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We present a rigorous derivation of the nuclear spin-rotation and spin-torsion coupling terms in the
hyperfine Hamiltonian for molecules with internal rotation. Our formulas differ from the expressions
derived by Heuvel and Dymanus [J. Mol. Spectrosc. 47, 363 (1973)], which these authors used
and which were also applied recently by others to interpret experimental hyperfine spectra of such
molecules. In the present work, our theoretical results are applied to methanol. We calculate the
nuclear spin-spin magnetic dipole-dipole interactions and the nuclear contribution to the spin-torsion
coupling vectors from the nuclear coordinates as functions of the internal rotation angle γ, compute
the spin-rotation coupling tensors by ab initio electronic structure methods also as functions of γ,
and obtain the missing parameters for the electronic contribution to the spin-torsion coupling from
a fit to measured spectra. The resulting hyperfine Hamiltonian is then used to compute hyperfine
transition frequencies and intensities for twelve torsion-rotation transitions in methanol. With the use
of the ab initio calculated spin-rotation coupling parameters without any modification, and physically
reasonable values for the spin-torsion coupling parameters from the fit, we find good agreement with
all of the measured spectra. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4972004]

I. INTRODUCTION

Radiation emitted from star-forming regions by molec-
ular masers such as water, OH, and methanol is used by
radio-astronomers to extract information on magnetic fields in
different sections of the accretion disk around the protostar.1–3

The relevant molecular parameters to relate the observed Zee-
man shifts between left and right circularly polarized radiation
to the local magnetic field strength are well known for H2O and
OH, but not for methanol. Detailed knowledge of the hyperfine
splitting of the torsion-rotation levels of methanol is required,
but cannot be extracted from the available experimental data
alone. Methanol has also been identified as the most sensi-
tive molecule for a search of a varying proton-electron mass
ratio on a cosmological time scale.4 Observations of extra-
galactic methanol have led to a constraint on the variation of
this ratio.5–7 The line shapes in the observed spectra may be
affected by underlying hyperfine structure, but this has not
been included in the analysis. In the studies of galactic cold
cores the lines are narrower, which makes hyperfine structure
an essential ingredient to include in analyses.

The theoretical description of hyperfine coupling in
molecules with internal rotation such as methanol has been
addressed in some papers cited below. The present paper revis-
its the theory, derives a slightly but significantly different
formalism, and applies it to determine the hyperfine struc-
ture of methanol in different torsion-rotation states. Just as the
recent study on methanol by Coudert et al.,8 we combine ab
initio electronic structure calculations and fits to experimental
data to obtain the relevant hyperfine coupling parameters.

a)A.vanderAvoird@theochem.ru.nl

The dominant hyperfine interactions in closed-shell
molecules are the magnetic dipole-dipole coupling between
the nuclei with spin I > 0, the electric quadrupole coupling
for nuclei with spin I ≥ 1, and the interaction of the nuclear
spins with the magnetic field generated by overall rotation of
the molecule, the so-called spin-rotation coupling. The theo-
retical description of all these interactions is well known. In
molecules with internal rotation, such as methanol, also the
internal rotation generates a magnetic field and an additional
interaction term occurs: spin-torsion coupling. A theoretical
description of spin-torsion coupling was given in 1972 by
Heuvel and Dymanus9,10 who also performed measurements
on methanol9,11 and applied their theory to extract the relevant
coupling parameters from the experimental data. The symme-
try properties of the torsion-rotation Hamiltonian including
these hyperfine couplings were discussed by Hougen et al.12

Further measurements on the hyperfine structure of methanol
were reported in 2015 by Coudert et al.;8 the interpretation of
their experimental data was based on the theory of Ref. 10.
The parameters fitted in Ref. 8 to the measured hyperfine
spectra of methanol showed some peculiar features; however:
(i) the dominant spin-rotation coupling parameter from the fit
deviates much more from the value obtained by the advanced
electronic structure calculations than could be expected on the
basis of results for other molecules, and (ii) the dominant spin-
torsion coupling parameter computed with a formula for the
nuclear contribution from Ref. 10 was increased by a factor
of 2 in the fit, instead of showing the expected reduction by
the electronic contribution. These discrepancies could be due
to some inconsistencies in the formulas of Ref. 10, especially
regarding the way to apply the so-called Thomas precession
correction.
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Thomas precession is a purely kinematic effect that fol-
lows from the special theory of relativity, but does not vanish
at small velocities. It is named after Thomas who showed13

in 1927 that the correction factor associated with this preces-
sion is essential to obtain the correct mathematical expression
for the spin-orbit coupling in atoms. For nuclear spin-rotation
coupling in molecules, the precession is related to the accel-
eration of the nuclei in the molecule into curved paths by the
electrostatic forces from the electrons and the other nuclei.
Such a Thomas precession correction is included in the for-
mulas of Heuvel and Dymanus,10 but the correction factor
in that paper, and also in the earlier paper on spin-rotation
coupling by Gunther-Mohr, Townes, and van Vleck14 is not
correct.15 It was given correctly in Ref. 16, but the precession
correction was omitted entirely in the formula for spin-rotation
coupling in Flygare’s textbook.17 The omission of the Thomas
precession correction from his book is justified because he
had derived15 in 1964 that this correction completely vanishes
when the nuclei in the molecule are in their equilibrium posi-
tions, where they do not experience any net force. When the
molecule vibrates about its equilibrium geometry, the Thomas
precession correction does not vanish, and it has actually been
computed for several diatomic molecules18,19 from a formula
derived in Refs. 19 and 20. The amplitudes of vibration in these
systems are small; however, and the Thomas precession cor-
rection has only a minute effect on the calculated spin-rotation
coupling constants. For molecules with large amplitude inter-
nal motions, such as the torsional motion in methanol, one
would think that it might be more substantial. Here, we derive a
formula for the Thomas precession correction associated with
the internal rotation in molecules and apply it to methanol.

Another combined experimental and theoretical study of
the hyperfine structure in the torsion-rotation spectrum of
methanol was performed by Belov et al.21 They investigated
transitions between torsion-rotation levels of E symmetry with
angular momenta J ranging from 13 to 34 by Lamb-dip sub-
millimeter-wave spectroscopy and found unexpectedly large
doublet splittings in the spectra due to hyperfine coupling.
These doublet splittings occur for several, but not for all transi-
tions, and they were explained by a theoretical model involving
torsionally mediated spin-rotation coupling with parameters
fitted to the experimental data. In Sec. IV B we will briefly
refer to these results in relation to our results obtained with the
full hyperfine Hamiltonian for a rotational transition between
the levels with J = 8 and 9.

The starting point in our study of methanol is its torsion-
rotation states. They can be derived from the Hamiltonian
given by Hougen et al.22 It is based on the classical expres-
sion for the kinetic energy of a molecule with internal rotation
about a single axis derived by Lin and Swalen.23 Hougen et al.
express this Hamiltonian in different coordinate systems and
show that its eigenstates are most easily evaluated with the
so-called rho-axis method (RAM). Their paper also includes a
discussion of the symmetry properties of the Hamiltonian. A
program, BELGI,22 was developed to carry out the evaluation
of the torsion-rotation levels. The parameters in the Hamilto-
nian were obtained by Xu et al.24 from a global fit of these
levels to a large data set of observed spectral transitions. To
supplement this Hamiltonian with the correct expressions for

hyperfine interactions, we briefly recapitulate and then extend
its derivation, while paying special attention to the form of the
operators representing spin-rotation and spin-torsion coupling.
We also evaluated the nuclear spin magnetic dipole-dipole
interactions and carried out electronic structure calculations
with the program package CFOUR,25 to obtain numerical
values for the spin-rotation coupling tensors in methanol as
functions of the internal rotation angle. Calculation of the spin-
torsion coupling tensors is not implemented in this program,
so we applied our formula for spin-torsion coupling to evalu-
ate the nuclear contribution to these tensors and we estimate
the electronic contributions from a fit of our calculated spec-
tra to experimental data.8,11 Furthermore, we computed the
Thomas precession correction to the spin-rotation and spin-
torsion tensors with the formula that we derived for molecules
with internal rotation. Finally, we used our hyperfine Hamil-
tonian with the ab initio calculated and fitted parameters to
compute the hyperfine levels for several rotational states of
methanol, generated transition frequencies and intensities, and
compared our results to the measured spectra.

II. THEORY
A. Hyperfine coupling

Methanol, CH3OH, is an asymmetric rotor molecule, con-
sisting of a symmetric rotor “top,” the CH3 group, attached to
a “frame,” the OH group. The internal rotation of the methyl
group with respect to the hydroxyl group is hindered by a
potential V (γ) depending on the internal rotation angle γ with
a threefold barrier of 374 cm�1.24 For the lowest energy lev-
els, the internal rotation or torsion is classically forbidden,
but occurs by quantum mechanical tunneling. The carbon and
oxygen nuclei in their most abundant 12C and 16O forms have
nuclear spin I = 0. The only nuclei involved in hyperfine cou-
pling are the four hydrogen nuclei with spin I = 1/2. The
hyperfine coupling Hamiltonian of a molecule with internal
rotation is given by

Hhyper = HDD + HSR + HST, (1)

where
HDD =

∑
K<L

ÎK ·DKL(γ) ÎL (2)

describes the magnetic dipole-dipole coupling between the
nuclei, HSR is the nuclear spin-rotation coupling, and HST

is the spin-torsion coupling. The nuclei are labeled with K
and L, and ÎK are the nuclear spin operators. The form of the
magnetic dipole-dipole coupling tensor DKL, a second rank
irreducible tensor, is well known. It is also valid for molecules
with internal rotation, where it depends on the angle γ.

