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A Genetic Algorithm-based Antenna Selection
Approach for Large-but-Finite MIMO Networks

Behrooz Makki, Anatole Ide, Tommy Svensson, Thomas Eriks8tohamed-Slim AlouiniFellow, IEEE

Abstract—We study the performance of antenna selection- communication models of the users, where in each time slot
based multiple-input-multiple-output (MIMO) networks wi th  the users may request for data transmission with different
large but finite number of transmit antennas and receivers. probabilities. The contribution of the paper is twofold.\1

Considering the continuous and bursty communication scen#s d | fficient ant lecti h b d th
with different users’ data request probabilities, we devebp an evelop an eflicient antenna seiection scheme based on the

efficient antenna selection scheme using genetic algoritre{GA). GAs [6]. With the proposed GA-based approach, the appropri-
As demonstrated, the proposed algorithm is generic in the sse ate transmit antennas are activated based on the instaotane
that it can be used in the cases with different objective funions,  channel quality such that the system performance is opgithiz
precoding methods, levels of available channel state inforation As we show, the algorithm is generic in the sense that it can

and channel models. Our results show that the proposed GA- - . . .
based algorithm reaches (almost) the same throughput as the be efficiently applied with different amount of channel stat

exhaustive search-based optimal approach, with substartily less ~ information (CSI) at the transmitters/receivers, varichan-
implementation complexity. nel/data communication models, objective functions a$ agl
. INTRODUCTION precoding schemes. This introduces the proposed algorithm

To address the demands on the next generation of wirele;-iisa powerful tool for performance comparison of different

networks, the main strategy persuaded recently is the algorithms in a broad range of communication scenarios. 2)
work densification[1]-[4]. One of the promising techniques e compare the performance of our proposed approac_h with
to densify the network is to use many transmit antennflpse state-of-the-art sc_hemes and evaluate the effectfefelift
and/or receive terminals. This approach is referred to 1@ la parameters such as imperfect CSI, n_l_meer of users/antennas
multiple-input-multiple-output (MIMO) in the literature and the users’ data request probability on the performance

In general, the more antennas the transmitter and/or t%feantenna selection-based MIMO setups. Particularlyttier

receiver are equipped with, the better the data rate/lifia-re §|mulat|0ns we consider the sum throughput and the Jain

bility. Thus, the trend is towards asymptotically high nnb index [14] as two performance metrics in extreme cases with

of antennas. However, large MIMO implies challenges Suéﬁ)portunistic and fair data transmission.
L Ver, 1arg . P ) 9 .. Our results, which are derived based on simulations, inelica
as hardware impairments and signal processing comple>&|rt¥

which may limit the number of antennas in practice. Thus it | at 1) the proposed GA-based antenna selection scheme

. : ; reaches (almost) the same performance as in the optimal
interesting to analyze MIMO networks in the presence Ofdar%xhaustivfe searc)h-base d apprl?)ach with substantiallyi mz

but finite number of antennas. Particularly, antenna SemCtrplementation complexity. Moreover, 2) the algorithm isceff

algorithms, e.g., [1]-[4], in which only a set of antennas at. . :
) . . tively applicable for various convex and non-convex perfor
activated based on the channel quality, are appropriatsnses . . ; :
mance metrics. Also, 3) in the optimal case, the network Jain

to utilize the diversity of Iarge MIMO systems W'th. high per_index is almost insensitive to the amount of CSI available at
antenna power and few radio-frequency (RF) chains.

th(a transmitter, if zero-forcing precoder is implementéde

Antenna selection/beamforming based on Tabu search ST
priority-based genetic algorithm (GA) is considered in §bd ?;%LL?H%TCOST ghtetr?etht(re;r?sarlnqgt'e:rs significantly affectediry t

