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ABSTRACT  
During neuronal communication neurotransmitters are released through the process 
exocytosis that occurs on the time scale of sub-milliseconds to milliseconds. Neuronal 
activity by neurotransmitters that are non-electroactive cannot easily be monitored 
due to limitations in the temporal resolutions of the sensor probes for these analytes. 
In order to achieve a fast detection of the rapid transients derived from these non-
electroactive neurotransmitters e.g. acetylcholine and glutamate, enzyme nanoparticle 
conjugates was carefully characterized and optimal enzymatic conditions from these 
studies were used to design and construct a nanostructured enzyme-based 
electrochemical biosensor for acetylcholine. 
 
This sensor was constructed from a micro-sized carbon fiber (5 µm to 30 µm in 
diameter) sealed into a glass capillary and functionalized with gold nanoparticle 
(AuNP) hemispheres at the electrode surface. The nanoparticle structure at the 
electrode surface increases the electrode surface area and allows immobilization of 
larger amount of enzyme. In addition the nanoparticle provides a surface with high 
curvature that may prevent enzyme denaturation compared to the flat surface. The 
enzymes subsequently immobilized onto the AuNPs-structured surface will catalyze 
the non-electroactive molecules of interests and produce H2O2 that is electroactive 
and can be detected using amperometry. We have found that the key for providing 
high temporal resolution by these sensors is to limit the enzyme coverage at the 
electrode surface to a monolayer. 
 
In Paper I, an acetylcholine sensor is constructed with a two-enzyme system 
consisting of acetylcholinesterase and choline oxidase. This sensor provided a 
temporal resolution that was fast enough to detect single vesicle release of 
acetylcholine in the millisecond time scale by an artificial cell model for exocytosis. 
 
For the design and construction of a microelectrode glucose sensor, the 
characterization of the conjugation of the enzyme glucose oxidase (GOx) to the 
surface of AuNP was studied in Paper II to achieve the optimal conditions for the 
GOx. The work shows that the structure of GOx adsorbed on AuNP changes to much 
less extent than if GOx adsorbs on to a flat surface and that the enzymatic activity is 
maintained to the same extent as for GOx in solution. 
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1. INTRODUCTION 

 
 
Neuronal activities like exocytosis occur in the sub-millisecond to milliseconds time scale, 
which is ultra-fast. The signaling molecules released by these secretory cells can be monitored 
using electrochemical techniques if the neurotransmitters are electroactive. However it cannot 
be easily monitored if the fast transients stem from non-electroactive neurotransmitters and 
metabolites e.g., glucose that involved in neuronal activities in the brain. Currently the 
sensors for detecting these molecules give response in sub-seconds or several seconds and this 
detection speed is apparently not fast enough. In order to better understand the neuronal 
communication and the mechanism behind neurological disease (e.g., Alzheimer's disease) 
that involve non-electroactive neurotransmitters, there is a great need to capture these rapid 
transients during neuron communication in the brain. 
 
To meet the needs of fast detection of non-electroactive neurotransmitters (e.g., acetylcholine 
and glutamate) and metabolites during neuronal activities, a nanoparticle structured and 
enzyme-based electrochemical biosensor providing high temporal and spatial resolution is 
designed in our group. A micro-sized carbon fiber electrode sealed with glass capillary is 
firstly modified with gold nanoparticles (AuNPs) to increase the surface area and surface 
curvature, which allows more enzyme adsorbed on sensor’s surface compared to a flat sensor 
surface. In addition, the deformation of enzyme structure leading to denaturation may be 
prevented because of the highly curved surface of AuNP. The enzymes immobilized on the 
sensor surface will catalyze molecules of interest with high selectivity to produce H2O2 that 
can generate electric current after applying a potential on the electrode.  
 