The expressions for the spin-rotation and spin-torsion cou-
pling terms in the Hamiltonian for a molecule with internal
rotation

HSR = −
∑

K

ÎK ·MK (γ) Ĵ

+
∑

K

2F ÎK ·MK (γ) Itopλ
(
p̂γ − ρ · Ĵ

)
(3)

and
HST = −

∑
K

2F ÎK · wK (γ)
(
p̂γ − ρ · Ĵ

)
(4)
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are derived in Appendix A. The spin-rotation coupling ten-
sors are given by MK (γ)= WK (γ) I−1 and the tensors WK (γ),
as well as the spin-torsion coupling vectors wK (γ) are also
defined in Appendix A. The total inertia tensor I does not
depend on γ because the rotating “top” with inertia tensor Itop

is a symmetric rotor. The unit vector λ is the direction of the
internal rotation axis; the constant F and the constant vector
ρ = I−1I

top
λ are defined in Eq. (A8). All tensor and vector

components are given with respect to the principal axis frame
MF of the whole molecule, in which the total inertia tensor
I is diagonal. The operator Ĵ represents the total rotational
angular momentum, p̂γ = (~/i)∂/∂γ is the torsional angular
momentum operator, and ~ is the reduced Planck constant.

The derivation in Appendix A starts by recalling the
derivation of the torsion-rotation kinetic energy operator, since
this operator is needed to obtain the correct expressions for the
total angular momentum Ĵ and the torsional angular momen-
tum p̂γ. In the formulas in Eq. (A6) for their classical equiva-
lents, one can observe that for molecules with internal rotation
not only the overall angular velocity ω appears in the total
angular momentum J but also the torsional velocity γ̇. Vice-
versa, not only γ̇ appears in the torsional angular momentum
pγ but alsoω. By consequence, we find that the expression for
the spin-rotation coupling Hamiltonian HSR in Eq. (3) not only
contains the usual terms −ÎK ·MK Ĵ but also the contributions
that involve both the torsional and overall angular momenta
p̂γ andĴ. Vice-versa, the spin-torsion coupling Hamiltonian in
Eq. (4) involves not only the angular momentum p̂γ but also
the rotational angular momentum Ĵ.

The additional terms in the spin-rotation Hamiltonian
have a form that is similar to the spin-torsion Hamiltonian
and can be absorbed into the latter by defining

w′K (γ)= wK (γ)−MK (γ)Itopλ. (5)

The total spin-rotation-torsion Hamiltonian then becomes

HSR +HST = −
∑

K

[
ÎK ·MK (γ) Ĵ + 2F ÎK · w

′
K (γ)

(
p̂γ − ρ · Ĵ

) ]
.

(6)

In methanol the unit vectorλ in the direction of the internal
rotation axis is very nearly parallel to the principal axis a of
the CH3OH molecule and we find that

Itopλ ≈ Iγλ, (7)

where Iγ =λ · Itopλ is the moment of inertia of the “top”
rotating about the axis λ. Equation (6) can then be rewritten as

HSR+HST = −
∑

K

[
ÎK ·MK (γ) Ĵ+ f ÎK · d

′
K (γ)

(
p̂γ − ρ · Ĵ

) ]

(8)
with the dimensionless factor

f = 2F Iγ = (1 − ρ · λ)−1. (9)

By analogy with Eq. (5) we obtain

d ′K (γ)= dK (γ)−MK (γ)λ (10)

with the spin-torsion coupling vector

dK (γ) = wK (γ)I−1
γ . (11)

The operators ÎK and Ĵ operate on the spin and spatial
coordinates of the nuclei, respectively, so they commute. Their
Cartesian components are Hermitian operators and the Carte-
sian components of the tensors MK and the vectors w′K and d ′K
are real-valued. Hence, the Hamiltonians in Eqs. (6) and (8)
are Hermitian operators, even though the spin-rotation cou-
pling tensors MK are not symmetric. We recall that both the
tensors MK and the spin-torsion coupling vectors dK depend
on the internal rotation angle γ. Furthermore, we recall that
the components of the rotational angular momentum operator
Ĵ with respect to the MF frame obey anomalous commutation
relations.26

B. Thomas precession correction

In our derivations, we assume that both the “frame” and
the “top” parts in a molecule with internal rotation are rigid
and that the nuclei in each part are fixed at their equilibrium
positions. A formula for the Thomas precession correction for
diatomic molecules vibrating around their equilibrium struc-
ture has been derived in Refs. 19 and 20, by an extension of
Flygare’s derivation15 showing that this correction vanishes for
molecules at their equilibrium geometry. When the molecule
is not at its equilibrium geometry, the Thomas precession
correction is directly related to the forces on the nuclei.

The result for diatomic molecules in Refs. 19 and 20 can
also be derived directly by starting from the textbook formula27

for the Thomas precession correction to the energy of a particle
K (in this case, a nucleus) with spin IK moving in a magnetic
field

U (K)
T = IK ·ω

(K)
T . (12)

The Thomas precession frequency depends on the acceleration
aK and velocity vK of the particle and (for velocities much
smaller than the speed of light c) is given by

ω(K)
T =

1

2c2
aK × vK . (13)

The acceleration of a nucleus in a molecule is determined by
the net force FK acting on it; it vanishes when the molecule is
in its equilibrium geometry. When it is not, the forces on the
nuclei in a diatomic molecule simply follow from the derivative
of the intramolecular potential with respect to the internuclear
distance. By relating the acceleration aK in the above formula
to this derivative, one easily obtains the result of Refs. 19
and 20.

In molecules with weakly hindered internal rotation one
must consider large deviations from their equilibrium geom-
etry. Methanol, for instance, shows a large amplitude internal
rotation of the CH3 “top” with respect to the OH “frame.” In
our MF system of axes the “frame” stays at rest, while the
“top” rotates. The acceleration of the hydrogen nuclei in the
“top” is given by

aK =
FK

mK
= −

1
mK |σK |

dV (γ)
dγ

sK , (14)

where |σK | is the distance of nucleus K to the internal rotation
axis, the torsional potential V (γ) depends on the internal rota-
tion angle γ, σ̂K is a unit vector in the direction of the vector
σK , and the unit vector sK =λ × σ̂K points in the direction of
the motion of nucleus K. The velocity of a hydrogen nucleus K
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in the rotating “top” depends on the internal rotation velocity
γ̇, as well as on the overall rotational velocity ω,

vK = ω × rK + γ̇λ × rK . (15)

The γ̇ term does not contribute to the Thomas precession as it
points in the same direction as the acceleration aK . Substitution
of these results into Eq. (13) yields

ω(K)
T = −

1

2mK |σK |c2

dV (γ)
dγ

sK × (ω × rK )

=
1

2mK |σK |c2

dV (γ)
dγ

[
(rK · sK ) 1− rK ⊗ sK

]
ω. (16)

The symbol 1 represents the 3 × 3 unit matrix, while ⊗ stands
for the tensor product of two vectors. The angular velocity ω
is related to the total angular momentum J and the torsional
angular momentum pγ by Eq. (A7), and the Thomas correction
to the energy is given in operator form by

U (K)
T = ÎK ·QK Ĵ − 2F ÎK · qK ( p̂γ − ρ · Ĵ) (17)

with

QK =
1

2mK |σK |c2

dV (γ)
dγ

[
(rK · sK ) 1− rK ⊗ sK

]
I−1 (18)

and

qK =
1

2mK |σK |c2

dV (γ)
dγ

[
(rK · sK ) 1− rK ⊗ sK

]
ρ. (19)

The tensors QK and vectors qK may be considered as the
Thomas precession corrections to the spin-rotation coupling
tensors MK and spin-torsion coupling vectors w′K in Eq. (6).
For methanol, we obtained Eq. (8), and qK I−1

γ is the correction
to d ′K . Both QK and qK depend on the torsion angle γ and
they can be directly computed from the nuclear positions in
the molecule and the derivative dV/dγ of the known potential
V (γ).

C. Symmetry

For molecules with internal motions that have multiple
equilibrium geometries, i.e., multiple equivalent minima on
their potential surface, one must use the permutation-inversion
(PI) group or molecular symmetry group,28,29 rather than the
point group of a single equilibrium structure. We label the
CH3 protons in methanol with 1, 2, 3 and the OH proton
with 4. Internal rotation of the CH3 group corresponds to
the cyclic permutations (123) and (132). The permutation-
inversion operation (23)∗, i.e., the interchange of protons 2
and 3 combined with inversion corresponds to reflection in the
point group C33 of the equilibrium structure. The PI group G6

of internally rotating methanol, isomorphic to C33 , is gener-
ated by (123) and (23)∗. It has two one-dimensional irreducible
representations (irreps), A1 and A2, and a two-dimensional one,
E. The application of G6 to molecules with internal rotation
similar to methanol has extensively been discussed by Hougen
et al.22 They show, in particular, how the generators (123) and
(23)∗ act on the torsion-rotation wave functions ψvτ ,σ

J ,Ka
,

(123)ψvτ ,σ
J ,Ka
= exp(2πσi/3)ψvτ ,σ

J ,Ka

(23)∗ψvτ ,σ
J ,Ka
= (−1)J−Kaψvτ ,−σ

J ,−Ka
.

(20)

The quantum number J is the total angular momentum, Ka is
its projection on the a axis of the MF frame, vτ is the torsional
quantum number and σ is the torsional symmetry quantum
number, adopting the values 0 and ±1. It follows from these
equations that functions with σ = 0 transform according to the
A1 or A2 irreps, and functions with σ =±1 span the E irrep.

