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Abstract
Impacts are an important noise source of today’s society. From a control standpoint,
solutions to problems related to impacts are commonly based on passive methods. In
this paper, an active method to control the radiated sound from a sphere impacting
a simply supported plate attached to an infinite baffle is proposed. The contact
force between sphere and plate is modeled by Hertzian contact, this force is then
convoluted with the plate’s impulse response. From this, the radiated sound field is
calculated by the Rayleigh integral in the time domain. In a following step, an active
force is used to act on the plate with the purpose of minimizing the radiated sound
power. This control force is estimated using a method based on the LMS algorithm
formulated in the time-domain. For different positions of the impact between the
sphere and the plate, the position of the active force is varied and for each case, the
LMS algorithm obtains the optimal time record of the force. For non-trivial cases,
where the acting force is not in the same position as the impact, results present
reductions of up to 13 dB in the simulations of the radiated sound power.

Keywords: Active vibration control, impact control, sound radiation.

v





Acknowledgements
I would like to acknowledge my supervisor and mentor, Wolfgang Kropp, whose help
and guidance was fundamental for the completion of this work. I also would like to
thank Carsten Hoever and Lars Hansson for their technical support throughout the
development of this thesis. Another big thanks goes to my mother and my father,
Nilde and Hamilton Passanesi, my siblings, Thaís and Eduardo Passanesi, and my
girlfriend, Patrícia Belletati, who always believed in me and gave me all the moral
support I needed besides helping me keep a calm and focused mind to achieve my
goals.

This work has been produced during my scholarship period at Chalmers University
of Technology, thanks to a Swedish Institute scholarship. Without their financial
support, this work as well as the past two years of education which the author re-
ceived would not be possible.

André Vinícius Viacava Passanesi, Gothenburg, August 2016.

vii





Contents

List of Figures xi

List of Tables xiii

1 Introduction 1

2 Theory 3
2.1 Sound Radiation from Impacts . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Formulation of the equations to find the impact force . . . . . 4
2.1.2 Numerical methods applied to calculate the impact force . . . 6
2.1.3 Plate impulse response . . . . . . . . . . . . . . . . . . . . . . 10
2.1.4 Radiated sound . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Active Noise Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 The Least Mean Square algorithm . . . . . . . . . . . . . . . . 13
2.2.2 Force identification method based on LMS algorithm . . . . . 15
2.2.3 Multidegree of freedom LMS . . . . . . . . . . . . . . . . . . . 16

3 Simulation setup and results 19
3.1 Definition of plate and sphere to be studied . . . . . . . . . . . . . . 19
3.2 Initial conditions and defined calculation parameters . . . . . . . . . 20
3.3 Determination of the input forces . . . . . . . . . . . . . . . . . . . . 21
3.4 Frequency study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 LMS Algorithm 27
4.1 Decription of the applied LMS algorithm . . . . . . . . . . . . . . . . 27
4.2 Results for impact position 1 . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Results for impact position 2 . . . . . . . . . . . . . . . . . . . . . . . 35
4.4 Results for impact position 3 . . . . . . . . . . . . . . . . . . . . . . . 40

5 Radiated sound power evaluation 45

6 Conclusion 47
6.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Bibliography 49

ix



Contents

x



List of Figures

2.1 Schematic depiction of the studied plate and sphere. . . . . . . . . . . 4
2.2 Depiction of the relative displacement between sphere and plate. . . . 5
2.3 Flowchart representing the process to calculate the impact force taken

from [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Block diagram of an adaptive filter taken from [16]. . . . . . . . . . . 13
2.5 Sketch of how the LMS algorithm is applied in this work. . . . . . . . 15
2.6 Sketch of the LMS algorithm used in this work after the necessary

alterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Schematic depiction of the studied plate with dimensions. . . . . . . . 19
3.2 Schematic depiction of the studied sphere with dimensions. . . . . . . 20
3.3 Sketch of the simply supported plate and the different impact posi-

tions that were simulated . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Impact forces for different impact positions . . . . . . . . . . . . . . . 22
3.5 Viscous forces for different impact positions . . . . . . . . . . . . . . 23
3.6 Frequency domain representation of total input force . . . . . . . . . 24
3.7 Radiation efficiency of the studied plate. The solid blue line represents

the efficiency achieved from modal superposition and the dotted black
lines are the efficiencies of the first 15 modes separately. . . . . . . . . 25

4.1 Example of the resampled total force used as an input to the LMS
algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Example transfer function for a specific receiving position. . . . . . . 28
4.3 Example of the primary path for the same position as shown previously. 29
4.4 Results obtained from the simulation of an impact applied in position

1 with an active force applied in control position 1. . . . . . . . . . . 30
4.5 Results obtained from the simulation of an impact applied in position

1 with an active force applied in control position 2. . . . . . . . . . . 31
4.6 Results obtained from the simulation of an impact applied in position

1 with an active force applied in control position 3. . . . . . . . . . . 32
4.7 Results obtained from the simulation of an impact applied in position

1 with an active force applied in control position 4. . . . . . . . . . . 33
4.8 Results obtained from the simulation of an impact applied in position

2 with an active force applied in control position 1. . . . . . . . . . . 36
4.9 Results obtained from the simulation of an impact applied in position

2 with an active force applied in control position 2. . . . . . . . . . . 37

xi



List of Figures

4.10 Results obtained from the simulation of an impact applied in position
2 with an active force applied in control position 3. . . . . . . . . . . 38

4.11 Results obtained from the simulation of an impact applied in position
2 with an active force applied in control position 4. . . . . . . . . . . 39

4.12 Results obtained from the simulation of an impact applied in position
3 with an active force applied in control position 1. . . . . . . . . . . 41

4.13 Results obtained from the simulation of an impact applied in position
3 with an active force applied in control position 2. . . . . . . . . . . 42

4.14 Results obtained from the simulation of an impact applied in position
3 with an active force applied in control position 3. . . . . . . . . . . 43

4.15 Results obtained from the simulation of an impact applied in position
3 with an active force applied in control position 4. . . . . . . . . . . 44

xii



List of Tables

3.1 Overview of material properties . . . . . . . . . . . . . . . . . . . . . 20
3.2 Impact position coordinates . . . . . . . . . . . . . . . . . . . . . . . 21

5.1 Reduction in radiated sound power. The trivial solution reductions
are in italic and the largest reductions found for a non-trivial impact
position are in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

xiii



List of Tables

xiv



1
Introduction

Weather in residences or in the workplace, impacts are an important source of noise
in today’s society. The concern with this type of noise increases in industry due
to the large presence of machinery whose mechanical processes include impacts [1].
Planing, pressing, stamping, forging and other hammer-type operations are some
examples of such machines. Because of the materials involved, the sound pressure
levels resulting from these impacts can present a health risk, leading to a need of
legislation [3]. However, given the transient nature and short duration of impact
noise, the produced sound is difficult to control, culminating in a larger struggle to
meet the emission regulations [4].

With the use of passive absorbers, it is possible to attenuate high frequencies in the
radiated sound resulting from the impacts [5]. Nonetheless, this might lead to an
obstruction of the access to the machine. Another concern with this type of solution
is the impractical control of lower frequencies and vibrations. Thus, for an effective
result in the attenuation of all frequencies, actions must be taken at the source level
[6]. When dealing with impacts, this source level is the contact between the colliding
bodies, meaning that by controlling the way this collision occurs, it is possible to
control all the subsequent outcomes of the impact. For this, active control can be
of great value.

