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Abstract Very Long Baseline Interferometry (VLBI)
is a unique space-geodetic technique that can directly
access the Earth’s phase of rotation, namely UT1. The
daily estimates of the difference between UT1 and Co-
ordinated Universal Time (UTC) are computed from
1-hour long VLBI Intensive sessions. These sessions
are essential in providing timely UT1 estimates for
satellite navigation systems. To produce timely UT1
estimates, efforts have been made to completely au-
tomate the analysis of VLBI Intensive sessions. This
requires automated processing of X- and S-band group
delays. These data often contain an unknown number
of integer ambiguities in the observed group delays. In
an automated analysis with the c5++ software the stan-
dard approach in resolving the ambiguities is to per-
form a simplified parameter estimation using a least-
squares adjustment (L2-norm minimisation). We im-
plement the robust L1-norm with an alternative estima-
tion method in c5++. The implemented method is used
to automatically estimate the ambiguities in VLBI In-
tensive sessions on the Kokee–Wettzell baseline. The
results are compared to an analysis setup where the
ambiguity estimation is computed using the L2-norm.
Additionally, we investigate three alternative weight-
ing strategies for the ambiguity estimation. The re-
sults show that in automated analysis the L1-norm re-
solves ambiguities better than the L2-norm. The use
of the L1-norm leads to a significantly higher number
of good quality UT1-UTC estimates with each of the
three weighting strategies.
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1 Introduction

Very Long Baseline Interferometry (VLBI) is a unique
space-geodetic technique capable of simultaneously
determining all Earth Orientation Parameters (EOPs).
These parameters include Universal Time (UT1), the
Earth’s phase of rotation. Space-geodetic techniques
such as Global Satellite Navigation Systems (GNSS)
depend on regular UT1 estimates from VLBI. For this
purpose the International VLBI Service for Geodesy
and Astrometry (IVS) [1] organises daily 1-hour
Intensive (INT) VLBI sessions to provide timely UT1-
UTC estimates. The currently observed INT sessions
include INT1 (Kokee–Wettzell, Monday to Friday),
INT2 (Tsukuba–Wettzell, Saturday and Sunday), and
INT3 (Wettzell, Tsukuba, and Ny-Ålesund, Monday).

The relatively low number of observations and the
baseline geometry of the INT sessions pose challenges
for the data analysis and limit the UT1-UTC accuracy
that can be achieved. To produce timely UT1 estimates
the turnaround time of the INT sessions needs to be
minimized. This requires a streamlined VLBI process-
ing chain. A way to achieve this is to automatically
process and analyse the data. Aspects and results re-
lated to automated near-real time analysis of INT ses-
sions have been demonstrated in e.g. Hobiger et. al.
(2010) [2] and Kareinen et. al. (2015) [3]. The oper-
ational INT sessions are observed on the legacy S/X
frequency band. The two bands are formed by indi-
vidual channels, which are in the post-correlation pro-
cess combined on the respective bands using the band-
width synthesis technique [4]. This leads to an un-
known number of integer ambiguities in the observed
group delays. These ambiguities need to be resolved
before ionospheric calibration and parameter estima-
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tion. If unresolved, the group delay ambiguities will
propagate into the UT1-UTC estimates.

C5++ [2], Vienna VLBI Software (VieVS) [5],
CALC/SOLVE [6], GEOSAT [7], and OCCAM [8]
are some of the currently used VLBI software pack-
ages. From these software packages only c5++ and
CALC/SOLVE are capable to resolve the group
delay ambiguities and to produce ambiguity- and
ionosphere-free X-band databases.

The standard parameter estimation method in these
VLBI software packages is the least-squares adjust-
ment [9] (i.e. L2-norm minimisation). In this work we
implement the robust L1-norm for the parameter esti-
mation and apply it to automatically resolve the am-
biguities in the INT sessions. Starting from Version-1
databases, we use a modified version of c5++ which
includes the implemented L1-norm estimation to anal-
yse and estimate UT1-UTC from 1885 INT1 sessions
observed between 2001 and 2015.

1.1 L1-norm minimisation

Both the L1- and L2-norm minimisations can be de-
rived from the general expression for a p-norm, which
is given by

||x||p =

(
p

∑
i=1
|xi|p

) 1
p

. (1)

The objective functions to be minimised for the L1-
and L2-norms are given respectively by

L1 : pᵀ|v| → min, (2)

L2 : vᵀPv→ min. (3)

With the L2-norm the absolute value in the sum-
mand disappears. Thus it can be solved analytically,
making it computationally straightforward. For the L1-
norm, however, the absolute value of the residual vec-
tor v remains. Thus, the objective function is not dif-
ferentiable at zero, and we are unable to directly derive
the value for the vector of unknowns x that will min-
imise the sum of the weighted absolute values of the
residuals.

The formulation for a L1-norm minimisation has
been described in e.g. Amiri-Simkooei (2003) [10].

