.9), and elaborate heat and particle sinks.
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4 Synchrotron radiation

Charged particles in accelerated motion emit radiation [100]. In the presence
of a magnetic field, the particles in a plasma follow helical orbits as a con-
sequence of the Lorentz force [21, 22]; in other words, they are continuously
accelerated “inwards” – perpendicular to their velocities. The radiation emit-
ted by electrons due to this motion is known as cyclotron radiation if the
particles are nonrelativistic (or mildly so) and synchrotron or betatron radia-
tion if they are highly relativistic (the names come from the types of devices
where the radiation was first observed [101]). Synchrotron radiation has many
applications in the study of samples in condensed matter physics, materials
science, biology and medicine, where it is used in for instance scattering and
diffraction studies, and for spectroscopy and tomography [102]. The radiation
is usually produced using dedicated facilities (synchrotrons), but is also emit-
ted in some natural processes, in particular in astrophysical contexts (where
it can be used as a source of information about the processes in question).

From the distinction between cyclotron and synchrotron radiation, it is evi-
dent that in a nonrelativistic plasma (with a temperature significantly below
511 keV), only the far tail of the electron distribution may emit synchrotron
radiation. The only plasma particles that reach highly relativistic energies are
the runaway electrons; the study of the synchrotron emission from a plasma
is thus a very important source of information about the runaways, and their
dynamics.

Synchrotron radiation plays an important role in several of the papers included
in this thesis. In Papers A and B, it is used as a source of information about
the runaway population – as a “passive” diagnostic not affecting the electron
distribution. This is discussed in Sec. 4.1. In Paper D (and also Papers H and
I, not included in this thesis), the impact of the emission on the distribution
is analyzed – i.e. the synchrotron radiation plays an “active” role through the
radiation reaction associated with its emission, as discussed in Sec. 4.2.
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4.1 Emission and power spectra

The theory of synchrotron radiation was first derived by Schott in 1912 [103],
but was rediscovered, and to a large extent reworked, by Schwinger in the
40’s [104]. More recent, detailed discussions of the properties of synchrotron
radiation can be found in Refs. [100, 102, 105, 106]. In the rest frame of the
particle, the synchrotron radiation is emitted almost isotropically, however the
transformation to the lab frame introduces a strong forward-beaming effect.
Since the motion of the particle is predominantly parallel to the magnetic field
lines (the runaways are accelerated by E‖), the synchrotron radiation will be
emitted in this direction as well, even though it is the perpendicular motion
of the particle that is the cause of the emission.

Since the synchrotron radiation is directed, its observation requires detec-
tors in the right location and with the right field of view. In many tokamak
experiments this necessitates the use of dedicated cameras for the study of
synchrotron emission from runaways, and the number of such set-ups around
the world is limited but has seen an increase in recent years. Synchrotron
emission from runaways has now been observed in a number of tokamaks,
including TEXTOR [107, 108], DIII-D [41, 109], ASDEX Upgrade [39], Al-
cator C-Mod [Conf. Contrib. L], FTU [110], EAST [111], KSTAR [25], and
COMPASS [37].

Another important question is the emission spectrum, since it determines the
detector type to use. As part of the work on Paper A, the numerical tool
SYRUP (SYnchrotron emission from RUnaway Particles) was developed to
calculate the synchrotron spectra of both single electrons and runaway dis-
tributions. As we shall see, the emission has a distinct peak; for runaways
in tokamaks it is often located in the near infrared, at wavelengths of a few
µm. Electrons with energies above about 20–25 MeV do however also emit
a substantial amount of radiation in the visible range. The majority of the
observations above were done using fast visual cameras, due to the availabil-
ity and good performance of the technology compared to infrared detectors
(although several IR systems are also in use). Visual cameras also provide a
more sensitive diagnostic of the highest-energy part of the runaway distribu-
tion, which is often considered to be of most interest.

In this section, we will first examine the synchrotron spectra emitted by single
electrons, followed by a generalization to a distribution of runaway electrons.
This topic is also discussed in more detail in Paper A.
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4.1.1 Single-particle spectrum in a straight magnetic field

The frequency of the cyclotron or synchrotron radiation emitted by a particle
is a multiple of the frequency with which it orbits the magnetic field line (the
gyro or cyclotron frequency ωc = eB/γme). In the case of cyclotron emission,
the fundamental and the first few harmonics dominate completely, whereas
for the high-energy synchrotron emission, the high harmonics (up to some cut
off) are dominant. Since these are spaced very close together (compared to
the scale of the fundamental frequency), synchrotron radiation essentially has
a continuous frequency spectrum [105]. The emission can span a large part of
the electromagnetic spectrum, from microwaves to hard x rays, depending on
the frequency of the gyro motion and the electron energy.

