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Abstract

Background: Finding a source from which high-energy-density biofuels can be derived at an industrial scale has
become an urgent challenge for renewable energy production. Some microorganisms can produce free fatty acids
(FFA) as precursors towards such high-energy-density biofuels. In particular, photosynthetic cyanobacteria are
capable of directly converting carbon dioxide into FFA. However, current engineered strains need several rounds of
engineering to reach the level of production of FFA to be commercially viable; thus new chassis strains that require
less engineering are needed. Although more than 120 cyanobacterial genomes are sequenced, the natural
potential of these strains for FFA production and excretion has not been systematically estimated.

Results: Here we present the FFA SC (FFASC), an in silico screening method that evaluates the potential for FFA
production and excretion of cyanobacterial strains based on their proteomes. A literature search allowed for the
compilation of 64 proteins, most of which influence FFA production and a few of which affect FFA excretion. The
proteins are classified into 49 orthologous groups (OGs) that helped create rules used in the scoring/ranking
of algorithms developed to estimate the potential for FFA production and excretion of an organism. Among 125
cyanobacterial strains, FFASC identified 20 candidate chassis strains that rank in their FFA producing and excreting
potential above the specifically engineered reference strain, Synechococcus sp. PCC 7002. We further show that the
top ranked cyanobacterial strains are unicellular and primarily include Prochlorococcus (order Prochlorales) and
marine Synechococcus (order Chroococcales) that cluster phylogenetically. Moreover, two principal categories of
enzymes were shown to influence FFA production the most: those ensuring precursor availability for the
biosynthesis of lipids, and those involved in handling the oxidative stress associated to FFA synthesis.

Conclusion: To our knowledge FFASC is the first in silico method to screen cyanobacteria proteomes for their
potential to produce and excrete FFA, as well as the first attempt to parameterize the criteria derived from genetic
characteristics that are favorable/non-favorable for this purpose. Thus, FFASC helps focus experimental evaluation
only on the most promising cyanobacteria.
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Background
The grand challenges of the 21st century include fulfilling
increasing demands for food, feedstock and chemical raw
materials. As potential feedstock for renewable energy, the
use of microbes that produce free fatty acid (FFA) has
been strongly suggested [1–5]. Substantial efforts have
been made to engineer Escherichia coli (E. coli) for FFA
production [6–9]. However, when E. coli produces FFA, it
requires fixed carbon sources that are too costly to be
exploited as feedstock. As an alternative, lignocellulosic
biomass was also considered as a feedstock, however this
process demands huge amounts of fresh water and farm-
land [10, 11]. Thus, photosynthetic cyanobacteria and
microalgae that directly convert carbon dioxide into FFA
are seen as more promising alternatives. In comparison to
microalgae, cyanobacteria can be more easily genetically
engineered because they have smaller and less complex
genomes, and are often naturally competent for DNA
uptake [11]. Moreover, cyanobacteria have the ability to
excrete FFA that simplifies the biomass extraction process
thereby reducing total cost by at least 70% [12].
There are several aspects to consider when evaluating

the potential of a cyanobacterial strain as a candidate
chassis strain for FFA production in the context of bio-
fuel production. Some of these aspects include: 1/native
biosynthetic capability for FFA production and excretion,
2/environmental robustness, 3/strain turnover rate, 4/
the necessary gene expression levels, 5/metabolic fluxes,
and 6/established genetic engineering tools. The primary
aspect to consider is the strain’s natural potential to pro-
duce and excrete FFA, as when this potential is weak the
strain would be considered as less useful. For simplicity
in what follows we will refer to ‘FFA production and ex-
cretion’ as ‘FFA production’. In cyanobacteria, fatty acids
are synthesized via the type II fatty acid synthases (FAS).
Focal to fatty acids synthesis are acyl carrier protein
(ACP) that covalently binds all fatty acyl intermediates
during the synthesis process. Fatty acid synthesis repre-
sents a central, conserved process by which acyl chains
are produced and core enzymes required for fatty acids
initiation and elongation are well characterized [12, 13].
FFA production has been investigated in several cyano-
bacterial strains including Synechococcus sp. PCC 7002
[14], Synechocystis PCC 6803 [12, 15, 16], Synechococcus
elongatus PCC 7942 [17] and Arthrospira (Spirullina)
platensis NISE-39 [18, 19]. Of these cyanobacterial
strains, the model system Synechocystis PCC 6803 has re-
ceived the most research attention because of its ability to
grow photoautrophically and heterotrophically. Moreover,
it was the first cyanobacterial genome to be completely se-
quenced [20, 21]. Current applications of cyanobacteria
for sustainable production focus on utilizing different
metabolic engineering strategies to maximize FFA produc-
tion [22]. However, current engineered strains are not

producing sufficient amounts of FFA to be commer-
cially viable. To optimize overproduction of desired
products such as fatty acids (E. coli) [23], 2,3-butanediol
(Saccharomyces cerevisiae) [24], succinate (S. cerevisiae)
[25], malonyl-CoA (E. coli) [26], acetyl-CoA (Synechocystis
sp. PCC 6803) [27], ethanol and isobutanol (Synechocystis
sp. PCC 6803) [28], constraint-based strain optimization
methods implemented in software packages such as
OptForce [29], OptKnock [30], OptGene [31] and
CiED [26] have been used.
Experimental evaluations [12, 13, 17] suggest that not

all cyanobacteria may be easily genetically engineered for
efficient FFA/biofuel production [13, 14, 32]. Genetic
engineering efforts are further affected by the scarcity of
available cyanobacterial strains, and the lengthy and
costly cultivating and engineering processes. Thus, only
few cyanobacterial strains have been evaluated for FFA
production, and it is highly likely that other natural
strains could be a better chassis [33]. Given the vastness
of the bacterial diversity, it would be essential to have a
computational method that can rapidly screen all poten-
tial strains for FFA production to help narrowing the
scope of likely candidates for experimental genetic en-
gineering. The steady accumulation of cyanobacterial
genome data (more than 120 genomes are sequenced to
date) provides an increasingly rich resource that can be
used for this purpose in conjunction with available ex-
perimental data.
In this study we provide such an in silico screening

