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A Genetic Algorithm-based Antenna Selection
Approach for Large-but-Finite MIMO Networks

Behrooz Makki, Anatole Ide, Tommy Svensson, Thomas Eriksson, Mohamed-Slim Alouini,Fellow, IEEE

Abstract—We study the performance of antenna selection-
based multiple-input-multiple-output (MIMO) networks wi th
large but finite number of transmit antennas and receivers.
Considering the continuous and bursty communication scenarios
with different users’ data request probabilities, we develop an
efficient antenna selection scheme using genetic algorithms (GA).
As demonstrated, the proposed algorithm is generic in the sense
that it can be used in the cases with different objective functions,
precoding methods, levels of available channel state information
and channel models. Our results show that the proposed GA-
based algorithm reaches (almost) the same throughput as the
exhaustive search-based optimal approach, with substantially less
implementation complexity.

I. I NTRODUCTION

To address the demands on the next generation of wireless
networks, the main strategy persuaded recently is the net-
work densification[1]–[4]. One of the promising techniques
to densify the network is to use many transmit antennas
and/or receive terminals. This approach is referred to as large
multiple-input-multiple-output (MIMO) in the literature.

In general, the more antennas the transmitter and/or the
receiver are equipped with, the better the data rate/link relia-
bility. Thus, the trend is towards asymptotically high number
of antennas. However, large MIMO implies challenges such
as hardware impairments and signal processing complexity
which may limit the number of antennas in practice. Thus, it is
interesting to analyze MIMO networks in the presence of large
but finite number of antennas. Particularly, antenna selection
algorithms, e.g., [1]–[4], in which only a set of antennas are
activated based on the channel quality, are appropriate schemes
to utilize the diversity of large MIMO systems with high per-
antenna power and few radio-frequency (RF) chains.

Antenna selection/beamforming based on Tabu search and
priority-based genetic algorithm (GA) is considered in [5]and
[6], respectively. The symbol error probability [7], the outage
probability [8] and the bit error probability [9] of the network
are analyzed for different antenna selection algorithms. More-
over, [10]–[12] and [13] develop different selection schemes to
maximize the capacity in spatially correlated and uncorrelated
conditions, respectively. Finally, e.g., [1]–[4] have recently
studied the problem in massive MIMO networks.

In this paper, we elaborate on the performance of large-
but-finite MIMO networks utilizing antenna selection. The
results are obtained for the cases with continuous and bursty
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communication models of the users, where in each time slot
the users may request for data transmission with different
probabilities. The contribution of the paper is twofold. 1)We
develop an efficient antenna selection scheme based on the
GAs [6]. With the proposed GA-based approach, the appropri-
ate transmit antennas are activated based on the instantaneous
channel quality such that the system performance is optimized.
As we show, the algorithm is generic in the sense that it can
be efficiently applied with different amount of channel state
information (CSI) at the transmitters/receivers, variouschan-
nel/data communication models, objective functions as well as
precoding schemes. This introduces the proposed algorithm
as a powerful tool for performance comparison of different
algorithms in a broad range of communication scenarios. 2)
We compare the performance of our proposed approach with
the state-of-the-art schemes and evaluate the effect of different
parameters such as imperfect CSI, number of users/antennas
and the users’ data request probability on the performance
of antenna selection-based MIMO setups. Particularly, forthe
simulations we consider the sum throughput and the Jain
index [14] as two performance metrics in extreme cases with
opportunistic and fair data transmission.

Our results, which are derived based on simulations, indicate
that 1) the proposed GA-based antenna selection scheme
reaches (almost) the same performance as in the optimal
exhaustive search-based approach, with substantially less im-
plementation complexity. Moreover, 2) the algorithm is effec-
tively applicable for various convex and non-convex perfor-
mance metrics. Also, 3) in the optimal case, the network Jain
index is almost insensitive to the amount of CSI available at
the transmitter, if zero-forcing precoder is implemented.The
throughput, on the other hand, is significantly affected by the
amount of CSI at the transmitter.