When investigating hyperfine splittings of the torsion-
rotation levels, one must also include the nuclear spin wave
functions of the four protons. This is most conveniently done
by first coupling the spins I1, I2, I3 of the equivalent protons
in the CH3 group. This yields one set of functions with total
spin I123 = 3/2 with projections MI = �3/2, �1/2, 1/2, 3/2,
and two sets of functions with I123 = 1/2 and MI = �1/2, 1/2.
Since, inversion does not affect the nuclear spin functions, it
follows from their behavior under the permutations (123) and
(23) that the functions with I123 = 3/2 span the irrep A1 of G6,
while the two sets of functions with I123 = 1/2 each carry the
irrep E. Next, these functions are coupled with the nuclear spin
I4 = 1/2 of the OH proton, which yields functions |(I123, I4)I〉
of A1 symmetry with total spin I = 1 and 2, and functions of E
symmetry with total spin I = 0 and 1.

Since protons are fermions, the Pauli principle requires
that the total torsion-rotation-spin wave functions are anti-
symmetric under odd permutations and symmetric under even
permutations. The Pauli principle does not impose any condi-
tions on the inversion behavior of the wave function, so total
wave functions of A1 and A2 symmetry in the group G6 are
both appropriate. One way to obtain such total wave func-
tions is by taking the product of a nuclear spin wave function
|(I123 = 3/2, I4)I〉 of A1 symmetry and a torsion-rotation wave
function with σ = 0,

[
ψvτ ,0

J ,Ka
± (−1)J−Kaψvτ ,0

J ,−Ka

]
/
√

2, (21)

that has A1 or A2 symmetry. Another way is by combining
two nuclear spin wave functions |(I123 = 1/2, I4)I〉 that together
carry irrep E with torsion-rotation wave functions with
σ = ±1 that also carry irrep E. If we set up a basis

{
ψE

1 ,ψE
2

}

=
{
ψvτ ,1

J ,Ka
, (−1)J−Kaψvτ ,−1

J ,−Ka

}
, the operations (123) and (23)∗ are

represented by the irrep matrices

PE
123 =

(
e2πi/3 0

0 e−2πi/3

)
and PE

23∗ =

(
0 1
1 0

)
. (22)

By taking appropriate linear combinations of the wave func-
tions |(I123 = 1/2, I4)I〉, one can construct nuclear spin wave
functions

{
φE

1 , φE
2

}
that carry the same E irrep matrix P23∗

and a matrix complex conjugate to P123. Total wave functions
of A1 and A2 symmetry obeying the Pauli principle are then
obtained by taking

Ψ
tot =

[
ψE

1 φ
E
1 ± ψ

E
2 φ

E
2

]
/
√

2. (23)

III. METHODS
A. Torsion-rotation structure

The internal-rotation Hamiltonian used to calculate the
torsion-rotation levels and wave functions is defined by the
rho axis method (RAM) described in Refs. 22 and 30–32. The
z-axis of the RAM frame is parallel to the vector ρ defined in
Eq. (A8), which has the advantage that only the term 2F ρp̂γ Ĵz
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in the Hamiltonian of Eq. (A9) couples the internal and overall
rotation, so that all operators containing the torsional angular
momentum p̂γ are diagonal in the rotational quantum number
Ka. The operator Ĵz with eigenvalues Ka is the projection of
the total angular momentum Ĵ on the z-axis of the RAM frame,
ρ is the length of the vector ρ, and F is defined in Eq. (A8).
In methanol, the angle between the vector ρ, i.e., the z-axis
of the RAM frame, and the principal a axis is less than half a
degree. We take this a axis as the z-axis of our principal axes
frame MF and assume that the RAM frame coincides with our
MF frame in this case.

The eigenstates of this Hamiltonian are determined in two
steps. In the first step, the torsional Hamiltonian

Ĥ
tors
= F(p̂γ − ρĴz)

2
+ V (γ) (24)

is diagonalized for each value of Ka in a basis consisting of
functions exp[i(3k+σ)γ]/

√
2π, with k running from�10 to 10.

The eigenfunctions from this first step are the torsional wave
functions: |(Ka)vτσ〉. In the second step, these torsional wave
functions for all 2J + 1 values of Ka are included in the calcula-
tion of the rotational states for given J. They are multiplied with

the symmetric rotor functions |JMKa〉 =

√
2J+1
8π2 D(J)

MKa
(χ, θ, φ)∗

that depend on the overall rotation angles (χ, θ, φ) to provide
the basis in which the full torsion-rotation Hamiltonian is diag-
onalized. This procedure is implemented in the BELGI code.22

The standard version of the code was modified and improved
by Xu et al.24 who fitted a set of 119 molecular parameters of
methanol to a dataset of 25 000 measured spectral transitions
and reproduced the lower torsion-rotation energy levels with
an accuracy better than 100 kHz.4 The resulting parameters
are listed in Table 2 of Ref. 24.

B. Hyperfine levels
1. Hyperfine coupling tensors

Spin-rotation coupling tensors MK (γ) can be obtained
from ab initio electronic structure calculations with the pro-
gram package CFOUR.25 Calculations with CFOUR were
carried out at the coupled-cluster level of theory including
single and double excitations with perturbative addition of the
triples contribution [CCSD(T)], in an augmented triple-zeta
correlation-consistent (aug-cc-pVTZ) basis set.33 The geom-
etry of methanol was optimized at this level, which yields OH
and CO bond lengths of 0.956 and 1.427 Å, respectively, a
COH bond angle of 108.87◦ and a torsional HOCH angle of
180◦. Averaging the equilibrium values to maintain C33 sym-
metry of the rotating CH3 group, we find CH bond lengths and
OCH bond angles of 1.096 Å and 109.91◦.

The electronic contributions to the spin-rotation coupling
tensors MK (γ) were calculated at the same level of theory for
13 equidistant values of the torsional angle γ by keeping the
HOC fragment fixed and rotating the CH3 group over these
angles about the OC bond axis. The nuclear contributions to
the tensors MK (γ) were also given by CFOUR, but were also
calculated directly from the nuclear coordinates. Also the mag-
netic dipole-dipole coupling tensors DKL(γ) were calculated
from the nuclear coordinates for the same 13 values of γ, as
well as the nuclear contributions to the spin-torsion coupling

vectors dK (γ). For the latter, we used Eqs. (11) and (A17).
Calculation of the electronic contribution to the spin-torsion
vectors dK (γ) is not implemented in CFOUR. We obtained
it from a fit to measured hyperfine spectra described below.
Results that we computed for other, rigid, molecules such as
H2O showed us that spin-rotation tensors MK (γ) from elec-
tronic structure calculations at this level of theory are quite
accurate, so we kept our ab initio values for these tensors. Still,
in contrast with the work of Coudert et al.8 who included these
values in their fit, we could obtain a good fit of the experimental
data by fitting only the spin-torsion vectors dK (γ). All individ-
ual elements of the tensors MK (γ) and DKL(γ) and the vectors
dK (γ) were expanded in a Fourier series in γ. Some of the
elements are symmetric with respect to a sign change of γ and
were expanded in functions cos nγ, others are antisymmetric
and were expanded in functions sin nγ.

2. Thomas precession corrections

In Sec. II B we recalled the result from the literature that
the Thomas precession correction to the spin-rotation cou-
pling vanishes for molecules at their equilibrium geometry.
For molecules with a large amplitude internal rotation, such
as methanol, we derived Eq. (18) for the Thomas correction
QK to the spin-rotation coupling tensors and Eq. (19) for the
Thomas correction qK to the spin-torsion coupling vectors.
The correction involves only the protons in the rotating CH3

“top” and it requires knowledge of the torsional potential V (γ).
For methanol this potential can be written as

V (γ) =
3∑

n=1

V3n

2
(1 − cos 3nγ). (25)

The parameters V3, V6, V9 in this expression are known
from the work by Xu et al.24 The parameters V6 and V9 are
very small, so they will be neglected here. The height of the
threefold barrier, V3, is 374 cm�1.

3. Matrix elements and hyperfine levels

With the knowledge of all coupling tensors DKL(γ),
MK (γ), and dK (γ) in the hyperfine Hamiltonian, we can com-
pute the hyperfine levels. The Hamiltonian is diagonalized
in the basis |{(I123, I4)I , J }FMF〉 obtained by coupling the
eigenfunctions of the torsion-rotation problem described in
Sec. III A with the nuclear spin functions |(I123, I4)I〉 defined
in Sec. II C. Coupling the total nuclear spin I with the
torsion-rotation angular momentum J yields the total angular
momentum F and its projection MF on the space-fixed z-axis.
The torsion-rotation wave functions have quantum numbers
vτ , J , Ka and symmetry A or E, the nuclear spin basis of the
same symmetry has I123 = 3/2 or 1/2, see Sec. II C. The
rotational quantum number Ka is only an approximate one,
a rotational wave function with given J, Ka actually contains
basis functions with all Ka ranging from �J to J. Also the
torsional and rotational quantum numbers vτ and J are approx-
imate ones, but the energy gaps between the torsion-rotation
states are typically on the order of a few GHz, while the hyper-
fine coupling terms in methanol amount to about 10 kHz.
Hence, the hyperfine Hamiltonian will hardly mix basis func-
tions with different vτ and J and we may restrict our basis to a
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single value of these quantum numbers. With this assumption,
the spin-rotation and spin-torsion Hamiltonian in Eq. (8) can
be rewritten12,34–36 as