We have found out that the key to provide high temporal resolution for this sensor is to keep a 
monolayer (or thin layer) enzyme modification. In Paper I, an acetylcholine sensor is 
constructed by coating sequentially a thin layer of AuNPs and a two-enzyme system 
consisting of acetylcholinesterase (AChE) and choline oxidase (ChO) onto a carbon fiber 
microelectrode surface. We here showed that the sensor could detect vesicle release of the 
neurotransmitter acetylcholine in milliseconds. The significant improvement in temporal 
resolution for this acetylcholine sensor shows that the recording speed can match the time 
course to temporally resolve single vesicle release events during neuronal communication 
with this new approach in sensor design. This gives promise to bring this technology to 
provide fast sensing scheme of other non-electroactive neurotransmitters and metabolites that 
are important in neuroscience.  
 
It is well-known that glucose is the primary energy source for the whole body including the 
brain for mammals. Glucose actually plays a critical role in brain function physiologically and 
pathologically [1]. Neuronal activities in the brain have a very high demanding of energy (e.g., 
adenosine triphosphate, ATP), which can be produced by glucose through glucose 
metabolism (e.g., the citric acid cycle, TCA cycle). Several studies have shown that the 
glucose level in the brain is highly related to different neurologic diseases like Alzheimer’s 
disease [2-5]. On the way to construct a glucose sensor using the enzyme glucose oxidase 
(GOx), a question related to the sensor sensitivity concerns potential change in enzyme 
structure after adsorbing to the AuNP with highly coved surface was brought up, since it 
might affect the enzymatic efficiency. The structure change of GOx when adsorbed on to flat 
surface has been well studied, however the structure deformation of the enzyme by adsorption 
to highly curved surface was barely studied. Therefore characterization of the conjugates 
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formed by GOx adsorption to AuNP and the effect on the catalytic properties by the 
conjugation process was investigated in Paper II. 
 
Glutamate is one of the major neurotransmitter in the brain affecting brain functions such as 
reward, cognition, and learning and memory. However, glutamate is non-electroactive 
molecule and a fast sensor for glutamate recording is currently lacking. For development of 
an enzyme-based electrochemical sensor for glutamate detection, our approach to immobilize 
a monolayer of the enzyme glutamate oxidase (GluOx) to the surface of AuNPs coated 
microelectrode is under development. Hence, to optimize the conditions for GluOx adsorption 
process to AuNPs and to control the enzyme coverage to a monolayer, characterization of 
GluOx:AuNP conjugates in bulk solution has been studied and is presented in Paper III 
(Appendix). The insights from this study are now being used in the construction of a fast 
glutamate sensor that will be introduced for glutamate recording in the brain. 
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2. NEUROSCIENCE 

 
2.1 Neuronal Communication 
In the nervous system, neurons communicate by electrical and chemical signals via synaptic 
connections. An electrical nerve signals can trigger Ca2+ channels to open at the presynaptic 
terminal and the flux of Ca2+ ions into the cell stimulates neurotransmitter-filled vesicles to 
dock and fuse with the plasma membrane in the presynaptic neuron and release 
neurotransmitter molecules that can reach the postsynaptic neuron via passing through the gap 
space between two neighboring neurons called the synaptic cleft (see Figure 1), The 
postsynaptic cell receive the chemical signal via specific binding of these neurotransmitters to 
receptors on their plasma membrane. Hence the secretory vesicle is a key organelle involved 
in neuronal communication. After synthesis the vesicle compartment is loaded with 
neurotransmitters and stored in the cytoplasm of the presynaptic neuron where vesicles are 
subsequently docked and primed to the active zone of the plasma membrane. This is to meet 
all requirements to be ready to release the vesicle neurotransmitter content into synaptic cleft 
when neurons are triggered to send signals in the neuronal network in a process that is called 
exocytosis [6].  
 
 

Figure 1. Schematic of neuronal communication. The left figure shows the synaptic connection between 
two neighboring neurons. And the right figure is the magnification of synapses from the left figure 
between a presynaptic neuron and postsynaptic neuron. 
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2.2 Neurotransmitters  
 
The chemical messengers needed in chemical communications are called neurotransmitters. It 
is thought that all various kinds of neurotransmitters are still not known and therefore is hard 
to give an exact number of the various neurotransmitters that is used by the brain. Anyhow 
more than 100 chemicals have been identified [7]. Neurotransmitter can be classified in 
different ways such as via their size and function. Some of the most well-studied 
neurotransmitters that are involved in major neurochemical pathways in the brain are for 
instance: acetylcholine (ACh), dopamine, histamine, serotonin, glutamate, gamma 
aminobutyric acid (GABA). 
 