The problem setup of the paper is different from, e.g.,
[1]–[13], because we consider continuous and bursty data
communication scenarios and concentrate on the cases with
different channel/CSI models. Moreover, the proposed GA-
based algorithm has not been presented before.

II. SYSTEM MODEL

Consider a multiuser MIMO setup withM transmit anten-
nas and a maximum of̃N ≤M single-antenna users. With a
bursty communication model, in each time slot different users
may request for data transmission with probabilityα. Note
that settingα = 1 represents the continuous communication
model where all users are always active requesting for data
transmission. In this way, withN data requesting users at
time slot t, the received signal is given by

y(t) = PH(t)V(t)s(t) + z(t), z(t) ∈ CN×1. (1)978-1-4799-5863-4/14/$31.00c©2014 IEEE
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Here, representing the number of selected transmit antennas
by m, H(t) ∈ CN×m is the fading matrix with the(i, j)-
th element given byHi,j(t) = d

ζi,j
i,j hi,j(t) wheredi,j is the

distance between the receiveri and antennaj, ζi,j is given by
the path loss exponent andhi,j(t) ∈ C denotes the small scale
fading. Then,s(t) denotes the transmitted message,V(t) is the
precodig matrix andz(t) ∈ CN×1 denotes the independent and
identically distributed (IID) complex Gaussian noise matrix
with normalized variance. Also,P represents the total power
budget and, depending on the precoder type, different power
normalization constraints can be considered for the precoder.
To simplify the presentation, we drop the time indext in the
following.

The channel coefficients are assumed to be known by the
receivers which is an acceptable assumption in block-fading
conditions [2]–[4], [7]–[13]. However, this is not a necessary
assumption and, using [15], the results can be extended to the
cases with imperfect CSI at the receivers. On the other hand,
the transmitter is provided with imperfect CSI modeled by

H = βĤ+
√

1− β2H̃, (2)

where Ĥ and H̃ denote the known and the unknown parts
of the channel, respectively. Also,β ∈ [0, 1] determines the
quality of the CSI available at the transmitter withβ = 0 (resp.
β = 1) representing the cases with no (resp. perfect) CSI at
the transmitter. In this way, the precoder is designed basedon
Ĥ known by the transmitter.

As we show, the proposed algorithm can be used for a broad
range of performance metrics. However, in the simulations,we
concentrate on the sum throughput and Jain index, as objective
functions in opportunistic and fair data transmission scenarios,
respectively. These metrics are defined as follows.

Denote the set of data requesting users in a time slot by
X ⊆ {1, . . . , Ñ}, and the cardinality ofX by CX . Then, the
sum throughput, averaged over many time slots, is given by

η =
∑

∀X

Pr(X )E{R(H|X )}
(a)
=

Ñ
∑

N=1

Pr(N)E{R(N)}. (3)

Here,
Pr(X ) = αCX (1− α)Ñ−CX (4)

is the probability that specific usersn ∈ X request for data
transmission (and the rest remain silent). Also, the probability
that N users request for data transmission, independently of
the users’ indices, is given by

Pr(N) =

(

Ñ

N

)

αN (1 − α)Ñ−N , (5)

with
(

n
k

)

being the “n choose k” operator. Thus,(a) in (3)
holds in the cases with identical long-term channel statistics
of the users, on which we concentrate in the simulations. Then,
denoting the expectation operator byE{·}, E{R(H|X )}
stands for the expected achievable throughput given the data
requesting usersn ∈ X , with expectation over all possible
channel realizationsH.

Assuming the cases with no interference cancellation at the
users andm transmitting antennas with equal average power
allocation, the achievable rate termsR(H|X ) andR(N) are
respectively obtained by

R(H|X ) =
∑

∀i∈X

log2

(

1 +
Pgi,i

P
∑

∀j∈X ,j 6=i gi,j + 1

)

, (6)

and

R(N) =

N
∑

i=1

log2

(

1 +
Pgi,i

P
∑N

j=1,j 6=i gi,j + 1

)

, (7)

bits per channel use (bpcu), wheregi,j is the(i, j)-th element
of the matrixG = |HV|2.