In terms of quantities convenient for plasma physics [105], the synchrotron
power spectrum emitted by a fast electron can be expressed as

P(λ) =
1√
3

ce2

ε0λ3γ2

∫ ∞

λc/λ

K5/3(l) dl , (4.1)

where Kν(x) is the modified Bessel function of the second kind (of order ν),
and λc is a critical wavelength given by

λc =
4π

3

c

ωcγ3
=

4π

3

cmeγ‖

eBγ2
, (4.2)

with γ‖ = (1 − v2‖/c2)−1/2 the relativistic γ factor due to the motion paral-
lel to the magnetic field, and B the magnetic field strength. The spectrum,
which peaks at λ ' 0.42λc, is plotted in Fig. 4.1 for a few different parameter
sets. There is a sharp cutoff at short wavelengths, but a much slower decay
towards longer wavelengths. Note that both the peak wavelength and the
emitted power are sensitive to both the particle energy and pitch. In partic-
ular, it is possible to produce similar synchrotron spectra using significantly
different parameter sets, which makes it difficult to treat the inverse prob-
lem of finding the parameters of a particle (or distribution) that produced a
certain spectrum.

4.1.2 Single-particle spectrum in a toroidal magnetic field

Equation (4.1) considers the radiation emitted due to pure gyro motion around
a straight field line. In a tokamak, particle orbits are more complicated since
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Figure 4.1: Synchrotron power spectrum for a single electron with kinetic
energy Ek and pitch described by tan θ = v⊥/v‖ (with θ the pitch angle).

both the motion around the torus, that due to the helicity of the field lines,
and various drifts contribute. The synchrotron power spectrum for a particle
trajectory including the gyro motion, the motion along a toroidal magnetic
field, and vertical centrifugal drift was derived by I. M. Pankratov in 1999
[112], and is

P(λ) =
ce2

ε0λ3γ2

(∫ ∞

0

g(y) J0
(
aζy3

)
sin (h(y)) dy

−4a

∫ ∞

0

y J ′0
(
aζy3

)
cos (h(y)) dy − π

2

)
, (4.3)

where a = η/(1 + η2), g(y) = y−1 + 2y, h(y) = 3ζ
(
y + y3/3

)
/2,

ζ =
4π

3

R

λγ3
√

1 + η2
, (4.4)

η =
eBR

γme

v⊥
v2‖
' ωcR

c
tan θ, (4.5)

R is the tokamak major radius, Jν(x) is the Bessel function, J ′ν(x) its deriva-
tive with respect to the argument, and θ is the pitch angle. The parameter η
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is the ratio between the perpendicular and drift velocities of the particle and
determines how much the radius of curvature (and thus the synchrotron emis-
sion) varies along the particle orbit [112, 113]. The parameter ζ is proportional
to the ratio λmax/λ, where λmax is the wavelength where the spectrum peaks
(the exact expression for which depends on the parameter regime [113]). The
integrands in Eq. (4.3) are products of Bessel functions and trigonometric
functions and are highly oscillatory with respect to the variable of integra-
tion (y). Because of this, numerical integration – although possible – is not
straight-forward. For wavelengths shorter than the maximum, the oscillations
become particularly rapid, as ζ (which appears in the arguments of both the
Bessel and trigonometric functions) becomes large.

In Ref. [112], two asymptotic forms of Eq. (4.3) are also derived. These use
approximations for the integrals, meaning that they are more suited for nu-
merical implementation. In Paper A, the three formulas of Ref. [112], together
with Eq. (4.1), are studied and compared for a variety of tokamak parameters
and it is concluded that the cylindrical limit (Eq. 4.1) is a good approxima-
tion to Eq. (4.3) in large devices, whereas in devices with small major radius,
one of the asymptotic expressions is more suitable in terms of approximating
Eq. (4.3). In general, however, the power spectra from the various expressions
are similar.

4.1.3 Spectrum from a runaway distribution

The total synchrotron power emitted by an electron in circular motion is [104]

Ptot =
e2

6πε0

ω⊥
ρ
β3
⊥γ

4, (4.6)

where ω⊥ is the angular velocity, ρ is the radius of curvature and β⊥ = v⊥/c.
In a homogeneous magnetized plasma, the angular velocity and curvature
radius are the Larmor frequency and radius, respectively: ωc and rL = v⊥/ωc.
This gives

Ptot =
e2

6πε0

ω2
c

v⊥
β3
⊥γ

4 =
e4

6πε0m2
ec
B2β2

⊥γ
2 =

e4

6πε0m2
ec
B2p2⊥. (4.7)

The total emitted power thus scales as p2⊥ = γ2(v⊥/c)
2 = γ2 sin2 θ (v/c)2 ≈

γ2θ2, with θ the particle pitch angle, meaning that the most energetic par-
ticles with the largest pitch angles emit most strongly. It has therefore been
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assumed that the emission from these particles completely dominates the spec-
trum, and when interpreting synchrotron spectra and emission patterns, the
simplification of considering a mono-energetic beam of electrons with a single
pitch – referred to here as the “single-particle approximation” – has frequently
been employed (see for instance Refs. [109, 114–116]).