method FFASC. FFASC estimates and ranks the poten-
tial of cyanobacterial strains for FFA production, and
hence indirectly biofuel production, based on their pre-
dicted proteomes. FFASC has been established based
on: 1/a compilation of protein orthologous groups (OGs;
see definition below) that impact FFA production; 2/a
compilation of relevant assessment criteria; 3/the develop-
ment of an algorithm that uses the criteria derived from
OGs to rank candidate chassis strains based on their esti-
mated potential to produce and excrete FFA. We used
FFASC to screen and rank cyanobacterial proteomes for
this purpose and indirectly screen their potential as
candidates for cyanobacterial biofuel cell factories. The
FFASC ranking for the top candidates is supported by
their phylogenetic relationship, and by additional indir-
ect in silico evidence. Thus, our study suggests that
FFASC allows selecting the most promising candidates
for experimental validation, whereas the established se-
lection criteria might provide useful insight for efficient
metabolic engineering. Moreover, although the method-
ology developed in our study is focused on FFA produc-
tion, it can be applied in a similar way to other processes
(e.g. production of chemicals, fermentation, nutraceutical
and pharmaceutical applications) as well as to other
bacteria, fungi or plants.
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Results and Discussion
Establishing properties that are favorable for
cyanobacterial FFA cell factory
The common procedures used to enhance the biotech-
nological production of FFA include the introduction of
heterologous pathways, as well as the modification of
the candidate cell factory metabolism via deletion of
genes or enhancing gene expression. However, genetic
engineering was not based on the consideration of the
collective effects of different criteria that characterize a
good cyanobacterial cell factory for FFA production,
even though experimental outcomes have shown that
not all cyanobacteria are suitable producers [13, 14, 32].
Criteria that would potentially characterize the natural
candidate cyanobacterial FFA cell factory include the
presence of endogenous FA biosynthesis pathway enzymes
[11, 34], as well as associated enzymes that have been
modified and tested (through the insertion, overexpres-
sion, knockout or knockdown of protein-encoding genes)
to increase FFA production in organisms such as algae,
cyanobacteria, yeast, E. coli and diatoms [11–17, 32,
35–44]. Through a literature search, we identified 64
proteins that are relevant for FFA production. We
further classified these 64 proteins into 49 OGs (Table 1,
Additional file 1: Table S1), defined here as sets of pro-
teins that are homologous with sufficient domains in
common adequate to assume that they affect FA pro-
duction similarly. To illustrate how these 49 OGs (into
which 64 proteins are classified) affect FFA production,
in Fig. 1 we show the link of the 49 OGs with the asso-
ciated metabolic pathways and links to processes asso-
ciated with energy, carbohydrate and lipid metabolism.
Although these 64 proteins cannot be considered complete,
they represent the majority of engineering considerations.
Based on the results we obtained, it appears these pro-
teins capture many of the relevant characteristics of the
organism.
In total, we identified 13 OGs (based on reported

knockout or knockdown experiments) whose presence
in the organisms negatively impacts FFA production.
These proteins we collectively named nOG (‘negative
OG’; Additional file 1: Table S2). Acyl-ACP synthetase/
long-chain-fatty-acid CoA ligase (AAS/FadD) is an ex-
ample of one of the cyanobacterial proteins from this
group. Kaczmarzyk and Fulda [45] demonstrated AAS
is capable of incorporating exogenous FFA from the cul-
ture medium into membrane lipids, an opposite process
that reduces FFA production. AAS is also responsible for
recovering endogenous FFA released from membrane
lipids. aas knockout mutants for Synechocystis sp. PCC
6803 and S. elongatus PCC 7942 (strain SE01) exhibited
increased secretion of FFA into the culture medium com-
pared to the wild-type strains [45]. The data suggests that
the detected FFA is detached from membrane lipids, and

also suggests that AAS plays a role in recycling the
released FA, explaining why the presence of the aas gene
negatively impacts the efficiency of the candidate cell
factory.
Based on reported gene insertion and overexpression

experiments, we also identified 24 OGs that contain pro-
teins whose presence in the organisms positively impacts
FFA production capability (named pOG; Additional file
1: Table S2). Thioesterase (TesA) is an example from this
group. It was previously demonstrated that TesA cleaves
the acyl-carrier-protein from the FA moiety, and in this
manner increases FA biosynthesis in E. coli by reducing
feedback inhibition [46]. Thus, Ruffing and Jones [17]
cloned the E. coli-derived truncated thioesterase (‘tesA)
and inserted it into the S. elongatus PCC 7942 genome
along with the aas knockout, thereby generating a mu-
tant strain SE02. SE02 produced a higher percentage of
saturated FFA and a lower percentage of unsaturated
FFA compared to the wild type [17]. Thus, the presence
of ‘tesA positively impacted the efficiency of the biofuel
production. The remaining 12 OGs identified are re-
quired for FA production, but are not included in pOG,
and we named them rOG (‘required OGs’). The differ-
ence between these two groups is that rOGs are essen-
tial for FFA production, while pOGs can be considered
as ‘enhancers’.
Based on these 49 OGs and their subgrouping to

nOG, pOG and rOG, we derived criteria for assessment
of suitability of an organism for FFA production (see
Materials and Method section, subheading FFASC). In
order to estimate an organism’s potential for FFA pro-
duction, we used all of these derived criteria to generate
an overall score that reflects FFA potential. For this pur-
pose we developed FFASC. Our optimization process
through which we estimated the optimized weights of the
criteria used, is based on two species, Synechocystis sp.
PCC 6803 and Arthrospira (Spirullina) platensis NISE-39.
Thus, our estimated weights are skewed and not optimal.
However, they still provide better qualitative ranking of
species for FFA production potential than in the case
when all weights are assumed to be equal (see Additional
file 1: Table S10). These weights could be improved when
more confirmed FFA-producing strains become available
for this type of study.

Screening cyanobacterial proteomes by FFASC
To evaluate the FFA production potential of the 120
cyanobacterial strains that have not been considered for
FFA/biofuel production and the five cyanobacterial
strains included in the reference dataset, the proteomes
of all 125 cyanobacterial strains were screened using
FFASC. The number of protein hits obtained from the
sequence homology and domain search were used as an
input to generate the OG hit numbers associated with
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Table 1 List of 49 OGs relevant for FFA production

KEGG Orthology Definition Effects Method Organism Ref.

rOGs

K00873
pyk

pyruvate kinase Carbohydrate metabolism cyan. [11, 34]

K01007
pps

pyruvate, water dikinase

K00161
pdhA

pyruvate dehydrogenase E1 component
alpha subunit

K00162
pdhB

pyruvate dehydrogenase E1 component
beta subunit

K00627
pdhC

pyruvate dehydrogenase E2 component
(dihydrolipoamide acetyltransferase)

K00382
phdD (ipdA)

dihydrolipoamide dehydrogenase

K00648
fabH

3-oxoacyl-[acyl-carrier-protein] synthase III Lipid metabolism

K00645
fabD

[acyl-carrier-protein] S-malonyltransferase

K09458
fabF

3-oxoacyl-[acyl-carrier-protein] synthase II

K02372
fabZ

3-hydroxyacyl-[acyl-carrier-protein]
dehydratase

K00208
fabI

enoyl-[acyl-carrier protein] reductase I

K01046
E3.1.1.3

triacylglycerol lipase Increase chance of strain to secrete FA secretion &
extraction

[15]

pOGs

K01962
accA

acetyl-CoA carboxylase carboxyl transferase
subunit alpha

Enhance FFA production (Increase
supply of desired substrate)

secretion cyan. [12, 14, 34,
44]

K01963
accD

acetyl-CoA carboxylase carboxyl transferase
subunit beta

K01961
accC

acetyl-CoA carboxylase, biotin carboxylase
subunit

K02160
accB

acetyl-CoA carboxylase biotin carboxyl
carrier protein

K00432
gpx

glutathione peroxidase Reduce the toxic effect of FFA
production and improve cell growth,
physiology and FFA production

secretion cyan. [13]

K04564
SOD2

superoxide dismutase, Fe-Mn family

K06198
coiA

competence protein CoiA

K03782
katG

catalase-peroxidase

K03621
plsX

glycerol-3-phosphate acyltransferase PlsX Lead to higher lipid levels plant [11, 35]

K08591
plsY

glycerol-3-phosphate acyltransferase PlsY

K00655
plsC

1-acyl-sn-glycerol-3-phosphate
acyltransferase
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Table 1 List of 49 OGs relevant for FFA production (Continued)

virNOG10454
PDAT1

IQ-domain Enhancing FA synthesis and diverting
FA from membrane lipid to
Triacylglycerol

accu. [36]

virNOG19439
OLEO1

oleosin 1

K14457
MGAT2

2-acylglycerol O-acyltransferase 2 Enhance acyl-CoA-dependent triacyl-
glycerol TAG