Following the same procedure, the Jain index which rates
the fairness between the users is defined as [14]

J =

Ñ
∑

N=1

Pr(N)E{J(N)}, (8)

where

J(N)
.
=

(

∑N

i=1 ri

)2

N
∑N

i=1 r
2
i

, ri
.
= log2

(

1 +
Pgi,i

P
∑N

j=1,j 6=i gi,j + 1

)

.

(9)

Note that withN users the Jain index ranges betweenJ = 1
N

for the least fair distribution toJ = 1 for the fairest
distribution. Therefore, to have a fair system the objective is
to approachJ = 1. Also, among our motivations for the Jain
index analysis is to highlight the effectiveness of the proposed
algorithm in optimizing the non-convex criteria.

III. A LGORITHM DESCRIPTION

With a total power budget, the per-antenna power may
decrease by increasing the number of transmitting antennas.
On the other hand, the MIMO diversity increases with the
number of antennas. Thus, there is a tradeoff and, depending
on the instantaneous channel condition, there may be an
optimal set of antennas optimizing the system performance.
Considering our general problem formulation/systm model,it
is difficult to derive the optimal antenna selection schemes
analytically. Also, withM transmit antennas, there are2M

possible antenna selection strategies. Therefore, the optimal
set of antennas can indeed be selected via exhaustive search
in the cases with few antennas. However, as the network size
grows, which is of interest in the next generation of wireless
networks, we need to design efficient algorithms to derive the
(sub)optimal antenna selection with low complexity1.

In this paper, we propose a GA-based antenna selection
approach as explained in Algorithm 1. In words, the algorithm
is based on the following procedure. Start the algorithm by
consideringK possible antenna selection strategies. Each
strategy corresponds to a selected set of antennas, i.e., se-
lecting a sub-matrix of matrixH ∈ CN×M . In each iteration,
we determine the best strategy, referred to as thequeen, that
results in the best value of the considered utility function,
compared to the other considered strategies (for instances,
the highest throughput if the sum throughput is the objective
function). Then, we keep the queen for the next iteration and
createJ < K matrices around the queen. This is achieved
by applying small modifications to the queen; for example,
by changing a few number of antennas in the set of antennas

1For example, withM = 100 the number of possible selections in the
exhaustive search is of order1030.
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associated with the queen or by adding/omitting a number of
antennas in the queen. Also, in each iterationK−J−1 sets of
antennas are selected randomly and the iterations continuefor
Nit times considered by the designer. Running all considered
iterations, the queen is returned as the antenna selection rule
of the current network realization. The appropriate parameter
setting for K and J in the algorithm can be found by
simulations. Particularly, our simulations show that the proper
values ofK and J are almost insensitive tõN andM , and
for different cases we have observed fairly good convergence
speed by settingJ = K

2 .

Algorithm 1 GA-based Antenna Selection Algorithm
In each time slot withN data requesting users and the instan-
taneous channel realizationH ∈ CN×M from all antennas to
the data requesting users, do the followings:

I. ConsiderK, e.g.,K = 10, sets of antennasMk, k =
1, . . . ,K, and for each set create the corresponding sub-
channel matrix fromĤ ∈ CN×M which is known by the
transmitter (see (2)); consequently,K associated matrices
Ĥk ∈ C

N×mk , k = 1 . . . ,K, are created wheremk is the
cardinality of the setMk.

II. For each matrixĤk, k = 1 . . . ,K, design the considered
precoding scheme and evaluate the instaneous value of
the objective functionUk, k = 1, . . . ,K. For instance,
considering the throughput (resp. the Jain index) as the
objective function, the instaneous value ofUk is given by
(6) (resp. (9)).

