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Abstract

Optical �ow methods are used to estimate pixelwise motion information based

on consecutive frames in image sequences. The image sequences traditionally

contain frames that are similarly exposed. However, many real-world scenes

contain high dynamic range content that cannot be captured well with a single

exposure setting. Such scenes result in certain image regions being over- or

underexposed, which can negatively impact the quality of motion estimates in

those regions. Motivated by this, we propose to capture high dynamic range

scenes using di�erent exposure settings every other frame. A framework for

OF estimation on such image sequences is presented, that can straightforwardly

integrate techniques from the state-of-the-art in conventional OF methods. Dif-

ferent aspects of robustness of OF methods are discussed, including estimation

of large displacements and robustness to natural illumination changes that oc-

cur between the frames, and we demonstrate experimentally how to handle such

challenging �ow estimation scenarios. The �ow estimation is formulated as an

optimization problem whose solution is obtained using an e�cient primal-dual

method.
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1. Introduction

Optical �ow (OF) methods are used to estimate apparent motion in im-

age sequences [1, 2, 3]. They provide dense displacement �elds that contain 2-

dimensional motion vectors for each pixel location of a reference image. The pro-

duced low-level �ow data is in turn used for higher-level computer vision tasks5

such as segmentation, tracking, motion analysis or image registration [4, 5, 6].

The literature on OF methods is focused almost exclusively on motion esti-

mation for image sequences whose frames are taken with the same exposure

settings. This is despite the fact that many real-world scenes contain high dy-

namic range (HDR) content that cannot be captured with a single exposure10

setting due to dynamic range limitations of camera sensors [7, 8]. In such a sce-

nario, some regions of a given image will be over- or underexposed, which leads

to an inability to estimate the motion of objects in those regions. For instance,

lack of contrasts in the image data are reported as a bottleneck for the quality of

resulting �ow estimates for vehicle driver assistance applications [9]. In recent15

years, HDR functionality has been integrated into consumer cameras and other

mobile devices. It captures the full dynamic range of the scene by taking and

merging multiple images with varying exposure settings. If there is non-global

motion between the images, reconstruction artifacts are typically avoided by

using a HDR deghosting method [10]. Compensating for complex, local motion20

patterns is typically not attempted due to the di�culty of estimating the motion

with su�cient accuracy [11]. However, there is recent work on estimating a HDR

image based on dense OF motion data that provides promising results [12, 13].

In this paper, we propose a framework for optical �ow estimation on image

sequences with di�erently exposed frames, a setup devised particularly for HDR25

scenarios. Speci�cally, four frames are used, taken with two di�erent exposure

settings that are used every other frame. The intention is that all image regions

should be properly exposed (non-saturated) for at least one of the exposure set-

tings, such that the combined dynamic range is su�ciently high with respect to

the imaged scene. The OF method is pursued mainly for its own purposes as an30
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enabler to motion analysis applications, and we do not aim to reconstruct the

HDR image data. The �ow estimation is formulated as minimizing a variational

cost functional which is a sum of a data term and a set of terms that enforce

regularity conditions on the �ow solution [1, 14]. Di�erent data term formula-

tions have been evaluated in our previous work [15], and the best among those35

candidates is adopted in this paper. OF methods, including ours, typically use

pointwise data cost term correspondences and thus rely on a spatial regularity

condition in order to obtain a minimization problem that has a unique solu-

tion. The spatial regularization term is formulated to penalize deviations from

a piecewise smooth �ow solution, based on the statistical observation that scenes40

are well represented by a set of objects whose respective points move in a simi-

lar manner [16]. Conventional OF methods generally estimate motion between

pairs of consecutive frames using only those two frames as input data. Some

methods, however, include additional frames and enforce temporal coherence of

the motion vectors in the estimation process [17, 18]. Whether such an approach45

improves the �ow estimation performance depends on to what degree the image

data ful�lls the assumption of temporally smooth motion. Our method relies

on temporal regularization since more than two input images are used.

In the context of OF estimation, there are a number of aspects related to

whether or not an OF method is robust. Firstly, it has to do with using robust50

cost expressions for the data term and the regularization terms, as opposed to

the traditional L2-norm which deals poorly with data outliers [19, 20]. Secondly,

it has to do with the ability to handle challenging scenes that lead to natural

illumination changes and large �ow magnitudes when captured in an image se-

quence [21]. Finally, since the typical objective of OF methods is to provide55

information of the real motion within the scene, it is required that the input im-

age sequence contains the relevant information, particularly in the case of HDR

scenes. This aspect is not necessarily about robustness of the OF method itself,

but de�nitely about the robustness of using OF estimates in an application.
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1.1. Contribution60

The performance of resulting �ow estimates depends directly on the quality

of the input image data [9, 15]. This is particularly the case for HDR scenar-

ios, for which any given image contains saturated image regions due to over- or

underexposure. To address the issue of saturation, the optical �ow estimation

problem is extended to use image sequences that contain di�erently exposed65

frames. The OF data term formulation for such a scenario is based on our pre-

vious work [15]. In this paper, we propose a complete OF method that includes

handling of natural illumination changes, that occur even between images that

are captured with the same exposure setting, as well as �ow estimation of ob-

jects with large displacements. Deviations of the �ow estimate from �ow data70

obtained from pre-matched, sparse image features are penalized in a feature

matching cost term, which mitigates the e�ects of local minima in the itera-

tive minimization of the total OF cost functional. Existing OF methods for

HDR scenarios do not address natural illumination changes or large �ow mag-

nitudes [12, 13]. Furthermore, our method is formulated for a more general75

camera model that allows any changes to the camera exposure settings to be

made. The algorithm for computing the minima is based on an e�cient primal-

dual method [22] (see also [23, 24]), that handles non-di�erentiable expressions

of robust penalty functions [25] without the need for approximation.

1.2. Outline of the paper80

The paper is structured as follows. Our camera model is described in Sec-

tion 2. The proposed method is presented in Section 3 and the primal-dual

optimization used to obtain �ow estimates is presented in Section 4. Experi-

mental results are provided in Section 5 and the paper is concluded in Section 6.

