Gyrokinetic simulations of transport in pellet fuelled discharges at JET
D. Tegnered, H. Nordman, M. Oberparleiter, P. Strand, L. Garzotti, I. Lupelli,
C.-M. Roach, M. Romanelli, M. Valović and JET Contributors

EUROfusion Consortium, JET, Culham Science Centre, Abingdon, OX14 3DB, UK
*Department of Earth and Space Sciences, Chalmers University of Technology, SE-412 96 Göteborg, Sweden.
†CIFE, Culham Science Centre, Abingdon, OX14 3DB, UK
*See the Appendix of F. Romanelli et al., Proceedings of the 25th IAEA Fusion Energy Conference 2014, Saint Petersburg, Russia

Introduction

- Pellet injection is the likely fuelling method of reactor grade plasmas.
 - Will temporarily perturb density and temperature profiles and change key dimensionless parameters such as \(a/L_m \), \(a/L_T \), \(\nu_m \), and plasma \(\beta \) affecting transport properties.
- L-mode pellet injection experiments were performed during 2014 hydrogen campaign.
 - Diagnostic set-up optimized to measure post pellet evolution of density profiles.
 - Accurate equilibrium reconstruction and Gaussian process regression\(^1\) fits of the kinetic profiles were performed as basis for gyrokinetic analysis.
- Following microstability analysis of MAST pellet fuelled discharge where stabilization of all modes was found in negative \(a/L_m \) region\(^2\).

Discharge parameters

- The discharge 87847 is analysed at several radial positions around the pellet ablation density peak.
- \(B = 1.7 \text{T}, I_p = 1.75 \text{MA}, P_{\text{CRH}} = 3.45 \text{MW}, T_i = T_e \) and \(n_i = n_e \) is assumed.
 - Focus on time point with the largest density peak, \(t = 0.002 \text{s} \) after the pellet injection.
- Results compared to intra pellet time point with relaxed profiles at \(t = 0.032 \text{s} \) after pellet.

<table>
<thead>
<tr>
<th>(\rho_t \mid t) [after pellet]</th>
<th>(n) [10^19/m^3]</th>
<th>(T) [eV]</th>
<th>(\nu_m)</th>
<th>(\rho_m)</th>
<th>(\rho_e)</th>
<th>(\beta) [%]</th>
<th>(q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.69</td>
<td>0.0042</td>
<td>3.81</td>
<td>0.43</td>
<td>5.60</td>
<td>2.64</td>
<td>1.39</td>
<td>0.20</td>
</tr>
<tr>
<td>0.69</td>
<td>0.0034</td>
<td>3.69</td>
<td>0.49</td>
<td>4.29</td>
<td>0.77</td>
<td>1.05</td>
<td>0.22</td>
</tr>
<tr>
<td>0.76</td>
<td>0.0034</td>
<td>4.59</td>
<td>0.28</td>
<td>6.35</td>
<td>2.32</td>
<td>3.73</td>
<td>0.16</td>
</tr>
<tr>
<td>0.76</td>
<td>0.0034</td>
<td>3.54</td>
<td>0.35</td>
<td>5.11</td>
<td>0.42</td>
<td>1.89</td>
<td>0.15</td>
</tr>
<tr>
<td>0.85</td>
<td>0.0042</td>
<td>5.01</td>
<td>0.15</td>
<td>7.00</td>
<td>0.74</td>
<td>13.00</td>
<td>0.10</td>
</tr>
<tr>
<td>0.85</td>
<td>0.0034</td>
<td>3.34</td>
<td>0.21</td>
<td>6.08</td>
<td>1.36</td>
<td>4.74</td>
<td>0.09</td>
</tr>
<tr>
<td>0.94</td>
<td>0.0042</td>
<td>3.83</td>
<td>0.08</td>
<td>7.16</td>
<td>5.50</td>
<td>34.44</td>
<td>0.04</td>
</tr>
<tr>
<td>0.94</td>
<td>0.0034</td>
<td>2.60</td>
<td>0.12</td>
<td>6.71</td>
<td>4.33</td>
<td>11.36</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Table 1: Discharge parameters

GENE simulations setup

- Both linear and nonlinear simulations of ITG/TE mode turbulence performed using the gyrokinetic code GENE\(^2\) in a flux tube domain.
 - Including finite \(\beta \) effects and collisions in realistic geometry.
 - Fast particles and rotation are not expected to play important role in this low-\(\beta \), ICRH heated discharge and are not included.
- For nonlinear GENE simulations, simulation domain in the perpendicular plane of \(L_n \sim 125 \sim 250 \rho_p \) and \(L_m \sim 110 \sim 200 \rho_p \) with a typical resolution of \(\rho_m, n_m, n_i, \nu_m, \nu_i, T_i \mid \rho_m = [14, 48, 32, 64, 16] \).
 - Collisionless simulations included in order to connect results to more reactor relevant conditions.

Linear results

- Eigenvalue spectra at \(\rho_i \) subdominate modes dented.
 - With collisions the normalised growth rates are slightly reduced in the pellet case in the negative \(a/L_m \) region.
 - Negative \(a/L_p \) stabilising but partially undone by increase in \(a/L_T \).
 - In the collisionless case the stabilisation at the pellet time point is more pronounced.
 - Subdominant TE-mode with reduced growth rates appears at pellet time point without collisions, collisions stabilise it.

Nonlinear results

- Particle flux inwards in negative \(a/L_m \) region, changes sign on the outside of the pellet ablation peak.
 - Similar magnitude on each side of the pellet ablation peak.
 - In negative \(a/L_m \) region diffusion coefficients are lower after the pellet than at intra-pellet time.
- The outward heat fluxes are greatly reduced in negative \(a/L_m \) radial range compared to intra pellet case.
- Collisionless simulations at \(\rho_i = 0.09 \) and \(\rho_i = 0.94 \) exhibit larger particle fluxes than collisional case in unchanged direction.
- Poloidal flux spectra remain similar at both time points.

Conclusions

- ITG mode growth rates slightly reduced in negative \(a/L_m \) radial range.
- Outward heat fluxes and diffusion coefficients reduced on inside of the peak compared to intra pellet time point.
- Particle fluxes on each side of the peak were of similar magnitudes and in opposed directions, suggesting a symmetric evolution of post-pellet density profiles.

Acknowledgements and references

The simulations were performed on resources provided by the Swedish National Infrastructure for Computing (SNIC) at PDC Centre for High Performance Computing (HPC2N), and on the HLRN supercomputer system at Computational Science Centre of International Fusion Energy Research Competence Centre (IFERC). The simulations were also part of the GENE project, which is supported by Fusion for Energy and JAEA. This work was funded by a grant from The Swedish Research Council (6338001).