 
2.2.1 Acetylcholine (ACh) 

Acetylcholine (ACh) was the first discovered neurotransmitter molecule [8]. Its chemical 
structure is shown in Figure 2 and is composed by an ester of acetic acid and choline. 
 

 
As shown in Figure 3, ACh is initially synthesized from acetyl coenzyme A (acetyl CoA) and 
choline in the presynaptic nerve terminals, where choline acetyltransferase (CAT) catalyzes 
the reaction [7]. ACh is then released via Ca2+ -stimulated exocytosis into the synaptic cleft, 
where ACh is either bound to nicotinic and muscarinic receptors at postsynaptic neuron, or 
rapidly broken down into choline and acetate via the enzyme acetylcholinesterase (AChE). 
The choline can be transferred from the synaptic cleft via specific membrane transporter 
proteins back into presynaptic neuron for recycling and synthesis of new ACh. 
 
ACh plays an important role in the human body and brain function. Specifically, this 
neurotransmitter has muscle-activating function, which is responsible for skeletal muscle 
contraction and also cause vasodilation via relaxing smooth muscle in the autonomic nervous 
system by binding to muscarinic receptors located at vascular endothelium. In the central 
nervous system (CNS), the sustaining attention and sensory perception when awake can be 
improved by ACh [9, 10]. It has been reported that ACh promotes rapid eye movement sleep 
[11]. There are also speculations that the Alzheimer's disease in CNS is associated with a 
decrease in ACh [12]. Myasthenia gravis, a disease of the neuromuscular junction showing as 
muscle weakness and fatigue, may occur when the ACh signal transmission is inhibited when 
ACh receptors are occupied by antibodies inappropriately produced by body [8]. 
 
 
 
 

H3C

H3C

CH3

CH3

O

O

N+

acetyl choline

Figure 2. The chemical structure of acetylcholine. 
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2.2.2 Glutamate (GLU) 

Glutamate (GLU) is a non-essential amino acid and the richest amino acid in the diet [7, 13, 
14]. The molecule structure of glutamate is shown in Figure 4. This neurotransmitter can be 
found everywhere in the body in high concentration [14]. In the nervous system, GLU serves 
as the principle excitatory neurotransmitters in CNS in the brain and plays a critical role in 
learning and memory, especially for elderly people [15, 16]. It is speculated that more than 
half of all brain synapses release glutamate [7].  
 

 

Figure 4. Structure of glutamate 
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Figure 3. Synthesis and recycling of acetylcholine at the synapse. 
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As illustrated in Figure 5, GLU can be synthesized in the CNS from glutamine by the 
mitochondrial enzyme Glutaminase [7]. It can also be synthesized from α-Ketoglutaric acid as 
an intermediate in the citric acid (TCA) cycle, which is a chemical reaction series to generate 
energy through oxidation of acetyl-CoA into carbon dioxide (CO2) and adenosine 
triphosphate (ATP) [7, 17, 18]. It means that glutamate synthesis is partially regulated by 
glucose metabolism. And GLU itself can also serve as a metabolic precursor for gamma-
Aminobutyric acid (GABA), which is another amino acid neurotransmitter [7]. 
 
 

 
 
After release from the presynaptic terminal into the synaptic cleft, glutamate detected by the 
postsynaptic cell via glutamate receptors. At the same time, excess glutamate at the synaptic 
cleft is removed by high-affinity glutamate transporters located at surrounding glial cells and 
presynaptic terminals [7]. Glutamate uptake into glial cells is converted to glutamine by 
glutamine synthetase and is then transported back to presynaptic terminals [7]. This whole 
event is referred to as the glutamate-glutamine cycle. GLU also plays a crucial role in clinical 
neurology, since the excess of GLU accumulated in extracellular space can lead to 
excitotoxicity where the consequence is neural damage or even nerve cell death [7, 13]. 
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Figure 5. Glutamate synthesis and cycling between neurons and glia cells. 
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1.3 Glucose 
Glucose is well known as a sugar with molecular weight of 180.16 g·mol−1 and a chemical 
formula C6H12O6, and is the ubiquitous energy source in the body. High blood glucose level 
over a long period is a sign of a group of metabolic diseases known as diabetes. The level of 
blood glucose for healthy human is normally approximate 5.5 mM. The concentration of 
glucose in some biofluids are significantly lower and may locate in the range of micro-molar, 
such as ~ 70 µM in saliva [19, 20], ~ 200 µM in tears [21, 22], ~ 120 µM in sweat [23, 24]. 
 