2. Camera model85

We assume that an image is generated by a camera according to the model

Ĩf (x) = CRF(Φf (R(x) +Nf (x))), (1)
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where x = (x, y) ∈ Ω ⊂ R2 are continuous image coordinates, R(x) is the

(�ltered) illuminance incident on the sensor for the speci�c lightning condition

of the imaged scene at the time instance of the image Ĩf and Nf (x) models

sensor noise. The camera response function (CRF) clips the sensor exposure

Φf (R(x) +Nf (x)) outside of the operating interval of the sensor, limited by its90

dynamic range. The function Φf models the speci�c exposure setting used for

image f .

If the brightness (illuminance) of any given point is assumed to be constant

along its motion trajectory, the standard assumption on which OF methods are

based, another image Ĩf+1 of the same scene can be related to the non-occluded

regions of Ĩf through

Ĩf+1(x + uf (x)) = CRF(Φf+1(R(x) +Nf+1(x))), (2)

where uf denotes the optical �ow of point x in Ĩf . The functions Φf ,Φf+1 can

refer to arbitrary exposure settings, such as using �ash illumination every other

frame [15]. The local illumination e�ects that are caused by e.g. �ash illumi-

nation, however, makes it di�cult to mathematically formulate expressions for

Φf ,Φf+1 that can relate the image intensities of points in an image taken with

�ash illumination to an image one taken without. This is discussed further at

the end of the section. For the special case where the two images are taken with

di�erent exposure durations (the speci�c scenario that is treated e.g. in [12, 13]),

represented by the positive scalars ∆t1,∆t2, they are given by

Ĩf (x) = CRF(∆t1(R(x) +Nf (x))),

Ĩf+1(x + uf (x)) = CRF(∆t2(R(x) +Nf+1(x))).
(3)

These images can be aligned photometrically by inverting the e�ect of the CRF

in their non-saturated regions, followed by scaling with the inverse of the respec-

tive exposure durations. Then, the optical �ow uf can be estimated between95

If , If+1 for points x that are non-saturated in both images. Hence forth, we

use If to denote images that, if possible, have been aligned photometrically.

Furthermore, even such cases where the di�erently exposed frames cannot be
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aligned photometrically can be treated by the proposed optical �ow method

(see [15] for experimental results on such image sequences). This is a novelty of100

the proposed method, which is achieved by taking four frames as input to the

�ow estimation and mathematically relating the image intensities of two pairs of

similarly exposed frames as well as using shared �ow variables for the respective

pairs.

3. Optical �ow estimation for di�erently exposed input images105

The OF method proposed in this section utilizes an image sequence of four

consecutive grayscale input frames If , f = 1, . . . , 4 for the objective of esti-

mating the optical �ow �eld at the reference frame, �xed here as I2. Exposure

setting I is used for I1, I3, whereas exposure setting II is used for I2, I4. Di�erent

exposure settings are used for the two respective image pairs in order to capture110

high dynamic range information. For example, they could be set to use long

and short exposure durations, respectively. The non-saturated regions of each

respective image pair are denoted by ΩExp.I ⊂ Ω and ΩExp.II ⊂ Ω. Data cost

terms are formulated between the respective pairs of similarly exposed frames.

The data costs are parameterized by �ow terms such that the �ow at the ref-115

erence frame coordinates is included as a variable [18]. If ΩExp.I ∪ ΩExp.II = Ω,

the two data cost terms between the image pairs I1, I3 and I2, I4 successfully

cover the whole image region. In other words, there are no points that are sat-

urated for both exposure settings. Furthermore, an additional data cost term

is included to relate any mutually non-saturated points ΩInt = ΩExp.I ∩ ΩExp.II
120

in the pair I2, I3. This term is particularly bene�cial due to its higher frame

rate [15]. This data cost term requires that the non-saturated regions of I2, I3

are photometrically aligned (recall the discussion in Section 2).

The cost functional that should be minimized for �ow estimation, aside from

the mentioned data term, consists of a spatial regularization term and a tem-

poral regularization term, denoted ES and ET respectively, as well as a feature

matching term EM . Furthermore, to handle natural illumination changes, two
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approaches are considered. The �rst approach is to include illumination o�set

variables in the data term, along with a corresponding spatial regularization

term EL [26, 22]. The second is to use a data term expression that is robust to

natural illumination changes without explicitly modeling them [20]. We evaluate

the second approach experimentally and provide the (minor) necessary modi-

�cations, but stick to the �rst approach throughout the current presentation.

Thus, the task is to �nd the minimizer of

min
{uf},{lf}

E :=ED({uf}, {lf}) + ES({∇uf}) + EL({∇lf})+

+ET ({uf}) + EM ({uf}),
(4)

where, for f = 1, 2, 3, uf = (uf (x), vf (x)) : Ω → R2 are the �ow variables

and lf (x) : Ω → R are illumination o�set variables. The gradient operator

applied to a vector has the meaning ∇uf = ((∇uf )T , (∇vf )T )T . The primary

interest is the estimation performance of the �ow variable u2, which is the (time-

discrete) �ow at the reference frame I2. The illumination o�sets are included to

account for natural illumination changes between image pairs, thereby modeling

deviations from the assumption that the brightness intensity of any point x is

constant along its motion trajectory [26, 22, 27]. Introducing the concatenated

variables wf = (uf , lf ), the respective terms of the cost functional (4) are

ED({wf}) = ED13(w1,w2) + ED24(w2,w3) + ED23(w2) =

= αD

∫
Ω

θ13 |I3(x + u2)− I1(x− u1) + β(l1 + l2)|+

+ θ24 |I4(x + u2 + u3)− I2(x) + β(l2 + l3)|+

+ θ23 |I3(x + u2)− I2(x) + βl2| dx, (5a)

ES({∇uf}) = ES1(∇u1) + ES2(∇u2) + ES3(∇u3) =

= αS

3∑
f=1

∫
Ω

‖∇uf‖ dx, (5b)

EL({∇lf}) = EL1(∇l1) + EL2(∇l2) + EL3(∇l3) =
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= αL

3∑
f=1

∫
Ω

‖∇lf‖ dx, (5c)

ET ({uf}) = ET1(u1,u2) + ET2(u2,u3) =

= αT

∫
Ω

‖u2 − u1‖+ ‖u3 − u2‖ dx, (5d)

EM ({uf}) = EM1(u1) + EM2(u2) + EM3(u3) =

= αM

3∑
f=1

∫
Ω

mf ‖uf − uMatch
f ‖ dx, (5e)

where ‖·‖ is the L2-norm, each term has a constant weight αD, αS , αL, αT , αM ≥

0, θ13(x), θ24(x), θ23(x) ≥ 0 are spatially dependent data term weights and β is a125

constant model parameter. Importantly, θ23(x) is set to zero for image regions

where either of the di�erently exposed I2, I3 is saturated to avoid false data

correspondences that lead to poor �ow estimates. If it is not possible to photo-

metrically align images taken with exposure setting I and II respectively (e.g. if

one image is taken with �ash illumination and the other is not), θ23(x) is simply130

set to zero ∀x and the illumination o�set l2 is removed completely from E so

that each image pair has a separate illumination-o�set variable in its data term.