The concept of active control applied in this research is the use of electroacoustic
transducers to modify/control sound fields. To simplify this rather broad topic of
impacts, a sphere impacting on a plate which is simply supported by an infinite
baffle was selected as the generic study case. An artificial active point force applied
to the plate is the chosen actuation method. The aim of this thesis is to investigate
possible active control measures with the purpose of reducing the radiated sound
resulting from such an impact. Although this setup does not cover many of the fea-
tures present in the aforementioned industrial machinery, it is considered sufficient
as a theoretical setup to be used as a first step for more complex constructions. This
is a necessary provision, given that there is a rather small amount of literature on
the use of active control for impact problems, especially from an acoustic point of
view.

This report is written in the following way: chapter 2 introduces the fundamental
theory necessary for the development of this work; chapter 3 presents the simula-
tion setup used in this work along with the necessary initial calculations and results
which are used as an input to the main algorithm used in this work; chapter 4 shows

1



1. Introduction

this main algorithm as well as the results obtained from it and a discussion on these
results; chapter 6 contains an analysis on the changes on radiated sound power re-
sulting from the results obtained in chapter 5; chapter 7 presents the conclusions
from this work and suggestions for future investigations.
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2
Theory

The physical phenomena and equations relevant to this work will be presented and
discussed in the following chapter. The models chosen as well as the simplifications
utilized and the limitations of these will also be exposed.

2.1 Sound Radiation from Impacts
An impact is defined as a high force applied on colliding bodies during a short period
of time [7]. During this collision, a complex process occurs where minute changes
to the contact conditions between the two bodies can greatly influence the outcome
of this impact. One of the key characteristics of this mechanical phenomenon is the
transformation of kinetic energy into potential energy in the form of elastic deforma-
tions and subsequently to heat and sound energy, the latter being of main interest
for this work.

In a broad perspective, the energy that is converted into sound energy during an
impact, and thus perceived as noise, can be subdivided into two main categories:
the acceleration noise and the ringing noise [8]. The acceleration noise is the noise
component caused by pressure perturbations due to the sudden deceleration and
acceleration of the sphere at impact. The ringing noise is the noise component due
to the sound radiation from the vibrations of the structure in which the impact
occurred. In this thesis work, the focus was kept in the ringing noise component of
the impact sound, and thus only this component will be explored in the following
theoretical depiction of this problem.

Due to the presence of a control force in the studied system, the impact cannot
be described with the equations commonly used for collisions. Thus, a more prim-
itive approach to these impact equations, which relies on the equations of motion
of the impacting objects, must be followed to describe the problem at hand. The
theoretical formulation presented in [1] does this and it is based on three necessary
calculation steps to find the radiated sound emitted for the case studied. These
steps are: the calculation of the impact force, the response of the plate to this load
and, lastly, the finding of the acoustic pressure at any point in space. Each of these
calculation steps will be described next in further detail.

The studied sphere and simply supported plate that comprise the case studied are
depicted in figure 2.1 and all equations will be presented in accordance to the coor-
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2. Theory

dinate system presented in this figure.

Figure 2.1: Schematic depiction of the studied plate and sphere.

2.1.1 Formulation of the equations to find the impact force
Assuming the impact between the sphere and the plate is elastic, it is possible to
estimate the contact force through Hertz’s theory for contact stress [7]. On doing so,
the deformations that occur during the impact, which lead to a varying contact area
between the plate and sphere, are considered. Hertz’s theory presents a non-linear
relation between the contact and the force, expressed by:

Fc(t) = sξ(t) 3
2 (2.1)

where Fc is the contact force, ξ is the relative displacement between the ball and
plate and s is the contact stiffness, which is represented by:

s = 4
3
√
rs

[
1− ν2

s

Es
+

1− ν2
p

Ep

]−1

(2.2)

where rs is the radius of the sphere, ν and E are respectively the Poisson’s ratios
and Young’s modulus associated with each body, represented with the subscript s
for sphere and p for plate.

Besides the assumption of an elastic collision, there are several other suppositions
related to this theory. First, the bodies in contact should be considered elastic half-
spaces. Also, the strains in the contact must be small and stay within the elastic
limit. This leads to the implication that the contact surfaces in question are much
smaller than the characteristic dimensions of the bodies involved in the collision.
Lastly, the surface should be friction-less, which implies that the plate and sphere
have similar elastic properties [3].

Limits to these assumptions are, for example, impacts between bodies of soft mate-
rials or impacts with a high velocity. Such cases will not be evaluated in this work.
It is also important to note that this force is only applied while there is contact
between the sphere and plate, and therefore, only when the relative displacement
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2. Theory

between the two is smaller than zero. This relative displacement is illustrated in
figure 2.2 and expressed as:

Figure 2.2: Depiction of the relative displacement between sphere and plate.

ξ(t) = ξs(t)− ξp(t) (2.3a)

deriving this twice in relation to time:

ξ̈(t) = ξ̈s(t)− ξ̈p(t) (2.3b)

where ξs is the position of the bottommost point of the sphere and ξp is the position
of the top side of the plate. Therefore, the equations for the displacement of the
sphere and the plate are necessary. Once contact is made, the contact force is applied
on both the plate and sphere. Thus, the equation of movement for the sphere will
be:

msξ̈s = −Fc −msg (2.4)
where ms is the mass of the sphere and g is the gravity. Note that the negative sign
for the contact force is due to the reference being used (where this force only exists
for ξ ≤ 0).

One can express the position of a certain point of the plate as a convolution be-
tween the forces acting on the plate and the impulse response of the plate. In the
case studied, the acting forces are the contact force and the controlled active force,
rendering the following equation:

ξp(t) = Fa(t) ∗Ma(t) + Fc(t) ∗Mc(t) (2.5a)

or

ξp(t) =
∫ t

0
Fa(τ)Ma(t− τ)dτ +

∫ t

0
Fc(τ)Mc(t− τ)dτ (2.5b)

where ξp is the displacement of a point in the plate, Fc and Fa are the contact and
active forces respectively, and Mc and Ma are the impulses responses corresponding
to the position of the plate where the contact and active forces are applied. These
impulse responses will be exposed and discussed later on. For now, it is sufficient

5



2. Theory

to state that they naturally do not depend on any displacement. Deriving equation
2.5b twice in terms of time leads to:

ξ̈p(t) =
∫ t

0
Fa(τ)M̈a(t− τ)dτ +

∫ t

0
Fc(τ)M̈c(t− τ)dτ (2.6)

Inserting equations 2.3b, 2.1 and 2.6 into 2.4 results in:

ms

[ ∫ t

0
Fa(τ)M̈a(t− τ)dτ +

∫ t

0
sξ(τ) 3

2M̈c(t− τ)dτ + ξ̈(t) + g

]
+ sξ(t) 3

2 = 0 (2.7)

Equation 2.7, if solved, yields the behaviour of the relative displacemente, ξ, which
would subsequently give the impact force through equation 2.1. However, it is very
difficult to solve a non-linear ordinary differential equation analytically. On that ac-
count, a discretization of time as well as the use of numerical methods was adopted
to reach the desired solution. These will be exposed and discussed in the next sec-
tion, but before this, damping will be introduced to the equations above.