The correlation between glucose and the nerve system has also been well studied. Gold and 
other groups have reported that glucose does not only enhance learning and memory in 
healthy aged humans, but also enhance a broader range of cognitive functions in patients with 
Alzheimer’s disease and young adults with Down syndrome [2, 3, 25-27]. Chih and Robert 
showed that glucose is the primary substrate for both neurons and astrocytes during neural 
activity [28]. In 2005, Mosconi pointed out the importance of glucose in the early diagnose of 
Alzheimer’s disease [4]. 
 
Gold and his co-workers suggested that glucose effects human’s brain cognitive functions via 
glucose metabolism [29, 30], since glucose produces the energy needed for brain activity, and 
several neurotransmitters like acetylcholine and glutamate are synthesized originally from 
glucose. Specifically, they reported that glucose may attenuate hippocampal acetylcholine 
release. 
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3. ENZYME AND GOLD NANOPARTICLES  

 

3.1 Glucose Oxidase (GOx) 
Glucose Oxidase (GOx; E.C. 1.1.3.4) is a flavin-dependent enzyme that oxidizes β-D-glucose 
into glucolactone and converts O2 into H2O2. It has a dimer with a molecule weight of 160 
kDa. This enzyme is able to be synthesized from several different species of fungi. GOx from 
Aspergillus niger and Penicillium amagasakiense are usually produced commercially, and is 
mostly utilized for fabrication of biosensors [31] to measure blood glucose level for diabetes 
patients that is a worldwide health problem. GOx from Aspergillus niger and Penicillium 
amagasakiense show 79% similarity and 66% identity in sequence [32], and have similar 
enzymatic ability. Both of these two GOx exhibit high specificity of β-D-glucose [33]. Since 
most of the biochemical characterization of GOx from Aspergillus niger has been well studied, 
it was chosen to use for modification on the enzyme-based sensor in this project and to be 
studied in regard to its structure change after adsorption on 20 nm AuNPs with highly curved 
surface. 
 
A GOx monomer contains one flavin adenine dinucleotide (FAD) via tight, but non-covalent 
binding [33]. The substrate glucose binds to the active site close to the FAD that let the 
oxidation of glucose perform. For a monomer of GOx from Aspergillus niger, it contains 581 
amino acid residues. At pH 7, part of these residues are positively charged, like lysine, 
arginine and histidine, and part of them are negatively charged such as aspartic and glutamic 
acid [34]. The relative numbers of different charged residues and their distribution lead to a 
negatively charged surface potential in total [35]. Although the charge of these residues will 
change with the variation of pH, the enzyme will keep a net negative charge on its surface 
when pH is above 4.2, since the isoelectric point of GOx is 4.2 [36]. 
 
3.2 Gold nanoparticles (AuNPs) 
The gold nanoparticles (AuNPs) have been widely used in biosensor applications to improve 
the sensor stability and sensitivity due to AuNP’s small size and high surface-to-volume ratio 
[37]. Particularly, AuNPs have been applied on to the surface of electrochemical biosensors 
because of their conductive property as metals [38]. Besides, a wide range of biomolecules is 
able to be immobilized onto AuNP because of the AuNPs’ high surface energy, which may 
improve the sensor’s selectivity. 
 