[6], respectively. The symbol error probability [7], thetage -
probability [8] and the bit error probability [9] of the neork .| ¢ Problem setup of the paper is different from, e.g.,
. . . [1]-[13], because we consider continuous and bursty data
are analyzed for different antenna selection algorithmsrem o . .
. ; communication scenarios and concentrate on the cases with
over, [10]-[12] and [13] develop different selection sclesmo
P e : different channel/CSI models. Moreover, the proposed GA-
maximize the capacity in spatially correlated and uncatesl :
" X : based algorithm has not been presented before.
conditions, respectively. Finally, e.g., [1]-[4] have eady
studied the problem in massive MIMO networks. 1. SYSTEM MODEL

In this paper, we elaborate on the performance of large-consider a multiuser MIMO setup with/ transmit anten-
but-finite MIMO networks utilizing antenna selection. Th§ a5 and a maximum oW < M single-antenna users. With a
results are obtained for the cases with continuous andyburgf, sty communication model, in each time slot differentrase

Behrooz Makki, Tommy Svensson and Thomas Eriksson are wimay req_ueSt for data transmission W_Ith probab|hty N(_)te.
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slim.alouini@kaust.edu.sa time slot¢, the received signal is given by

978-1-4799-5863-4/14/$31.00)2014 IEEE y(t) = PHOV(®)s(t) + 2(t),2(t) € V1 (1)



Here, representing the number of selected transmit antenna - Pgii
by m, H(t) € CV*m is the fading matrix with the(i, j)- 1Y) = \;YlogQ <1 M2 S 1)’ ©
th element given byH, ;(t) = dffjtjhm(ﬁ) whered; ; is the ' ’
distance between the receivieand antenng, ¢; ; is given by N Po. .
the path loss exponent artg ;(¢t) € C denotes the small scale R(N) = Zlogz <1 + ~ Jii )7 @)
fading. Theng(t) denotes the transmitted messay¢t) is the i=1 > jm1,#i 91 1
precodig matrix ana(t) € CV*! denotes the independent angtg per channel use (bpcu), wheyg; is the (i, j)-th element
identically distributed (IID) complex Gaussian noise matr of the matrixG = [HV/|2. ’ ’
with normalized variance. Alsa? represents the total power Following the same procedure, the Jain index which rates
budget and, depending on the precoder type, different POWRE faimess between the users is defined as [14]
normalization constraints can be considered for the precod N
To simplify the presentation, we drop the time indei the T = Z Pr(N)E{J(N)}, (8)
following. NZ1

The channel coefficients are assumed to be known by tvr\]/ﬁere
receivers which is an acceptable assumption in block-tadin (ZN 7«)2
conditions [2]-[4], [7]-[13]. However, this is not a necess J(N) = =10 ri = log, [ 1+ Pgii .
assumption and, using [15], the results can be extendedkto th NN 27 2 PZJN:LJ'# gij+1
cases with imperfect CSI at the receivers. On the other hand, ’ (9)
the transmitter is provided with imperfect CSI modeled by

H = SH + /1 - 52H, 2)

and

Note that withN users the Jain index ranges betwegn-= %
for the least fair distribution to7 = 1 for the fairest

where H and H denote the known and the unknown partgistribution. Therefore, to have a fair system the objects/
of the channel, respectively. Als@, € [0,1] determines the {0 approach’ = 1. Also, among our motivations for the Jain
quality of the CSI available at the transmitter with= 0 (resp. index analysis is to highlight the effectiveness of the jpsg

3 = 1) representing the cases with no (resp. perfect) CSI &gorithm in optimizing the non-convex criteria.

the transmitter. In this way, the precoder is designed based 1. ALGORITHM DESCRIPTION

H known by the transmitter.

As we show, the proposed algorithm can be used for a broguyvlth a tOte.lI power budget, the per-antenn_a_power may
. . . : ecrease by increasing the number of transmitting antennas
range of performance metrics. However, in the simulatiores,

_ ' On the other hand, the MIMO diversity increases with the
concentrate on the sum throughput and Jain index, as olgect] . )

) . - ! o ) nhumber of antennas. Thus, there is a tradeoff and, depending
functions in opportunistic and fair data transmission scies,