ĤSR
K + ĤST

K =
(
ÔSR

K + ÔST
K

) (
Î

SF
K · Ĵ

SF
)
. (26)

The advantage of this factorization is that the scalar prod-
uct operator ÎK · Ĵ is invariant under rotation, which we
used to express it in terms of the space-fixed (SF) compo-
nents of the operators. Matrix elements over the SF basis
|{(I123, I4)I , J }FMF〉 are thus more easily evaluated. The oper-
ators

ÔSR
K =

1
2J(J + 1)

Ĵ ·MK (γ)Ĵ + hermitian conjugate (27)

and

ÔST
K =

1
2J(J + 1)

f Ĵ · d ′K (γ)
(
p̂γ − ρ · Ĵ

)
+ hermitian conjugate (28)

contain the body-fixed components of Ĵ with respect to the MF
frame, and also the tensors MK (γ) and the vectors d ′K (γ) are
given with respect to this frame. Matrix elements of the opera-
tors ÔSR

K and ÔST
K over the torsion-rotation eigenfunctions are

simply scalar values.
Also the dipole-dipole coupling Hamiltonian can be fac-

torized into a part with body-fixed and a part with only
space-fixed angular momentum operators

ĤDD
KL = ÔDD

KL

[
3
2

(Î
SF
K +Î

SF
L ) · Ĵ

SF
− (Î

SF
K · Î

SF
L )(Ĵ

SF
)
2

]
, (29)

where

ÔDD
KL =

2
J(J + 1)(J − 1)(2J + 3)

Ĵ ·DKL(γ)Ĵ. (30)

Also the matrix elements of ÔDD
KL are computed in the MF

frame. Diagonalization of the matrix of the total hyperfine
Hamiltonian in Eq. (1) for given vτ and J yields a set of
hyperfine levels labeled with the quantum number F.

4. Intensities

In order to compare our results with measured hyperfine
spectra, we also computed the line strengths of the transitions
between hyperfine levels. The dipole moment of methanol
was calculated ab initio as a function of the internal rota-
tion angle γ with the finite-field method at the same level of
theory and with the same basis as the hyperfine coupling ten-
sors. The spherical components of the dipole in the SF frame
are related to the components calculated in the MF frame as
µSF

m =
∑

q D(1)∗
mq (χ, θ, φ)µMF

q , with (χ, θ, φ) being the overall
rotation angles. Matrix elements of the SF dipole components
µm over the coupled basis |{(I123, I4)I , J }FMF〉 needed to com-
pute rotational and hyperfine transition dipole moments were
evaluated with the spherical tensor techniques explained in
Appendix B.

IV. RESULTS
A. Calculated results

The ab initio calculated results for the spin-rotation
coupling tensors MK (γ) and the calculated and fitted results

TABLE I. Coefficients an in the Fourier expansion describing theγ dependence of the spin-rotation coupling tensors MK (γ) calculated ab initio. The components
of MK are defined with respect to the principal axes a, b, and c. Terms in the Fourier series are an cos nγ or an sin nγ, depending on whether a component is
symmetric (+) or antisymmetric (�) under the PI operation (23)∗ that involves a sign change of the torsional angle γ. The superscripts CH3 and OH refer to the
CH3 protons (K = 1, 2, 3) and OH proton (K = 4), respectively. Results are given only for the CH3 proton with K = 1, the values for K = 2, 3 correspond to a
change of γ by 120◦ and 240◦. All spin-rotation coupling expansion coefficients an and the coefficients aTh

n of the Thomas precession corrections QK are given
in kHz.

Symmetry a0 a1 a2 a3 a4 a5 a6 aTh
0 (≈aTh

6 )

MCH3
aa + 12.486 0.741 −0.080 0.052 −0.005 5.33 · 10−4 2.23 · 10−4 −1.40 · 10−8

MCH3
bb + 0.579 −0.104 −1.660 −0.018 0.002 −9.08 · 10−4 −1.45 · 10−4 1.3 · 10−5

MCH3
cc + 0.688 −0.065 1.673 0.011 −0.003 0.001 1.42 · 10−4 −1.2 · 10−5

MCH3
ab + 0.731 −4.430 0.578 −0.131 0.022 −0.002 −3.13 · 10−4 4.85 · 10−8

MCH3
ba + 0.150 −1.325 0.083 −0.021 −0.002 −4.36 · 10−4 −5.73 · 10−5 −3.6 · 10−6

MCH3
ac − 0 4.690 −0.605 0.128 −0.024 0.002 1.16 · 10−4 0

MCH3
ca − 0 1.342 −0.086 0.019 0.003 4.02 · 10−4 1.06 · 10−4 0

MCH3
bc − 0 5.38 · 10−5 1.721 0.013 −0.002 0.001 0 0

MCH3
cb − 0 0.055 1.614 0.016 −0.003 0.001 1.43 · 10−4 0

MOH
aa + 13.305 0 0 −0.380 0 0 −0.001 0

MOH
bb + 0.659 0 0 0.004 0 0 1.71 · 10−4 0

MOH
cc + 2.935 0 0 −0.048 0 0 −1.26 · 10−4 0

MOH
ab + 6.139 0 0 −0.048 0 0 −1.79 · 10−4 0

MOH
ba + 1.461 0 0 −0.032 0 0 −3.98 · 10−4 0

MOH
ac − 0 0 0 0.002 0 0 −4.03 · 10−4 0

MOH
ca − 0 0 0 0.067 0 0 5.24 · 10−4 0

MOH
bc − 0 0 0 −0.049 0 0 −2.45 · 10−4 0

MOH
cb − 0 0 0 0.002 0 0 4.72 · 10−5 0
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TABLE II. Coefficients anuc
n in the Fourier expansion describing the γ dependence of the nuclear contribution

to the spin-torsion coupling vectors dK (γ) calculated from the nuclear coordinates. The four coefficients ael
0 of

the γ-independent electronic contribution, as well as one ael
1 coefficient, are obtained from a fit to measured

hyperfine spectra, see text. The components of dK are defined with respect to the principal axes a, b, and c. Theirγ
dependence is expanded in functions cos nγ terms or sin nγ for + and − symmetry, respectively. The superscripts
CH3 and OH refer to the CH3 protons (K = 1, 2, 3) and OH proton (K = 4), respectively. Results are given only for
the CH3 proton with K = 1, the values for K = 2, 3 correspond to a change of γ by 120◦ and 240◦. All spin-torsion
coupling expansion coefficients an and the coefficients aTh

n of the Thomas precession corrections qK/Iγ are given
in kHz.

Symmetry anuc
0 anuc

1 anuc
3 anuc

6 ael
0 ael

1 aTh
0 (≈aTh

6 )

dCH3
a + 80.00 0.319 1.40 · 10−5 0 −66.41 −2.76 −1.13 · 10−8

dCH3
b + 4.435 −9.549 0 0 −10.16 0 −2.91 · 10−6

dCH3
c − 0 0 −9.44 0 0 0 0

dOH
a + 11.66 0 −6.79 · 10−2 −3.45 · 10−4 −0.462 0 0

dOH
b + 21.48 0 −9.49 · 10−2 4.78 · 10−4 −53.99 0 0

dOH
c − 0 0 0.122 6.06 · 10−4 0 0 0

for the spin-torsion coupling vectors dK (γ) are listed in
Tables I and II, respectively. Also the values computed for
the corresponding Thomas-precession corrections are given
in these tables. We found that the Thomas corrections are
several orders of magnitude smaller than the spin-rotation ten-
sors and spin-torsion vectors, so they may be safely neglected.
This is perhaps somewhat surprising because the internal rota-
tion in methanol is a large-amplitude internal motion of the
molecule far from equilibrium. One must realize, however,
that also away from the equilibrium geometry the net force
on the CH3 protons due to the torsional potential is relatively
small (the barrier is only 374 cm�1 = 0.0017 hartree) in com-
parison with the Coulomb interactions between the individual
nuclei and electrons. The ab initio calculated dipole moment
vector is given in Table III. All tensor and vector components
are defined in the principal axes frame MF.

B. Fit and comparison with experiment

The hyperfine structure in four rotational transitions of
methanol was measured in 1973 by Heuvel and Dymanus.11

Hyperfine spectra for the same and several other rotational
transitions were recently reported by Coudert et al.8 The spec-
tra of Coudert et al.8 were obtained by Fourier-transform
microwave spectroscopy and they basically show the same
spectrum twice. The two spectra should be nearly identical, in
principle, but they are separated by a constant frequency due
to the Doppler shift between the absorption of the microwave
beams that propagate parallel and antiparallel to the molec-
ular beam. Table I in Ref. 8 gives an overview of the mea-
sured transitions. All transitions refer to the torsional ground

TABLE III. Coefficients an in the Fourier expansion of the dipole vector,
in units ea0. Components are defined in the principal axis frame. Their γ
dependence is expanded in functions cos nγ or sin nγ for + and − symmetry,
respectively.

Symmetry a0 a3 a6

µa + −0.3678 0.001 706 5.392 · 10−6

µb + −0.5635 −0.011 71 2.665 · 10−5

µc − 0 0.011 13 2.528 · 10−5

state (vτ = 0) with σ = 0 and ±1 for levels of A and E
symmetry, respectively. The quantum number Kc in the label
of an A state with given JKa may adopt two values, which cor-
respond to rotational levels of A1 and A2 symmetry or, in other
words, to the parity of the torsion-rotation states under (23)∗,
cf. Eq. (21).