[39]

virNOG24576
LCIA

Anion transporter Help regulate CO2 intake and increase
biomass

algae [32, 37]

virNOG22763
LCIB

Low-CO2 inducible protein

K00006
GPD1

glycerol-3-phosphate dehydrogenase
(NAD+)

Increase glycerol and neutral lipid
content (16- and 18-carbon monoun-
saturated FA significantly increased)

diatom [38]

K01601
rbcL

ribulose-bisphosphate carboxylase
large chain

Improve FFA production cyan. [14, 88]

K01602
rbcS

ribulose-bisphosphate carboxylase
small chain

K01648
ACLY

ATP citrate (pro-S)-lyase Enhance biofuel precursor production yeast [40]

K10804
tesA

acyl-CoA thioesterase I Remove feedback inhibition and
increase production of FFA

secretion cyan. [12, 14, 17,
34, 43, 44]

K10781
FATB

fatty acyl-ACP thioesterase B
(Plant thioesterase)

Modify the chain length of FFAs for
better fuel quality

[11, 12]

K10782
FATA

fatty acyl-ACP thioesterase A Release FFA [88]

K14075
PLRP2

pancreatic lipase-related protein 2 Degrade the membrane lipids into FFA
with collapse of cell

extraction [15]

nOGs

K01595
ppc

phosphoenolpyruvate carboxylase Increase the lipid content cyan. [11]

K01897
aas(fadD)

long-chain acyl-CoA synthetase Channel needed substrates for synthesis
of FFA into divergent or reverse
pathways and preventing degradation
of desired product

secretion cyan. [11–14, 17,
34]

K00059
fabG

3-oxoacyl-[acyl-carrier protein]
reductase

Divert energy into production of
substantial by-products that would
compete with production of FFA

[12]

K00626
E2.3.1.9

acetyl-CoA C-acetyltransferase

K11003
hlyD

hemolysin D Enhance secretion of FFA by weakening
cell walls

cyaNOG01264
(PBP2)

penicillin-binding protein Enhance secretion of FFA by weakening
peptidoglycan layer

K13788
pta

phosphate acetyltransferase “Channel needed substrates for
synthesis of FFA into divergent or
reverse pathways and preventing
degradation of desired product”

K13282
cphB

cyanophycinase “Divert energy into production of
substantial by-products that would
compete with production of FFA”

K03802
cphA

cyanophycin synthetase

cyaNOG01069
porin protein

Carbohydrate-selective porin OprB Enhanced extracellular FFA
concentration

[13]

K13535
CLD1

cardiolipin-specific phospholipase Increase lipid yields without affecting
growth or biomass

accu. diatom [41]
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Table 1 List of 49 OGs relevant for FFA production (Continued)

K00030
IDH3

isocitrate dehydrogenase (NAD+) Increase intracellular citrate level which
enhance biofuel precursor production

yeast [40]

K03603
fadR

GntR family transcriptional regulator,
negative regulator for fad regulon
and positive regulator of fabA

Fatty acid biosynthesis is feadback-
inhibited at the transcriptional level by
fadR

bacterium [11, 42]

Abbreviations: rOGs required OGs, pOGs, OGs that positively impact FFA production, nOGs, OGs that negatively impact FFA production, FFA Free Fatty Acid, accu.
Accumulation, cyan. Cyanobactia
Classification: nOG (based on reported knockout or knockdown) and pOGs (based on reported inserted or overexpressed) during genetic engineering experiments
on that organism in order to secretion, extraction, or accumulation fatty acid

Fig. 1 Metabolic map depicting FFA biosynthesis and associated pathways, detailing where 64 proteins impact this process (see Table 1 or Additional
file 1: Table S2). Abbreviations: 3-PGA/3PG, 3-phosphoglycerate/3-phosphoglyceric acid; 2PG, 2-phosphoglyceric acid; PEP, phosphoenolpyruvic acid;
F6P, fructose 6-phosphate; RuBP, ribulose-1,5-bisphosphate; CO2, carbon dioxide; G3P, glyceraldehyde 3-phosphate; ROS, reactive oxygen species; TCA,
tricarboxylic acid; CoA, coenzyme A; ACP, acyl carrier protein; FAS II, type II fatty acid synthases; ATP, Adenosine triphosphate; ADP, adenosine
diphosphate
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each OG, and then applied to the derived set of criteria
(weight optimization and ranking algorithm) to predict
suitability of cyanobacterial strains for FFA production.
The strains were ranked based on the sum of scores gen-
erated by all criteria. The higher the score, the better the
rank (Table 2).
Even though a limited number of cyanobacterial

strains have been engineered as FFA/biofuel producers,
several trends can be identified. Wild type Synechococcus
sp. PCC 7002, Synechocystis PCC 6803 and Synechococ-
cus elongatus PCC 7942 are reported to produce ap-
proximately 2.5 [14], 1.8 [12] and 0.3 [14] mg/L of FFA,
respectively. However, these criteria are generally not
sufficient to identify the putative chassis strains. Ruffing
[14] has demonstrated that Synechococcus sp. PCC 7002
is a superior host strain compared to S. elongatus PCC
7942 regarding biomass growth rate, environment toler-
ance, FFA tolerance and production. The ‘tesA-express-
ing aas-deficient mutants’ of Synechococcus sp. PCC
7002, Synechocystis PCC 6803 and Synechococcus elonga-
tus PCC 7942, showed an increase in FFA concentration
of 40 [14], 83.6 [12] and 29.3 [14] mg/L, respectively,
indicating that the increase in FFA concentration de-
pends on the favorable traits in each organisms overall
genetic make-up. An additional genetic manipulation,
that is, the overexpression of Rubisco, in Synechococcus
sp. PCC 7002 further increased the FFA concentration
to 103 mg/L. To-date the strain with the most genetic
manipulations is Synechocystis PCC 6803, which yields
the highest FFA concentration of 197 mg/L. However, its
genetic modifications include weakening of the cell wall
layers that may affect survival capabilities under adverse
conditions [12]. It was also demonstrated that while
engineered S. elongatus PCC 7942 strains successfully
produce and secrete FFA, these cells are compromised
with a decrease in Chl-a content and photosynthetic
yield, as well as changes in pigment localization that
may be partially attributed to the unsaturated FFA
being oxidized into toxic products [17]. Such cell physi-
ology associated ramifications are not known for engi-
neered Synechocystis sp. PCC 6803. However, engineered
Synechocystis PCC 6803 were reported to mainly produce
saturated FFA. These potential differences in the host
metabolism suggest that Synechocystis sp. PCC 6803 may
be a better chassis strain for FFA production than S.
elongatus PCC 7942. Nonetheless, both Synechocystis PCC
6803 and S. elongatus PCC 7942 are fresh water strains.
On the other hand, marine strain Synechococcus sp. PCC
7002 has been shown to endure salt concentrations up to
1.7M [47], making it an attractive target for large-scale
production using marine water based media. Synechococ-
cus sp. PCC 7002 may also be the superior chassis strain,
compared to both Synechocystis sp. PCC 6803 and S.
elongatus PCC 7942, owing to its short doubling time and

Table 2 Ranked list of cyanobacterial strains based on their FFA
production potential score