AuNP used in the project of this thesis is bought from BBI solution (Cardiff, UK) with a size 
of 20 nm in diameter and a zeta potential of - 41.4 mV. Generally, the AuNPs are obtained by 
reducing chloroauric acid (H[AuCl4]). After adding the reducing agent, Au3+ is reduced to 
Au+, and then 3 Au+ can produce Au3+ and 2 Au0. The initial obtained Au0 atoms act as the 
center and more new reduced Au0 is built up on the center to form AuNP that grows in size 
during the reducing reaction and can be controlled to produce AuNP with a specific size 
required. Turkevich method [39] is the simplest way for synthesizing AuNPs. In this method, 
citrate ions from sodium citrate act as both reducing agent and capping agent that stabilize 
AuNP surface via electrostatic force to prevent AuNPs from aggregation. The citrate capped 
AuNPs are negatively charged [40]. And the size of AuNP could be controlled by the ratio 
between gold salt and citrate added to the reaction. 
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3.2.1 Electrical  Double Layer (EDL) 

Most particles in aqueous solution have a charge (either positive or negative), and the liquid 
composition of counter ions affects the electrical double layer (EDL) of the particle surface. 
EDL consists of two layers: stern layer and diffuse layer 
 
As shown in Figure 6, the counterions are tightly bound to the particle surface via chemical 
interactions in an inner region, called the Stern layer. The ions are loosely attached to the 
particle surface via a coulomb force, located at an outer region, called the Diffuse layer. There 
is a notional boundary inside of the diffuse layer where a stable entity between ions and 
particles is formed that is called the slipping plane, which defines the zeta potential [40-42]. 
The potential existing at the boundary between diffuse layer and stern layer is the Stern 
potential. 
 

 
 

Figure 6. Schematic of the electrical double layer surrounding a particle in aqueous solution.  
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4.  ELECTROCHEMISTRY 

 

4.1 Electrochemical Enzyme-based Biosensor 
To detect non-electroactive neurotransmitters and metabolites in the neuronal system of the 
brain, AuNPs structured enzyme-based carbon fiber disc microelectrodes are designed and 
manufactured as the electrochemical biosensor for these analytes (see Figure 7). A carbon 
fiber with a size ranging from 5 𝜇𝑚 to 30 𝜇𝑚 in diameter is sealed into a glass capillary. The 
carbon fiber is cut and beveled to form a disc shape microelectrode. To increase the sensor 
surface area and surface curvature, and to maximize the retained enzymatic activity after 
enzyme adsorption [45], AuNPs are deposited onto the carbon fiber microelectrode surface by 
electrodeposition of AuNPs at the electrode surface via a reduction of HAuCl4 solution using 
a potential sweep of - 0.6 V for 24s at the electrode surface. A monolayer coverage of enzyme 
is adsorbed to the AuNP coated electrode surface by using the optimized conditions from 
studies of enzyme interaction with the AuNP from studies in bulk solution. This enzyme-
based biosensor relies on enzymes to catalyze molecules of interests to produce electroactive 
compound H2O2. Subsequently an amperometric current can be generated from the redox 
reaction of H2O2 when applying a constant potential to the sensor surface and hence the non-
electroactive analytes indirectly are detected. 
 

 
 
Therefore, finding suitable enzymes for the catalysis of the analytes of interests is critical for 
the construction of an enzyme-based biosensor. For example, to detect glucose, GOx and 
glucose dehydrogenase are usually utilized. Glutamate oxidase is chosen in Paper III 
(Appendix) to oxidase glutamate and produce electroactive H2O2 for the indirect detection of 

Figure 7. Illustration of the enzyme-based electrochemistry sensor. The core part of the sensor is a carbon 
fiber microelectrode with a modified surface using AuNPs. Enzymes are immobilized on the sensor surface 
to catalyze target molecules (A) and produce an electroactive product such as H2O2 that is detected by the 
sensor after applying a potential that triggers a redox reaction of H2O2. 
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glutamate. In some cases, two or more enzymes are needed to work in sequence to trigger a 
reaction chain and to produce an electroactive specie. For instance, to detect acetylcholine, a 
multi-enzyme biosensor system is built up by AChE together with choline oxidase (ChO). 
Acetylcholine is firstly hydrolyzed by AChE to form acetate and choline. And choline is soon 
oxidized by ChO to produce H2O2 that can be detected using amperometry. 
 