In our calculations of the hyperfine spectra, we address the
same transitions. We find that each rotational transition actu-
ally splits into many more hyperfine lines than resolved in the
measured spectra. Hence, we could not fit our unknown spin-
torsion coupling parameters directly to the measured spectra.
The same problem was encountered in the fits of these spec-
tra by Coudert et al.8 who determined only the largest two
components of the spin-rotation coupling and spin-torsion cou-
pling tensors for the CH3 and OH protons by fitting the gap
between two broad peaks in the measured spectra, each corre-
sponding to several hyperfine transitions. We follow the same
procedure, but we kept all spin-rotation coupling parameters
fixed at the ab initio calculated values, as well as the nuclear
contributions to the spin-torsion coupling vectors, while we
fitted the electronic contributions to the a and b components
of these vectors for the CH3 and OH protons. The spectra used
in our fit correspond to the 515A2← 606A1 and 32← 31E tran-
sitions, as they both are ∆Ka , 0 transitions, which makes
them sensitive to spin-torsion interaction. After exploratory
investigations of the effects of the fit parameters on the cal-
culated spectra, the torsion-independent contributions to the
components dCH3

a , dCH3
b , dOH

a , and dOH
b of the electronic spin-

torsion vectors were varied in the ranges of [�77.5, �57.5],
[�34.05, 25.95], [�6.3, 0], and [�75, �50] kHz, respectively,
and the cos(γ) dependent contribution to dCH3

a in the range of
[�30, 30] kHz. In the fit of the 515A2← 606A1 spectrum, we
used the Doppler-shifted spectrum at lower frequency and in
the fit of the 32← 31E spectrum the higher frequency spec-
trum. The Gaussian and Lorentzian line width parameters σ
and γ were estimated from the experimental spectra and kept
constant in the fits. The fit was performed in two steps. First
we roughly determined the minimum in the absolute deviation
between our calculated and the measured spectra by making
50 000 random searches in the parameter space defined by an
equidistant grid in each of the ranges. Next, in order to refine
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FIG. 1. Comparison spectra calculated (upper) for the A and E levels with the measured spectra (middle)8,11 and the fit by Coudert et al.8 (bottom). The
515 A2 ← 606 A1 and 32 E ← 31 E transitions are observed by Coudert et al.8 with Doppler splittings of 35.37 kHz and 109.89 kHz, respectively. The narrow
peak in the center of the measured spectrum for the 515 A2 ← 606 A1 transition is an experimental artefact.8 The blue bars indicate the individual hyperfine
transitions with a length proportional to the intensity. The hyperfine transitions are convoluted using a Voigt profile with Gaussian width σ = 0.5 kHz and
Lorentz width γ = 0.88 kHz for the 515 A2 ← 606 A1 transition and σ = 2.5 kHz and γ = 4.0 kHz for the 32 E ← 31 E transition.

this minimum, we made 5000 search steps on a more restricted
but finer grid around the minimum found in the first step.

The parameters for the electronic contributions to the
spin-torsion interaction extracted from the fit are included in
Table II. Figure 1 shows our fitted and measured spectra, as
well as the spectra from the fit by Coudert et al.8 The fig-
ures also show our calculated line spectra (blue bars) with the
heights of the lines given by the calculated relative intensities.
Our fitted spectra are generated by the convolution of these
line spectra with a Voigt profile.

The general form of each of the two Doppler components
in both spectra is well reproduced. For the 515 A2 ← 606 A1

transition we find two peaks in each component, with the low-
frequency peak being slightly stronger, separated in frequency
by a similar amount as the two peaks in the experimental spec-
trum. For the 32 E ← 31 E transition we also find two peaks,
with the low-frequency peak also being slightly stronger, and
again a frequency separation similar to experiment. The fit
of Coudert et al. predicts this as well, although, in their case
the individual hyperfine transitions seem to be more closely
spaced which produces narrower peaks. In both experimental
spectra, the two components of the Doppler doublet are dif-
ferent in intensity, while in the spectrum for the 32 E ← 31 E
transition also the relative intensity of the two peaks differs
between the two Doppler components.

The parameters in Table II show that the electronic con-
tributions to the spin-torsion coupling vectors, all have a sign
that is opposite to the sign of the corresponding ab initio cal-
culated nuclear contributions, so they partly cancel each other.
This is what one would expect, but it was not found in the
fit of Coudert et al.,8 where the electronic contributions had
the same sign as the corresponding nuclear contributions and
about the same magnitude. Moreover, we recall that we kept
our ab initio calculated values for the spin-rotation and mag-
netic dipole-dipole coupling tensors, i.e., we did not include
those in our fit. Thus, we could fit all constant components
of the electronic spin-torsion coupling vectors and part of
their torsional dependence, whereas Coudert et al. fitted only
the constant a-components of the coupling tensors. The fit

values reveal interesting information, for instance, that the
largest electronic contribution to the spin-torsion coupling vec-
tor dOH is the component along the b-axis. Table IV lists the
expectation values of the operators ÔSR

K , ÔST
K , and ÔDD

KL over

the rotational states Jvτ=0
KaKc

of A symmetry computed with our
ab initio calculated and fitted coupling parameters.

Spectra measured for other A and E symmetry transi-
tions are simulated with the hyperfine levels and transition
intensities computed with our ab initio calculated and fitted
coupling parameters. Spectra for three A-symmetry transitions
are shown in Fig. 2 and spectra for three of the E symme-
try transitions in Fig. 3. More transitions analyzed are given
in Fig. 4 and in the supplementary material. Note that the
spectra for the A symmetry transitions in Fig. 2 were mea-
sured by Heuvel and Dymanus11 and the figures show only a
single spectrum, while the spectra for the E symmetry transi-
tions in Fig. 3 were measured by microwave spectroscopy and
the figures show the two Doppler-component spectra. In our
discussion of the latter spectra, we refer only to the structure
of a single Doppler component.

TABLE IV. Expectation values of the operators in Eqs. (27), (28), and (30)
over torsion-rotation states of A symmetry. We used the ab initio data of Table I
the fitted data from Table II and compute dipole-dipole interactions from the
geometry. The subscripts CH3 and OH of the dipole-dipole coupling operator
denote the coupling between two CH3 protons and the coupling between the
OH proton and one of the CH3 protons, respectively.

JKaKc OSR
1,2,3 OST

1,2,3 OSR
4 OST

4 ODD
CH3

ODD
OH

101 0.632 −0.001 1.785 −0.006 −4.206 2.400
111 6.602 4.078 7.950 −7.960 2.094 −1.113
110 6.547 4.077 6.916 −7.967 2.112 −1.293
212 2.640 1.353 4.185 −2.693 −0.503 0.308
211 2.585 1.352 3.150 −2.700 −0.499 0.265
313 1.650 0.671 3.245 −1.376 −0.351 0.210
312 1.595 0.670 2.210 −1.383 −0.349 0.191
515 1.056 0.263 2.685 −0.585 −0.162 0.096
606 0.631 −0.001 1.763 −0.006 −0.127 0.073
615 0.943 0.185 2.580 −0.434 −0.119 0.070
616 0.888 0.184 1.546 −0.442 −0.118 0.065

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-029647
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FIG. 2. Comparison of our hyperfine spectra calculated (upper) for the A levels with the measured spectra (middle)11 and the fit by Coudert et al.8 (bottom). The
blue bars indicate the individual hyperfine transitions with a length proportional to the intensity. The hyperfine transitions are convoluted using a Voigt profile
with σ = 0.11 kHz and γ = 1.0 kHz for the 211 A2 ← 212 A1 transition, σ = 0.63 kHz and γ = 0.3 kHz for the 312 A2 ← 313 A1 transition, and σ = 0.767 kHz
and γ = 0.9 kHz for the 615 A2 ← 616 A1 transition.

For all of the hyperfine transitions of A symmetry, we
observe good agreement between the calculated and mea-
sured hyperfine spectra. In the 211 A2← 212 A1 spectrum, we
even reproduce the satellite peaks at the correct frequencies,
and also find an asymmetric central peak. Also Coudert et
al. reproduce these transitions very well in their fits. For the
312 A2← 313 A1 transition our results seem to be slightly bet-
ter because the two peaks are more separated, just as in the
experimental spectrum.

For the transitions of E symmetry the agreement is slightly
worse, but the resolution in the experimental spectra seems to
be lower for these transitions. In the 21 E← 30 E spectrum,
the experiment shows a single peak with a satellite on the
high-frequency side. Coudert et al. find a single peak in their
simulated spectrum, while we find a satellite peak at higher
frequency, although much stronger than seen in experiment.
For the 42 E ← 41 E transition, the measured spectrum shows
a strong peak with a side peak at about 40% of the intensity.
Coudert et al. theoretically predict two equally strong peaks
with similar intensity. We find a spread-out group of hyper-
fine lines, about as wide as the experimental spectrum. The

experimental 52 E ← 51 E spectrum shows much noise and
only a single peak could be resolved. In our simulations, we
find the hyperfine transitions to be tightly grouped around the
rotational frequency, which is compatible with the structure in
the experimental spectrum. Coudert et al. compute two peaks
within the width of the experimental peak.

In Fig. 4 we show some further E symmetry transitions for
which microwave spectra were measured both in Lille and in
Hannover.8 The middle figures give both experimental spectra,
with the spectra from Hannover and Lille depicted in red and
blue, respectively. Since the spectra look different, we also sim-
ulated two spectra for each transition. In the two simulations,
we used the same line frequencies and intensities calculated
directly from our coupling parameters, but we applied a dif-
ferent Doppler shift in accordance with the measured shifts,
and we used different parameters for the Voigt profile used in
the convolution of our line spectra.