. . . on the instantaneous channel condition, there may be an
respectively. These metrics are defined as follows. . o
. . ; timal set of antennas optimizing the system performance.
Denote the set of data requesting users in a time slot nsidering our general problem formulation/systm moitel
X C{1,...,N}, and the cardinality oft’ by C'x. Then, the g 9 P Y '

sum throuahout. averaged over manv time slots. is aiven bis difficult to derive the optimal antenna selection schemes
ghput, 9 P y 159 ¥nalytically. Also, with M transmit antennas, there azé’

o (@) possible antenna selection strategies. Therefore, thenalpt

n= ;PT(X)E{R(HW)} B szijr(N)E{R(N)}. 3) set of antennas can indeed be selected via exhaustive search
in the cases with few antennas. However, as the network size

Pr(X) = a%*(1 — a)N—CX (4) 9rows, which is of interest in the next generation of wirgles
networks, we need to design efficient algorithms to deriee th

is the prObablhty that SpeCifiC usefrsc X request for data (Sub)optima| antenna selection with low Comp|e;(_|ty

transmission (and the rest remain Silent). AlSO, the pr[blbﬁb In this paper, we propose a GA-based antenna selection

that V users request for data transmission, independently;ﬂ;proach as explained in Algorithm 1. In words, the algonith

—
g

Here,

the users’ indices, is given by is based on the following procedure. Start the algorithm by
N } A . . .
Pr(N) = o (1 _a)N—N7 (5) considering K possible antenna selection strategles..Each
N strategy corresponds to a selected set of antennas, i-e., se

lecting a sub-matrix of matrifl € CV*M In each iteration,

we determine the best strategy, referred to asqtireen that

éesults in the best value of the considered utility function

compared to the other considered strategies (for instances
e highest throughput if the sum throughput is the objectiv

unction). Then, we keep the queen for the next iteration and

channel realization&l. createJ < K matrices around the queen. This is achieved

Assuming the cases with no interference cancellation at tgg sﬁ:rl]ylir:]g sarr;:\lllv TS&'S;?%?lsnggn;hai ?nu?rfg;s;?rofe);rtgﬂsés
users andn transmitting antennas with equal average pow: 4 ging

allocation, the achievable rate termi¢H|X') and R(N) areé  1ror example, with) = 100 the number of possible selections in the
respectively obtained by exhaustive search is of orde03°.

with (7) being the h choose k operator. Thus,(a) in (3)
holds in the cases with identical long-term channel stesist
of the users, on which we concentrate in the simulationsnTh
denoting the expectation operator Wy{-}, E{R(H|X)}
stands for the expected achievable throughput given thee d
requesting users € X, with expectation over all possible



associated with the queen or by adding/omitting a number of antenna selection when the number of antennas increases

antennas in the queen. Also, in each iteratior J — 1 sets of

antennas are selected randomly and the iterations corfinue 3)
Nit times considered by the designer. Running all considered

iterations, the queen is returned as the antenna selectien r
of the current network realization. The appropriate patame
setting for K and J in the algorithm can be found by
simulations. Particularly, our simulations show that theper
values of K and.J are almost insensitive t& and M, and

(see Section IlI.A for complexity analysis).

Due to step VII. of the algorithm, whe#€ —J—1 random
channel assignments are checked in each iteration, the
proposed GA-based algorithm mimics the exhaustive
search if Ny — oo and it reaches the globally optimal
selection rule if infinitely many iterations are considered
That is, the proposed scheme is optimal when the number

for different cases we have observed fairly good convergenc4)
speed by setting = £.

of iterations increases asymptotically.

For generality, Algorithm 1 considers no constraint on

the number of transmit antennas. However, Steps |, V
and VIl can be easily adapted such that the considered

Algorithm 1 GA-based Antenna Selection Algorithm

number of transmit antennas is not less than the number

In each time slot withV data requesting users and the instan-
taneous channel realizatidd € CV*M from all antennas to
the data requesting users, do the followings:

of users, and the multiplexing gain is guaranteed.

) Finally, while we presented the algorithm for antenna
selection in the cases with a single transmitter, it can be
well applied in different complex optimization problems
such as user scheduling in MIMO broadcast networks
and resource allocation in return-link multi-beam satelli
systems/distributed MIMO networks.