For simplicity, only viscous damping will be evaluated in this work. Other ap-
proaches can be found in [3]. The formulation used for viscous damping in this work
is a linear model expressed as:

Fv(t) = c · ξ̇(t) (2.8)

where c is the viscous damping factor. This factor is obtained through an initial
estimation followed by further adjustments to reach the appropriate level of damp-
ing. The viscous force is applied to the point of contact and must be thus added to
equations 2.4 and 2.6, which leads to the following change in equation 2.7:

ms

[ ∫ t

0
Fa(τ)M̈a(t−τ)dτ+

∫ t

0
(sξ(τ) 3

2 +cξ̇(τ))M̈c(t−τ)dτ+ξ̈(t)+g
]
+sξ(t) 3

2 +cξ̇(t) = 0

(2.9)

2.1.2 Numerical methods applied to calculate the impact
force

First, in order to apply the desired numerical approach, it is necessary to discretize
time. This means that the variable time will no longer be continuous, which leads
to the need of certain changes in the mathematical representation presented earlier.
One important aspect of the sampling that will be performed is that errors will arise
from it. However, the short duration of the impact imposes the requirement of a
high sampling rate, lowering the amount of noise generated from this process.

To evaluate equation 2.9 in a discrete space, it is necessary to express the con-
volutions in this equation in a discrete form. These mathematical operations are
expressed in the following form in a discrete space [10]:

6



2. Theory

(f ∗ g)(tN) = ∆t
N∑
i=1

f(ti)g(tN−i+1) (2.10)

where f and g are the discrete functions being convoluted, ∆t is the time step and
the subscript N represents the current time step. Applying this to the convolu-
tion between the contact force and the impulse response function of the plate, the
following equation is obtained.

(Fc ∗ M̈c)(tN) = ∆t
N∑
i=1

sξ(ti)
3
2M̈c(tN−i+1) (2.11)

Equation 2.11 indicates the need of full knowledge of the variable ξ up to the current
time step. However, this is the exact variable which the equation is being solved for.
Thus, it is interesting to perform a mathematical step to isolate the current step in
the equation, yielding the following result.

(Fc ∗ M̈c)(tN) = ∆t(sξ(tN) 3
2 )M̈c(t1) + ∆t

N−1∑
i=1

s(ξ(ti)
3
2 )M̈c(tN−i+1) (2.12)

The process is analogous for both the active force and the viscous force, however it is
not necessary to isolate the current time step in the case of the active force. This is
because the displacement is not involve in that particular convolution. Substituting
these convolutions into equation 2.9, as well as using discrete time, leads to:

ms

(
∆t(sξ(tN) 3

2 + cξ̇(tN))M̈c(t1) + ∆t
N−1∑
i=1

(sξ(ti)
3
2 + cξ̇(ti))M̈c(tN−i+1) + ...

+ ∆t
N∑
i=1

Fa(ti)
3
2M̈a(tN−i+1) + ξ̈(tN) + g

)
+ sξ(tN) 3

2 + cξ̇(tN) = 0 (2.13)

where tN is the current time step and t1 is the first time step. Even though equa-
tion 2.13 is rather large, it is only dependent of three unknown variables: ξ, ξ̇ and
ξ̈. Thus, a numerical method that relates these three is needed to solve this equation.

The numerical method chosen to correlate these variables is the Hilber-Hughes-
Taylor method (HHT). HHT is an implicit method, which in this case means it
finds a solution for equations involving both the current time step and the previous
ones [11]. This method also allows for numerical damping without lowering order
accuracy. This is done with the use of a parameter referred to as the α. Through
the use of this, the equations for the relative displacement and velocity become:

ξHHT (tN) = ξ(tN−1)− α∆tξ̇(tN−1)− α∆t2
[(1

2 − β
)
ξ̈(tN−1) + βξ̈(tN)

]
(2.14a)

ξ̇HHT (tN) = ξ̇(tN−1)− α∆t[(1− γ)ξ̈(tN−1) + γξ̈(tN)] (2.14b)

7



2. Theory

where β and γ are functions of α, expressed as:

β = (1− α)2

4 (2.15a)

γ = 1− 2α
2 (2.15b)

The parameter α determines the amount of numerical damping utilized and should
therefore be kept within the interval [−1

3 , 0]. With these equations, there is now only
one unknown variable left to solve for in equation 2.13, the relative acceleration ξ̈.
For this, the Newton-Raphson method was selected.

The Newton-Raphson method is a numerical method utilized to solve for the roots
of a certain equation, parting from an initial approximation of this root [12]. It is
expressed by the following equation:

xn = xn−1 −
f(xn−1)
f ′(xn−1) (2.16)

where x is the variable which the method solves for, n is the n-th iteration, f is
the equation in question and f ′ is the derivative of this equation in terms of the
variable studied. Equation 2.16 must be repeated until the error between the result
of two consecutive iterations is below a determined tolerance level. Note that the
N in equation 2.13 and the n in equation 2.16 are different, as first pertains to the
current time step and the latter to the current iteration.

For the case at hand, the variable x is the relative acceleration ξ̈ and the function
f is equation 2.13 with equation 2.14a. The derivative of this resulting equation in
terms of the relative acceleration results in:

∂f

∂ξ̈(tN)
= ms+

3
2
∂ξ(tN)
∂ξ̈(tN)

ξ(tN) 1
2 (mss∆tM̈c(t1)+s)+∂ξ̇(tN)

∂ξ̈(tN)
(msc∆tM̈c(t1)+c) (2.17)

where the differential is equal to:

∂ξ(tN)
∂ξ̈(tN)

= −α∆t2β (2.18a)

∂ξ̇(tN)
∂ξ̈(tN)

= −α∆tγ (2.18b)

With this, all the necessary equations and methods to find the impact force have
been described. As the input to the process, the free fall equations are used, where:

ξ̇0 = −
√

2g(ξs,0 − ξp,0) (2.19a)
ξ̈0 = −g (2.19b)

8



2. Theory

where ξs,0 and ξp,0 are the initial positions of the sphere and plate respectively.
Once contact is made, the Newton-Raphson method is used to find the relative
acceleration of the current step. It is repeated until the error between iterations is
lower than the tolerance. Then, with the use of the HHT equations, the relative
velocity and position are calculated. This process is repeated ξ ≤ 0. Figure 2.3
illustrates this process in a flowchart [3].

Figure 2.3: Flowchart representing the process to calculate the impact force taken
from [3].

With knowledge of how ξ behaves, the contact force can be calculated. Therefore,
the excitation characteristics have been determined and now a study of the response
of the plate is needed.

9



2. Theory

2.1.3 Plate impulse response
An impulse response characterizes how a certain system reacts to any external input.
The concept behind this relies on using a short pulse as an input to the system and
verifying the resulting output from this same system. This response has been well
characterized for a simply supported plate in both the time and frequency domains.
Since the earlier sections in this report only used the time domain, only the equa-
tions pertaining to it will be exposed here.

An impulse response of the displacement of a plate can be calculated through the
sum of all it’s eigenfunctions, expressed as [5]:

M(x, y, t) = − 4
mp

∞∑
n=1

∞∑
m=1

Φe(xe, ye, n,m)Φr(xr, yr, n,m)sin(Θn,mt)
Θn,m

e−δn,mt (2.20)

where mp is the mass of the plate, n and m are integers that represent the eigen-
functions in the x and y directions respectively, Φe and Φr are the eigenfunctions
at the excitation point and a receiving point withing the plate respectively, (xe, ye)
and (xr, yr) are the positions of these points, and Θn,m and δn,m are functions of the
eigenfrequencies of the plate with added damping, given by:

Θn,m = ωn,m

√
1− η2

4 (2.21a)

δn,m = η

2ωn,m (2.21b)

where ωn,m are the eigenfrequencies of the plate and η is the damping coefficient.