The overall data term ED thus only contains correspondences between pairs of

similarly exposed frames, but the method can still provide good estimates of

the shared �ow �eld u2 [15]. Each �ow component, uf , has a corresponding135

separate spatial regularization term, ESf , that enforces the �ow solution to be

piecewise smooth by penalizing ‖∇uf‖1 =
∫

Ω
‖(ufx, ufy, vfx, vfy)‖dx, the ro-

bust L1-norm of the magnitude of the �rst-order derivatives of the �ow vector.

This smoothness term is called the Total Variation (TV) semi-norm and is de-

signed to preserve discontinuities, �ow edges in this case. In certain scenarios,140

e.g. the second order Total Generalized Variation (TGV2) expression is more

suitable [25]. For example, it provides a more appropriate description of the

�ow solution for scenes that consist largely of �at surfaces. It is straightfor-

ward to replace the TV expression by the TGV2 expression in (5b) as well as

in the minimization scheme. The illumination terms are penalized similarly by145
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their respective TV expressions in EL, in order to encourage spatially piece-

wise smooth illumination o�set estimates. The temporal regularization term

ET enforces temporal coherence of the �ow along the motion trajectories of the

points in the reference frame, using a suitable parametrization of the �ow �elds

{uf (x)} as increments relative to the reference frame positions [18, 15]. The150

feature matching term EM is discussed in the next section.

3.1. Flow information from sparse feature matches

A feature matching term (5e) is included in the total OF cost functional

E in (4) to penalize deviations of the estimated �ow from the �ow data in

uMatch
f , f = 1, 2, 3. Its inclusion helps to mitigate the di�culty of �nding the155

global minima of the OF cost functional in the iterative solution strategy [21,

28]. Thus, a sparse set of points in each image, represented by some feature

descriptors, are matched by a (approximate) nearest neighbor (NN) search as

a pre-processing step to the OF estimation and are used to derive the �ow

information in uMatch
f . The aim is that these matches will provide information160

about large displacements or complex motion patterns, particularly of small-

scale objects, that are otherwise prone to be poorly estimated. Speci�cally, we

extract HoG (histogram of oriented gradients) feature descriptors on a uniformly

spaced grid, consisting of every 4th pixel location (per dimension), excluding

image regions that are over- or underexposed. Then, using a fast approximate165

NN method [29], the descriptors of the pairs of similarly exposed images I1, I3

and I2, I4 are matched separately. Forward-backward consistency checks are

performed to discard inconsistent matches. Furthermore, matches at feature

locations x where there is minor image structure are discarded. To achieve this,

the 2 × 2 structure tensor is computed for each feature location based on the170

respective 7 × 7 neighborhoods. The locations where the smaller eigenvalue

eig2(x) of the structure tensor satis�es eig2(x) > (eig1(x) + eig2(x))/10 are

kept and the others are discarded [30, 31]. The two best NN matches are

retrieved for each kept feature location, and used to set the weights mf (x)

in (5e) according to the con�dence level of each respective NN match, as the175
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relative feature distance of the second best NN match to the best NN match of

each feature descriptor, and mf (x) = 0 holds for non-matched points [21]. The

retained matches between I1, I3, as well as those between I2, I4, are stored in

c13 and c24 respectively, in terms of the locations of the matched points in the

reference image I2, their matching con�dence and their displacements. Note180

that the second best NN matches are not used to determine the displacements

themselves, only to determine their respective weights. Further implementation

details are given in Section 4.3.

4. Flow estimation by primal-dual optimization

This section describes how (4) is minimized in order to obtain �ow estimates.185

Successive local linear approximations of the data terms ED13, ED24, ED23 about

the current estimates (also called warping points in the OF literature), u0
f (x),

are made to �nd the minimizer of (4) iteratively [14]. The original data term

expressions of (5a) are clearly non-convex in the �ow variables, which in practice

means that the search space contains undesired local minima. The standard190

approach to mitigate the e�ects of local minima in OF estimation methods,

with or without the inclusion of pre-matched image features, is to use a coarse-

to-�ne minimization strategy as outlined in Section 4.3. Downsampled images

are used to �nd rough estimates that are then re�ned for �ner image resolution

levels.195

4.1. Linearized data terms

The linearized data terms (reusing the same names) are

ED13 = αD

∫
Ω

θ13 |It13 +∇I3(u2 − u0
2) +∇I1(u1 − u0

1) + β(l1 + l2)| dx,

ED24 = αD

∫
Ω

θ24 |It24 +∇I4(u2 + u3 − u0
2 − u0

3) + β(l2 + l3)| dx,

ED23 = αD

∫
Ω

θ23 |It23 +∇I3(u2 − u0
2) + βl2| dx,

(6)
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where

It13 = I3(x + u0
2)− I1(x− u0

1),

It24 = I4(x + u0
2 + u0

3)− I2(x),

It23 = I3(x + u0
2)− I2(x),

∇I1 = ∇(I1(x− u0
1)),

∇I3 = ∇(I3(x + u0
2)),

∇I4 = ∇(I4(x + u0
2 + u0

3)).