Ranking
position

Ranked species Values

1 Prochlorococcus marinus MIT 9211 1.000000

2 Prochlorococcus marinus subsp. marinus CCMP1375 0.999132

3 Prochlorococcus marinus subsp. pastoris CCMP1986 0.986870

4 Prochlorococcus marinus MIT 9301 0.986697

5 Prochlorococcus marinus MIT 9215 0.985005

6 Candidatus Atelocyanobacterium thalassa (isolate
ALOHA)

0.979893

7 Prochlorococcus marinus NATL2A 0.978688

8 Prochlorococcus marinus NATL1A 0.978592

9 Synechococcus sp. CB0101 0.978368

10 Synechococcus sp. RS9917 0.975490

11 Prochlorococcus marinus MIT9312 0.974863

12 Prochlorococcus marinus MIT 9202 0.973976

13 Prochlorococcus marinus MIT 9515 0.973275

14 Thermosynechococcus elongatus BP-1 0.968580

15 Synechococcus sp. WH 8109 0.966391

16 Synechococcus sp. WH 5701 0.965687

17 Prochlorococcus marinus AS9601 0.964991

18 Thermosynechococcus sp. NK55 0.962108

19 Synechococcus sp. JA-3-3Ab 0.957499

20 Synechococcus sp. CB0205 0.956602

21 Synechococcus sp. PCC 7002+ 0.951221

22 Synechococcus sp. WH 7805 0.947124

23 Synechocystis sp. PCC 6803+ 0.938174

24 Synechococcus sp. WH 8016 0.933825

25 Synechococcus sp. JA-2-3B 0.931812

26 Cyanobium gracile PCC 6307 0.931077

27 Synechococcus sp. BL107 0.929529

28 Synechococcus sp. RS9916 0.929529

29 Synechococcus sp. CC9902 0.928199

30 Synechocystis sp. PCC 6803 PCC-N 0.922843

31 Cyanobium sp. PCC 7001 0.921061

32 Synechococcus sp. WH 7803 0.916500

33 Synechococcus sp. CC9605 0.916340

34 Synechococcus sp. WH 8102 0.887757

35 Prochlorothrix hollandica PCC 9006 0.885889

36 Synechococcus elongatus PCC 6301 0.883513

37 Synechococcus elongatus PCC 7942+ 0.883513

101 Arthrospira platensis NIES-39* 0.432198

123 Lyngbya PCC 8106 (CCY9616)* 0.006115

The list includes all cyanobacterial strain that rank above S. elongates PCC
7942 and all reference strains (for the full set see Additional file 1: Table S8).
Positive reference strains are marked with superscript + and negative reference
strains with *
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remarkable light and temperature tolerance [14]. Add-
itionally, Lyngbya sp. PCC 8106 was shown to produce
less FFA/biodiesel than S. elongatus PCC 7942 [48], while
A. platensis NIES.39 showed resistance to genetic manipu-
lation [19, 49]. Thus, the positive reference chassis strains
include Synechococcus sp. PCC 7002 and Synechocystis sp.
PCC 6803 as they are easily genetically modified and show
superior FFA production followed by S. elongatus PCC
7942. Thus, Lyngbya sp. PCC 8106 and A. platensis
NIES.39 are considered in this study as negative reference
hosts. Due to the limited number of candidate cyanobac-
terial FFA producers. Moreover, taking into account the
reported outcomes for five cyanobacterial species included
in our reference dataset, Synechococcus sp. PCC 7002 is
expected to perform better than both Synechocystis sp.
PCC 6803 and S. elongatus PCC 7942, followed by Lyngbya
sp. PCC 8106 and A. platensis NIES.39.
The subsequent list of ranked cyanobacterial strains

demonstrates that the positive reference strains rank
above the negative reference strains. However, they are
not the top ranked strains. The positive reference strains
Synechococcus sp. PCC 7002, Synechocystis sp. PCC 6803
and S. elongatus PCC 7942, ranked at position 21, 23
and 37, respectively, while negative reference strains A.
platensis NIES.39 and Lyngbya sp. PCC 8106 ranked at
positions 101 and 123, respectively (Table 2). Thus, 36
cyanobacterial strains were ranked above the lowest
ranked positive control reference strain at position 37, of
which 20 strains (denoted as top ranked strains) ranked
above all positive reference strains. All 20 top ranked
strains are unicellular. We further observed that the ref-
erence strains were ranked as per experimental out-
comes reported in the literature. Additionally, weights
assigned to criteria after optimization show that 21 of
the 49 criteria have the greatest impact on the score and
thus the ranking of the strains for FFA production po-
tential (Table 3). However, the criteria impact the score
of every strain differently as this impact depends on the
composition of the strain’s proteome. We point out
that since we are interested in the organism’s natural
potential to produce FA, we did not normalize the re-
sults for the genome size. We further provide heatmap
visualization of the cyanobacteria screened for their po-
tential as FFA producers against the 49 OGs (Fig. 2).
The heatmap shows that the majority of the top ranked
strains (above Synechococcus sp. PCC 7002) are placed
in one major clade along with cyanobacterial positive
reference strains, while the diatoms, used as an out-
group needed for hierarchical clustering, are placed in
a clade of their own. Also, the negative reference
strains do not mix with the clade that contain the top
ranked strains, that is, the heatmap shows a clear separ-
ation between these clades. Moreover, the major clade
that contains the top ranked strains generally has a

higher number of pOGs (represented by the reddish
shaded area) and lower numbers of nOGs (represented
by the greenish shaded area), which contrasts with the
clade in which negative reference strains are placed.
Taken together, the clade with top ranked strains dis-
plays more favorable traits for FFA production based
on the 49 OGs assessed.
A more in depth assessment of the weights assigned to

the 49 OGs (see Table 3) revealed that the medium
ranked group (with optimized weights in the range 0.12-
0.46) contains mostly the core enzymes of the general
fatty acid biosynthesis pathway. These core enzymes are
necessary for any producer strain, and their presence
cannot be expected to distinguish weak from strong pro-
ducers. By contrast, the top ranked group (optimized
weights in the range 0.92-0.99) contains two principal
categories of enzymes: those ensuring precursor avail-
ability for biosynthesis of lipids and those involved in
handling the oxidative stress associated to FFA synthesis.
Belonging to the first category are acetyl-CoA carboxyl-
ase [12, 14], pyruvate kinase [11], and acyl-ACP synthe-
tase/long-chain acyl-CoA synthetase [11]. These key
enzymes have been validated as metabolic engineering
targets for increasing the flux of lipid production [12],
and it is not surprising that they have been ranked in
the top group. Recently, it was shown that the produc-
tion of FFAs in cyanobacteria entails the creation of high
levels of reactive oxygen species (ROS) which causes oxi-
dative stress, and ultimately loss of membrane integrity
[13]. Several enzymes identified in the top group provide
relief from oxidative stress and/or are related to mem-
brane permeability: glutathione peroxidase, superoxide
dismutase, catalase and porin. Under light, photosyn-
thesis is known to induce the production of ROS which
cause lipid peroxidation [50], and the activity of the
above-mentioned enzymes can thus also ensure quality
control of the produced lipids. A multifunctional lipase
was also identified in the top group, coherent with the
finding by [51] that stimulating lipid catabolism is re-
quired to balance lipid accumulation with efficient
growth. The composition of the top group therefore re-
flects the requirement for the producing cell to handle
the flux control points (precursors, lipid accumulation
versus biomass accumulation) and to possess enzymes
enhancing stress tolerance related to lipid accumulation
(ROS/membrane stress tolerance). The weight values
obtained during the optimization procedure thus reflect
the importance of these two types of key markers for
affecting the strain’s potential as cell factories that can
be expected to reach a high titer of lipids.