III. Find the set of antennas which results in the best value
of the objective function (the queen), e.g.,Mi where
R(Ĥk) ≤ R(Ĥi), ∀k = 1, . . . ,K, if the throughput is
the objective function.

IV. M1 ←Mi.
V. GenerateJ ≪ K, e.g., J = 5, sets of antennas
Mnew

j , j = 1, . . . , J, aroundMi. These sets are gen-
erated by small changes in the queen; for instance, by
replacing few antennas with another set of antennas or
by adding/omitting a number of antennas in the queen.

VI. Mj+1 ←M
new
j , j = 1, . . . , J .

VII. Regenerate the remaining setsMj , j = J + 2, . . . ,K,

randomly with the same procedure as in Step I.
VIII. Go to Step II. and continue forNit iterations whereNit

is the number of iterations considered by the designer.

Return the queen as the antenna selection rule of the current
time slot.

Considering Algorithm 1, it is interesting to note that:

1) the algorithm is independent of the channel model and
can be implemented in different data communication
models. Also, the proposed algorithm is applicable for
various objective functions/precoding schemes.

2) The GA-based algorithms are commonly considered as
slow optimization schemes. However, as seen in the
following, the proposed algorithm leads to (almost) the
same results as the optimal (exhaustive-search) antenna
selection with few number of iterations. Therefore, the
algorithm is reasonably fast and it can be implemented for

antenna selection when the number of antennas increases
(see Section III.A for complexity analysis).

3) Due to step VII. of the algorithm, whereK−J−1 random
channel assignments are checked in each iteration, the
proposed GA-based algorithm mimics the exhaustive
search ifNit → ∞ and it reaches the globally optimal
selection rule if infinitely many iterations are considered.
That is, the proposed scheme is optimal when the number
of iterations increases asymptotically.

4) For generality, Algorithm 1 considers no constraint on
the number of transmit antennas. However, Steps I, V
and VII can be easily adapted such that the considered
number of transmit antennas is not less than the number
of users, and the multiplexing gain is guaranteed.

4) Finally, while we presented the algorithm for antenna
selection in the cases with a single transmitter, it can be
well applied in different complex optimization problems
such as user scheduling in MIMO broadcast networks
and resource allocation in return-link multi-beam satellite
systems/distributed MIMO networks.

A. On the Implementation Complexity

The proposed algorithm leads to significantly less imple-
mentation complexity, compared to exhaustive search. Thisis
because the algorithm impliesKNit trials of antenna assign-
ments which, depending on the considered parameter settings,
can be considerably low (see Table I and Fig. 1 for example
results). The proposed algorithm may not be the most low-
complex algorithm in the literature; instead its advantagelies
in its generality, in the sense that it can be implemented for
different channel models, precoding schemes, available CSI,
etc. Therefore, our proposed scheme can be considered as a
yardstick for performance evaluation of different algorithms,
and investigate the effect of different channel conditions/data
transmission techniques on the network performance.

Finally, as an illustrative example, we derive the com-
plexity in the cases with zero-forcing precoder, continuous
communication and the sum throughput as the objective
function. Here, due to symmetry, the considered matrices
Ĥk, k = 1, . . . ,K, are of sizeN × mk with mk ∈ [1,M ]
andPr(mk) =

1
M
. Then, considering the “pinv” function of

MATLAB (with complexity O(max(N,mk)min(N,mk)
2 +

min(N,mk)
3)) and the products of twoN × mk ma-

trices (with complexityO(N2mk)) to calculate the pre-
coding and the received signal-to-interference-plus-noise ra-
tio (SINR) matrices, respectively, the algorithm complex-
ity is given by KNit

M

∑M

mk=1{O(max(N,mk)min(N,mk)
2+

min(N,mk)
3) + O(N2mk)}; This can be low complexity,

depending on the parametersK,Nit . Also, the complexity
decreases in the cases with bursty communication.