Less approximate synchrotron spectra can be calculated by using the average
emission from the entire runaway distribution, according to

P (λ) =
2π

nr

∫

Sr

f(p||, p⊥)P p⊥dp⊥dp|| =

∫

Sr

P̄ (p||, p⊥, λ) dp⊥dp||, (4.8)

where P = P(p||, p⊥, λ) is one of the single particle emission formulas (i.e.
Eqs. 4.1 and 4.3), Sr is the runaway region in momentum space, and P̄ is the
integrand – the contribution to the emitted synchrotron power from a given
region of momentum space. Spectra calculated from runaway distributions
using the above equation are studied in detail in Papers A and B.

The validity of the single-particle approximation can be assessed by examin-
ing the contribution to the total synchrotron emission at a given wavelength
from different parts of momentum space. This is done in Fig. 4.2. The fig-
ure shows a runaway distribution and the corresponding contribution to the
emission (the quantity P̄ ) for two different wavelengths1. In this case, the
spectrum (calculated using Eq. 4.1) peaks at around 15 µm. At short wave-
lengths (Fig. 4.2b), the emission is localized to the particles of largest energy
and pitch angle, as expected from the simple argument above. At somewhat
longer wavelengths (Fig. 4.2c), however; particles in a larger part of momentum
space contribute (and the emission is much stronger in general). In addition,
for this wavelength, the main contribution is not from the particles with the
largest pitch-angle, but P̄ instead peaks closer to the parallel axis. Both these
effects lead to the single-particle approximation becoming a poor estimate in
general (at the very least, different particle energies and pitches would have
to be used to approximate the distribution at different wavelengths).

This fact is also evident from the comparison of single-particle and runaway-
distribution synchrotron spectra, where the spectra generally differ both qua-
litatively and quantitatively, as shown in Papers A and B. Including the full
runaway distribution in the calculation is thus absolutely necessary to obtain

1The parameters used were T = 300 eV, n = 5 · 1019 m−3, E = 1 V/m, Zeff = 1 and
B = 5.3 T, and the distribution was obtained by running CODE for 17000 collision times,
including synchrotron-radiation back-reaction, but neglecting avalanche runaway gener-
ation.
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Figure 4.2: a) Electron distribution in 2D momentum space and b)–c) con-
tribution to the corresponding synchrotron emission at wavelengths b)
λ = 700 nm and c) λ = 7µm. The plotted quantity in b) and c)
is P̄norm = P̄ /max[P̄7µm], i.e. P̄ normalized to its maximum value for
λ = 7µm. Note the difference in emission amplitude for the two wave-
lengths.
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accurate results, and in this sense SYRUP constitutes a significant improvement
over previous methods. The synchrotron spectrum is very sensitive to changes
in the plasma parameters and electric-field strength. This sensitivity is due
to the dependence on the exact shape of the runaway distribution, something
which cannot be captured by the mono-energetic approximation.

It is clear from the discussion above that particles of many different energies
and pitches contribute to the observed synchrotron spectrum. This is also true
for the spatial shape of the detected radiation spot, where particles at different
spatial locations and with different momenta contribute to overlapping regions
on the detector plane. This added complication makes the task of extracting
information about the runaway distribution from the synchrotron image highly
non-trivial.

In the analysis in Paper A, analytical avalanche distributions were used. The
analytical formula (Eq. 3.7) represents a steady-state limit, however, and is
not able to capture dynamical effects or describe the synchrotron emission in
the early stages of the runaway-population evolution. In addition, it does not
include the effect of radiation-reaction losses, which can have a significant ef-
fect when E/Ec is small. In Paper B, numerical distributions from CODE were
used to study both dynamic phenomena and distributions where the Dreicer
mechanism was dominant. Excellent agreement was also found between the
numerical distribution and Eq. (3.7) at sufficiently late times.