Comparison between FFASC and Model SEED
Since, Model SEED [52] automatically produces annota-
tions and draft genome-scale metabolic models, we used
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it here to compare its results with the proposed FFASC
approach using the EC numbers corresponding to the 49
OGs that affect FFA production. We found that 41 of
the 49 OGs in FFASC can be used for a comparison with
Model SEED, as it only focuses on enzymes required for
metabolic model reconstruction. Thus, the eight OGs
omitted from this analysis include one enzyme that does
not have a defined EC number such as EC 3.1.1.-, while
other OGs are proteins that do not function as enzymes.
For the 41 OGs (Fig. 3), we found Model SEED and
FFASC have 28 identical OG hits (68%) for all 25 cyano-
bacterial strains screened (these are the 20 top-ranked
cyanobacterial strains and the five control reference
strains). FFASC showed the presence of nine OG hits
(22%) that were not present in Model SEED for some
species. Similarly, Model SEED showed the presence of
four OGs (10%) that were not found to be present using
FFASC.
To analyze this data, we tabulated the engineered

genes in model organisms Synechocystis sp. PCC 6803,
Synechococcus sp. PCC 7002 and S. elongatus PCC
7942, to show the set of genes known to be present in
these organisms (see Additional file 1: Table S5). Liu et
al. [12] made six successive generations of genetic
modifications for Synechocystis sp. PCC 6803, these
modifications include the knockout of slr2001 and
slr2002, which encode the cyanophycin synthetases
[53]. This shows that slr2001 and slr2002 are known to
be present in Synechocystis sp. PCC 6803, and is re-
ported as present by FFASC, but absent in Model
SEED. We further verified that RAST [54] correctly an-
notated both slr2001 and slr2002 in the Synechocystis
sp. PCC 6803 genome. However, it was omitted from
Model SEED, due to the lack of gene-protein-reaction
(GPR) association required for incorporation into SEED
models. For the four enzymes missing from FFASC,
another modification made by Liu et al. include the
knockout of the slr1710 (PBP2) gene responsible for pep-
tidoglycan layer assembly [55]. This shows once again that
slr1710 is known to be present in Synechocystis sp. PCC
6803, and is correctly found by both Model SEED and
FFASC. However, we found that Model SEED identified

Table 3 Weights assigned to rules after optimization that reflect
the impact of these rules in the overall scoring

Importance of features

Features Weight

overexpression_K00432_Synpcc7942_1214 0.999999981

overexpression_K04564_Synpcc7942_0801 0.999999101

overexpression_K03782_Synpcc7942_1656 0.999998942

overexpression_K02160_accB 0.999998794

present_K00873_pykf 0.999998794

knockout_K11003_hemolysin 0.999998724

underexpression_K13535_Thaps3_264297 0.997856841

knockout_cyaNOG01069_porin 0.946931624

knockout_K01897_fadD 0.921718924

present_K09458_fabF 0.456133041

overexpression_K00006_GPDH 0.396694273

present_K00208_fabI 0.387646822

present_K00161_pdhA 0.314952182

present_K02372_fabZ 0.288150995

overexpression_virNOG24576_LCIA 0.228675187

present_K00648_fabH 0.17462096

present_K00627_odhB 0.168613677

present_K00645_fabD 0.160058392

insert_K01602_rbcS 0.150753918

present_K01046_lipase 0.14966023

overexpression_K06198_Synpcc7942_0437 0.119438174

present_K01007_pps 0.020105541

insert_K14075_gpl 0.013465425

overexpression_K00655_plsC 0.008613511

overexpression_virNOG10454_PDAT1 0.00833575

overexpression_K01963_accD 0.008246186

overexpression_K01961_accC 0.008089475

knockout_K00059_fabG 0.007999865

overexpression_K08591_plsY 0.007682015

overexpression_K01962_accA 0.007630664

insert_K10804_tesA 0.005907112

knockout_K00626_thi 0.004833629

knockout_cyaNOG01264_PBP2 0.004590024

knockout_K03802_slr2002 0.004303632

knockout_K03603_fadR 0.004102976

insert_K01601_rbcL 0.003963175

knockout_K00030_idh 0.003153309

knockout_K13788_pta 0.001763091

overexpression_K03621_plsX 0.001763091

overexpression_virNOG22763_LCIB 0.001763091

present_K00162_pdhB 0.001763091

present_K00382_phdD 0.001763091

Table 3 Weights assigned to rules after optimization that reflect
the impact of these rules in the overall scoring (Continued)

underexpression_K01595_ppc 0.001763091

overexpression_virNOG19439_oleosins 0.001299491

knockout_K13282_slr2001 0.00115274

insert_K01648_acl 0.001045169

insert_K14457_DGTT2 0.001001378

insert_K10781_fatB 0.001000657

insert_K10782_fat1 0.001000152
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slr1710 in 22 additional cyanobacterial strains, whereas
FFASC only identified slr1710 in 11 additional cyano-
bacteria screened. We found FFASC filtered out the
other slr1710 hits as a consequence of the stringent
protein-domain condition applied to increase the ac-
curacy underlying FFASC predictions, that is, only
homologous protein sequences that have all domains of
the associated protein from the group of 64 proteins
were recorded as OG hits. Moreover, all the core en-
zymes of the general fatty acid biosynthesis pathway
were identified using FFASC, whereas Model SEED did

not identify FabZ due to the lack of GPR association
required for incorporation into SEED models. Here, the
differences between Model SEED and FFASC are a con-
sequence of: 1/Model SEED is a generic method in
which all pathways are treated equally, whereas FFASC
is specialized and focuses on FFA production and is
built based on proteins known to either positively or
negatively affect FFA production; 2/Model SEED provides
the presence or absence of the enzymes, whereas FFASC
takes the copy number into account when assessing
potential for FFA production; and 3/FFASC include all

Fig. 2 Heatmap visualization of the cyanobacteria screened against the 49 OGs. Clades that contain top ranked strains are represented in green
in dendrogram, while the clade that contain the diatoms are represented in black and the clade that contain the negative reference strains are
represented in red. Also, positive reference strains names on the x-axis are encircled with green, top ranked strains with maroon and negative
reference strains with red

Fig. 3 A comparison of the binary (presence/absence) output for the 41 OGs produced by both Model SEED and FFASC. The length of the bar
indicates the number of strains with the predicted OG. The absence of bar means the OGs presence/absence for all 25 strains are identical in
both methods
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proteins (not just enzymes) that directly or indirectly
affect FFA production. Taken together, FFASC is more re-
fined in assessing the “natural” cyanobacterial strains po-
tential for FFA production, whereas Model SEED was
developed for a more generic purpose.