(7)

4.2. Sequential minimization

The minimization problem (4), which is convexi�ed due to replacing ED

in (5a) by the linearized data terms (6), is approximated by a sequence of

simpler minimization problems, following the approach by Estellers et al. [32],

by updating the estimates of wf sequentially for each f . That is, �xed estimates

wk
f are taken as inputs to a given iteration k. The sequential update is performed

by solving

wk+1
f ← min

wf
P(wf ) := E(wf ) +G(wf ), (8)

for each f separately, where the term

G(wf ) =
αG
2

∫
Ω

‖wf −wk
f‖2 dx, (9)

is added to constrain the step length of each separate update. To encourage

convergence to the minima of the joint problem, (4), the sequential minimization

of wf , f = 1, 2, 3, is iterated over k = 0, . . . ,K − 1.200

4.3. Pseudo-algorithm

In summary, the pseudo-algorithm for minimizing (4) is given in Table 1. The

sequential minimization scheme described in Section 4.2 is incorporated into a

coarse-to-�ne multi-resolution strategy. The �ow- and illumination variables are

initiated to zero-vectors at the initial pixel resolution ratio(S−1) of the coarse-205

to-�ne image pyramid, where ratio < 1 is the re-sampling factor and S is the

number of resolution levels. Thus, at the initial stage, signi�cantly downsampled
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input images are used to obtain �ow estimates at a coarse resolution level.

These are re-scaled and used as inputs as the �ow estimation progresses at the

next, �ner resolution level up until the original pixel resolution of the images210

If . As �ow estimates are re�ned, the images are warped according to the

current estimates, as expressed in (7). In the numerical implementation, non-

integer arguments of I1, I3, I4 that result from subpixel precision optical �ow

estimates are evaluated using bicubic interpolation. At a given warping point

u0
f , estimates are updated wk

f → wk+1
f according to the iterative primal-dual215

solver presented in the next section.

Pseudo-algorithm of proposed OF method

Initialization: w0
f = 0, ∀f,x

for scale = ratio(S−1,...,0)

for warp = 0, . . . ,W − 1

compute It13, It24, It23,∇I1,∇I3,∇I4 as in (7).

set w
{k=0}
f = w0

f , ∀f

for k = 0, . . . ,K − 1

for f = 1, 2, 3

wk
f → wk+1

f , according to Section 4.4.

end

end

uKf → u0
f , ∀f , new warping point.

end

end

Table 1: Sequential minimization method for optical �ow estimation.

The sparse pre-computed feature matches are originally expressed in c13 and

c24 (see Section 3.1) with respect to pixel coordinates at the full pixel resolution.

To be integrated into the coarse-to-�ne method, their associated locations in I2

and their �ow magnitudes are re-sampled at the current resolution level, and220
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the locations are rounded to the nearest integer pixel coordinate. At a coarse

resolution, the locations of multiple feature matches may be rounded to the

same integer pixel coordinate. Because the spacing of the feature grid is 4

points, any level �ner than a fourth of the original resolution has at most one

candidate. Thus, the relative in�uence of the feature matches is high at coarse225

resolution levels and then naturally decreases as the minimization progresses

to �ner resolution levels. At any given resolution level, each integer location

x in uMatch
2 is set according to the match in c13 and c24 that has the highest

con�dence among those that are associated with the particular location x. The

�ow data in uMatch
1 as well as uMatch

3 is constructed similarly, but only selecting230

among the feature matches in c13 or c24 respectively.

4.4. Primal-Dual update for given �ow component

The update step wk
f → wk+1

f in Table 1 is performed using an e�cient �rst-

order primal-dual method by Chambolle and Pock [22], that they demonstrate

on a set of image processing tasks, including optical �ow estimation. We describe

the update for f = 2. The updates for f = 1, 3 are analogous but include fewer

cost terms. The minimization (8) for f = 2 is

wk+1
2 ← min

w2

P(w2) :=ED13(wk+1
1 ,w2) + ED24(w2,w

k
3) + ED23(w2)+

+ES2(∇u2) + EL2(∇l2) + ET1(uk+1
1 ,u2)+

+ET2(u2,u
k
3) + EM2(u2) +G(w2).

(10)

The minimization problem (10) is equivalent to the constrained problem

min
w2,w

P(w2,w) :=ED13(wk+1
1 ,w

(D13)
2 ) + ED24(w

(D24)
2 ,wk

3) + ED23(w
(D23)
2 )+

+ES2(u
(S2)
2 ) + EL2(l

(L2)
2 ) + ET1(uk+1

1 ,u
(T1)
2 )+

+ET2(u
(T2)
2 ,uk3) + EM2(u

(M2)
2 ) +G(w2),

(11)

where the argument includes a set of auxiliary variables

w , (w
(D13)
2 ,w

(D24)
2 ,w

(D23)
2 ,u

(S2)
2 , l

(L2)
2 ,u

(T1)
2 ,u

(T2)
2 ,u

(M2)
2 )

13



with equality constraints

w
(D13)
2 = w

(D24)
2 = w

(D23)
2 = w2, u

(S2)
2 = ∇u2,

l
(L2)
2 = ∇l2, u

(T1)
2 = u

(T2)
2 = u

(M2)
2 = u2.

(12)

The constrained problem (11) can be written on the form

min
w2

P(w2) := E(Kw2) +G(w2), (13)

wherew = Kw2 andK is a linear operator that relates each auxiliary variable to

w2 according to (12). This is the class of convex problems studied by Chambolle

and Pock [22]. The term E(Kw2) is the linearized OF cost functional with

w1,w3 kept �xed. The problem (13) is in primal form and has a corresponding

primal-dual formulation

max
λ

min
w2

PD(w2,λ) := −E∗(λ) +G(w2) +

∫
Ω

〈λ,Kw2〉 dx, (14)

where E∗ is the convex conjugate of E, such thatw∗2 in the saddle point (w∗2,λ
∗)

for PD is the minimum of P. The dual variables

λ , (λ(D13),λ(D24),λ(D23),λ(S2),λ(L2),λ(T1),λ(T2),λ(M2))

are the Lagrange multipliers to each of the equality constraints (12) of the

auxiliary primal variables [32]. The iterative algorithm to �nd w∗2, that is the

new wk+1
2 in the sequential minimization summarized in Table 1, is:

λn+1 ← min
λ

(
σE∗(λ) +

1

2
‖λ− (λn + σKzn)‖2

)
,

wn+1
2 ← min

w2

(
τG(w2) +

1

2
‖w2 − (wn

2 − τK∗λn+1)‖2
)
,

zn+1 = wn+1
2 + θ(wn+1

2 −wn
2 ),

(15)

where τ, σ > 0 are primal and dual step lengths, θ ∈ [0, 1] controls the amount

of over-relaxation in z = (zu, zv, zl), and K
∗ is the adjoint operator of K [22].