Consider K, e.g., K = 10, sets of antennad1, k =
1,..., K, and for each set create the corresponding sub-
channel matrix fronl € ¢V*M which is known by the
transmitter (see (2)); consequently,associated matrices
H, e cV*ms | =1... K, are created where,

cardinality of the setM. . N .
For each matrixfl;, k — 1. .., K, design the considered The proposed algorithm leads to significantly less imple-

precoding scheme and evaluate the instaneous valueMgntation complexity, compared to exhaustive search. ishis
the objective functiony,k = 1,..., K. For instance because the algorithm impligs N;; trials of antenna assign-
considering the throughput (resp. the Jain index) as tR¥NtS which, depending on the considered parameter sgtting

objective function, the instaneous valuelaf is given by €an be considerably low (see Table | and Fig. 1 for example
(6) (resp. (9)). results). The proposed algorithm may not be the most low-

isthe A on the Implementation Complexity

Il Find the set of antennas which results in the best val@mplex algorithm in the literature; instead its advantbee

VI.

of the objective function (the queen), e.g\l; where in_ its generality, in the sense thafc it can be implemented for
R(H,) < R(H,), Vk = 1,..., K, if the throughput is different channel models, precoding schemes, aval_lablle Cs
the objective function. etc. Therefore, our proposed scheme can be considered as a
My — M,. yardstick for performance evaluation of different algomits,
GenerateJ < K, eqg.,J = 5, sets of antennas nd investigate the effect of different channel conditidata
MW i — 1, ... J, around M,. These sets are gen_transmlssmn techniques on the network performance.

erated by small changes in the queen; for instance, b Fipally, as an iIIustretive examp_le, we derive the.com-
replacing few antennas with another set of antennas Qﬁexﬂy in the cases with zero-forcing precoder, contirgiou

by adding/omitting a number of antennas in the queen(.:ommunication and the sum throughput as the objective
Mgy e MW G =1 J function. Here, due to symmetry, the considered matrices
P ey d.

VII. Regenerate the remaining sefsl;,j = J +2,..., K, Hik =1... K, are of sizeN x my with my. € [1, M]

randomly with the same procedure as in Step I. and Pr(my,) = 4;. Then, considering the “pinv” function of

VIIl. Go to Step II. and continue folV; iterations where, ~MATLAB (with complexity O(max (N, my) min(N, mp)? +

Return the queen as the antenna selection rule of the cur &
time slot.

is the number of iterations considered by the designer™in(XV,mx)?)) and the products of twoN x mj ma-
rt| es (with complexity O(N?my)) to calculate the pre-

coéing and the received signal-to-interference-plus&oa-

Considering Algorithm 1, it is interesting to note that:

1)

2)

tio (SINR) matrices, respectively, the algorithm complex-
ity is given by% Zi\rizl{(’)(max(]\f, my) min(N, my)? +
min(N,my)3) + O(N?my)}; This can be low complexity,
the algorithm is independent of the channel model afgpending on the parametefs, Ni. Also, the complexity

can be implemented in different data communicatioflecreases in the cases with bursty communication.
models. Also, the proposed algorithm is applicable for

various objective functions/precoding schemes.
The GA-based algorithms are commonly considered asFor the simulation results, we consider Rayleigh-fading
slow optimization schemes. However, as seen in tlenditions, use zero-forcing precoder with an average powe
following, the proposed algorithm leads to (almost) thrormalization constraint and séf; = 1,Vi, j. In the mean-
same results as the optimal (exhaustive-search) antetinge, we have tested the algorithm for different large-iscgl
selection with few number of iterations. Therefore, thé&ading factors which show the same qualitative conclusions
algorithm is reasonably fast and it can be implemented fas in the presented figures. In all figures, we have considered

IV. SIMULATION RESULTS



5 x 10° different channel realizations for each point in the
simulation curves. Figures 1-2, 4 consider continuous data
communication modelo( = 1). Then, with a bursty com-