4.2 Radiation-reaction force

As an electron emits radiation, it receives an impulse in the opposite direction
due to the conservation of momentum. There is therefore a radiation-reaction
force Fsyn associated with the emission of synchrotron radiation, which acts to
slow the particle down (and reduce its pitch angle). Synchrotron emission only
becomes important at relativistic energies, however; contrary to collisional
friction, the radiation reaction force increases with particle speed (in accor-
dance with the estimate in the previous section). This completely changes
the force balance for runaways at high momentum and non-vanishing pitch
angles2. In the following discussion it is convenient to consider only the one-
dimensional single-particle force balance to qualitatively illustrate the impact
of the synchrotron radiation reaction on the dynamics. In practice, however;

2The force balance exactly on the parallel axis remains unchanged, as non-vanishing p⊥
is required for the emission of synchrotron radiation.
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Figure 4.3: Schematic representation of the forces associated with total fric-
tion (Ff), collisional friction (FC), synchrotron radiation reaction (Fsyn),
the (classical) critical field (Ec) and the critical field including synchrotron
radiation reaction (E∗c ). The two critical velocities v1 and v2 corresponding
to the electric field E are also shown, together with the runaway region
(Sr), and the speed at which the total friction force is minimized (vmin).
See Fig. 2.2 for comparison. Note that the velocity scale is chosen for clarity
– in practice both vmin and v2 lie close to c.

the problem involves transport processes in two-dimensional momentum space
and must in general be treated using numerical tools, see Chapter 3.

The force balance in the presence of synchrotron radiation reaction is depicted
in Fig. 4.3. Two effects are of particular interest in the figure: firstly, the
radiation-reaction force effectively prevents runaways from reaching arbitrary
energies, and secondly, it raises the critical field for runaway generation. We
will discuss these two effects in turn in the following sections.

4.2.1 A limit on the achievable runaway energy

As can be seen in Fig. 4.3; for a given electric field E, there are two speeds
(v1 and v2) larger than the thermal speed for which the total friction force
equals the accelerating force: Ff(v1,2) = |eE|. Runaway is only possible for
v1<v<v2, meaning that particles are unlikely to reach energies significantly
higher than that corresponding to v2. This has been suggested as a possi-
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ble mechanism limiting the achievable runaway energy, both in the case of
synchrotron and bremsstrahlung radiation reaction [60, 66, 117, 118].

An additional consequence of the existence of an upper bound to the run-
away region is that particles tend to accumulate in the vicinity of the speed
v2 in velocity space. Provided certain conditions are satisfied, momentum-
space transport mechanisms associated with this process can even lead to the
formation of a non-monotonic feature – a “bump” – on the runaway tail, as
discussed in Papers G, H and I (not included in the thesis).

4.2.2 Effect on the critical field

As indicated by Fig. 4.3, the minimum of the friction force for any non-
vanishing ξ is no longer found at v = c (see Sec. 2.1.1), but at some interme-
diate speed vmin satisfying v1 < vmin < v2. (Note that, since the synchrotron
emission is a relativistic effect, vmin will nevertheless be close to c.) There-
fore, the minimum field necessary for runaway generation to occur is raised
accordingly:

|eE∗c (ξ)| = Ff(vmin, ξ), (4.9)

where E∗c (ξ) is the critical field at a given ξ in the presence of radiation reaction
forces and E∗c > Ec for all non-vanishing ξ, as depicted in Fig. 4.3.

Note that the force balance on the parallel axis (ξ = 1) remains unaffected by
the radiation reaction, and thus the critical field Ec is unchanged if collisional
diffusion is neglected. In practice, however; diffusive and dynamic processes
play an important role in determining the effective critical field. The full
problem is studied in Paper D using simulations in CODE, and it is found
that the synchrotron radiation reaction can reduce the Dreicer growth rate by
orders of magnitude for E/Ec close to unity, corresponding to an increase in
the effective critical field.

4.2.3 Operator for synchrotron radiation reaction

To understand the full role of radiation-reaction effects on plasma dynamics,
the single-particle treatment considered above is insufficient. Fully kinetic
simulations are necessary to capture the interplay between the various pro-
cesses affecting the momentum-space transport. Such calculations can be
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performed using CODE or NORSE, and for this purpose an operator describing
the radiation reaction is needed.

The radiation-reaction force can be calculated from the Abraham-Lorentz-
Dirac force affecting an electron [119],

Frad =
e2γ2

6πε0c3

[
v̈ +

3γ2

c2
(v · v̇) v̇ +

γ2

c2

(
v · v̈ +

3γ2

c2
(v · v̇)

2

)
v

]
, (4.10)

where v is the velocity of the particle. Assuming that the magnetic force
dominates, so that the particle is predominantly accelerated perpendicular to
its velocity (v · v̇ = 0), the expression can be simplified to

F psyn = −γp
(
1− ξ2

)

τr
(4.11)

F ξsyn = −pξ
√

1− ξ2
γτr

, (4.12)

where τr = 6πε0(mec)
3/e4B2 is the radiation-damping timescale. The radiation-

reaction force enters the kinetic equation (3.2) as an operator of the form
(∂/∂p) · (Fsynf), and using Eqs. (4.11) and (4.12), the explicit form is