Following this general formulation, in order to deal
with the absolute value function in the Equation 2, we
re-write the vectors v and x with the help of slack vari-
ables. This will reduce the problem to that of linear
programming. These vectors are now given by

v = u−w, u,w≥ 0, (4)

x =ααα−βββ , ααα,βββ ≥ 0, (5)

where a condition ui or wi = 0 holds for the resid-
ual vector components. Now, given the conditions in
Equation 4, Equation 2 can be written as

pᵀ|v|= pᵀ|u−v|= pᵀ(u+w), (6)

subject to the conditions in Equation 5,

u−w = A(ααα−βββ )−y. (7)

The objective function can thus be written as

min

[0T 0T pT pT]


ααα

βββ

w
u


 , (8)

subject to

[
A −A I −I

]
ααα

βββ

w
u

= y, (9)

given the same conditions as earlier. Denoting the
objective function with z this form is equivalent to

z = cᵀx, (10)

subject to
Ax = b, x≥ 0. (11)

The L1-norm minimisation was implemented in
c5++ with an external python script. The correspond-
ing linear programming problem was solved using a
Simplex-method [11] implemented in the linprog func-
tion of the optimisation module in SciPy [12].

The main advantage of the L1-norm over the L2-
norm is its robustness against outliers. The L1-norm
sums absolute deviations instead of squared values.
This means that large residuals are not emphasized as
they are with the L2-norm. Thus, the L1-norm is better
at detecting the magnitude of large outliers, while the
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L2-norm overcompensates the influence of large devi-
ations. These errors will propagate to the unknown pa-
rameters in the adjustment.

2 Ambiguity estimation in c5++

The general ambiguity estimation process in c5++ is it-
erative. The X- and S-band group delays are processed
as independent observations, which retains the integer-
nature of the ambiguities. The estimated parameters are
three clock polynomial terms for the non-reference sta-
tion and local wet troposphere at both stations, giving a
total of 5 parameters. When the UT1-UTC is estimated
at a later stage, the number of estimated parameters in-
crease to 6. In each iteration step the residuals are com-
puted and if they are larger than 50 % of the ambiguity
spacing in that band, the corresponding observations
are shifted by one ambiguity spacing towards 0. This
process of ambiguity shifting is iterated until the ratio
of the Weighted Root Mean Square (WRMS) values
from subsequent iterations reaches a specific level. In
this analysis the ratio limit was set to 0.999. The max-
imum number of iterations was set to 60. During the
estimation process, different weighting schemes can be
applied. The effect of the choice of weighting was in-
vestigated using three different approaches, which are
described in Table 1.

Table 1 The three different weighting approaches used in the
ambiguity estimation.

Description Weighting
W1 Unit weighting 1

W2 Formal errors
1

στ

W3 Formal errors × wmf(e)
1

στ

√
mf(e)2

wet,1 +mf(e)2
wet,2

Once the ambiguities are resolved, the X- and S-
band data are combined to produce an ionosphere free
X-band database. This database is then subsequently
used as an input in the UT1-UTC estimation step. At
this stage the observations were weighted according to
the elevation dependent approach, W3. The schematics
in Figure 1 illustrate the ambiguity and the UT1-UTC
estimation process in c5++.

S/X
ionosphere
calibration

Ionosphere- and
ambiguity-free

X-band group delays
Compute

o-c

L2-norm

UT1-UTC estimation

X-band
Version-1 DB

S-band
Version-1 DB

L1-norm
Ambiguity
estimation

Internal
data storage

L2-norm
Ambiguity
estimationc5++

Fig. 1 Schematics of the automated ambiguity and UT1-UTC
estimation in c5++.

3 Results

The impact of using the L1-norm was evaluated by
investigating the post-fit residuals from the ambiguity
and UT1-UTC estimation stages as well as the UT1-
UTC results computed using the ambiguity resolved
databases.

All EOP except UT1-UTC were fixed to their EOP
C04 08 [13] values. The UT1-UTC were estimated
with respect to the a priori C04 08 values. From now on
these values will be referenced simply as the UT1-UTC
estimates. In order to focus on the sessions which pro-
duced meaningful UT1-UTC estimates and to elimi-
nate gross errors that would distort the derived statis-
tics of the UT1-UTC, the estimates were filtered with
a condition where the absolute values of the estimates
are larger than 1000 µs and/or the formal errors are
larger that 50 µs. After this initial outlier elimination
was applied, we obtained a set of sessions for each
ambiguity estimation method–weighting mode pair, for
which RMS and WRMS of the UT1-UTC values were
computed. The RMS and WRMS values for the post-fit
residuals from the ambiguity estimation for both norms
and all weighting strategies are listed in Table 2. Ta-
ble 3 lists statistics for the post-fit residuals from the
UT1-UTC estimation.

The Venn-diagrams in Figure 2 illustrate the over-
lap between the good sessions from the L1- and L2-
norm approaches. These diagrams show the number of
good sessions which are found in both L1 and L2, only
L1, or only L2 results. To investigate the differences
in the sessions, where either the L1- or L2-norm ap-
proaches fail or succeed, we consider subsets of the di-
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Table 2 Mean RMS and WRMS of the post-fit residuals from
the ambiguity estimation for L1- and L2-norms for all weighting
strategies.