Maximization of PD in (14) w.r.t. λ is substituted by minimization of −PD.

Note that subscripts of λ and z are omitted to lighten up notation, although

these variables are speci�c to each f . The reformulation of the original problem
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(10) leads to that E∗ is separable in each of its variables, that is

E∗(λ) =E∗D13(λ(D13)) + E∗D24(λ(D24)) + E∗D23(λ(D23)) + E∗S2(λ(S2))+

+E∗L2(λ(L2)) + E∗T1(λ(T1)) + E∗T2(λ(T2)) + E∗M2(λ(M2)).
(16)

Thus, the dual update equation in (15) is solved separately for each dual vari-

able in λ. E�cient closed-form solutions exist for each separate minimization

problem. The update steps on the top two lines of (15) can equivalently be

formulated as

λn+1 = proxσE∗(λ̃), λ̃ = λn + σKzn,

wn+1
2 = proxτG(w̃2), w̃2 = wn

2 − τK∗λn+1,
(17)

where the minimizations correspond to evaluating the proximal operators of

σE∗(λ) and τG(w2) about the proximal points λ̃ and w̃2. Such proximal oper-

ator notation is used in Appendix A where the update equations corresponding235

to each separate dual term in (16) are derived [33]. The resulting expressions

are given in Table 2.

5. Experimental Results

Whether or not the proposed approach, to use di�erently exposed input

frames, has merit depends upon if the imaged scene contains signi�cant HDR240

content, as discussed at further length in [15]. To exemplify, consider the image

sequence in Figure 1 (a). The four input images are frames from the Tennis

sequence, of pixel resolution 380 × 530, courtesy of the computer vision group

at Freiburg University [34]. The frames have been altered to simulate a HDR

scenario by clipping the pixel values above a1 = 0.6 in I1, I3, setting them equal245

to a1, which corresponds to exposure setting I (Exp.I). Similarly, pixel values

below a2 = 0.3 are clipped for I2, I4, which is taken as exposure setting II

(Exp.II). This achieves the same e�ect as using two di�erent exposure durations

every other frame and photometrically aligning them as discussed in Section 2.

The estimated �ow �eld based on the described sequence is given in Figure 1250

(b). The �ow is color encoded according to the inlaid circular chart, whose �ow
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Update equations for (15)

Initialization: w
{n=0}
2 = wk

2

for n = 0, . . . , N − 1

λ(D13),n+1,λ(D24),n+1,λ(D23),n+1 updated with (25)

λ(S2),n+1 = λ̃(S2)/max(1, ‖λ̃(S2)‖/αS), λ̃(S2) = λ(S2),n + σ∇(znu , z
n
v )

λ(L2),n+1 = λ̃(L2)/max(1, ‖λ̃(L2)‖/αL), λ̃(L2) = λ(L2),n + σ∇znl

λ(T1),n+1 = d/‖d‖ min(αT , ‖d‖),

d = λ̃(T1) − σuk+1
1 , λ̃(T1) = λ(T1),n + σ(znu , z

n
v )

λ(T2),n+1 = d/‖d‖ min(αT , ‖d‖),

d = λ̃(T2) − σuk3 , λ̃(T2) = λ(T2),n + σ(znu , z
n
v )

λ(M2),n+1 = d/‖d‖ min(αMm2, ‖d‖),

d = λ̃(M2) − σuMatch
2 , λ̃(M2) = λ(M2),n + σ(znu , z

n
v )

un+1
2 = 1

ταG+1

(
ταGu

k
2 + un2 − τ(λ

(D13),n+1
u,v + λ

(D24),n+1
u,v + λ

(D23),n+1
u,v +

+ λ(T1),n+1 + λ(T2),n+1 + λ(M2),n+1 − divλ(S2),n+1)
)

ln+1
2 = 1

ταG+1

(
ταGl

k
2 + ln2 − τ(λ

(D13),n+1
l + λ

(D24),n+1
l + λ

(D23),n+1
l −

− divλ(L2),n+1)
)

zn+1 = wn+1
2 + θ(wn+1

2 −wn
2 )

end

wN
2 → wk+1

2

Table 2: The steps to solve (8) exempli�ed for f = 2.
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magnitude at its outer radius corresponds to 24 pixels. The use of alternating

exposure settings is analyzed by comparing the resulting �ow estimate to the

ones obtained from image sequences whose frames are all taken with a �xed

exposure setting, either Exp.I or Exp.II. Certain objects are hardly visible in any255

of the frames for a given exposure setting, such as the tennis ball in the frames

taken with Exp.I, thus estimating its motion may not be feasible. Figure 1 (c),

(d) show the �ow estimates that result from using the input sequences with

similarly exposed, with data clipped above a1 or below a2 respectively for all 4

frames. The data term weights used are αD = 3, β = 0.01, θ13 = 1, x ∈ ΩExp.I,260

θ24 = 1, x ∈ ΩExp.II, θ23 = 1, x ∈ ΩInt and θ13, θ24, θ23 are zero for unspeci�ed

points. The other weights are αS = 0.2, αL = 0.2, αT = 0.02, αM = 1

and αG = 1. Furthermore, Figure 1 (e)-(g) show the results obtained from

performing the same experiments as in (b)-(d) but with increased amount of

clipped data, where a1 = 0.5 and a2 = 0.5. The motion of the tennis ball is265

actually captured in the �ow estimate based on the Exp.I sequence for a1 = 0.6,

but not anymore when a1 = 0.5. The �ow estimate for Exp.II is good for

a2 = 0.3 but degrades severely for a2 = 0.5. The performance of the �ow

estimate that is based on the image sequence with di�erently exposed frames

degrades more gracefully as the amount of saturation increases, due to the lost270

information being available in the other image pair.