10

L%

o

munication setup, we investigate the effect of the usert da =8l i o
. . . < || 95 Continuous communication
request probability on the sum throughput in Fig. 3. In all g4 M = 100, N = 20,6 = 0.4, P = 10 dB
figures, except Fig. 1, the algorithm is run for sufficientyge E H
number of iterations until no further performance improesin E §D ol
is observed by increasing the number of iterations. Then, in = 2
s

Fig. 1 and Table | we study the performance of the proposed
antenna selection approach for different numbers of itarat
Here, the results are presented f6r= 10 and.J = 5. In the

meantime, we have checked the results for other parameigfire 1. An example of the convergence process of the peabalgorithm.

acl

o

100 200

300

400 500

600

Number of iterations IN

700

settings of the algorithm as well. Finally, the sum througihp Continuous communicationy = 20, M = 100, 3 = 0.4, P = 10 dB.

is considered as the metric in Figs. 1-3, while Fig. 4 studies
the network Jain index in a fair data transmission scenario.

Table |

EXAMPLES FOR THE AVERAGE NUMBER OF ITERATIONS REQUIRED FOR
THE CONVERGENCE OF THE ALGORITHM THE RESULTS ARE AVERAGED

Figure 1 shows an example for the convergence of the pro- oyer5 x 10 DIFFERENT RANDOM CHANNEL REALIZATIONS.

posed GA-based algorithm in the cases with= 100, N =

20, K = 10,J = 5,8 = 0.4,P = 10 dB. Here, we plot . M Mo [ M =0
the relative achievgble thr(_)ughpm = ;%‘;%, whereny, is GA J=0 570000 1> 10000 TS 10000
the throughput achieved witj iterations. Alsoy., denotes GA J=9 7437 7600 7691
the maximum achievable throughput with asymptoticallyhhig | Tabu without Step VII,J =0 | > 10000 | > 10000 | > 10000
number of iterations of the algorithm, which is the same as—122uWith Step VIl.J =5 6919 6949 7580

the throughput of the exhaustive search-based approach.
Setting K = 10, Table | shows the average number of
iterations that are required in the proposed algorithm hieae
the maximum exhaustive search-based throughput. Also, the
table compares the performance of the proposed algorithm
with J = 0,5 and the cases where in each iteration all candi-
dates, except the queen, are selected randomly,Ji£.9. In
parallel to our work, [5] has recently developed an alganith
based on Tabu search for beamforming in millimeter-wave
communication. There, while the same conceptual procedure
as in our work is followed to search around the solution
candidates, specific criteria are set to generate neighbors
around the queen, and Step VII of our algorithm which is
used to reduce the effect of local minima is not considened. |
Table I, we compare the performance of our scheme and the
ones derived by considering the neighbor generation method
of [5] in the cases with and without Step VII. R
Considering continuous communication, Fig. 2 demon-
strates the effect of the available CSI on the throughputeHe
we setM = 80,N = 10 and plot the relative throughput
A = ”éi’l % wheren(j3) is the throughput achieved with
imperfect CSI modeled by parametgin (2). Also,n(8 = 1)
denotes the maximum achievable throughput with perfect CSI

based scheduler with very limited number of iterations
(note that with the parameter settings of the figure,
exhaustive search implies testing in the order16f°
possible antenna selection strategies). For instanch, wit
the parameter settings of Fig. 1, the proposed algorithm
reaches more tha®8% of the maximum achievable
throughput with less tharb0 iterations (in all tested
channel realizations we observed% of the maximum
achievable throughput with less thafo iterations). As
seen, the algorithm converges in a ladder fashion. This
is because the system performance is not necessarily
improved in each iteration and it may reach a local
optimum in some iterations. However, due to Steps V and
VII of the algorithm, it can always escape a local minima
and reach the global optimum if sufficiently large number
of iterations are considered.
Comparison of different schemeSearching around the
queen, i.e., Step V of Algorithm 1, can effectively im-
prove the convergence speed and, compared to the cases
with J = 9, the required number of iterations reduces
considerably if we set/ = 5 (compare Rows 1 and