L1 L2
RMS [ns] WRMS [ns] RMS [ns] WRMS [ns]

W1 3.61 3.61 4.17 4.17
W2 6.23 1.43 6.20 1.71
W3 6.10 1.22 6.23 1.46

Table 3 Statistics for the post-fit residuals from the UT1-UTC
estimation with the L1- and L2-norm approaches and weighting
strategies W1, W2, and W3. Included are RMS, mean of absolute
values, and median of absolute values.

L1 L2
RMS |res| M(|res|) RMS |res| M(|res|)
[ns] [ns] [ps] [ns] [ns] [ps]

W1 0.39 0.26 29.68 1.07 0.75 32.24
W2 1.51 1.10 35.69 1.98 1.47 38.69
W3 1.38 1.00 34.69 1.81 1.34 37.69

Fig. 2 Venn-diagrams for the weighting strategies W1, W2, and
W3 illustrating the overlap between the sets of sessions obtained
with the L1- and L2-norm ambiguity estimation, that pass the
|UT1-UTC| < 1000 µs and σUT1−UTC < 50 µs criteria.

agrams illustrated in Figure 2. The following subsets
are considered for all weighting strategies:

• Subset-1: select all sessions that are good with the
L1-norm approach, select the same sessions from
the L2-norm solutions.

• Subset-2: select all sessions that are exclusively
good with the L1-norm approach, select the same
sessions from the L2-norm solutions.

• Subset-3: select all sessions that are exclusively
good in the L2-norm approach, select the same ses-
sions from the L1-norm solutions.

The number of sessions in each of the Subsets and
all three weighting strategies are given in Table 4.

The L1-norm leads to approximately 5 % more ses-
sions compared to the L2-norm. In general, the big ad-
vantage in using the L1-norm for the ambiguity estima-
tion is the increased number of succesfully processed

Table 4 The number of sessions in for Subset-1, -2, and -3 for
all weighting strategies W1, W2, and W3.

Number of sessions
Subset-1 Subset-2 Subset-3

W1 1564 + 85 = 1649 85 1
W2 1403 + 66 = 1469 66 4
W3 1426 + 67 = 1493 56 2

Table 5 Number of sessions and corresponding RMS/WRMS of
UT1-UTC values for the sessions included in Subset-1.

L1 L2
Units: [µs] #Sessions RMS WRMS RMS WRMS
W1 1649 22.58 18.39 938.09 18.70
W2 1469 22.32 18.43 805.21 18.82
W3 1493 22.25 18.43 1096.07 18.74

Table 6 Number of sessions and corresponding RMS/WRMS of
UT1-UTC values for the sessions included in Subset-2.

L1 L2
Units: [µs] #Sessions RMS WRMS RMS WRMS
W1 85 18.83 22.54 3934.66 4130.73
W2 66 17.11 19.38 3280.11 3797.42
W3 67 19.48 19.55 2646.68 5173.04

sessions. The overall accuracy in WRMS remains at
the level of approximately 18 µs.

In Subset-1 (see Table 5) the inclusion of sessions
which fail with the L2-norm shows up as high RMS
values compared to that of the L1-norm. This is not
seen in the WRMS values, which are on a normal level
for both norms, with only sligthly (sub-microsecond)
higher values for the L2-norm.

In Subset-1 (see Table 5) the inclusion of the ses-
sions that are filtered in the L2-norm solution is seen as
high L2-norm WRMS values compared to the respec-
tive L1-norm WRMS values. This indicates that the
large values for the UT1-UTC corrections, causing the
large RMS in the L2-norm, have correspondingly large
formal errors. Thus, these sessions get downweighted
in the WRMS computation.

In Subset-2 (see Table 6) we see a clear differ-
ence both in RMS and WRMS values between the two
norms. The large WRMS values for the L2-norm in-
dicate that the formal errors for the filtered UT1-UTC
estimates have similar magnitude compared to one an-
other.
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4 Conclusions

The use of the L1-norm shows a clear improvement for
the automated ambiguity estimation for the INT ses-
sions in terms of the increased number of sessions that
produce a good quality UT1-UTC estimate. Smaller
RMS and WRMS values of the post-fit residuals from
the ambiguity estimation also indicate that the ambi-
guity estimation benefits from the L1-norm. The ses-
sions where the L1-norm performs better in ambigu-
ity estimation are almost identical in terms of average
number of observations compared to the whole data
set of the analysed INT1 sessions. Thus, the benefit
gained with the L1-norm is not correlated with par-
ticularly high or low number of observations in these
sessions. The number of sessions that are improved
by the L1-norm approach greatly outnumber the ones
where the issues of stability result in a failed ambigu-
ity estimation. The computational complexity of solv-
ing the linear programming problem compared to in-
verting the normal equations does not generally cause
significant overhead in the processing time of an indi-
vidual session. The L1-norm using the W1 weighting
(i.e. equally weighted) produced the biggest increase in
good quality UT1-UTC estimates. Further information
can be found in [14].
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