∂

∂p
· (Fsynf) = −1− ξ2

γτr

(
γ2p

∂f

∂p
− ξ ∂f

∂ξ
+

[
4p2 +

2

1−ξ2
]
f

)
. (4.13)

The force acts to limit both the particle energy and pitch, which is to be
expected as the emitted synchrotron power is proportional to Ptot ∼ γ2θ2 (see
Sec. 4.1.3). Fig. 4.4 shows the effect on the distribution: its width in p⊥ and
extension in p‖ is reduced in the presence of a magnetic field. Equations (4.11)
and (4.12) were derived in Ref. [117], the first paper to properly consider the
role of radiation reaction in runaway dynamics, but in that paper a high-energy
limit was used which lead to an incomplete expression in place of Eq. (4.13),
as pointed out in [120].
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Figure 4.4: Electron distribution functions in CODE after 700 thermal colli-
sion times, a) without and b) with synchrotron radiation reaction included.
The parameters were T = 3 keV, n = 1 · 1019 m−3, E = 0.05 V/m, Zeff = 1
and B = 6 T.
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When studying the behavior of runaway electrons, a very common approxi-
mation is to treat the runaways as a perturbation to an electron population
in local thermal equilibrium. This linearization of the distribution function
f around a Maxwellian significantly simplifies the collision operator Cee in
Eq. (3.2), as well as the numerical method needed to solve the kinetic equa-
tion. However, this approach is not valid when the runaway population be-
comes substantial, or the linearization becomes invalid for other reasons (such
as when a strong electric field E & Esa shifts the bulk of the electron popu-
lation). There is also a risk that the linearized treatment fails to accurately
describe subtle phenomena such as feedback loops (which may for instance
cause rapid depletion of the thermal population). The tool NORSE was devel-
oped to be able to treat such situations, as discussed in Chapter 3. Here we
will introduce two particular nonlinear effects considered in Papers E and F:
Ohmic heating and slide-away.

5.1 Ohmic heating

The accelerating force of the parallel electric field affects all electrons, not only
runaways. However, for most particles, the energy gained from the electric
field is quickly redistributed into random motion through collisions with other
plasma particles. As a consequence, the electric field acts as a source of
heat, primarily affecting the thermal bulk of the electron population – this is
commonly referred to as Ohmic or Joule heating. The associated change in
the energy W of the electron population is given by the energy moment of the
electric-field term in the kinetic equation:

dW

dτ
=

∫
d3p (γ − 1)mec

2

(
− E

Ec
· ∂f
∂p

)
, (5.1)

with τ = νrelt the time in units of the collision time for relativistic electrons.
If the electric field is sufficiently strong, the heating of the bulk can be sub-
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stantial. This can have consequences for electron slide-away, as discussed in
the next section.

The Ohmic heating is automatically accounted for in a nonlinear treatment of
the kinetic equation, making NORSE able to consistently model this process.
This is less straight-forward to do in a linearized tool such as CODE, since
the heating effectively involves a change to the Maxwellian around which the
distribution is linearized; either the heat must be removed, or the properties
of the Maxwellian modified.

The heat supplied by the electric field does not always stay in the plasma,
however. Spatial temperature gradients lead to heat transport (a fundamen-
tal problem in fusion reactors), although this process may or may not be
relevant on the runaway acceleration timescale. More important in a cold
post-disruption fusion plasma may be the energy radiated away via atomic
transitions in partially ionized impurity ions (the so-called line radiation), or
spatial transport of particles and energy due to unstable modes (sometimes
driven by the runaways themselves – see for instance [90] and Paper K). As
a consequence, the plasma temperature may stay constant, or even decrease,
despite the existence of a strong electric field.

5.2 Electron slide-away

As discussed in Sec. 2.1.2: if the electric field is stronger than the collisional
friction in the entire momentum space, all electrons are accelerated, which is
known as the slide-away regime [1, 57]. Recalling that the slide-away field
Esa ∼ n/T (see Eq. 2.5), where these quantities are those of the bulk (since
the maximum of the friction force is located at around v = vth), a transition
to the slide-away regime can be induced through either of the following four
mechanisms:

I: E > Esa – For electric fields stronger than the classical slide-away field
Esa, slide-away is immediate

II: E . Esa – Although the field is slightly weaker than Esa, it distorts the
distribution, which lowers the friction. This process is a positive feed-
back loop, since the reduced friction makes acceleration easier, leading
to further distortion of the distribution, reduced friction, etc. Eventu-
ally, the friction is sufficiently reduced that the electric-field acceleration
dominates everywhere, leading to slide-away. This process happens on
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timescales comparable to the thermal collision time, and is thus very
quick.