IV. SIMULATION RESULTS

For the simulation results, we consider Rayleigh-fading
conditions, use zero-forcing precoder with an average power
normalization constraint and setdi,j = 1, ∀i, j. In the mean-
time, we have tested the algorithm for different large-scaling
fading factors which show the same qualitative conclusions
as in the presented figures. In all figures, we have considered
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5 × 105 different channel realizations for each point in the
simulation curves. Figures 1-2, 4 consider continuous data
communication model (α = 1). Then, with a bursty com-
munication setup, we investigate the effect of the users’ data
request probability on the sum throughput in Fig. 3. In all
figures, except Fig. 1, the algorithm is run for sufficiently large
number of iterations until no further performance improvement
is observed by increasing the number of iterations. Then, in
Fig. 1 and Table I we study the performance of the proposed
antenna selection approach for different numbers of iterations.
Here, the results are presented forK = 10 andJ = 5. In the
meantime, we have checked the results for other parameter
settings of the algorithm as well. Finally, the sum throughput
is considered as the metric in Figs. 1-3, while Fig. 4 studies
the network Jain index in a fair data transmission scenario.

Figure 1 shows an example for the convergence of the pro-
posed GA-based algorithm in the cases withM = 100, Ñ =
20,K = 10, J = 5, β = 0.4, P = 10 dB. Here, we plot
the relative achievable throughput∆ =

ηNit
N∞

%, whereηNit is
the throughput achieved withNit iterations. Also,η∞ denotes
the maximum achievable throughput with asymptotically high
number of iterations of the algorithm, which is the same as
the throughput of the exhaustive search-based approach.

Setting K = 10, Table I shows the average number of
iterations that are required in the proposed algorithm to achieve
the maximum exhaustive search-based throughput. Also, the
table compares the performance of the proposed algorithm
with J = 0, 5 and the cases where in each iteration all candi-
dates, except the queen, are selected randomly, i.e.,J = 9. In
parallel to our work, [5] has recently developed an algorithm
based on Tabu search for beamforming in millimeter-wave
communication. There, while the same conceptual procedure
as in our work is followed to search around the solution
candidates, specific criteria are set to generate neighbors
around the queen, and Step VII of our algorithm which is
used to reduce the effect of local minima is not considered. In
Table I, we compare the performance of our scheme and the
ones derived by considering the neighbor generation method
of [5] in the cases with and without Step VII.

Considering continuous communication, Fig. 2 demon-
strates the effect of the available CSI on the throughput. Here,
we setM = 80, Ñ = 10 and plot the relative throughput
∆̃ = η(β)

η(β=1)% whereη(β) is the throughput achieved with
imperfect CSI modeled by parameterβ in (2). Also,η(β = 1)
denotes the maximum achievable throughput with perfect CSI
at the transmitter (see (2)). With different levels of imperfect
CSI at the transmitter, Fig. 3 shows the network sum through-
put for different users’ data request probabilities in a bursty
communication setup. Here, the results are presented for the
cases withM = 40, Ñ = 20, β = 0.4, 0.8, andP = 5, 7 dB.

Finally, Fig. 4 shows the performance of the proposed
algorithm in a fair data transmission scenario with Jain index
being the objective function. Here, the results are presented for
M = 80, Ñ = 10 and different levels of CSI at the transmitter.
According to the figures, the following points are concluded:

• On the performance of the proposed scheduler:As seen
in Fig. 1 and Table I, the developed scheduler leads to
(almost) the same performance as the exhaustive search-
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Figure 1. An example of the convergence process of the proposed algorithm.
Continuous communication,̃N = 20, M = 100, β = 0.4, P = 10 dB.

Table I
EXAMPLES FOR THE AVERAGE NUMBER OF ITERATIONS REQUIRED FOR
THE CONVERGENCE OF THE ALGORITHM. THE RESULTS ARE AVERAGED

OVER 5× 104 DIFFERENT RANDOM CHANNEL REALIZATIONS.