 
4.2 Amperometry 
Amperometry is one of the most widely used electrochemical techniques in the analytical 
chemistry field. It can offer high temporal resolution in time scale of sub-millisecond, high 
sensitivity and high spatial resolution even though selectivity is not the strength of this 
method [46]. In amperometry, a constant potential that can trigger a redox reaction of 
molecule of interest (analytes) at a working electrode is applied between the working 
electrode and a reference electrode, and the redox reaction should be fast enough to be 
diffusion controlled. This can be achieved by adjusting the applied potential to the electrode 
[46]. In amperometric measurement the current is measured with respect to time. The changes 
in concentration of analytes at the working electrode surface can then be determined via 
fluctuations in the current recorded according to the Faraday’s law [47] described in Equation 
1. 
 

𝑄 = 𝑛𝐹𝑁   
 
where 𝑄 is the transferred electronic charge, given in coulomb; 𝑁 is the number of molecules, 
given in moles; 𝐹 is the Faraday’s constant; 𝑛 is the number of transferred electrons in 
reaction. Since the current (𝑖) presents the number of electrodes per second in the reaction, as 
Equation 2,  
 

𝑖 𝑎𝑚𝑝𝑒𝑟𝑒𝑠 =  
𝑑𝑄
𝑑𝑡  (𝑐𝑜𝑢𝑙𝑜𝑚𝑏𝑠/𝑠) 

 
The Faraday’s law can then be interpreted in Equation 3.  
 

𝑁 =  
1
𝑛𝐹  𝑖 𝑑𝑡 

 
Therefore, amperometry can be used to quantify the number of molecules (e.g., 
neurotransmitters) released in exocytosis from single vesicle compartment by integration of 
the resulting current spike from each exocytosis event [46–48]. Amperometry can also 
provide kinetic information of vesicle release during the exocytosis process via analysis of 
current spike parameters like spike rise time, fall time and half width. These provide for 
dynamic information on for instance the vesicle fusion pore opening and closing as well as 
pore size and the fusion pore stability [51–53]. In Paper I, amperometry was used to show the 
high temporal resolution of an enzyme-based sensor for detecting the neurotransmitter 
acetylcholine released from vesicles in an artificial cell model [54]. Hence, the poor 
selectivity of amperometry for ordinary carbon fiber electrode can be improved by the design 
of enzyme-based sensor [46]. 
 
 
 

(1) 

(2) 

(3) 
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5. OPTICAL SPECTROSCOPY 

 
5.1 Ultraviolet-visible (UV-Vis)  Absorption Spectroscopy 
Molecules absorb light emitted by a light source at a particular wavelengths. The light 
absorbed by samples in ultraviolet-visible (UV-Vis) absorption spectroscopy locates in the 
ultraviolet-visible region. Figure 8 shows the basic setup for a UV-Vis adsorption 
spectrophotometer. A monochromator firstly selects light with a narrow range of wavelength 
(approximately 200 nm to 800 nm) from a wider range of wavelength, and lets the selected 
light passes through sample solution. The intensity of light decreases after passing through 
sample solution when the light is absorbed by sample. It means the incident light intensity (𝐼0) 
is reduced compared to the transmitted intensity (𝐼 ) (i.e., 𝐼0 ≥ 𝐼 ). UV-Vis absorption 
spectroscopy is usually used to determine the concentration of sample based on Beer-Lambert 
law (see Equation 4) [55]:  
 

A = log
I!
I = ε ⋅ l ∙ c 

 
where A is the absorbance, 𝜀 is the molar extinction coefficient of a molecule at a specific 
wavelength, in units of 𝑀!!𝑐𝑚!! ,  𝑙 is the optical path length passing sample, 𝑐 is the 
concentration of sample in solution. 
 