5.1. Image sequence with large displacements

The use of the feature matching term in order to estimate �ow of objects

with large displacements is discussed here. First, note that if αM = 0 and

β = 0, the current method becomes similar to our previous method, although275

here we use sequential minimization (Section 4.2) with the �ow updates obtained

from a primal-dual solver (Section 4.4) that does not require di�erentiable cost

expressions, and thus the exact TV expression can be used. We validate the

sequential minimization approach by comparing to the quantitative experiments

in [15]. In terms average endpoint error (AEPE), we obtain equally good results280

on the Sintel [35] sequences for which the regularization weight in [15] was
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Figure 1: Top row: (a) The image sequence {If} with di�erently exposed frames, and

a1 = 0.6, a2 = 0.3. Middle row, from left to right: (b) Flow estimate based on the images in

(a). (c) Flow estimate when all If are taken with Exp.I. (d) Flow estimate when all If are

taken with Exp.II. Bottom row: (e)-(g) Similar to the middle row, but with clipping thresholds

a1 = a2 = 0.5.

optimized and slightly better results on the Middlebury [36] sequences. Thus,

sequential minimization is applicable.

The inclusion of the feature matching term in the coarse-to-�ne minimiza-

tion of (4) provides the ability to estimate large displacements. However, wise285

selection is needed in the feature extraction and matching steps to mitigate the

occurrence of false matches with high con�dence weights. The �ow informa-

tion wMatch
2 from the feature matches is visualized in Figure 2 at the resolution

level 88×123. Figure 2 (a), (b) show wMatch
2 before discarding feature locations

with minor image structure, as well as the corresponding con�dence weight map290

m2. The con�dences are plotted for the range [0, 1], although the maximum is

2.42, as normalizing by the maximum leads to poorer visibility of other weights.

Figure 2 (c), (d) show wMatch
2 and m2 after discarding feature locations with
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Figure 2: From left to right: (a) The �ow wMatch
2 at the resolution level 88 × 123, without

the selection strategy of discarding locations with low amount of structure. (b) The matching

con�dences m2 corresponding to (a). (c) The �ow wMatch
2 without including feature matches

in image regions that lack structure. (d) The con�dences corresponding to (c).

low amount of structure. In Figure 3, the bene�t of the feature matches and

a wise selection strategy is demonstrated in terms of the �ow estimates on the295

sequence in Figure 1 (a). First, Figure 3 (a) shows the �ow estimate when

Figure 3: From left to right: (a) Flow estimate for αM = 0. (b) Flow estimate with wMatch
2

as shown in Figure 2 (a). (c) Flow estimate for image-driven spatial regularization. (d) Flow

estimate with wMatch
2 as shown in Figure 2 (c).

αM = 0 and (b) shows the �ow estimate when including all feature matches in

Figure 2 (a), that successfully captures the motion of the ball but at the cost

of poor �ow estimates in several regions, that result from false feature matches.

In Figure 3 (c), the in�uence of the false matches is reduced, for this partic-300

ular example, by using a spatially varying, image-driven regularization term

αS(x) = 0.4 exp(−3‖∇I2(x)‖0.5), which smooths regions that do not coincide

with image edges to a higher degree. Finally, Figure 3 (d) shows the result

of the proposed selection strategy, that only uses the feature matches in Fig-

ure 2 (c). Although the proposed feature extraction and matching strategy gives305

good performance in this example, the DeepFlow method by Weinzaepfel et al.

is particularly designed to be robust in challenging scenarios, such as repetitive
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image structures [37].

5.2. Robustness to natural illumination changes

In this section, the bene�t of accounting for natural illumination changes in310

our method is demonstrated on two image sequences from the KITTI raw data

sequences (that unlike the �ow annotated KITTI sequences contain more than 2

frames per sequence) [38]. Aside from using the data term presented in Section 3,

we run a separate experiment using the CSAD data term introduced in [20],

which is adapted for inclusion in our proposed method. The CSAD expression315

is an approximation of the popular Census Transform that is adjusted to �t

the variational minimization of the OF cost functional, and performs equally

well as the original Census expression. A HDR scenario is simulated similarly

as before, with a1 = 0.6 and a2 = 0.3 as clipping thresholds. The image

resolution used is 621×188. The two sequences are shown at the top row of the320

respective columns in Figure 4. Image sequences from the KITTI benchmark

suite [39] are known to typically include natural illumination changes between

the captured frames. As a result, the estimation performance is improved when

accounting for illumination changes in the OF cost functional modeling [27, 40,

20]. Due to the nature of the KITTI data, consisting largely of �at surfaces,325

we exchange the spatial TV regularization in ES by the second order Total

Generalized Variation [25] that penalizes deviations from (piecewise) a�ne �ow

solutions. The mathematical TGV2 expression and the modi�cations that follow

to the update equations in Table 2 are given in Appendix B, along with the

details of implementing the CSAD data term. In the experiments of this section,330

αM = 0 is used except where otherwise stated. Figure 4 (b) shows initial �ow

estimates for the case when using the data cost in (5a) with β = 0. The �ow

is color coded similarly as in Figure 1. The maximum �ow magnitudes used

in the color encoding is 20 pixels for the left column and 30 pixels for the

right column. In Figure 4 (c) and (d), the �ow estimates obtained when using335

β = 0.01, i.e. including the illumination o�set terms, are shown along with

plots of l2 estimates, for which 0 o�set is represented by 0.5 on the normalized
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Figure 4: For each column, from top to bottom: (a) Input images I1, . . . , I4. (b) Flow

estimates when using the data term in (5a) and β = 0, and (c) with β = 0.01. (d) Plots of l2,

where 0 is coded as the middle grayscale intensity). (e) Flow estimates when using the CSAD

data term [20]. (f) Same as (e) but with αM = 1.

interval [0, 1]. Figure 4 (e) shows the �ow estimates when using the CSAD

data term, and �nally (f) shows the result with CSAD and αM = 1. Numerous

�ow artifacts are seen at �ow- and image edges, and the road surfaces are340

poorly estimated for both image sequences in Figure 4 (b) where no handling of

illumination changes is included. The �ow estimates are improved signi�cantly

when illumination variables are included in (c). The results in Figure 4 (e)

show similar performance when using the CSAD term. Less �ow artifacts are
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present compared to (c), but the motion of the road sign in the bottom left345

corner of the left column is not well captured in the �ow estimates. Because

no large displacements of small scale objects are present, the aim of the feature

matching term is primarily to avoid negative impacts in such a scenario. As can

be seen in Figure 4 (f), no false feature matches impact the �nal �ow estimates.