For the case of a simply supported case, the eigenfrequencies and eigenfunctions
of the plate can be described mathematically in a very simple manner [1]. This is
why this case was chosen for this thesis work. The eigenfunctions are expressed as
follows:

Φn,m,i = sin
(
nπxi
Lx

)
sin

(
mπyi
Ly

)
(2.22)

where Lx and Ly are the lengths of the plate in the x and y directions respectively,
and the index i represents either the excitation or receiving points. The eigenfre-
quencies are written as:

ωn,m =
√
B′

m′′

[(
nπ

Lx

)2
+
(
mπ

Ly

)2
]

(2.23)

where m′′ is the mass per unit area of the plate, calculated through m′′ = ρh, where
ρ is the plate density and h is the thickness. And B′ is the bending stiffness of the
plate, found through:

B′ = Eph
3

12(1− νp)
(2.24)

10



2. Theory

where h is the thickness of the plate.

This is sufficient to verify the behaviour of the position of the points in the plate.
But in equation 2.13, the response in terms of the acceleration is needed. To find
this, equation 2.20 must be derived twice in terms of time. The result is:

∂M

∂t
= − 4

mp

∞∑
n=1

∞∑
m=1

ΦeΦr

Θn,m

(
cos(Θn,mt)Θn,me

−δn,mt − sin(Θn,mt)e−δn,mtδn,m

)
(2.25a)

∂2M

∂t2
= − 4

mp

∞∑
n=1

∞∑
m=1

ΦeΦr

Θn,m

[(
δ2
n,m −Θn,m2

)
sin(Θn,mt)− 2Θn,mδn,m cos(Θn,mt)

]
e−δn,mt

(2.25b)

Expressing equation 2.25b for the contact point will only change the eigenfunctions
involved in the equation. These will be:

For the contact and viscous forces

ΦeΦr = sin2
(
nπxc
Lx

)
sin2

(
mπyc
Ly

)
(2.26a)

For the active force

ΦeΦr = sin
(
nπxc
Lx

)
sin

(
mπyc
Ly

)
sin

(
nπxa
Lx

)
sin

(
mπya
Ly

)
(2.26b)

where (xc, yc) and (xa, ya) are the points where the impact occurs and where the
active force is applied respectively.

With the input described in the previous sections, it is possible to unite the exposed
acceleration impulse responses with the forces through a convolution and verify the
resulting behaviour of any point within the plate. This would then allow for the
calculation of the radiated sound, which will be shown next.

2.1.4 Radiated sound
To determined the sound field generated by the impact, the Rayleigh integral was
used. This technique is based on the idea that the radiating body can be constructed
by the addition of infinitesimal monopole sources [13]. The Rayleigh integral which
allows the calculation of the radiated pressure from an arbitrary vibration pattern
on the baffled plate is:

p(R, t) = ρ0

2π

∫
S

ξ̈(t, rs)
|R− rs|

dS (2.27)

where R is the position of the chosen receiving point, ρ0 is the specific density of air,
S is the area of integration which in this case is the plate, ξ̈(t, rs) is the acceleration
of an arbitrary source point and rs is the position of the arbitrary source within the
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2. Theory

plate.

Since the calculation of the radiated pressure is done numerically, there is a need to
discretize the plate in small elements and then sum their contributions. This will
change equation 2.27 in the following way:

p(R, t) = ρ0

2π

S/dxdy∑
i=1

ξ̈(t, rs,i) dx dy
|R− rs,i|

(2.28)

where dx and dy are the discretization sizes in the x and y directions respectively
and i is the index that covers each of the discretized areas. This step inserts limita-
tions to the frequency range of interest. For a certain wavelength to be sufficiently
represented, there need to be a minimum of six elements within this wavelength
[5]. With this, it is possible to draw a dependency between discretization size and
highest frequency where this model is valid.

To thoroughly study the sound field created by the impact, the radiated pressure
should be studied for many points around the plate. However, to facilitate the
evaluation of the efficiency of the control applied, these many points should be
expressed by one value which is able to characterize the properties of the radiating
structure. In this work, an evaluation of the total radiated sound power was selected
to perform this evaluation. The radiated sound power of a structure is expressed as
[5]:

W =
∫
Sr

Ir dSr (2.29)

where Sr is the receiving surface where the intensity is calculated and Ir is the
intensity. In the far field, this intensity can also be written as:

Ir = 1
T

∫ T

0

pr(t)2

ρ0c0
dt (2.30)

where pr(t) is the pressure at a moment in time for a specific receiving position and T
is the total integration time. For this thesis, a sphere with radius R was used as the
receiving surface of the impact sound. Since this sphere was also solved numerically,
it was discretized. This inserts a new limitation on the maximum frequency which
can be sufficiently expressed, which is expressed similarly to the error of the plate
discretization. The whole equation for the radiated sound power considering the
discretizations and with equation 2.28 thus becomes:

W =
Nr∑
r=1

∆Ar
T∑
t=1

ρ0

c0

∆t
4π2

( S/dxdy∑
i=1

ξ̈(t, rs,i) dx dy
|Rr − rs,i|

)2

(2.31)

where ∆Ar represents the area that each receiving position occupies of the receiving
half-sphere, Nr is the number of receiving positions and Rr is the coordinate of one
specific receiving position. Thus, it is possible to notice that to calculate the total
sound power from a simply supported plate, one must know the time signature of
the acceleration of the top surface of the plate and use many receiving positions
around this surface.

12
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2.2 Active Noise Control

The concept of active noise control (ANC), presented in a patent by Paul Lueg in
1936, has as its main basis the control of sound coming from a source by the intro-
duction of one or more secondary source of sound. Although the concept has been
further developed and enhanced since, this idea is still fundamental to this method
[14, 15] .

The physical process that allows this is interference, and thus, with the introduction
of a secondary sound field whose properties are specifically determined, it is possible
to control aspects of the resulting sound field, which is given by the interference
between the primary and secondary ones. The way this concept will be applied to
this work is through the addition of a determined active force to the plate of the
studied system, with the intention of controlling the sound radiated from this plate.
However, before this can be done, it is necessary to find the optimal time signature
of the active force to be used. In order to find this optimal force, the Least Mean
Square algorithm was applied and, therefore it will be described next.

2.2.1 The Least Mean Square algorithm
The LMS algorithm is a tool used in filter design that relies on an iterative process
to find the optimal filter coefficients that minimize a predetermined error function
[16], as illustrated in figure 2.4.

Figure 2.4: Block diagram of an adaptive filter taken from [16].

The fundamental concept behind the LMS algorithm is to update the filter coeffi-
cients by amounts proportional to the steepest gradient of the mean square error
presented, hence the algorithm’s name, at the current time step [16]. The error
used in the algorithm is the difference between the output of the system, also called
desired signal, and the output of the designed finite impulse response (FIR) filter,
which is expressed as:

e(n) = ad(n)−
I∑
i=1

x(n− i)h(i) (2.32)
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where e is the error at the time step n, ad is the desired signal at this time step, x is
the input signal observed, h is the filter coefficients and I is the length of the filter,
which is the length of the FIR filter. The sum in equation 2.32 is the convolution
between the input signal until the current time step and the designed filter, which
in vector form is represented as:

e(n) = ad(n)− hT (n) x(n) (2.33)

where T indicated the transpose of the vector, which are

hT (n) =
[
h1(n), h2(n), ..., hI(n)

]
(2.34)

and

xT (n) =
[
x(n), x(n− 1), ..., x(n− I)

]
(2.35)

With the error function defined, it is thus necessary to find the filter coefficients
that minimize this function. As mentioned before, the LMS algorithm uses the
mean square error as a criterion for this. Thus the cost function for this algorithm
is expressed as:

C(n) = E
[
e2(n)

]
= E

[(
ad(n)− hT (n)x(n)

)2
]

(2.36)

where C is the cost function, E
[
e2(n)

]
is the expected value of the error. This leads

to the analysis that the cost function is a quadratic equation in terms of result from
the convolution of the filter coefficients and the input signal. Hence, the concept
of the steepest decline of the filter coefficients can be followed to reach the global
minimum of the function. One can express the concept of steepest decline through
the gradient of the cost function:

∇ · C(n) =
∂E

[
e2(n)

]
∂hi

= 2E
e(n)∂e(n)

∂hi

 = −2E[e(n)x(n− i)] (2.37)

This gradient allows for the formulation of the iterative method to find the optimal
filter coefficients, which is written as:

h(n+ 1) = h(n)− α∇C(n) = h(n)− 2αE[e(n)x(n− i)] (2.38)

where α is a weighting factor that determines the step size of the process. The
expected value of the error often must be estimated. This estimation can be done
using the instantaneous value of the gradient for the current time step [16]. This
will, on average, adjust the filter coefficients in a way to minimize the mean square
error. Equation 2.38 thus becomes:

h(n+ 1) = h(n)− αe(n)x(n) (2.39)

With the method defined, it is necessary to find the appropriate step size for the
process. This step size influences both the time the algorithm needs to reach the
optimal solution as well as the convergence of the algorithm. This influence is that
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the smaller the step is, the better the convergence and the longer the time necessary
for the solution to be reached. To guarantee convergence, the value of α must be
fulfill the following expression:

0 < α <
1

IE[x2(n)] (2.40)

This algorithm presents a rather low sensitivity to noise due to the use of the average
gradient. Hence, if the noise is affecting the instantaneous time step, the average
will still lead towards the global minimum, only requiring a longer time to reach it.

When applying the LMS algorithm to this work, it can be sketched as illustrated in
figure 2.5

Figure 2.5: Sketch of how the LMS algorithm is applied in this work.

where Fi is the impact and viscous forces summed together, Fc is the active force
to be used, hp is the primary impulse response which means the impulse response
related to the point of contact between sphere and plate, and hs is the secondary
impulse response which means the impulse response related to the point where the
active force is applied. Both these impulse responses are calculated as shown in
section 2.1.3

2.2.2 Force identification method based on LMS algorithm
The main application of the LMS algorithm in this work is to identify the optimal
control force to be applied on a specific position of the plate. This means that the
filter coefficients can be found by means of the theoretical formulations presented
in equation 2.25b, and thus, the input to the system is the desired result. Upon
evaluation of the derivation of the LMS algorithm, one notices the need to change
only the step where the gradient is calculated in order to obtain the expression that
will find the optimal input instead of filter coefficients [16]. Expression 2.37 thus
becomes:

∇ · C(n) =
∂E

[
e2(n)

]
∂xi

= 2E
e(n)∂e(n)

∂xi

 = −2E[e(n)h(i)] (2.41)

Leading to the following formulation of the iterative process:
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x(n+ 1) = x(n)− 2αE[e(n)h(i)] (2.42)

Now however, a problem with the expected value arises. Previously, the quadratic
error would reach the desired level of reduction if the input signal was sufficiently
long to obtain a good enough average of the expected value. In the new situation
presented in this section, the input is cut off and each unknown input value, x(n)
will only be updated I times due to the length used for the FIR filter. This limited
amount of updates might not be sufficient to reach the desired optimum point. A
trick, presented in [16],that can be applied to solve this problem is to use only a part
of the input signal, with the length N , and periodically repeat the filter coefficients
with a period length of N as well as the desired signal. This will create an analogy to
the standard LMS algorithm, permitting the analogical description of the iterative
process as:

x(n+ 1) = x(n)− αe(n)h(n) (2.43)

The length used for the input value must be, in practice, at least twice that of
the filter length I. This is because the first I values of the desired signal are also
influenced by values outside of the observation window (which has the length of N).

2.2.3 Multidegree of freedom LMS
Since the LMS algorithm will be applied to find the optimal force to reduce the
radiated sound of the plate, the system should not be analyzed only for one receiving
position but for many points around the plate that can sufficiently recreate the
sound power from the plate. For each receiving position, there is a specific impulse
response which represents one input to the LMS algorithm. The LMS algorithm
presented previously is limited to one input and thus needs to be generalized in
order to function for multiple inputs [17]. To do this, it is first necessary to specify
the error for each receiving position:

er(n) = adr(n)−
S∑
s=1

hTrs(n) xs(n) (2.44)

The subscript r indicates a specific receiving position, the subscript s indicates
an excitation force, therefore hrs(n) represents the impulse response for a specific
excitation force and receiving position at the current time step, and S is the total
amount of excitation forces. The error in equation 2.44 is then used to update the
force coefficients. However, given that there are multiple forces, an average of the
gradient is performed to find the average optimal direction towards the minimum.
The process is then formulated as:

xs(n+ 1) = xs(n)− 〈αrer(n)hrs(n)〉 (2.45)

The 〈〉 symbol represents the average over the receiving positions. It is important
to emphasize that the current time step n must be larger than the FIR filter length.
One last consideration is the limit of the weighting factor α, which due to the increase
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in degrees of freedom, must be defined with more restriction. The following relation
expresses this:

0 < α <

N
R

R∑
r=1

I∑
i=0
|hrs(i)|2

−1

(2.46)

where N is the length of the input signal and R is the number of receiving positions.
These alterations were applied to the LMS algorithm used in this work and the final
sketch of the used algorithm is shown in figure 2.6

Figure 2.6: Sketch of the LMS algorithm used in this work after the necessary
alterations
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3
Simulation setup and results

In this chapter, the setup used to reach the goal of this work as well as the reasoning
behind certain decisions are discussed. Consideration to the limitations presented in
the theory and applicability of the equations presented in that chapter are reviewed.
The necessary calculations to find the inputs to the main algorithm used in this
work are also shown. Results obtained from the simulations are presented in the
pertinent subsections.

3.1 Definition of plate and sphere to be studied

The simply supported plate selected for the simulations performed in this study
is made of Plexiglas, with a length of 0.8 m, a width of 0.7 m and a thickness of
0.035 m. The sphere chosen is a made of steel with a radius of 0.02 m. These are
illustrated in figures 3.1 and 3.2 and the detailed material properties used in the
calculations are presented in table 3.1.

Figure 3.1: Schematic depiction of the studied plate with dimensions.
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Figure 3.2: Schematic depiction of the studied sphere with dimensions.

Table 3.1: Overview of material properties

Material Plexiglas Steel
Density (kg/m3) 1150 7800
Elastic modulus (N/m2) 5.6 · 109 210 · 109

Poisson’s ratio 0.37 0.31
Loss factor 0.02 -
Viscous damping 12 -

The main reason for the choices presented above were simplicity and availability of
the evaluated specimens. Both steel and Plexiglas are largely available and used in
today’s industry.

3.2 Initial conditions and defined calculation pa-
rameters

As the initial conditions for the studied case, the sphere was dropped at a height of
5 cm from the plate surface, with no initial velocity. The plate is initially at rest
and has it’s top surface at the xy-plane of the used coordinate system. The point of
impact between sphere and plate was varied, along with the point where the control
force is applied, in order to study control effort and effectiveness of the proposed
control method. The receiving half-sphere selected for this work has a 10 m radius.
This is to guarantee that assumptions relying on far-field pressure are satisfied.