Comparing the measured spectra for the 20 E ← 3−1 E
transition, we observe that the Lille experiments show only a
single peak with a small dip in the top, whereas the Hannover
experiments show two peaks with the high frequency peak

FIG. 3. Comparison of our hyperfine spectra calculated (upper) for the E levels with the measured spectra (middle)8 and the fit by Coudert et al.8 (bottom).
The 21 E − 30 E, 42 E ← 41 E, and 8−2 E ← 9−1 E transitions are observed by Coudert et al.8 and have a Doppler splitting of 79.78 kHz, 106.81 kHz, and
108.57 kHz. The blue bars indicate the individual hyperfine transitions with a length proportional to the intensity. The hyperfine transitions are convoluted using a
Voigt profile withσ = 1.5 kHz andγ = 1.88 kHz for the 21 E ← 30 E transition,σ = 0.5 kHz andγ = 0.88 kHz for the 42 E ← 41 E transition, andσ = 3.5 kHz
and γ = 4.25 kHz for the 52 E ← 51 E transition.
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FIG. 4. Comparison of our hyperfine spectra calculated (upper) for the E levels with the measured spectra (middle)8 and the fit by Coudert et al.8 (bottom). The
spectra were observed in Hannover (red) and Lille8 (blue). The blue bars indicate the individual hyperfine transitions with a length proportional to the intensity;
for clarity they are only given for the 20 E − 3−1 E transition in our simulations of the Hannover spectrum. The Hannover spectra for the 20 E ← 3−1 E and
9−1 E ← 8−2 E transitions are simulated by using a Voigt profile of σ = 0.5 kHz and γ = 0.88 and 2.88 kHz and by using a Doppler splitting of 32.4 and
41.67 kHz. The Lille spectra for the 20 E ← 3−1 E and 9−1 E ← 8−2 E transitions are simulated by using a Voigt profile with σ = 4.5 and 0.5 kHz and γ = 3.88
and 6.50 kHz and by using a Doppler splitting of 65.44 and 94.11 kHz.

being weaker. Comparing the two experimental spectra for the
9−1 E ← 8−2 E transition, we observe multiple peaks in the
seemingly better resolved spectrum from Hannover, and only
a single broad peak in the spectrum from Lille. However, the
multiple peaks in the Hannover spectrum cover a wider range
of frequencies than the single peak in the Lille spectrum, and
there is a marked difference between the two Doppler compo-
nents that should be nearly identical. This difference is most
pronounced in the Hannover spectrum. So, it seems that there
were some experimental problems in recording these spec-
tra. Given these uncertainties in the experimental spectra, a
detailed comparison with our calculated spectra is not very
meaningful. All we can say is that the structure in our calcu-
lated spectra is probably compatible with the measured results.

In a recent paper of Belov et al.21 on Lamb-dip sub-
millimeter-wave spectra of high-J torsion-rotation transitions
of E-symmetry in methanol, they found unexpectedly large
doublet splittings in the spectra due to hyperfine coupling.
They could explain these doublet splittings by a theoretical
model that includes only the spin-rotation coupling within the
CH3 subunit, with operators that depend on the torsion angle.
The separation between the doublet peaks was observed for
transitions between the rotational levels with J ranging from
13 to 34. Extrapolation of the results to lower J values with the
aid of their model would yield a doublet separation of 17 kHz
in the 9−1 E← 8−2 E spectrum.37 The middle panel of Fig. 4(b)
shows, however, that such a doublet structure was not observed
in the microwave spectra taken in Hannover and Lille. As
shown in the upper panel of Fig. 4(b), our calculations with the
full hyperfine coupling Hamiltonian including torsion-angle
dependent spin-rotation, spin-torsion, and spin-spin interac-
tions predict two sets of closely spaced lines. These lines, when
not individually resolved, do give rise to a doublet structure,
with a separation of about 7.5 kHz between the two peaks.

A complete set of tables with our calculated transition
frequencies and Einstein A-coefficients of all hyperfine tran-
sitions associated with the different rotational transitions dis-
cussed in the paper is given in the supplementary material.

Inspection of these tables shows clearly that for each rota-
tional transition with given ∆J = 0 or ±1 only the hyperfine
transitions with ∆F = ∆J have substantial intensities, while
the other hyperfine components are weaker by about an order
of magnitude. So, the spectra are strongly dominated by these
particular hyperfine transitions, which are shown as the line
spectra in our figures.

Concluding this section, we note that with most of the
dipole-dipole, spin-rotation, and spin-torsion coupling param-
eters from ab initio calculations and only the electronic contri-
bution to the dominant spin-torsion parameters obtained from
a fit to two experimental spectra—one for an A symmetry tran-
sition and one for an E symmetry transition—we obtain good
agreement with these spectra, as well as with another set of
measured spectra not used in the fit. One should realize, how-
ever, that the individual hyperfine transitions were not resolved
in the measured spectra, which limits the amount of experimen-
tal data that we could use in our fit. There may be a relatively
large uncertainty in the fitted spin-torsion coupling parame-
ters, which can only be reduced when more of the detailed
hyperfine structure in the spectra that we predict will actually
be resolved.

V. DISCUSSION

In order to understand the structure in the hyperfine spec-
tra, it is useful to consider the nature of the hyperfine splittings
of the torsion-rotation levels. Figures 5(a) and 5(b) illustrate
these splittings for two torsion-rotation levels, one of A sym-
metry and one of E symmetry. The hyperfine levels were
computed with the parameters listed in Tables I and II. The
middle column in these figures shows the effect of the cou-
plings involving the CH3 protons, the righthand column shows
the additional splittings when also the interactions with the OH
proton are included. The intermediate quantum number F1 is
obtained by coupling the overall rotation angular momentum J
with the collective nuclear spin I123 of the three CH3 protons.
We mentioned above that I123 = 3/2 for A symmetry states,

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-029647
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FIG. 5. Hyperfine splitting of torsion-rotation A and E levels. The middle column shows the effects of the interactions involving the CH3-protons, with the
intermediate quantum number F1 explained in the text, the righthand column the final hyperfine levels labeled with the quantum number F.

so that for J ≥ 2 we obtain four different F1 values ranging
from J � 3/2 to J + 3/2. The additional coupling with the spin
I4 = 1/2 of the OH proton then yields five different F values
ranging from J � 2 to J + 2, with the intermediate values of F
occurring twice and the largest and smallest F value only once.
For states of E symmetry I123 = 1/2, so that only two different
values of F1 are obtained. Additional coupling with I4 = 1/2
then yields three F values: J � 1, J, J + 1, with two hyperfine
states for F = J and only a single one for F = J ± 1. However,
the irrep E carries two spatial and two nuclear spin wave func-
tions which may be combined to a total wave function of A1 or
A2 symmetry, see Eq. (23) in Sec. II C. Each angular momen-
tum coupling scheme then yields two Pauli-allowed states.

Since the distance between the OH proton and each of the
CH3 protons is much larger than the distance between the pro-
tons within the CH3 group, one might expect that the largest
splitting between the hyperfine levels originates from the inter-
actions within the CH3 group, and that the coupling with the
OH proton only causes further small splittings. The actual
picture is more subtle, however. The magnetic dipole-dipole
interactions are indeed stronger between the CH3 protons than
between the OH proton and the CH3 protons. Tables I and IV
show that the spin-rotation interactions are of the same mag-
nitude for CH3 and OH protons. However, the spin-torsion
interactions are stronger for the OH proton than for the CH3

protons, and they counteract the spin-rotation interactions. As
a result we find for states of A symmetry that the hyperfine
splitting due to the CH3-protons is of the same magnitude as
the additional splittings caused by the OH proton. For states of
E symmetry the interactions involving the OH proton dominate
the hyperfine splittings.

An additional important factor that determines the struc-
ture of the hyperfine spectra is the transition line strengths.
Transitions are allowed for ∆F = 0,±1, but we find, in agree-
ment with the experience from the experimental data, that the
hyperfine components of a given rotational transition ∆J are
considerably stronger for transitions with ∆F =∆J than for
the other allowed transitions. Only those lines will be visible
in the measured hyperfine spectra, which yield a considerable
simplification of these spectra.