Additional in silico support for estimated FFA production
potential of cyanobacteria
To provide additional support that the predictions ob-
tained by FFASC are reasonable, we used K-means clus-
tering [56] based on the same 49 criteria. To cluster the
128 target species into k clusters, where distance of
species within a single cluster is minimized and distance
between clusters or cluster centers is maximized, a value
for k has to be set in away that reflects the natural
groupings. That is, if k is too small, the clustering algo-
rithms will reduce the total number of groups to the
specified value of k, which forces some natural clusters
to combine, thereby producing artificial fusions [57].
Likewise, if the value of k is too large, natural clusters
will start dividing in an artificial way, to match the speci-
fied k value.
To determine the appropriate number of clusters, we

take into account that diatoms are eukaryotes and thus
act as a type of outlier. When they fall into the same
cluster this would indicate the point at which the artifi-
cial grouping is omitted [57]. Thus, the clustering will
be considered good when diatoms fall into a separate
cluster. The number of clusters where diatoms start to
group together is k = 6 and k = 7, the point at which di-
atoms start to separate is when the number of clusters
is k = 8. Additionally, using an average silhouette width
as the measure of ‘natural’ clustering [57], we found
that when considering k = 6, 7 or 8, the highest average

silhouette width of 0.41 (Fig. 4) was associated with k = 6.
To further verify the appropriate number of clusters, we
also calculated the Calinski-Harabasz (CH) index for k = 6
(67.43), k = 7 (56.91) and k = 8 (61.89) (starting from the
point when diatoms cluster together without cyanobac-
teria, to the point where the diatoms start to separate into
different clusters). CH index results verify that k = 6 is the
appropriate cluster number. A visual illustration of the
case k = 6 (Fig. 5) shows that cluster 3 is the most distant
from the other clusters. This cluster includes the 3 dia-
toms alone as the outliers, while the negative reference
host Lyngbya sp. PCC 8106 and A. platensis NIES.39 were
placed in cluster 5. Top ranked strains, above Synechococ-
cus sp. PCC 7002, were all placed in cluster 6. Moreover,
all positive reference chassis strains; Synechococcus sp.
PCC 7002, Synechocystis sp. PCC 6803 and S. elongatus
PCC 7942 were grouped together in cluster 4. Addition-
ally, all strains that ranked below Synechococcus sp. PCC
7002 but above S. elongatus PCC 7942, were either placed
in cluster 6 or 4. The placement of cluster 4 was closest to
cluster 6; these clusters slightly overlap one another, but
are separate from the other clusters. This indicates that
even though K-means clustering does not rank strains, it
is still able to discern the potential FFA producers iden-
tified with FFASC by clustering them primarily in clus-
ter 6 based on the OG criteria.
Additionally, we note that the three diatoms used in

this study are taxonomically distinct (orders Bacillar-
iales, Thalassiosirales and Naviculales), while the 125
cyanobacterial strains are classified under only seven
orders, namely Chroococcales, Gloeobacterales, Nostocales,
Oscillatoriales, Pleurocapsales, Prochlorales and Stigonema-
tales (see Table 4). Only strains of the order Chroococcales
and Prochlorales are found in cluster 6, which seems to

Fig. 4 Silhouette plot for clustering quality shows the average silhouette value for clustering 128 species into 6 clusters. A silhouette index ranges
from -1 to 1 and a value greater than 0 and closer to 1 indicates that points are in the appropriate cluster
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contain the best candidates. Strains of the order Chroococ-
cales are commonly found in five of the six clusters; how-
ever, strains of the order Prochlorales were only found in
clusters 4 and 6 that include the positive reference strains
and top ranked strains. This suggests that Prochlorales spe-
cies may be potentially good FFA producers.

Phylogenetic relationships of cyanobacteria
We explored phylogenetic groupings of 124 cyanobacterial
strains used in this study. We found that several of our
top ranked candidate cyanobacterial strains are grouped
together based on their 16S rRNA. Some exceptions
include two Thermosynechococcus sp., two Synechococcus
sp. JA* and Candidatus Atelocyanobacterium thalassa
(isolate ALOHA) (Fig. 6).
This result is supported by literature, since the top

ranked cyanobacterial strains primarily include Prochloro-
coccus (order Prochlorales) and marine Synechococcus
(order Chroococcales), which are reported to have diverged
from common ancestry [58]. Following the divergence, the
Prochlorococcus genome is further thought to have
‘streamlined’ [59], thus, the genome size of Synechococcus
and other cyanobacteria is larger than Prochlorococcus

genome sizes [60]. Another key feature that differenti-
ates Prochlorococcus from Synechococcus is their diver-
gent light-harvesting strategies [61]: Synechococcus uses
the phycobilisome as their light-harvesting antenna that
are not found in Prochlorococcus. These phycobilisome
antenna systems are used by Synechococcus to adjust to
changes in temperature, likely contributing to its greater
geographical occupancy range [62, 63]. Instead, the Pro-
chlorococcus main light-harvesting antenna complex is
made up of divinyl chlorophyll a and b, prochlorophyte
chlorophyll-binding protein (Pcb), as well as accessory
pigment [60, 64]. Collectively, these pigments increase
blue light absorption that is the dominant wavelength in
deep waters, restricting Prochlorococcus to warmer, oligo-
trophic oceans [65]. Since Prochlorococcus is reported to
be a leading example of a naturally 'streamlined' genome
[59, 66], this suggests that these genomes may require less
engineering to efficiently produce high yields of FFA.
Moreover, Prochlorococcus can be inexpensively cultivated
using seawater [67].
Reference strains of the order Chroococcales, including

Synechococcus PCC 7002, Synechocystis PCC 6803 and S.
elongatus PCC 7942, were engineered, and demonstrate

Fig. 5 Visualization results of the k-means clustering for the 128 species. The data is projected onto 2D spaces to be able to visualize results using
the first two components of the principal component analysis as the axis

Table 4 The analyzed strains classified under their associated order names allocated to the six clusters

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

Chroococcales Chroococcales Bacillariales Chroococcales Chroococcales Chroococcales

Gloeobacterales Nostocales Thalassiosirales Nostocales Nostocales Prochlorales

Nostocales Oscillatoriales Naviculales Oscillatoriales Oscillatoriales

Oscillatoriales Pleurocapsales Prochlorales Pleurocapsales

Pleurocapsales Stigonematales

Stigonematales
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Fig. 6 Maximum-likelihood based phylogenetic tree of 124 cyanobacteria and the outgroup using 16S rRNA with bootstrap support. The
branches and taxa name for positive reference strains are colored in green and for negative reference strains are colored in red, while the top
predicted ranked strains are colored in blue (Table 2)
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the production and secretion of FFA, which provides
proof-of-concept. However, none of the predicted top
ranked strains of the order Chroococcales has been shown
to produce FFA. Nonetheless, Synechococcus UTEX 2973
(which was not included in this analyses because its gen-
ome sequence was not available at the time of this study),
has recently been reported to be a fast growing chassis
strain for biosynthesis using light and carbon dioxide,
growing two times faster than S. elongatus PCC 7942 [68].
This finding demonstrates that there are possibly more
suitable chassis strains that have not been investigated.
Moreover, the Chisholm group [69] have reported that the
Prochlorococcus strain MIT9313 produces lipid-containing
vesicles that are released into the surrounding seawater.
These released lipid-containing vesicles maybe collected
without disturbing the growth of the Prochlorococcus, as
opposed to other cyanobacteria or algae that require
destroying one batch of cells and starting with a new
batch, to retrieve lipids. FFASC ranked the Prochlorococ-
cus strain MIT9313 at position 41, suggesting that if the
MIT9313 mechanism is a Prochlorococcal trait, there are
several other possible vesicle-releasing Prochlorococcus
strains that may be a better chassis for FFA production.
Moreover, the fact that the candidate chassis strains are
clustered primarily in orders Synechococcus and Pro-
chlorococcus, is a welcomed surprise that could constitute
an additional criterion for positive prediction.