Finally, �ow estimates obtained for the same image sequences as in Figure 4350

(a) but with all 4 frames taken either with exposure setting I or II are shown

in Figure 5 (a) and (b) respectively. These estimates are produced using the

CSAD data term. The �ow estimates on the image sequence in the left column

are particularly poor, regardless of whether Exp.I or Exp.II was used. As seen

in Figure 4, using the sequence of alternating exposure settings clearly leads to355

better results in that case.

Figure 5: Flow estimates obtained using Exp.I for all 4 frames (top row) and Exp.II (bottom

row) respectively.

6. Conclusions

In this paper, a framework has been proposed for OF estimation on im-

age sequences with di�erently exposed frames, intended for motion analysis in

HDR scenarios. Various aspects of robust OF estimation have been discussed360

and demonstrated. Experimental results show the bene�t, with regard to �ow

estimation performance, of using the proposed setup to mitigate the negative

impact of saturated image data. Our approach allows to re-use techniques from
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the rich literature on conventional OF estimation, as they are easily integrated

to tailor the proposed OF method to a given application. For instance, total gen-365

eralized variation (TGV) regularization, which has shown superior performance

particularly on the KITTI image sequences, can straightforwardly replace the

�rst order TV penalty. A spatial regularizer that takes the underlying HDR

image data into account, as suggested by Hafner et al., also deserves considera-

tion [13], as well as the feature matching approach DeepFlow [37]. A database370

of sequences with alternating exposure settings (every other frame), based on a

measurement campaign of real-world HDR scenes, is highly desired.

A. Proximal operators

In this appendix, we demonstrate how to evaluate the proximal operators of

σE∗ and τG, presented in (17). The proximal operator of the function σE∗(λ),375

whose full expression is given in (16), is separable and can thus be evaluated

sequentially for each variable contained in λ as shown in (16). Derivations

are provided here for the proximal operators of σE∗D24(λ(D24)), σE∗S2(λ(S2)),

σE∗T1(λ(T1)), a subset of the terms in E∗, as well as for that of τG(w2). The

proximal operators of the remaining terms in E∗ are analogue to either of the380

presented ones and their expressions are included in Table 2.

A.1. The proximal operator of a general function

The proximal operator of a function σF maps a proximal point, p̃, to another

point pn+1 according to [41]

p̃→ pn+1 = proxσF (p̃) = arg min
p

(
σF (p) +

1

2
‖p− p̃‖2

)
. (18)

By the Moreau decomposition, the mapping is equivalent to

p̃→ p̃− σprox 1
σF
∗(
p̃

σ
), (19)

where prox 1
σF
∗ is the proximal operator of 1

σF
∗ [41, 33].
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A.2. The proximal operator of σE∗D24

The proximal operator of σE∗D24 for the proximal point λ̃(D24) = λ(D24),n +

σKD24z
n = λ(D24),n + σzn, using the Moreau decomposition as in (19), gives

λ(D24),n+1 =proxσE∗D24
(λ̃(D24)) = λ̃(D24) − σprox 1

σED24

( λ̃(D24)

σ

)
=

=λ̃(D24) − σs∗,
(20)

where s∗ is obtained by pointwise (w.r.t. x) evaluation of the proximal operator

of ED24/σ. To obtain the �nal expression for λ(D24),n+1 we evaluate s∗ further.

Taking ED24 from (6) and introducing a0,a, ρ for shorter notation,

ED24(s)

σ
=
αD
σ

∫
Ω

θ24 |a0 + aT s| dx,

a0 = It24 + (∇I4)T (uk3 − u0
2 − u0

3) + βlk3 ,

aT = ((∇I4)T , β),

ρ(s) , a0 + aT s,

(21)

we get (using (18)), for each point x,

s∗ ← min
s

(αDθ24

σ
|ρ(s)|+ 1

2
‖s− s̃‖2

)
, (22)

where s̃ = λ̃(D24)/σ. The solution is given by a simple and e�ective thresholding

scheme on the values of ρ(s̃), which is derived by replacing |ρ(s)| by a dual

variable ρ′ and solving the inequality constrained problem

min.
s

1

2
‖(s− s̃)‖2 + ηρ′,

s.t. ρ(s)− ρ′ ≤ 0,

− ρ(s)− ρ′ ≤ 0,

(23)

where η , αDθ24/σ. Its solution is obtained by checking when the KKT condi-

tions [42] of the dual formulation (23) hold for the three possible cases of ρ(s∗)

in the primal formulation; ρ(s∗) ≤ 0, ρ(s∗) = 0 and ρ(s∗) ≥ 0. These steps are

shown in detail in [3], and yield

s∗ = s̃ +


ηa, ρ(s̃) < −ηaTa

−ηa. ρ(s̃) > ηaTa

−aρ(s̃)/(aTa), |ρ(s̃)| ≤ ηaTa

(24)
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Using the abbreviations in (21), this expression for s∗ inserted in (20) to get the

corresponding thresholding steps for the update

λ(D24),n+1 =


−αDθ24a, ρ(λ̃(D24)/σ) < −ηaTa

αDθ24a, ρ(λ̃(D24)/σ) > ηaTa

σ ρ(λ̃
(D24)/σ)
aT a

a. |ρ(λ̃(D24)/σ)| ≤ ηaTa

(25)

Another enlightening interpretation of the solution to (22) is given in [20].385

A.3. The proximal operator of σE∗T1

The Moreau decomposition (19) is used again as in (20) to derive the prox-

imal operator of σE∗T1, which gives λ(T1),n+1 = λ̃(T1) − σs∗, where in this case

s∗ = prox 1
σET1

( λ̃(T1)

σ

)
← min

s

(αT
σ
‖s− uk+1

1 ‖+
1

2
‖s− λ̃(T1)