The expressions that we derived for the spin-rotation
coupling tensors MK and spin-torsion coupling tensors dK dif-
fer from the expressions presented by Heuvel et al.10 and used

also by Coudert et al.8 The main difference is that in the for-
mulas of Heuvel et al. for these tensors a Thomas precession
factor appears in the relative velocity vectors of the interacting
particles. Furthermore, we found a sign difference in one of
the terms in the hyperfine Hamiltonian. We checked the impor-
tance of such a Thomas correction factor in the calculations
of the nuclear contributions to the coupling tensors and con-
clude that it has a substantial effect on the calculated results.
Even more so, since the Thomas correction factor was written
by Heuvel et al. as γK =ZK Mp/(gK MK ) (for protons ≈ 0.18),
instead of γK = 1 − ZK Mp/(gK MK ) (for protons ≈ 0.82), as it
should be.15 Explicit derivations15,19,20 have shown, however,
that the Thomas precession correction vanishes completely for
molecules at equilibrium, and that it should be included in a
different manner for molecules that deviate from their equi-
librium geometry. In the present paper, we use γK = 1 and
obtain the Thomas correction to both the spin-rotation and
spin-torsion coupling tensors with formulas that we derived
specifically for molecules with large amplitude internal rota-
tion, such as methanol. Application of these formulas shows
that the Thomas corrections are negligibly small, so that
also our numerical results differ substantially from those of
Coudert et al.8

VI. CONCLUSION

Expressions for the spin-rotation and spin-torsion cou-
pling terms in the hyperfine Hamiltonian for molecules with
internal rotation are derived from first principles. The spin-
rotation coupling Hamiltonian contains not only the usual term
with the rotational angular momentum operator Ĵ—which is
the spin-rotation coupling term in the hyperfine Hamiltonian
for semi-rigid molecules—but also a term that contains the
torsional angular momentum operator p̂γ. Vice-versa, the spin-
torsion coupling Hamiltonian—present only for molecules
with internal rotation—contains not only a term with p̂γ but
also a term with Ĵ. This hyperfine Hamiltonian was derived
previously by Heuvel and Dymanus,10 but our result is essen-
tially different from theirs especially in the way to treat the
relativistic Thomas precession correction. In the Hamiltonian
of Heuvel and Dymanus this correction was taken into account
by putting a scaling factor into the relative velocity vectors of
the interacting particles, which has a substantial effect on the
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calculated results. However, it was shown in a paper by Fly-
gare15 that the Thomas correction actually vanishes for the
molecules at equilibrium and in some later papers on diatomic
molecules18–20 that it is very small for the molecules that
vibrate about their equilibrium geometry. Here, we derive a for-
mula for the Thomas correction to the spin-rotation and spin-
torsion coupling in molecules with internal rotation. Applica-
tion of this formula shows that also for methanol the Thomas
correction is negligibly small, even though the molecule exerts
an internal rotation far from equilibrium.

Most of the coupling parameters in the hyperfine Hamil-
tonian for methanol could be obtained from ab initio electronic
structure calculations at the CCSD(T) level with the program
CFOUR.25 The electronic contribution to the spin-torsion
coupling parameters could not be obtained in this manner,
however. So we fitted the missing spin-torsion parameters by
computations of the hyperfine levels and transition intensities
for the 515 A2 ← 606 A1 and 32 E ← 31 E rotational transitions
in methanol and compared with the measured spectra8 in which
the hyperfine structure in the spectrum is partly resolved. With
the obtained hyperfine parameters, we calculated the hyperfine
structure in the spectra for several other rotational transitions
between the torsional states of both A and E symmetry, and find
that also they agree well with the measured spectra of Heuvel
and Dymanus11 and Coudert et al.8 In contrast with the work
of Coudert et al.8 where the dominant spin-rotation coupling
parameters were included in the fit and were found to deviate
substantially from the ab initio calculated values, we kept the
ab initio values and did not include these parameters in our fit.
Another difference between our work and Ref. 8 is that in our
case the fitted electronic contributions to the spin-torsion cou-
pling parameters partly cancel the nuclear contributions, i.e.,
they have opposite signs as expected, whereas it was found in
Ref. 8 that these contributions are about equal in magnitude
and have the same sign, which seems unphysical.

Currently we are using our results obtained for the hyper-
fine Hamiltonian of methanol in calculations of the Zeeman
splittings of the hyperfine transitions by external magnetic
fields. Quantitative information on these magnetic field effects
is relevant for the analysis of astrophysical data, such as the
methanol maser spectra from star-forming regions. This work
will be reported in a forthcoming publication.

SUPPLEMENTARY MATERIAL

See supplementary material for figures of other spectra
analyzed and tables with all calculated hyperfine transition
frequencies and intensities.
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APPENDIX A: THEORY

1. Kinetic energy operator

As usual for molecules with internal rotation, we dis-
tinguish two parts in the molecule that are internally rigid.
The “frame” part consists of those nuclei that remain fixed
in the molecule-fixed (MF) principal axis frame, in the case
of methanol the OH fragment. The origin of the MF frame is
the center of mass of the CH3OH molecule and its orientation
with respect to a space-fixed (SF) frame is defined by three
zyz-Euler angles (χ, θ, φ). The “top” part is fixed with respect
to a frame TF that rotates with respect to the MF frame about a
single (fixed) axis λ over an angle γ. This “top” is considered
to be a symmetric rotor, such as the CH3 group in methanol.
The coordinates of the nuclei in the “frame” and “top” with
respect to the SF frame are given by

rframe,SF
K = R−1(χ, θ, φ)rframe,MF

K ,

rtop,SF
K = R−1(χ, θ, φ)R−1(λ, γ)rtop,TF

K ,
(A1)

where R(χ, θ, φ) is a rotation over the zyz-Euler angles and
R(λ, γ) is a rotation over γ about the axis λ, and the nuclear
coordinates rframe,MF

K and rtop,TF
K are fixed with respect to their

respective frames. The time-derivatives of the SF nuclear posi-
tions are related to the time-independent MF and TF atomic
coordinates

ṙframe,SF
K = Ṙ

−1
(χ, θ, φ)rframe,MF

K ,

ṙtop,SF
K = Ṙ

−1
(χ, θ, φ)R−1(λ, γ)rtop,TF

K

+ R−1(χ, θ, φ)Ṙ
−1

(λ, γ)rtop,TF
K . (A2)

The SF derivatives, transformed to the MF frame for the nuclei
in the “frame” and to the TF frame for the nuclei in the “top,”
can also be expressed as

R(χ, θ, φ)ṙframe,SF
K = ω × rframe,MF

K ,

R(λ, γ)R(χ, θ, φ)ṙtop,SF
K = ω′ × rtop,TF

K + γ̇λ × rtop,TF
K ,

(A3)

in terms of the angular velocitiesω, γ̇, andω′ =R(λ, γ)ω. The
Lagrangian form of the classical kinetic energy in terms of the
atomic masses mK and velocities ṙSF

K can then be rewritten as

2T = ωT Iω + γ̇λT Itopω + γ̇ωT Itopλ + Iγ γ̇
2, (A4)

in which I = Iframe + Itop is the overall inertia tensor and
Iγ =λT Itop

λ is the moment of inertia of the top about the
internal rotation axis λ. Since the “top” is a symmetric rotor,
its inertia tensor is not changed by the internal rotation,
Itop = R−1(λ, γ)ItopR(λ, γ). Also the overall inertia tensor I,
diagonal in the principal axes frame MF, is therefore invariant
under the internal rotation. In Eq. (A4) the components of the
vectors ω and λ and of the inertia tensors I and Itop are given
relative to the MF frame.

This equation can be written in matrix form as

2T =

(
ω
γ̇

)T (
I Itopλ

λT Itop Iγ

) (
ω
γ̇

)
. (A5)

In order to derive the quantum mechanical expression for
T, one has to convert the Lagrangian in Eq. (A5) into the

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-029647
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corresponding classical Hamiltonian with the angular
momenta J and pγ conjugate to the angular velocities ω and
γ̇ given by

J = ∂T
∂ω = Iω + Itopλγ̇

pγ = ∂T
∂γ̇ = ω · I

topλ + Iγ γ̇.
(A6)

After inversion of the 4 × 4 matrix in Eq. (A5) with the use of
a formula in Ref. 38, the angular velocities are expressed in
terms of their conjugate momenta

ω = I−1J − 2F
(
pγ − ρ · J

)
ρ,

γ̇ = 2F
(
pγ − ρ · J

)
,

(A7)

with

F =
1
2

(
Iγ − ρ

T Iρ
)−1

and ρ = I−1I
top
λ. (A8)

When these results are substituted into Eq. (A5), the Hamilto-
nian kinetic energy becomes

T =
1
2

J · I−1J + F
(
pγ − ρ · J

)2
. (A9)

The quantum mechanical equivalent of this result, given by
Hougen et al.,22 is obtained by replacing the total angular
momentum J by the operator Ĵ26 and pγ by (~/i)∂/∂γ. The
components of Ĵ are defined relative to the MF frame and obey
the anomalous commutation relations that hold for body-fixed
angular momentum operators.26

2. Spin-rotation and spin-torsion interactions

The magnetic field produced at position rK by a set of
moving particles i (nuclei and electrons) with charges Z ie is
given by

BK =
∑

i

Zie
c

r−3
Ki rKi × vKi. (A10)

The vectors rKi = ri − rK are the relative position vectors of
the particles, rKi is the length of rKi, and vKi = ṙKi are their
relative velocities. The magnetic moment of nucleus K is µK
= gK µN IK , with IK denoting the nuclear spin, µN = e/(2Mpc)
the nuclear magneton with the proton mass Mp and the speed
of light c, and gK the gyromagnetic factor of nucleus K. Its
energy in the field BK is17

HK = −BK · µK = −
∑

i

ZiegK µN

c
r−3

Ki [rKi × vKi] · IK . (A11)

In several papers10,14–16 one takes into account the Thomas
precession factor γK and replaces the vector vKi = vi − vK by
vi − γK vK . The correct expression for this factor is15

γK = 1 −
ZK Mp

gK MK
, (A12)

but different expressions occur in Refs. 10 and 14. Fly-
gare15 has shown that for the nuclear spin-rotation coupling
in molecules at their equilibrium geometry, the Thomas pre-
cession correction vanishes. We omit this correction by using
Eq. (A11) without any correction, i.e., by setting γK = 1. In
Sec. II B we have shown how it actually has to be dealt with
in molecules with internal rotation such as methanol.

The positions of the nuclei in the “frame” and “top” of
the molecule are fixed with respect to the MF and TF frame,
respectively. Their positions with respect to the SF frame are
given by Eq. (A1), and in Eq. (A3) their velocities are expressed
in terms of the angular velocity ω of the whole molecule and
the velocity γ̇ of rotation of the “top” about the axisλ relative to
the “frame.” Substitution of these expressions into Eq. (A11)
yields

H frame
K = − IK ·W frame

K ω (A13)

for the particles i in the “frame,” with

W frame
K =

frame∑
i

ZiegK µN

c
r−3

Ki

[(
rMF

Ki · r
MF
Ki

)
1− rMF

Ki ⊗ rMF
Ki

]
.