M = 60 M = 70 M = 100

GA, J = 5 6373 6460 6602
GA, J = 0 > 10000 > 10000 > 10000

GA, J = 9 7437 7600 7691
Tabu without Step VII,J = 0 > 10000 > 10000 > 10000

Tabu with Step VII,J = 5 6919 6949 7580

based scheduler with very limited number of iterations
(note that with the parameter settings of the figure,
exhaustive search implies testing in the order of1030

possible antenna selection strategies). For instance, with
the parameter settings of Fig. 1, the proposed algorithm
reaches more than98% of the maximum achievable
throughput with less than50 iterations (in all tested
channel realizations we observed95% of the maximum
achievable throughput with less than100 iterations). As
seen, the algorithm converges in a ladder fashion. This
is because the system performance is not necessarily
improved in each iteration and it may reach a local
optimum in some iterations. However, due to Steps V and
VII of the algorithm, it can always escape a local minima
and reach the global optimum if sufficiently large number
of iterations are considered.

• Comparison of different schemes:Searching around the
queen, i.e., Step V of Algorithm 1, can effectively im-
prove the convergence speed and, compared to the cases
with J = 9, the required number of iterations reduces
considerably if we setJ = 5 (compare Rows 1 and
3 of Table I). With and without neighbor generation
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Figure 2. The relative throughput̃∆ =
η(β)
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% for different imperfect CSI

levels. Continuous communication,̃N = 10, M = 80.
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constraints of [5], ignoring Step VII of the algorithm
increases the required number of iterations significantly
(Table I, Rows 2 and 4). This is intuitively because, with-
out Step VII of the algorithm, there is high probability
that the algorithm is trapped in a local minima. Also,
considering constraints on neighbor generation increases
the required number of iterations, compared to the cases
with no constraint on neighbor generation, intuitively
because the constraints limit the possible solutions that
can be checked in each iteration (compare Rows 1 and
5 of Table I). Finally, selecting the best algorithm is not
easy since the decision depends on several parameters
such as the matrices sizes, affordable complexity, problem
formulation and the neighbor generation complexity.

• On the effect of imperfect CSI:In the optimal case, the
network Jain index is (almost) not sensitive to the amount
of CSI available at the transmitter (Fig. 4). On the other
hand, the sum throughput is significantly affected by the
CSI at the transmitter (Fig. 2). Also, with imperfect CSI,
the relative system throughput is sensitive to the transmit
power at moderate values ofβ, while its sensitivity
decreases asβ increases.

• On bursty communication:With a bursty communication
setup, the sum throughput is sensitive to small users’
data request probabilities. However, the throughput sen-
sitivity decreases as the users’ data request probability,
i.e., α, increases. Moreover, the proposed algorithm is
well applicable for different continuous and bursty data
communication models.

• On fairness:The Jain index decreases (resp. increases)
slightly with the transmit power (resp. available CSI).
However, the changes are negligible and, with different
parameter settings and zero-forcing precoder, the algo-
rithm can be effectively utilized to guarantee fairness
between the users (Fig. 4). This also emphasizes the ef-
fectiveness of the proposed algorithm in the optimization
of non-convex metrics.

V. CONCLUSION

We studied the performance of large-but-finite MIMO net-
works using antenna selection. Considering different users’
bursty data request probabilities, we developed a GA-based
antenna selection approach and evaluated the effect of different
parameters on the network throughput and Jain index. As
illustrated, in the optimal case, the network Jain index (resp.
throughput) is almost insensitive (significantly sensitive) to
the amount of CSI available at the transmitter, if zero-forcing
precoder is used. Finally, the proposed algorithm reaches the
maximum achievable throughput with few iterations. There-
fore, the algorithm can be practically implemented for antenna
selection in MIMO networks. The mathematical analysis of the
algorithm convergence is an interesting extension of the paper.
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