III: E < Esa, no or inadequate heat sink – The field is significantly weaker
than Esa but supplies heat to the distribution. This heat is not efficiently
removed, which leads to Ohmic heating of the bulk electrons. The in-
crease in temperature reduces the slide-away field, eventually leading
to slide-away as the electric field becomes comparable to Esa(t). The
process can be slow or quick, depending on the initial value of E/Esa

and the efficacy of the heat sink.

IV: E < Esa, adequate heat sink – The heat supplied by the electric field
is removed and the temperature is kept constant. The electric field
causes prolonged substantial runaway generation, which eventually leads
to depletion of the bulk population of electrons. This reduces the slide-
away field, and eventually slide-away is reached. This process is generally
the slowest.

Mechanisms I–III are discussed in Paper E. In Paper F, the focus is the influ-
ence on the transition to slide-away of the properties of the heat sink. Both
mechanisms III and IV are observed in a tokamak-relevant scenario, depend-
ing on the details of the heat sink. The feedback loop related to mechanism II
is also discussed, as mechanisms III and IV exhibit the behavior of mechanism
II just before slide-away is reached.

In an idealized situation, slide-away should eventually occur in all systems
with a persistent electric field. In practice, however; this is not observed.
If E � Esa, the timescale of the slide-away transition is slow compared to
most processes in the plasma. In this case, cold electrons are supplied to
the thermal population, compensating for the particles running away and
thus preventing a transition in accordance with mechanism IV. Also in the
absence of efficient cooling (mechanism III), slide-away may be prevented by
the feedback between the current and the electric field. The electric field in a
tokamak disruption is generated as a consequence of a reduction in the plasma
current (due to a quick cooling of the plasma), however if runaway generation
becomes strong enough to significantly affect the total current, the electric
field will be reduced. This may interrupt a transition through mechanisms
III or IV before slide-away is reached. Fields sufficiently strong to cause
slide-away through mechanisms I–II are uncommon in fusion experiments.
Nevertheless, as demonstrated in Paper F, non-linear simulations can be vital
for the understanding of some realistic tokamak scenarios where a linearized
approach quickly becomes invalid.
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6 Concluding remarks
In order to reduce the threat posed by runaway electrons to future fusion-
energy devices, progress on several fronts are necessary. The understanding of
runaway generation and loss mechanisms needs to be improved – both theo-
retically and experimentally – so that reliable operation scenarios and efficient
mitigation schemes can be developed. At the core of the runaway phenomenon
lies dynamics in momentum space, which is the topic of this thesis. The most
important mechanisms affecting these dynamics are summarized schematically
in Fig. 6.1. In this thesis, these mechanisms (apart from bremsstrahlung ra-
diation reaction) have been investigated using purpose-built numerical tools,
leading to several new insights concerning runaway dynamics. The present
Chapter provides a summary of the papers that constitute this work, as well
as a short outlook.

6.1 Summary of the included papers

An important component in increasing the understanding of runaway dynam-
ics is to improve the capability to analyze experimentally observed runaway
beams and to extract the information available in the few diagnostic measure-
ments that are sensitive to the runaway parameters. To this end, Paper A
is focused on calculating the synchrotron spectrum emitted by a distribution
of runaway electrons: a significant improvement over previous methods which
typically interpret the observed spectra using a single-particle approximation
for the runaway population (as discussed in connection with Fig. 4.2). As
shown in the paper, this approximation fails to capture both qualitative and
quantitative features of the synchrotron spectrum, and the use of distribution-
integrated spectra is essential to accurately infer the runaway parameters. The
paper analyses the spectra obtained using analytical avalanche distributions
(Eq. 3.7). Together with the possibility to easily obtain runaway-electron dis-
tribution functions numerically using CODE or NORSE, the work in this thesis
makes a significant contribution to the interpretation of synchrotron spectra,
and thereby to the experimental analysis of runaway-electron parameters.
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Pitch-angle scattering
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Large-angle 
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Figure 6.1: Schematic presentation of the various effects of importance for
runaway-electron momentum-space dynamics and their qualitative effect on
the distribution function. Bremsstrahlung radiation reaction is included for
completeness, even though it has not been discussed in detail in this thesis.

Paper B describes and validates the development of CODE, a tool for calculat-
ing the time-evolution of the electron distribution function (or its steady-state
shape) in the presence of electric-field acceleration and Coulomb collisions. In
the paper, the obtained distributions are used to calculate synchrotron spectra
(in accordance with Paper A), giving access to parameter regimes and evolu-
tion times not properly modeled by the analytical avalanche distribution.

Paper C expands the capability of CODE by introducing time-dependent plasma
parameters (enabling the modeling of dynamic scenarios such as disruptions);
a conservative collision operator essential for calculating e.g. the plasma con-
ductivity; and the avalanche source term in Eq. (3.5). A scenario dominated
by hot-tail runaway generation is investigated, and the effect on the avalanche
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growth rate of the choice of avalanche operator is quantified. It is found that
the commonly used Rosenbluth-Putvinski avalanche operator can both overes-
timate and underestimate the avalanche growth rate significantly, depending
on the parameter range.