Lastly, a value of α = −1
3 was used for the HHT algorithm. In all simulations, the

gravitational constant of g = 9.81 m/s2, the speed of sound c0 = 340 m/s and the
air density ρ0 = 1.2 kg/m3 were used. Lastly, a time step of size ∆t = 1 · 10−6s was
defined in order to properly represent an impact, given its short duration. This time
step used only for the estimation of the impact force which will be shown next, for
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the LMS-algorithm, the time step ∆t = 2 · 10−4s was chosen to reduce the compu-
tational effort of the simulations.

The determination of the time step size implies the definition of the frequency limit.
This frequency limit indicates the maximum eigenfrequency that can be represented
with the used time step, implying in a limit to the number of modes used in the
modal summation present in the impulse response calculations, shown in section
2.1.3. The limit to the eigenfrequencies is expressed by ωn,m,max = π/∆t [3].

3.3 Determination of the input forces

As shown in chapter 2, the impact and viscous forces applied on the plate will vary
not only due to the properties and dimensions of the plate and sphere, but also
due to the position in which the impact occurs in the plate. This is because of the
presence of the impulse response in the numerical methods used to find these forces,
since these responses are dependent of the position in which the impact occurs.

Therefore, a analysis of the influence of the position was carried out. For this anal-
ysis, three positions were selected within the plate. These positions are described in
table 3.2 and illustrated in figure 3.3.

With these positions defined, the numerical methods described in section 2.1.2 were
applied. For each time step, the condition of relative distance between plate and
sphere being smaller than zero was verified. This was performed to guarantee that
the contact was still occurring. Next, the equation describing the sphere’s motion
was solved using the Newton-Rhapson method with this relative displacement as
the variable that the method solved for. This method was repeated until the error
between successive iterations was smaller than a determined tolerance. This toler-
ance was defined to be equal to the time step used in the process. Once this method
reached its goal, the values for the relative displacement, velocity and acceleration
were updated using the Hilber-Hughes-Taylor method. Figure 3.4 shows the ob-
tained impact forces for the three aforementioned positions and figure 3.5 shows the
obtained viscous forces for the same positions.

Table 3.2: Impact position coordinates

Position Coordinates
Impact Position 1 (0,4; 0,35)
Impact Position 2 (0,6; 0,6)
Impact Position 3 (0,3; 0,15)
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Figure 3.3: Sketch of the simply supported plate and the different impact positions
that were simulated

Figure 3.4: Impact forces for different impact positions
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Figure 3.5: Viscous forces for different impact positions

Evaluating figure 3.3 and 3.4 it is possible to notice a specific pattern in the behav-
ior of the impact forces in relation to the position of the impact within the plate.
This pattern is that the closer the impact occurs to the borders, the larger the
magnitude of the impact force. This is expected once the positions closer to the
borders present a higher stiffness and therefore will create larger relative displace-
ments between sphere and plate. Another expected result seen in the impact forces
is that the larger the magnitude of the force, the longer the impact time is. This is
expected because it takes longer for the deformations related to the force to return
to the initial state.

From figure 3.5 it is possible to notice that the different positions do not affect the
magnitude of the force. However, there is an influence related to the impact time.
This is related to the fact that this force is dependent of the relative velocity, in-
dicating that shorter impact times have quicker changes in this relative velocity, as
expected.

It was also considered important to verify the frequency content of the input to
the system evaluated. Therefore, a Fourier transform of the sum of the impact and
viscous forces, which is the total input force, was performed. With the knowledge
that only one impact was being simulated, zero padding was used to improve the fre-
quency resolution of the frequency domain representations of the total input forces.
Figure 3.6 shows the obtained total input force in the frequency domain.

23



3. Simulation setup and results

Figure 3.6: Frequency domain representation of total input force

3.4 Frequency study
A characteristic of an impulsive force is that their behavior in the frequency domain
mimics that of a low-pass filter. Since the total input force into the system will
present the general appearance of an impulsive forces, this is the behavior seen in
figure 3.6. The frequency in which the filter begins to attenuate the signal, called
the cutoff frequency, for the low-pass filters in figure 3.6 is around 3 kHz. Also, the
different values for magnitudes are directly related to the magnitude of the impact
forces, as seen in figure 3.4.

Another analysis to study the behavior of the plate itself was performed. This was
an evaluation of the plate’s radiation efficiency. This parameter is used to evaluate
the characteristics of the plate as a radiator by comparing the radiation from the
plate to that of a plane radiator. Figure 3.7 shows the radiation efficiency of the
plate studied.

From figure 3.7 it is possible to extract the coincidence frequency of the plate, which
is the frequency at which the plate becomes a more efficient radiator. For the stud-
ied case, this frequency is around 1 kHz. It is also noticeable that the first mode
radiates very well, having a radiation efficiency close to 1. Considering the shape of
the first mode, this leads to the observation that this plate’s radiation will resemble
that of a monopole. Thus, the radiation resulting from this plate will be quite om-
nidirectional.

The time step presented to calculate the total input force was chosen based on the
need of a very small step to represent the impact. However, it leads to quite a large
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Figure 3.7: Radiation efficiency of the studied plate. The solid blue line represents
the efficiency achieved from modal superposition and the dotted black lines are the
efficiencies of the first 15 modes separately.

studied frequency range, up to 500 kHz. With the characteristic of both the plate
and the excitation that were described above, a new frequency range of interest was
determined. This frequency range was determined to be up to 2.5 kHz, leading to
a new time step of ∆t = 2 · 10−4s which is to be used in the LMS algorithm. Thus,
the total input force was resampled to match this time step and the calculations of
the transfer function was performed using this value as well.
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4
LMS Algorithm

Once the magnitude and time behavior of the impact force are determined, this
force is used as an input to the LMS algorithm. The transfer functions from the
forces acting on the plate to the pressure at a receiving point are then calculated to
obtain the desired signal for the LMS to mimic. With this information, the LMS
algorithm is subsequently performed. In this chapter, the details of this algorithm
are described and the results obtained are fully portrayed along with discussions on
these results.

4.1 Decription of the applied LMS algorithm
With the conception of the LMS algorithm presented in section 2.2.3, each variable
used in the algorithm will be described in this section. First, the time signature of
the variable Ft in figure 2.6 was found through the resampling of the total input
force of the system for the new time step ∆t = 2 · 10−4s. Figure 4.1 presents this
for one of the impact positions discussed in section 3.3.

Figure 4.1: Example of the resampled total force used as an input to the LMS
algorithm.

Following this, the transfer functions for the total input force and each of the re-
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ceiving positions was calculated. In figure 2.6 this is represented by the variable
hp,r. The time step for these was the same as the one of the resampled input forces
and the length chosen for these functions was defined to be 1 second long since
this duration was considered to present a large enough attenuation of the response.
For the calculations, the frequency limit described in section 3.4 is also applied in
the discretization of the plate, used in the Rayleigh integral. A rule of thumb of
the finite element method states that at least 6 elements are necessary to properly
represent a certain wavelength. Taking the eigenfrequency of highest mode evalu-
ated and the speed of sound for bending waves, the smallest evaluated wavelength
is obtained. For the case studied, this lead to a discretization of the plate by a step
size of dx = dy = 7.8125 · 10−4 m.

The half-sphere used in this work is represented by 513 equidistant discrete points,
which means that 513 receiving positions are used in this work to estimate the
radiated sound power from the plate. Figure 4.2 presents an example of these
transfer functions chosen for a specific receiving point.

Figure 4.2: Example transfer function for a specific receiving position.