 
 

5.2 Fluorescence Spectroscopy 

Fluorescence Spectroscopy typically analyzes the emitted light (i.e., fluorescence) from a 
sample. Figure 9 depicts the main parts of a fluorimeter. Basically, an excitation light passes 
through a monochromator and subjects the sample to a particular wavelength of the light that 
excited the analytes by the absorption of part of the incident light and results in emission of 
fluorescent light in all directions. The fluorescent light is captured by a detector after passing 
through a monochromator. Usually the detector is placed at 90° to the direction of incident 
light to reduce the possibility of detecting interferences from incident light. In a fluorescence 

(4) 

Figure 8. Schematic of the basic setup of a UV-Vis absorption spectrophotometer. 

Light Source

Entrance Slit

Monochromator

Exit Slit

Sample

Detector

I0 I

Length (l)
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measurement, the excitation wavelength is fixed and the intensity of the emitted light is 
recorded from a range of wavelengths of light.  
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 9. Illustration of the basic setup of a fluorimeter. 
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6. NANOPARTICLE SIZE CHARACTERIZATION 

 
6.1 Dynamic Light Scattering (DLS) 
Dynamic light scattering (DLS) is a technique used to determine the size of particles under 
Brownian motion. It is done via illuminating the particles by a light source such as a laser and 
then analyzing the intensity fluctuations from the scattered light. Brownian motion is the 
constant movement of particles due to their random collision with the fast-moving atoms or 
molecules in the gas or liquid that surrounds the particles [56]. Usually the large particles 
move slowly and small particles move fast. The relationship between the speed of a particle 
and its size can be explained by Stokes-Einstein equation (see Equation 5). 
 

𝐷 =  
𝑘!𝑇
6𝜋𝜂𝑟     

 
where 𝑘!  is the Boltzmann’s constant, 𝑇 is the absolute temperature, 𝜂 is dynamic viscosity, 
𝐷 is diffusion coefficient of particle,  𝑟 𝑖𝑠 the hydrodynamic radius of particle. 
 
 

 
 
A typical DLS system is illustrated as Figure 10. For a successful detection, the intensity of 
the scattered light should be within a specific measurable range, thus attenuator is used to 
adjust the intensity of the laser via adjusting the sample concentration, thereby obtaining the 
optimal intensity of the scattered light. Theoretically, a detector is able to be placed in any 
position since the particles scatter light in all orientations. However, 173°  backscatter 
detection was chosen since it can minimize the risk of multiple scattering, incident light 
passed through samples and side effects from contaminants.  
 
 

Figure 10. Schematic of the dynamic light scattering (DLS). 

(5) 
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Figure 11. Illustration of nanoparticle tracking analysis (NTA). 

6.2 Nanoparticle Tracking Analysis (NTA) 
Nanoparticle tracking analysis (NTA) is a method to determine particle size via visualizing 
the particles in liquids under Brownian motion. NTA is able to profile particle size 
distribution in liquid suspension with diameters that range of approximate 10-1000 nm. 
 

 
 
As shown in Figure 11, a laser beam passes through the particles in suspension and 
illuminates the particles, the scattered light is captured and visualized by a microscope onto 
which is equipped with a camera. The tracking and analysis of individual particles from 
captured videos by a software complements DLS measurements [57]. The hydrodynamic 
diameter analysis is based on the Stokes-Einstein equation (Equation 5). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 16 

7. SUMMARY 

 
The work that was performed in this thesis was focused on development of novel sensors for 
fast detection of non-electroactive molecules that are involved in neuronal activity in the brain. 
An acetylcholine sensor was manufactured in Paper I. The affect on enzyme structure by 
enzyme adsorption to the surface of nanoparticles that is highly correlated with catalytic 
efficiency of immobilized enzymes on sensor surfaces was studied in Pager II. 
 
In Paper I, a novel enzyme-based electrochemical biosensor was designed for rapid detection 
of the neurotransmitter acetylcholine and displayed recordings of single vesicle release events 
from an artificial cell in the millisecond time scale as shown in Figure 12. Compared to the 
amperometric spike of electroactive dopamine (Figure 12, C), it can be seen that the detection 
of non-electroactive acetylcholine (Figure 12, B) is slower, but still on the similar time scale.  
 