(A14)
For the particles in the “top” we get

H top
K = − IK ·W

top
K ω′ − IK · wK γ̇, (A15)

with

W top
K =

top∑
i

ZiegK µN

c
r−3

Ki

[(
rTF

Ki · r
TF
Ki

)
1− rTF

Ki ⊗ rTF
Ki

]
(A16)

and

wK =

top∑
i

ZiegK µN

c
r−3

Ki

[(
rTF

Ki · r
TF
Ki

)
1− rTF

Ki ⊗ rTF
Ki

]
λ. (A17)

All tensor and vector components in Eqs. (A15)–(A17) are
defined in the TF frame, while Eqs. (A13) and (A14) are written
in the MF frame. We prefer to write all equations in the MF
frame, i.e., the principal axes frame of the whole molecule.
This can be achieved by transformation to the γ dependent
coupling tensor W top

K (γ) = R(λ, γ)−1W
top
K R(λ, γ) and coupling

vector wK (γ) = R(λ, γ)−1wK . Equation (A15) then becomes

H top
K = − IK ·W

top
K (γ)ω − IK · wK (γ)γ̇, (A18)

in which also the components of IK and ω are given in the
MF frame. If nucleus K is in the “top,” the position vector rK

depends on γ, and so does the coupling tensor W frame
K . Since

all tensors and vectors are now given in the MF frame, we may
add Eqs. (A13) and (A18) to obtain

HK = − IK ·WK (γ)ω − IK · wK (γ)γ̇, (A19)

with

WK (γ) = W frame
K +W top

K (γ)

=
∑

i

ZiegK µN

c
r−3

Ki

[(
rMF

Ki · r
MF
Ki

)
1− rMF

Ki ⊗ rMF
Ki

]
,

(A20)

where we note that the sum over particles i now runs over all
electrons and all nuclei other than K in the whole molecule.

Next we replace the angular velocities ω and γ̇ in
Eq. (A20) by their conjugate angular momenta J and pγ, with
the use of Eq. (A7). With the vector ρ given by Eq. (A8)
and replacing the angular momenta J, pγ, and IK by the
corresponding operators, this yields the spin-rotation cou-
pling Hamiltonian in Eq. (3) and the spin-torsion coupling
Hamiltonian in Eq. (4).

Finally we note that the coupling tensors given in
Eqs. (A17) and (A20) depend on the coordinates of both nuclei
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and electrons. The contributions that contain the nuclear coor-
dinates can be directly calculated, since the positions of the
nuclei are fixed with respect to the MF frame (for the nuclei
in the “frame”) or depend only on the torsion angle γ (for the
nuclei in the “top”). For the spin-rotation coupling tensors MK ,
it was shown that the electronic contributions can be obtained
from second order perturbation theory15 with matrix elements
over the molecule’s ground state and excited electronic wave
functions. Calculation of these spin-rotation coupling tensors
has been implemented in the electronic structure program
package CFOUR,25 and they can thus be computed as a func-
tion of γ. No such implementation yet exists, however, for the
spin-torsion coupling tensors wK . Just as in the recent paper
of Coudert et al.,8 we calculate the nuclear contributions to
the tensors wK and estimate the electronic contributions from
a fit to experimental hyperfine spectra. The notations MK and
wK for these tensors are used in the main body of this paper
for the total nuclear and electronic contributions, unless we
specify explicitly the contribution that is meant.

APPENDIX B: ANGULAR MOMENTUM ALGEBRA
OF HYPERFINE COUPLING TERMS

A vast amount of literature, summarized by Eshbach and
Strandberg39 and Bowater et al.,40 exists on the matrix ele-
ments of hyperfine and Zeeman interactions. In these papers
the rotational matrix elements are given in terms of rather
cumbersome matrix elements of direction cosines and rota-
tional angular momentum operators. A more general formal-
ism, exemplified here for the angular momentum algebra of
the magnetic dipole-dipole and nuclear-spin rotation coupling
operators, can be written with spherical tensor operators. The
nuclear-spin rotation interaction Hamiltonian for a molecule
with nuclei α can be written in SF spherical components as
the sum over terms

−Îα ·Mα Ĵ =
∑
mm′

(−1)m(Îα)
SF
−m(Mα)SF

mm′ Ĵ
SF
m′ . (B1)

The coupling tensor Mα is calculated in the molecular-axes
frame MF and can be transformed to the SF frame by the
rotation

(Mα)SF
mm′ =

∑
kk′

D(1)∗
mk (χ, θ, φ)(Mα)MF

kk′ D
(1)
m′k′(χ, θ, φ). (B2)

We expand the product of the two Wigner D-matrix elements
in irreducible components D(L)∗

PQ (χ, θ, φ), with L adopting the
values 0, 1, 2, and Q = −L, . . . , L,

−Îα ·MαĴ =
∑
LPQ

(−1)P+L
∑
mm′

(Îα)
SF
−mĴSF

m′

× 〈1 −m 1 m′ |L −P〉D(L)∗
PQ (χ, θ, φ)

×
∑
kk′

(−1)1−k′(Mα)kk′〈1 k 1 −k ′ |L Q〉, (B3)

and define the rank-L irreducible components of the coupling
tensor as

(Mα)LQ =
∑
kk′

(−1)1−k′(Mα)kk′〈1 k 1 −k ′ |L Q〉. (B4)

The quantity between angular brackets is a Clebsch-Gordan
coefficient.

By evaluating the matrix element 〈(k1)j1m1 |

D(L)∗
PQ (χ, θ, φ)|(k2)j2m2〉 and using the completeness relation41

twice, we may express the Wigner D-matrix element as

D(L)∗
PQ (χ, θ, φ) =

∑
k1j1k2j2

[ j1]1/2[ j2]1/2

[L]1/2
(−1) j1−k1

×

(
j1 L j2
−k1 Q k2

)
T̂ (L)

P (k1j1; k2 j2), (B5)

with the rank-L irreducible spherical tensor operator

T̂
(L)

(j1; j2) defined by its components41

T̂ (L)
P (j1; j2) =

∑
m1m2

| j1m1〉〈 j2m2 |(−1) j1−m1 [L]1/2
(

j1 L j2
−m1 P m2

)
.

(B6)

The quantities in round brackets are Wigner 3j symbols and the
square brackets are shorthand for [ j] = 2j + 1. Next we couple
the two irreducible tensor operators Îα and Ĵ with the use of the
general relation42

[
Â(`1) ⊗ B̂

(`2)
] (`)

q
=

`1∑
m1=−`1

`2∑
m2=−`2

Â`1m1 B̂`2m2〈`1m1`2m2 |`q〉,

(B7)
and couple the unit spherical tensor operator in the Wigner

D-matrix element to the coupled operator [Îα ⊗ Ĵ]
(L)

to find

− Îα · MαĴ =
∑

j1j2k1k2

(−1) j1−k1 [ j1]1/2[ j2]1/2

×
∑

L

[
T̂

(L)
( j1; j2) ⊗ [Îα ⊗ Ĵ](L)

] (0)

0

×
∑

Q

(
j1 L j2
−k1 Q k2

)
(Mα)LQ. (B8)

Analogously, we obtain for the magnetic dipole-dipole interac-
tion

Îα ·Dαβ Îβ = −
∑

j1j2k1k2

(−1) j1−k1 [ j1]1/2[ j2]1/2

×
∑

L

[
T̂

(L)
( j1; j2) ⊗ [Îα ⊗ Îβ]

(L)
] (0)

0

×
∑

Q

(
j1 L j2
−k1 Q k2

)
(Dαβ)LQ. (B9)

The rotational and nuclear spin angular momentum operators
can be written in terms of irreducible spherical tensor operators
as

Ĵq =
∑

j

√
[ j] j( j + 1)

3
T̂1q( j, j),

(Îα)q =
∑
iα

√
[iα]iα(iα + 1)

3
T̂1q(iα, iα).

Finally, as an example, we evaluate the matrix elements
of the operator in Eq. (B9) with α = 1 and β = 2 between
coupled basis functions |[([{I1I2}I12I3]I123I4)IJ]F MF〉 and
|[([{I ′1I ′2}I

′
12I ′3]I ′123I ′4)I ′J ′]F MF〉 to find
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[([{I1I2}I

′
12I3]I ′123I4)I ′J ′]F MF

�����

[
T̂

(L)
( j1; j2) ⊗

[
Î1 ⊗ Î2

] (L)
] (0)

0

�����
[([{I1I2}I12I3]I123I4)IJ]F MF

〉
= (I1(I1 + 1)I2(I2 + 1))1/2[I1]1/2[I2]1/2[L]1/2[I ′12]1/2[I12]1/2[I ′123]1/2[I123]1/2[I ′]1/2[I]1/2(−1)I′12+I3+I4+J+F+I123+I′123+I′+I+L

×




I1 I1 1

I2 I2 1

I ′12 I12 L




{
I12 I ′12 L

I ′123 I123 I3

} {
I123 I ′123 L

I ′ I I4

} {
J ′ J L

I I ′ F

}
,

where the quantities between the curly brackets are Wigner
9j and 6j symbols. Matrix elements of the spin-rotation cou-
pling and other dipole-dipole coupling terms can be found
analogously.
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