The last step in the calculation of the primary path is the time convolution of both
the input force and the transfer function. This was then performed for each of the
transfer functions to obtain the desired signals for the LMS to mimic, represented
in figure 2.6 this is represented by the variable ad,r. This convolution is shown in
figure 4.3 for the same receiving position as the one in figure 4.2.
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Figure 4.3: Example of the primary path for the same position as shown previously.

This same process used to calculate the transfer function related to the input force,
with the same time step and length, was used to calculate the transfer functions
between the control positions and the receiving positions. In figure 2.6 this is rep-
resented by the variable hs,r.

Now with all the variables defined for the LMS, the parameters rulling the overall
performance of the algorithm were determined. These parameters were the step size
of the algorithm, α, and the number of iterations by which the whole process will
be done.

Through trial testing the speed of convergence of the algorithm, the α values were
determined. They were found to be in the order of 1 · 102, and thus this value was
used in all the simulations performed in this work. As for the amount of iterations,
100 were determined to be sufficient for this work, although different levels of error
between iterations were achieved in the simulations. These errors will be presented
along with the obtained time signal for the optimal active forces as the results from
the simulations.

4.2 Results for impact position 1
In figures 4.4, 4.5, 4.6 and 4.7 the results of the LMS algorithm for impact position
1 and each of the active force positions are presented. The results include the total
time signature of the active force, a look at the first 0,1 second in detail and the
relative error between each of the iterations of the algorithm.
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(a) Time signature of the obtained optimal active force

(b) Detailed view of the optimal active force

(c) Relative error between each iteration of the LMS algo-
rithm

Figure 4.4: Results obtained from the simulation of an impact applied in position
1 with an active force applied in control position 1.
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(a) Time signature of the obtained optimal active force

(b) Detailed view of the optimal active force

(c) Relative error between each iteration of the LMS algo-
rithm

Figure 4.5: Results obtained from the simulation of an impact applied in position
1 with an active force applied in control position 2.
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(a) Time signature of the obtained optimal active force

(b) Detailed view of the optimal active force

(c) Relative error between each iteration of the LMS algo-
rithm

Figure 4.6: Results obtained from the simulation of an impact applied in position
1 with an active force applied in control position 3.
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(a) Time signature of the obtained optimal active force

(b) Detailed view of the optimal active force

(c) Relative error between each iteration of the LMS algo-
rithm

Figure 4.7: Results obtained from the simulation of an impact applied in position
1 with an active force applied in control position 4.
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A lot of information can be extracted from figures 4.4 to 4.7. First, the result when
the impact position is the same as the control position, shown in figure 4.4, presents
what can be considered the trivial solution. For this case, it is easy to notice that the
active force should mimic the input force directly. This would cause a cancellation
of the input, and therefore, a very high reduction of the radiated sound power from
the plate. The time-signature observed in figure 4.4b shows that the expected result
was obtained and thus indicates that the LMS algorithm is working properly. It is
worth noting that this active force was recreated from the simulated pressure at the
receiving points used in this work.

The active forces obtained when the impact position and control position are not the
same have different behaviors than that of the trivial case. All three other cases pre-
sented active forces that have a longer time signal. All three also present a decaying
behavior, with most of the needed active force lasting only 0,04 seconds. However,
they present varying levels of magnitudes, which indicate the control effort. Control
position 4 is the one which requires the least effort, followed by control position 3
and, lastly, control position 2 requires the most effort.

Lastly, when evaluating the relative error between iterations for each of the different
cases one notices that they all decrease with the more iterations performed. There
is also indication that the first case, in figure 4.4, is the one that would benefit
more from further iterations. Another aspect seen in figure 4.4c is that this control
position holds the lowest relative error presented for impact position 1. The second
lowest relative error is presented in 4.5c, which indicates that this control position
is the one that obtains the largest reduction in sound power for a non-trivial case.
This will be further evaluated in chapter 5.
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4.3 Results for impact position 2
In figures 4.8, 4.9, 4.10 and 4.11 the results of the LMS algorithm for impact position
2 and each of the active force positions are presented. The results include the total
time signature of the active force, a look at the first 0,1 second in detail and the
relative error between each of the iterations of the algorithm.

Impact position 2 presented similar results as impact position 1. First, the trivial
case, shown in figure 4.9, behaves as expected, presenting an optimal active force
which mimics the input force of the system for this case. As for the other control
positions; all present time signals longer than the trivial position, as for the impact
in position 1 and they also present the same decaying behavior, lasting up to 0,04
seconds again. As for the magnitudes of these optimal forces, for the cases presented
in figures 4.10 and 4.11 a magnitude similar to the ones presented for impact position
1 is found. However, in figure 4.8, it is possible to notice a much lower magnitude
than for the other cases studied. This is an interesting result that is also supporting
the conclusion that the first mode of the plate is radiating strongly, as discussed in
section 3.4, and acting upon it can reduce the sound power very efficiently.

Lastly, as far as the relative errors obtained in this case, a similar trend to that
presented in impact case 1 is presented. This is that all cases show a continuous
reduction of the relative error and that the trivial case is the one which presents
the lowest relative error. One other interesting aspect, seen when comparing figures
4.8c, 4.10c and 4.11c, is the widening of the difference between each error line as
the iteration number increases. This means that the relative error becomes more
position dependent, since each line represents the error for one specific receiving
position. This thus indicates that the active force acts firstly on the first mode of
the plate, which is omnidirectional, and then on removing energy from other modes.
It is possible to see a larger widening of the difference between positions in the first
control position, figure 4.8c, which is probably because this position is suitable for
control of very specific modes and is unable to control other modes.
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4. LMS Algorithm

(a) Time signature of the obtained optimal active force

(b) Detailed view of the optimal active force

(c) Relative error between each iteration of the LMS algo-
rithm

Figure 4.8: Results obtained from the simulation of an impact applied in position
2 with an active force applied in control position 1.
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4. LMS Algorithm

(a) Time signature of the obtained optimal active force

(b) Detailed view of the optimal active force

(c) Relative error between each iteration of the LMS algo-
rithm

Figure 4.9: Results obtained from the simulation of an impact applied in position
2 with an active force applied in control position 2.
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4. LMS Algorithm

(a) Time signature of the obtained optimal active force

(b) Detailed view of the optimal active force

(c) Relative error between each iteration of the LMS algo-
rithm

Figure 4.10: Results obtained from the simulation of an impact applied in position
2 with an active force applied in control position 3.
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4. LMS Algorithm

(a) Time signature of the obtained optimal active force

(b) Detailed view of the optimal active force

(c) Relative error between each iteration of the LMS algo-
rithm

Figure 4.11: Results obtained from the simulation of an impact applied in position
2 with an active force applied in control position 4.
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4. LMS Algorithm

4.4 Results for impact position 3
In figures 4.12, 4.13, 4.14 and 4.15 the results of the LMS algorithm for impact
position 2 and each of the active force positions are presented. The results include
the total time signature of the active force, a look at the first 0,1 second in detail
and the relative error between each of the iterations of the algorithm.

Again, impact position 3 presented similar results as impact position 1. The trivial
case, shown in figure 4.14, behaves as expected once more, presenting an optimal
active force which mimics the input force of the system for this case. The other
control positions once again display time signals longer than the trivial position, as
for the impact in positions 1 and 2. They also have the decaying behavior which was
characteristic of the previous impact positions, lasting a maximum of 0,04 seconds.
The magnitudes varied as seen previously, with the control position 1, in figure 4.12,
being the lowest magnitude needed, as seen for impact position 2.