 
The temporal resolution of these experiments were shown by using an artificial cell model to 
mimic single vesicle release of acetylcholine during exocytosis to temporally resolve single 
vesicle release event on similar time scale as detection of the electroactive neurotransmitter 
dopamine as shown in Figure 13. To determine the magnitude for the temporal resolution of 
this sensor and a home-built microfluidic flow cell system was used and the limiting size of 
artifacts by switching flow of solution in the chip conclusions could only be made that the 
temporal resolution is higher than 40 ms. The sensor’s essential part is a carbon fiber 
microelectrode with electrodeposited AuNP hemispheres to which two sequential enzymes 
(i.e., AChE and ChO) were immobilized and forming a thin close to monolayer coverage.  

Figure 12. Time resolved detection of acetylcholine. (A) Representative trace of time resolved repeated 
exposure to vesicle acetylcholine release from the artificial cell model. (B) The average spike (recorded at 
−0.4 V vs. an Ag/AgCL reference electrode) detecting acetylcholine release (C) the average spike (recorded at 
+0.8 V vs. an Ag/AgCL reference electrode) detecting vesicle release of dopamine. The spikes presented in 
parts (B) and (C) are average spikes generated by averaging n > 10 individual vesicle release events.  
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In Paper II, Figure 13 shows the determination of GOx-AuNP conjugates size via DLS and 
NTA measurements. Data from both DLS and NTA measurements show that a stable 
monolayer of GOx covering the AuNPs. Hence, enzyme monolayer covered GOx-AuNP 
conjugates were obtained from using an AuNP-to-GOx ratio 1:1000 during the conjugation 
process.  It also shows that the GOx does not completely collapse in size after adsorption to 
the 20 nm AuNPs. It means that the 20 nm AuNP with a highly curved surface might be able 
to retain enzyme structure, and is therefore able to keep the enzyme’s full activity. These 
results imply that GOx immobilized on to the sensor surface might be able to maintain a high 
working efficiency.  
 

 

 

 

 
 
 
 

Figure 13. The hydrodynamic diameter measured of GOx-AuNP conjugates and 20 nm 
AuNP at room temperature 22. Red markers display the collected data from DLS 
measurements with attenuation 8. Black markers are diffusion coefficient of GOx-AuNP 
conjugates from DLS measurements. Blue markers show the data from NTA 
measurements. The measurements were carried out at 6 hours after the conjugation 
process of GOx and AuNP. Error bars are standard deviation. SBC buffer was filtered 
with 20 nm syringe filters. 
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8. FUTURE PLAN 

 
The big goal for these projects is to design, construct and implement biosensors with ultra-fast 
temporal resolution for detection of non-electroactive molecules in vivo during neuronal 
activity in the brain. Based on the work that has been done, the work planned to be carried out 
in the near future is described as follows: 
 
Firstly, we will finalize the characterization of the glucose and glutamate biosensors designed 
with monolayer of enzyme coverage at the AuNP coated microelectrode surface. The AuNP-
to-enzyme ratios obtained from Paper II and Pager III (Appendix) will be used during the 
biosensor fabrication to control and optimize the enzyme coating for these sensors. The 
sensors will be characterized in terms of, sensitivity, selectivity and stability using both 
established analytical methods. The temporal resolution of the sensors needs to be tested. 
However existing methods are only applicable to other existing sensors with much slower 
temporal resolution and are suitable for recording speed on the second time scale. Therefore 
new methods that can be used for these ultra-fast biosensors needs to be developed and tested.. 
 
Secondly acetylcholine, glucose and glutamate sensors will be applied and tested on brain 
tissue from different animal models such as rats in vivo and ex vivo. The recorded signals will 
be verified with alternate analytical methods. 
 
In addition, modifications of the sensor’s surface will be designed for preventing enzyme loss 
during insertion of the sensor into brain tissue and be suitable for in vivo experiments in the 
brain. For example, the sensor surface will be modified with nanopores that provides a 
concave surface instead of convex surface of AuNPs. To encapsulate the enzymes into 
nanopore structure provides a physical protection for the enzymes when the sensor is inserted 
into tissue.  
 
Besides, the properties of sensors with different surface modification schemes will be 
compared, and investigate how detection speed, stability and sensitivity of the sensor is 
affected.  
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