Apart from acting as an observable diagnostic for the runaway distribution,
the emission of synchrotron radiation also affects the distribution itself, as
discussed in Sec. 4.2. To model this behavior, Paper D introduces an operator
describing synchrotron radiation reaction into CODE and uses it to investigate
the effect of the radiation reaction on the critical field for runaway generation.
The paper also explains that a large part of the observed modification to the
critical field (initially attributed to so-called“anomalous losses”, which include
synchrotron radiation reaction) is in fact likely to be just a manifestation of the
temperature dependence of the Dreicer runaway-generation rate (Eq. 2.10),
so that the parameter determining the runaway growth is E/ED rather than
E/Ec. The paper also shows that redistribution of particles in velocity space
can give the impression (because of reduced synchrotron emission) that the
runaway population is decaying, when in fact both the number and total
kinetic energy of the runaways keep increasing. Again, these insights impact
the interpretation of experimental observations and thus contribute to the
understanding of runaway parameters in practice.

Paper E describes the development of NORSE. The motivation behind this
new Fokker-Planck tool was to investigate the impact of collisional nonlinear-
ities on the runaway dynamics. Specifically, NORSE makes it possible to study
situations where the runaways constitute a substantial part of the electron
distribution, or the electric field is significant compared to ED. This had not
previously been done in a framework allowing for relativistic particle energies.
The paper highlights the fact that a transition to the slide-away regime can
be initiated for electric fields well below the traditional slide-away field Esa.
This line of investigation is then continued in Paper F, which uses an ITER-
disruption scenario to explore the importance of Ohmic heating of the bulk
electron population. In addition, the paper studies the impact on the slide-
away dynamics of the efficiency of the available heat-loss mechanisms. It is
found that in the absence of spatial-transport and current–electric-field feed-
back effects, the electron population in an ITER disruption should eventually
transition to a slide-away regime, however the time scale of this transition
depends strongly on the heat-loss rate. This could potentially have large
consequences for the understanding of runaway dynamics in ITER, although
further investigations are needed.
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6.2 Outlook

In this thesis, the focus has been on modeling of the dynamics of runaway
electrons in momentum space. These dynamics have sometimes been misun-
derstood or misinterpreted, as in the case of observed modifications to the
critical electric field, which motivated the work on Paper D. The tools de-
veloped in this thesis can help avoid future such misunderstandings – as they
facilitate the investigation of runaway dynamics – and make more accurate
interpretation of experimental data possible.

All results presented in this thesis were obtained using predefined electric-
field evolutions, i.e. the applied electric field was not affected by the electron
distribution in any way and was therefore not calculated self-consistently. As
long as the runaway population and current are small, this approximation is
adequate, however in cases where the runaways contribute a substantial part
of the plasma current (or otherwise significantly affect the plasma evolution),
a self-consistent treatment is essential. This point is of particular concern in
the scenario considered in Paper F. To build on the work presented here,
a logical step forward is to include a self-consistent electric field, taking the
evolution of the electron distribution into account.

Another area for further research is to extend the numerical treatment to in-
clude one spatial (radial) dimension. This would make it possible to capture
magnetic trapping effects, as well as collisional radial transport of the run-
aways. Naturally, such a development is not without complications, both ana-
lytically and numerically, and the increased dimensionality puts much higher
demands on the computational resources. Although Fokker-Planck tools (such
as LUKE [44, 45]) that include a radial coordinate do exist, they are not pri-
marily focused on runaway research. Neither do they necessarily include all
the relevant effects (for instance LUKE includes trapping effects, but not con-
sistent radial transport).

Some progress towards including the two effects mentioned above have been
made, and is described in Conf. Contrib. V. The adopted approach is to
couple a Fokker-Planck solver (in this case CODE) to the 1D fluid code GO
[72, 121–123], which evolves the plasma parameters and current, and handles
radial electric-field diffusion. This approach could serve as a first step towards
a self-consistent model, however further work is needed since CODE does not
include trapping effects. A complete tool able to consistently calculate the
electron distribution function as a function of momentum, radius and time
in a disruption scenario would contribute significantly to the understanding
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of runaway generation and loss, and would be of great value to the fusion
community.

The work presented in this thesis has brought new insights into the dynamics
of runaways and the analysis of the radiation they emit. Hopefully, the infor-
mation and tools described herein will bring us one step closer to stable and
reliable operation of fusion devices.
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[23] B. Esposito, J. R. Mart́ın-Soĺıs, F. M. Poli, J. A. Mier, R. Sánchez,
and L. Panaccione, Dynamics of high energy runaway electrons in the
Frascati Tokamak Upgrade, Physics of Plasmas 10, 2350 (2003), DOI:
10.1063/1.1574328.