3 of Table I). With and without neighbor generation

i it di i X 10 : : : : : :
at the transmltter_(see (_2)). With different levels of imfpet o5 Continuous communication model,
CSI at the transmitter, Fig. 3 shows the network sum through- 2|4 M =80,N = 10
put for different users’ data request probabilities in asbur ”t 80r
communication setup. Here, the results are presented éor th .«
cases withM = 40, N = 20,8 = 0.4,0.8, and P = 5, 7 dB. 2 60 §
Finally, Fig. 4 shows the performance of the proposed = S
algorithm in a fair data transmission scenario with Jaireind 5 7 —pP=8dB
being the objective function. Here, the results are prestiur £ 40 < P=6 dB |
M = 80, N = 10 and different levels of CSI at the transmitter. 2 —P=4dB
According to the figures, the following points are concluded ;i 200 _# ---P=0dB|
. : ~ : ‘ : ‘ : ‘
On the performance of the proposed schedukes:seen 03 04 05 06 07 08 09

in Fig. 1 and Table I, the developed scheduler leads to CSl accuracy parametgr

(almost) the same performance as the exhaustive seanghure 2. The relative throughpidt = n&g@m% for different imperfect CSI

levels. Continuous communicatioN = 10, M = 80.




constraints of [5], ignoring Step VII of the algorithm
increases the required number of iterations significantly
(Table I, Rows 2 and 4). This is intuitively because, with-
out Step VII of the algorithm, there is high probability
that the algorithm is trapped in a local minima. Also,
considering constraints on neighbor generation increases
the required number of iterations, compared to the cases
with no constraint on neighbor generation, intuitively
because the constraints limit the possible solutions that
can be checked in each iteration (compare Rows 1 and
5 of Table 1). Finally, selecting the best algorithm is not

Bursty communication,

M =40,N =20

Throughput (npcu)

0.2 0.4 06
Users data request probability

easy Slnce the dec|s|0n depends on Several paramewe 3. Throughput for different users’ data request ﬂb:lihles a, N =

such as the matrices sizes, affordable complexity, problezr%
formulation and the neighbor generation complexity.

« On the effect of imperfect CSln the optimal case, the
network Jain index is (almost) not sensitive to the amount
of CSI available at the transmitter (Fig. 4). On the other
hand, the sum throughput is significantly affected by the
CSlI at the transmitter (Fig. 2). Also, with imperfect CSI,
the relative system throughput is sensitive to the transmit
power at moderate values a¢f, while its sensitivity
decreases a8 increases.

« On bursty communicationith a bursty communication
setup, the sum throughput is sensitive to small users’
data request probabilities. However, the throughput sen-

M = 50.
1.02
1 f ]
é 0.98 Continugus .
c 1 communication,
.% 0.96 M =80,N =10
L) —pB=1
0.94 ---B=0.7
0.92 -=-3=0.5
--p3=0.3
0. -5 0 5 10
10Ioglo P

sitivity decreases as the users’ data request probabiliﬁgure 4. On the performance of the algorithm with Jain indeksidered

i.e., a, increases. Moreover, the proposed algorithm
well applicable for different continuous and bursty datag)
communication models.

o On fairness:The Jain index decreases (resp. increases)
slightly with the transmit power (resp. available CSI).4
However, the changes are negligible and, with different
parameter settings and zero-forcing precoder, the alg?s-]

rithm can be effectively utilized to guarantee fairness

between the users (Fig. 4). This also emphasizes the ef-
fectiveness of the proposed algorithm in the optimizatior®!
of non-convex metrics.

V. CONCLUSION [7]

We studied the performance of large-but-finite MIMO net-[g]
works using antenna selection. Considering different siser
bursty data request probabilities, we developed a GA-based
antenna selection approach and evaluated the effect efeliff  [°]
parameters on the network throughput and Jain index. As
illustrated, in the optimal case, the network Jain indesgre [10]
throughput) is almost insensitive (significantly sensifito
the amount of CSI available at the transmitter, if zero4fugc |17,
precoder is used. Finally, the proposed algorithm readhes t
maximum achievable throughput with few iterations. Ther?l-z]
fore, the algorithm can be practically implemented for ante
selection in MIMO networks. The mathematical analysis ef th
algorithm convergence is an interesting extension of theepa (13]
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