The relative errors produced in this case have a similar trend to that presented in
impact cases 1 and 2. This is that all evaluated positions give a continuous reduction
of the relative error and that the trivial case is the one which presents the lowest
relative error. The largest difference between these errors is that they all stabilize
rather early in the simulation, as shown in figures 4.12c, 4.13c and 4.15c. This
indicates that there is no need for such a long simulation and that if smaller values
of relative error wish to be achieved, then a different, smaller value of α should be
chosen. Lastly, all these relative errors are around the same magnitude. This will
be further evaluated and discussed in the following chapter.
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4. LMS Algorithm

(a) Time signature of the obtained optimal active force

(b) Detailed view of the optimal active force

(c) Relative error between each iteration of the LMS algo-
rithm

Figure 4.12: Results obtained from the simulation of an impact applied in position
3 with an active force applied in control position 1.
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4. LMS Algorithm

(a) Time signature of the obtained optimal active force

(b) Detailed view of the optimal active force

(c) Relative error between each iteration of the LMS algo-
rithm

Figure 4.13: Results obtained from the simulation of an impact applied in position
3 with an active force applied in control position 2.
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4. LMS Algorithm

(a) Time signature of the obtained optimal active force

(b) Detailed view of the optimal active force

(c) Relative error between each iteration of the LMS algo-
rithm

Figure 4.14: Results obtained from the simulation of an impact applied in position
3 with an active force applied in control position 3.
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4. LMS Algorithm

(a) Time signature of the obtained optimal active force

(b) Detailed view of the optimal active force

(c) Relative error between each iteration of the LMS algo-
rithm

Figure 4.15: Results obtained from the simulation of an impact applied in position
3 with an active force applied in control position 4.
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5
Radiated sound power evaluation

With the obtained active forces presented in chapter 4, it was possible to evaluate
the difference between radiated sound power with and without the application of the
active force. This radiated sound power was obtained through the summation of the
pressure at the receiving points with consideration of the areas that they represent in
the half-sphere used in this work. This summation was then performed for situations
with and without the presence of the active force and the reduction obtained in the
radiated sound power was evaluated in dB. The results for the obtained reduction
for all the cases presented in chapter 4 are presented in table 5.1

Table 5.1: Reduction in radiated sound power. The trivial solution reductions are
in italic and the largest reductions found for a non-trivial impact position are in
bold.

Control Control Control Control
Position 1 Position 2 Position 3 Position 4

Impact Position 1 -31,1 dB -12,9 dB -7,3 dB -7,6 dB
Impact Position 2 -6,4 dB -30,3 dB -7,2 dB -8,1 dB
Impact Position 3 -12 dB -10,3 dB -27,9 dB -11,5 dB

From table 5.1 it is possible to extract and confirm many of the observations made
in chapter 4. First, the largest reduction observed for any impact is when the active
force is applied in the exact same position as where the impact occurs. This is to
be expected, as that is the position where the transfer functions for both the input
and the active forces are exactly the same, and thus, allows for the achievement of
very high cancellation between the two, subsequently reducing the radiated sound
power. Reductions for these cases where around 30 dB, which is quite notable. For
cases where the impact and control positions are not the same, reductions were al-
ways obtained, varying from 6 to 13 dB. This result also corroborates with what
was obtained from the relative errors presented in the previous chapter.

Another observable result from table 5.1 is that no chosen control position was op-
timal for all impact positions. This also leads to the question of why one positions
is better than the other for some cases and not for others. To analyze this matter,
a look at the distance between each position was taken. Looking at the first impact
position, the control position that obtained the largest amount was the second one.
This is the farthest position from the impact point. Also, this is the position that
presents the highest magnitude of the optimal active force. For the second impact
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5. Radiated sound power evaluation

position, the largest obtained reduction is from control position 4. This case shows
that the closest control point obtained the better results and it is not the one with
the highest magnitude of the optimal active force. Lastly, for impact position 3,
the control position 1 was the one which obtained the largest reduction. Again this
is the closest control position to the impact position, but now it is the active force
with the lowest magnitude for this impact position.

The expected result for the best control position depending on impact position is
that the closest control position would perform better than the others. This is not
what was observed for every case. One possible reason for the discrepancy shown in
impact position 1 is that the control position 2 better distributes the energy within
the modes of the plate, leading to a more effective reduction in the radiated sound
power. Another important point to discuss is that these results could be further
improved with the selection of more appropriate α values for the LMS algorithm or
through a larger amount of iterations. However, the levels of reduction obtained in
the simulations presented in chapter 4 were already considered sufficient as this was
to be an initial study on the possibility of using active forces to reduce impact noise.

Furthermore, it is important to make a note on a limitation to possible implemen-
tations of the concept developed in this work. To obtain the reductions mentioned
here, an actuator with a fast and precise response is necessary. The time step used
is very small and the required actuation force can sometimes present a strong oscil-
latory behavior. This puts a lot of requirements on the actuator that will be used
and might even rule out some of the cases evaluated in this work. A more compre-
hensive study on possible actuators is necessary to fully understand the applicability
of these forces, however this was not performed in this thesis.
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6
Conclusion

This work demonstrated the applicability of the use of external active forces to con-
trol the total sound power from an impact. The studied case chosen was that of an
impact between a simply supported plate and a sphere, with the active force applied
on the plate. A modification of the LMS algorithm was used to determine the time
signature of the force to be applied to the plate. Several different impact and control
positions were studied to analyze the behavior of the proposed methodology to these
variations.

For all cases evaluated in this work, a reduction of the total radiated sound power
was obtained. For cases where the active force was applied in the same position
as were the impact occurred, reductions of around 30 dB were obtained when the
active force was applied. For cases where these positions were different, reduction
values varied from 6 to 13 dB.

All of the results obtained in this work came from simulations, however there is
strong indication from the obtained results that this concept is applicable to real
situations. A couple of adversities that would need to be overcome for this applica-
tion are the selection of an actuator that presents the fast required response, which
is a characteristic of the obtained optimal active forces, and the need of a fast de-
tection system, which is able to quickly determine when there is contact between
the sphere and plate, which indicates that an impact is occurring.

6.1 Future work
There are many interesting continuation possibilities from this work. The first step
to take would be to correlate both the active and the impact force. As the impact
force is dependent on the displacement of the top surface of the plate and the active
force affects this displacement, the active force directly influences the time signature
of the impact force. Thus, it is important to evaluate exactly how this influence de-
velops. For this, a larger iterative loop could be used, repeating the whole process
described in this work but maintaining the optimal active force found after the sim-
ulation and using it to evaluate a new impact force for each loop.

Another interesting next step is the addition of the acceleration noise to the sim-
ulations. As mentioned in section 2.1, this work focused solely on ringing noise,
which makes up roughly half of the impact noise. Therefore, it is also important to
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6. Conclusion

consider the acceleration noise. One possibility to do this is to add a dipole source
that models the behavior of the acceleration noise and adding the influence from
this dipole to the Reyleigh integral performed before the LMS algorithm.

One other improvement that could be done to the program is to add the possibility
of consecutive impacts, as seen in real cases. The major difference being the fact
that the plate will not be at rest for the impacts other than the first one. Also,
there would be a certain inertia to the plate that would need to be evaluated for
subsequent impacts. Adding this complexity to the simulation would allow for the
study of cases more similar to real scenarios.

Lastly, an experiment should be set up to evaluate the applicability of the active
force as proposed in this work. With the results of the experiment, an analysis of
the coupling of the results between the simulation and the measurements would be
possible. These would allow for an evaluation of the proposed methodology and the
appropriateness of the concept of control of impact noise by means of an external
force.
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