σ
‖2
)
, (26)

and λ̃(T1) = λ(T1),n + σKT1z
n = λ(T1),n +σ(znu , z

n
v ). Depending on the magni-

tude of αT /σ relative to the distance between uk+1
1 and λ̃(T1)/σ, either the L2

expression or the L2-squared will dominate in the minimization of (26), accord-

ing to

s∗ =

uk+1
1 , αT ≥ ‖d‖

uk+1
1 + (d/σ)(1− αT /‖d‖), otherwise

(27)

introducing d , λ̃(T1) − σuk+1
1 , and thus

λ(T1),n+1 =

d, αT ≥ ‖d‖

αTd/‖d‖. otherwise

(28)

A.4. The proximal operator of σE∗S2

The proximal operator of σE∗S2 is given (without using the Moreau decom-

position) by

λ(S2),n+1 ← min
λ(S2)

(
σE∗S2(λ(S2)) +

1

2
‖λ(S2) − λ̃(S2)‖2

)
, (29)
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where λ̃(S2) = λ(S2),n + σKS2z
n = λ(S2),n + σ∇(znu , z

n
v ) and

σE∗S2(λ(S2)) = δP (λ(S2)) =

0, λ(S2) ∈ P

∞, otherwise

(30)

where P = {λ(S2) ∈ R4 : ‖λ(S2)‖/αS ≤ 1} [42, 22]. Finally,

λ(S2),n+1 = ΠP (λ̃(S2)) =
λ̃(S2)

max(1, ‖λ̃(S2)‖/αS)
, (31)

where ΠP denotes the projection onto the set P .

A.5. The proximal operator of τG

It remains to show the proximal operator for τG (the expression for G is

given in (9),

wn+1
2 ← min

w2

(ταG
2
‖w2 −wk

2‖2 +
1

2
‖w2 − w̃2‖2

)
, (32)

where w̃2 = wn
2 − τK∗λn+1. In this case, the minimizer is given directly by

di�erentiation, as

wn+1
2 = (1 + ταG)−1(ταGw

k
2 + w̃2). (33)

The expression for the proximal point w̃2 = (ũ2, l̃2) is given by evaluating

K∗λn+1 in (17). Thus,

ũ2 = un2 − τ(λ(D13),n+1
u,v + λ(D24),n+1

u,v + λ(D23),n+1
u,v +

+ λ(T1),n+1 + λ(T2),n+1 + λ(M2),n+1 − divλ(S2),n+1)

l̃2 = ln2 − τ(λ
(D13),n+1
l + λ

(D24),n+1
l + λ

(D23),n+1
l − divλ(L2),n+1),

(34)

where subscript u, v for λ(D13) ∈ R3, etc., denote the two elements of the dual390

variable that correspond to (u2, v2), and λ
(D13)
l denotes the third element, i.e.

the dual of l2 in ED13.

B. TGV2 and CSAD update equations

If the TV expression (also known as the �rst order TGV) in the spatial

regularization term (5b) is replaced by the second order TGV2, we get

ES = min
qf

3∑
f=1

∫
Ω

αS‖∇uf − qf‖+ αS2‖∇qf‖ dx. (35)
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In the resulting update equations, λ̃(S2) in (29) is changed to λ̃(S2) = λ(S2),n +

σ(∇(znu , z
n
v ) − q̄), omitting the subscript for q. Equation (31) for λ(S2),n+1

does not change. The following set of update equations are added for q, its

over-relaxation expression q and its dual λq:

λ̃q = λnq + σ∇qn,

λn+1
q =

λ̃q

max(1, ‖λ̃q‖/αS2)
,

qn+1 = qn + τ(λ(S2),n+1 + divλn+1
q ),

qn+1 = 2qn+1 − qn.

(36)

Details of how to implement e.g. the derivative operators numerically are spec-

i�ed in [25].395

Next, the update equations are derived for the CSAD data term introduced

in [20]. For each of the data terms in (5a), as exempli�ed for ED24 in (22), the

optimum s∗ is given by

s∗ ← min
s

(
η|a0 + aT s|+ 1

2
‖s− s̃‖2

)
, (37)

This can be reduced to a one dimensional problem in the direction of a [43, 20],

such that s∗ = s̃ + δ∗a/‖a‖, where

δ∗ = arg min
δ

(
η‖a‖

∣∣∣a0 + aT s̃

‖a‖
+ δ
∣∣∣+

1

2
δ2
)
. (38)

This is a problem of the form

arg min
δ

( 1∑
i=1

νi|δ − bi|+ ξ(δ − f)2
)
, (39)

in [43]. Identifying ξ = 1/2, f = 0, its solution is given by

δ∗ = median{b1, c0, c1}, (40)

where b1 = −(a0 + aT s̃/‖a‖), c0 = ν1 = η‖a‖, c1 = −ν1 = −η‖a‖. Inserting

into s∗ = s̃+δ∗a/‖a‖ gives the same expression as derived in (24). Exemplifying
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for the CSAD data term corresponding to ED24, its linearized expression is

CSAD24(s,x)

σ
=

∑
x′∈N (x)

η|a0(x′) + aT s|,

a0(x′) = I4(x + u0
2(x) + u0

3(x))− I2(x)−

− I4(x′ + u0
2(x) + u0

3(x))− I2(x′)+

+ aT (uk3(x)− u0
2(x)− u0

3(x)),

(41)

where N (x) is a 3 × 3 neighborhood of x. Notice that the illumination terms

are removed, and thus a = ∇I4. Similar to (37), we get

s∗ ← min
s

( ∑
x′∈N (x)

η|a0(x′) + aT s|+ 1

2
‖s− s̃‖2

)
, (42)

which using the solution formula to (39) given in [43] gives

δ∗ = arg min
δ

( 1∑
i=1

η‖a‖
∣∣∣a0(x′) + aT s̃

‖a‖
+ δ
∣∣∣+

1

2
δ2
)

=

= median{b1, . . . , b8, c0, . . . , c8},

(43)

where each bi = −(a0(x′) + aT s̃/‖a‖), and the indexes i = 1, . . . , 8 correspond

to the 8 neighboring points x′ of a given point x. The ci are all multiples of

η‖a‖ (independent of i) by the factors {8, 6, 4, 2, 0,−2,−4,−6,−8}. The CSAD

variants of ED13, ED23 are similar to (41) and the solution follows the same

derivation, but with di�erent a0 and a.400
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