Conclusion
In this study we developed FFASC, a first screening
method that ranks the potential of candidate cyanobac-
teria for FFA production and excretion based on favor-
able/non-favorable genetic characteristics. Ranking the
candidate species enables narrowing the experimental
focus on more likely candidates for good FFA producers.
Thus FFASC might prove a useful tool in highlighting
candidate strains for industrial-scale biofuel production
(based on their natural FFA production potential). The
outcome of this analysis suggests unicellular cyanobacter-
ial species such as Prochlorococcus marinus, Candidatus
Atelocyanobacterium thalassa (isolate ALOHA), Synecho-
coccus sp. CB0101, Synechococcus sp. RS9917, Thermosy-
nechococcus elongates BP-1, Synechococcus sp. WH 8109,
Synechococcus sp. WH 5701, Thermosynechococcus sp.
NK55, Synechococcus sp. JA-3-3Ab and Synechococcus sp.
CB0205, as potentially favorable chassis FFA producers. It
would also be reasonable to consider other strains with a
phylogenetic closeness to the above strains as potential
FFA producers as well. Moreover, the methodology devel-
oped can be adopted for other metabolic production, and
for other species.
We plan to follow-up this research by: 1/expanding the

orthologous group to other cyanobacterial genes that are
closely related to FFA production such as CO2-fixation,

photosynthesis, cell division, environment tolerance genes
and 2/develop the FFASC database to classify and evaluate
the FFA production potential of cyanobacterial strains
based on their proteomes.

Methods
Compilation of protein groups that characterize FFA
production and excretion
The PubMed database was queried using the query:
"biofuel production" OR "free fatty acid production" on
2015/06/30, resulting in 1392 PubMed abstracts retrieved.
We conducted a literature search to a compile list of pro-
teins relevant for FFA production from organisms that
have been genetically engineered for FFA/biofuel produc-
tion, as well as proteins required for fatty acid synthesis.
In total, we identified 64 such proteins in various organ-
isms including Escherichia coli, cyanobacteria, algae,
diatoms, plants, and yeast (Additional file 1: Table S1 and
S2). These 64 proteins can be classified into 49 OGs, with
43 from KEGG and six from the eggNOG (evolutionary
genealogy of genes: Non-supervised Orthologous Groups)
[70] database. The 43 KEGG orthology KO identifiers
were associated to these proteins using the KOALA
(KEGG Orthology And Links Annotation) [71] tool. For
the remaining six OGs with no associated KO identifiers,
we used eggNOG (Additional file 1: Table S2) to associate
OGs to the remaining proteins from the group of 64. All
protein sequences included in the 49 OGs were extracted
from the UniProt [72] database.
The OGs were categorized as follows (see Additional

file 1: Table S2):

a) OGs that negatively impact FFA production (nOG):
these OGs contain proteins whose encoding genes
have been knocked out or knocked down during
genetic engineering experiments to increase the
organisms’ potential for FFA production.

b) OGs that positively impact FFA production (pOG):
these OGs contain proteins whose encoding genes
have been inserted or forced to overexpress to
increase the organisms’ potential for FFA
production.

c) Required OGs (rOG): these are a set of proteins
required for FA production, not included in pOG.

Based on the effects that the presence or absence of
relevant genes have, a set of rules is derived to quantify
these effects (see Criteria Generation section).

Compilation of control and target datasets
Control dataset
Our control dataset includes cyanobacteria that have
been genetically engineered for FFA/biofuel production.
The connection to FA production is that the biodiesel
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is produced from triacylglycerols that are synthesized
from three FAs joined together by one glycerol mol-
ecule. However, since there are not many cases of engi-
neered cyanobacteria for FA production, we have also
included cyanobacteria Lyngbya sp. PCC 8106 in the
control set. This strain is not engineered, but it pro-
duces biodiesel, although less than S. elongatus PCC
7942 [48]. Cyanobacteria that were experimentally
shown to be FFA/biofuel producers and have been sug-
gested as candidate biofuel producing cell factories
(positive reference strains) include Synechococcus sp.
PCC 7002 [14], Synechocystis PCC 6803 [12, 15, 16],
and S. elongatus PCC 7942 [17]. On the other hand,
those that were experimentally shown not to be prom-
ising as FFA/biofuel producers (negative reference
strains) include Lyngbya sp. PCC 8106 [48] and A. pla-
tensis NISE-39 [18, 19] (Additional file 1: Table S3).
Additionally, diatoms Phaeodactylum tricornutum [73,
74], Thalassiosira psedonana [41] and Fragilariopsis
cylindrus [75, 76] were used as outliers required for
hierarchical clustering.

Target dataset
The target dataset was derived from cyanobacteria. Gen-
ome sequences of 125 cyanobacteria were obtained from
NCBI [77]. Of these 125 genome sequences collected, 76

are complete genomes and 49 are draft genomes [78]
(Additional file 1: Table S4). To standardize the annotation
of the 125 cyanobacterial genomes, all genome sequences
were re-annotated using the INDIGO pipeline [79] to ob-
tain consistent annotation. Based on that annotation, we
derived proteomes of the considered species. The protein
sequences were taken in FASTA format.

Sequence homology and domain search
Protein sequences included in the 49 OGs were mapped
to 125 cyanobacterial proteomes using a protein hom-
ology search, with the local installation of BLASTp [80,
81], and with an e-value threshold of 0.0001.
We identified 81 conserved protein domain families in

the 64 originally identified proteins, using the Pfam data-
base and HMMER[82] with the cut-off gathering threshold
(Additional file 1: Table S6). The hidden Markov model
(HMM) profiles of these domain families were retrieved
from the Pfam database.
The homologous protein sequences identified in the

125 cyanobacterial were further screened with the 81
HMM profiles using a locally installed HMMER [83]
program with the trusted cutoff score as a threshold. In
the analysis, only homologous protein sequences that
have all domains of the associated protein from the
group of 64 proteins are used (refer to Fig. 7).

Fig. 7 An example to illustrate homologues protein and domains presence and absence. As shown in the figure, if protein A has three homology
hits (proteins x, y, and z), the homologous hit of protein A would only be considered if both of its domains (PFdomain1 and PFdomain2) are
present in the hit. Hence, only protein x will be used in the analyses (both proteins y and z will be discarded). This stringent rule is applied to
filter out weak homology hits obtained by BLAST
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Criteria generation
In order to provide an integral score of the potential for a
species to produce and excrete FFA, we need to quantify
the effects of presence or absence of genes that encode for
relevant proteins. In our case these will be proteins from
different OGs. We consider this quantification as criteria,
and we derive one criterion for each OG.
The number of BLASTp hits of all proteins from an

OG to the proteome of a species represents an OG hit
number (hitN). hitNs are used to define criterion for the
OGs. In determining hitNs, only proteins matched by
BLASTp that have all domains of the source protein
were used. One can conveniently describe species and
OGs in terms of hitNs as follows. Suppose that n is the
number of species and m is the number of OGs. We can
create an n ×m matrix C. In our case C is 125 × 49 (see
Additional file 1: Table S7). The element (i,j) of C repre-
sents hitN of j-th OG in i-th species.
The quantification rules are defined as follows. Proteins

from nOGs receive the values equal to “–hitN” that cor-
respond to the considered species and the OG. Proteins
from pOGs receive the values of “hitN” that correspond to
the considered species and the OG. If, however, a pOG
has “hitN = 0”, then we assign to it a value of “-1” as a pen-
alty. Proteins from rOGs receive the values of “hitN” that
correspond to the species and the OG (Fig. 8).

Consequently, the score that would quantify the poten-
tial of species i to produce biofuel based on this approach
will be described as:

score ið Þ ¼
X49

j¼1
c i; jð Þ; ð1Þ

where c(i,j) is an element of C. While this is not the only
possible way to calculate this score we find it simple and
suitable. Note that in (1) we assume that all criteria have
the same weight equal to 1.