[24] H. W. Lu, X. J. Zha, F. C. Zhong, L. Q. Hu, R. J. Zhou, and
EAST Team, Investigation of runaway electrons in the current ramp-
up by a fully non-inductive lower hybrid current drive on the EAST
tokamak, Physica Scripta 87, 055504 (2013), DOI: 10.1088/0031-
8949/87/05/055504.

[25] M. Cheon, J. Kim, Y. An, D. Seo, and H. Kim, Observation of
the loss of pre-disruptive runaway electrons in KSTAR ohmic plasma
disruptions, Nuclear Fusion 56, 126004 (2016), DOI: 10.1088/0029-
5515/56/12/126004.

[26] J. Wesson, R. Gill, M. Hugon, F. Schüller, J. Snipes, D. Ward,
D. Bartlett, D. Campbell, P. Duperrex, A. Edwards, R. Granetz, N. Got-
tardi, T. Hender, E. Lazzaro, P. Lomas, N. L. Cardozo, K. Mast,
M. Nave, N. Salmon, P. Smeulders, P. Thomas, B. Tubbing, M. Turner,
and A. Weller, Disruptions in JET, Nuclear Fusion 29, 641 (1989), DOI:
10.1088/0029-5515/29/4/009.

57

http://dx.doi.org/10.1103/PhysRevLett.108.225003
http://dx.doi.org/10.1103/PhysRevLett.111.015006
http://dx.doi.org/10.1063/1.4894098
http://dx.doi.org/ 10.1080/14786448908628362
http://dx.doi.org/10.1063/1.1574328
http://dx.doi.org/ 10.1088/0031-8949/87/05/055504
http://dx.doi.org/10.1088/0029-5515/56/12/126004
http://dx.doi.org/10.1088/0029-5515/29/4/009


Bibliography

[27] P. de Vries, M. Johnson, B. Alper, P. Buratti, T. Hender, H. Koslowski,
V. Riccardo, and JET-EFDA Contributors, Survey of disruption
causes at JET, Nuclear Fusion 51, 053018 (2011), DOI: 10.1088/0029-
5515/51/5/053018.

[28] E. Lenz, Ueber die Bestimmung der Richtung der durch elektrodynamis-
che Vertheilung erregten galvanischen Ströme, Annalen der Physik 107,
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[43] J. R. Mart́ın-Soĺıs, B. Esposito, R. Sánchez, F. M. Poli, and L. Panac-
cione, Enhanced production of runaway electrons during a disruptive
termination of discharges heated with lower hybrid power in the Fras-
cati Tokamak Upgrade, Physical Review Letters 97, 165002 (2006), DOI:
10.1103/PhysRevLett.97.165002.

[44] Y. Peysson, J. Decker, and R. W. Harvey, Advanced 3-D electron fokker-
planck transport calculations, AIP Conference Proceedings 694, 495
(2003), DOI: 10.1063/1.1638086.

[45] J. Decker and Y. Peysson, DKE: A fast numerical solver for the 3D drift
kinetic equation, Tech. Rep. EUR-CEA-FC-1736 (Euratom-CEA, 2004).

[46] E. Nilsson, J. Decker, Y. Peysson, R. S. Granetz, F. Saint-Laurent, and
M. Vlainic, Kinetic modelling of runaway electron avalanches in tokamak

60

http://dx.doi.org/10.1088/0029-5515/22/8/010
http://dx.doi.org/ 10.1063/1.4866912
http://dx.doi.org/ 10.1063/1.4866912
http://dx.doi.org/10.1063/1.4886802
http://dx.doi.org/10.1103/PhysRevLett.97.165002
http://dx.doi.org/10.1063/1.1638086
http://dx.doi.org/10.1063/1.1638086


Bibliography

plasmas, Plasma Physics and Controlled Fusion 57, 095006 (2015), DOI:
10.1088/0741-3335/57/9/095006.

[47] S. Chiu, M. Rosenbluth, R. Harvey, and V. Chan, Fokker-Planck
simulations mylb of knock-on electron runaway avalanche and bursts
in tokamaks, Nuclear Fusion 38, 1711 (1998), DOI: 10.1088/0029-
5515/38/11/309.

[48] R. W. Harvey, V. S. Chan, S. C. Chiu, T. E. Evans, M. N. Rosenbluth,
and D. G. Whyte, Runaway electron production in DIII-D killer pellet
experiments, calculated with the CQL3D/KPRAD model, Physics of
Plasmas 7, 4590 (2000), DOI: 10.1063/1.1312816.

[49] E. M. Hollmann, P. B. Aleynikov, T. Fülöp, D. A. Humphreys, V. A.
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