FFASC method

1. Ranking Algorithm (Algorithm 1)

In order to determine scores for each of the species so as
to be able to rank them, we will determine the C matrix
and use it as the input to the algorithm. This algorithm
evaluates each of the considered species and generates
scores according to (1). Then, the species are ranked, with
the higher score being better. The top rank is 1. In this
manner we are able to rank the considered species for their
FFA production potential based on the scores derived. A
pseudo code for the algorithm (Ranking algorithm) is pre-
sented in Fig. 9.

Fig. 8 Flowchart of the ranking method employed. It defines the quantification rules based on nOG and pOG (quantification rules for rOG is not
illustrated in this method, as rOG receive the values of “hitN”)
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2. Optimization

In Algorithm 1 we assume that all criteria considered
have the same level of influence to the potential of an
organism for FFA production as expressed through
Equation (1). However, it is reasonable to expect that
different criteria have different levels of effects and thus
they should have different weights. Because we have no
data to determine precisely what values of these weights
should be, we used an optimization approach in order to
estimate suitable values of these weights. The general
‘constraint’ is that good producers of FA should be
ranked higher and well separated from the poor ones.
Thus, for the optimization process we selected a positive
reference strain, Synechocystis sp. PCC 6803 and a nega-
tive reference cyanobacteria strain, A. platensis NIES.39.
The goal of optimization was to make the score differ-
ence between these two selected species as big as pos-
sible, while having the positive reference strain ranked
above the negative reference strain. Optimization was
preformed using the pattern search solver (PSS) of the
global optimization toolbox in MATLAB. For the PSS, a
generalized pattern search algorithm was used with de-
fault values. The optimized solutions for the weights
found by the optimizer were between 0.001 and 1, where

p (ranking effect coefficient) is equal to 0.010241 at 1744
iterations, with the objective function value at the solu-
tion equal to 0.0232 (convergence level). The proposed
objective function to achieve our goal is based on maxi-
mizing the difference in scores for the two species used;
Synechocystis sp. PCC 6803 and A. platensis NIES.39 as
defined below:

max wwT � x1−x2j j þ p � rank

where 1≥wj≥0:001 ;
X

wj ¼ 12 ;

wT� x1−x2j j>0:001

Here, x1 and x2 are data vectors describing Synechocystis
sp. PCC 6803 and A. platensis NIES.39, respectively,
obtained as rows of C; T denotes the transposition; |()|
denotes the absolute value of (); w is a weight vector with
values indicating the contribution of features as suggested
by PSS; p is a coefficient to introduce a ranking effect on
the optimization; rank is the difference in ranking be-
tween the Synechocystis sp. PCC 6803 and A. platensis
NIES.39. In this optimization, an optimized set of weights
are bounded and constrained as described above. Finally,
having optimized the weights, we ranked 125 cyanobac-
teria, with the scores determined as

Fig. 9 Pseudocode of Algorithm 1
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score ¼ wTx ð2Þ
Here, w is a column vector of dimension 49. Note that

this procedure can be applied to the newly sequenced
cyanobacteria species (or other species) added to the set
we considered. The pseudocode of Algorithm 2 that
describes ranking based on score determined by (2) is
presented in Fig. 10.
Based on these optimized weights of different criteria,

we propose a list of chassis candidate cyanobacteria
strains, where the final ranking reflects the potential of the
chassis strain to produce FFA (Additional file 1: Table S8).

Heatmap generation
We generated heatmap of the produced scores for biofuel
production potential for evaluated cyanobacteria and
diatoms relative to the 49 OGs. We used the MATLAB
2014a and its function ‘clustergram’ with the following
parameters:

'Standardize','Row',
'Standardize','Column',
'Linkage','average',
'RowPDist','spearman',

'ColumnPDist','spearman';

The matrix C was modified following the MATLAB
syntax to
C+(-0.5 + rand(size(C))*10^-10)
by adding a small level of noise to avoid numerical

problems with singular matrices.

Generating data for comparison used in FFASC and
Model SEED
The EC numbers corresponding to the 49 OGs were used
for comparison with Model SEED. In addition, we submit-
ted 25 cyanobacteria (which include the 20 top-ranked
cyanobacterial strains by FFASC and the five control refer-
ence strains) to the Model SEED resource (using default
values) and obtained the SEED metabolic models and
corresponding genome annotations. Similarly, we had bin-
ary (presence/absence) output from our FFASC method.
We compared the identified EC numbers of 41 OGs
in both models and generated the comparison data
for Model SEED and FFASC with binary values (0/1)
(Additional file 1: Table S5).
We subtracted data for Model SEED from data for

FFASC row-wise and obtained values ranging from -25

Fig. 10 Pseudocode of Algorithm 2
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to 25, where values less than zero indicate the fulfillment
of criteria in some strains as required by FFASC only,
while values more than zero indicates the fulfillment of
criteria in some strains as required by Model SEED only,
while zero indicates that the same criteria were required
by both FFASC and Model SEED.

Phylogenetic analyses
In order to see if the ranking obtained as described above
reflects any phylogenetic similarities, we performed phylo-
genetic analyses of cyanobacteria. We used 16S rRNA
sequences for the 124 cyanobacterial strains retrieved
from INDIGO [79]. Synechococcus sp. CB 0101 was not
included in this analysis as its 16S rRNA was not available.
We also included 16S rRNA of the outgroup (Chlorobium
tepidumdum, Rhodobacter sphaeroides and Chloroflexus
aurantiacus). The 16S rRNA sequences for the 124 strains
and outgroup were aligned using MAFFT (Multiple
Alignment using Fast Fourier Transform) [84] with de-
fault parameters on the T-REX Web Server [85]. A max-
imum likelihood tree [86] was then generated based on
the aligned 16S rRNA sequences using RAxML (Random-
ized Axelerated Maximum Likelihood), with default pa-
rameters and 1000 bootstrap runs for the GTRCAT
substitution model [87]. The maximum likelihood tree
was visualized using FigTree [88] and edited to improve
visualization using Inkscape 0.91 [89].

K-means clustering
To further substantiate the results obtained by applying
FFASC, K-means clustering was preformed on the 125
species using all 49 OGs. The K-means procedure in the
Package ‘stats’ of R (R 3.1.2) [56] was used. To determine
the proper number of k clusters, we established 1/the
point at which artificial fusions are omitted, that is, when
diatoms fall into a separate cluster (determined to be
where k = 6) and 2/the point at which the natural clusters
are divided in an artificial way, that is, when diatoms start
to separate into individual clusters (determined as k = 8).
Thus, based on the properties of the dataset, natural clus-
tering was found to range from cluster 6 to 8 (Additional
file 1: Table S9). Further analysis was restricted to natural
clusters 6 to 8. To determine the optimal number of k
clusters from this range, we used the largest average sil-
houette width as the measure of ‘natural’ clustering and
calculating the CH index.

Additional file

Additional file 1: Table S1. Classification of orthologous groups. Table
S2. Proteins used to construct Fig. 1. Table S3. Compilation of control
dataset. Table S4. Constructed target species dataset. Table S5.
Comparison of FFASC and Model SEED. Table S6. Free fatty acid (FFA)
protein/enzyme domains. Table S7. Orthologous group hit number

matrix of 49 OGs and 128 (cyanobacteria and diatom) strains. Table S8.
Ranked list of 125 strains using FFASC. Table S9. 128 strains clustered
using K-mean. Table S10. Ranked list of 125 cyanobacteria using FFASC
without optimization. (XLSX 373 kb)
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