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Abstract— In this paper we address the problem of coordi-
nating automated vehicles at intersections, which we state as a
constrained finite horizon optimal control problem. We present
and study the properties of a primal decomposition of the
optimal control problem. More specifically, the decomposition
consists of an upper problem that allocates occupancy time-
slots in the intersection, and lower-level problems delivering
control policies for each vehicle. We investigate the continuity
class of the upper problem, and show that it can be efficiently
tackled using a standard sequential quadratic programming
and that most computations can be distributed and performed
by the participating vehicles. The paper is concluded with an
illustrative numerical example.

I. INTRODUCTION

Coordination of communicating automated vehicles at
intersections, on-ramps, and in other traffic scenarios where
roads merge or cross is a topic that has attracted a lot of
attention in recent years, see, e.g., [3],[4], [8] or [12]. It
is commonly claimed that, using vehicle automation and
communication, the number of accidents in such scenarios
can be reduced and both energy efficiency and infrastruc-
ture utilization can be improved. In particular, cooperatively
decided control policies could be employed on the vehicle
level to explicitly coordinate the use of the zone where
collisions can occur (e.g., the inside of the intersection). In
the fully automated case, such control systems would remove
the need for traffic lights, signs and rules and thereby enable
continuous flows of traffic.

The problem of finding the coordinating control policies
can be interpreted as two interdependent sub-problems; first,
the precedence order for the utilization of the coordination
zone has to be established, i.e., the order in which the
involved vehicles enter the intersection. Secondly, the control
action for each vehicle needs to be computed such that
the precedence order is respected and the vehicles cross
the coordination zone without collision. Since the control
actions taken by the cars depend on the precedence order,
the two problems are coupled. Solving the overall coordina-
tion problem thus requires the solution of a combinatorial
problem with dynamic constraints. It was shown in [3] that
finding a feasible solution is NP-hard in general. Several
works exist that address various aspects of the coordination
problem at intersections. In [5], for instance, a heuristic
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scheme is presented where incoming vehicles requests access
to the coordination zone from a central Intersection Manager,
which accept or deny the request based on a set of rules.
A road side coordinator is also proposed in [9], where
collision free control actions are decided centrally and then
disseminated to the nearby vehicles. In [1], on the other
hand, a distributed algorithm is presented where a predefined
interaction protocol is used to resolve predicted collisions
between vehicles. Similarly, in [4] another distributed scheme
is presented, where the precedence order is decided through
sequential decision making and the control sub-problems
solved using tools from optimal control.

In this paper, we state the intersection coordination as
an optimal control problem. We consider here that the
precedence problem is solved separately, and assume that
a precedence order is provided. The problem under consid-
eration is then reduced to finding the control policies under a
given precedence order. In particular, we first formulate the
problem as a constrained, finite-time optimal control problem
and propose a primal decomposition of this formulation. We
then study the properties of the decomposed problem and
show that the sensitivities of the objective and constraints are
available at a low computational cost. Finally, we propose to
solve the problem using a second order method and show that
the decomposition allows for a large part of the computations
to be distributed.

The approach taken in this paper builds partly on [8],
where the coordination problem for intersections was for-
mulated in an optimal control context, and a method for
the approximate solution to both the precedence and control
sub-problems were presented. As opposed to [8], this paper
provides a study of the decomposed problem and details how
the sensitivity information needed to solve it using a second
order method can be computed in a distributed fashion.

A. Notation

In this paper we write scalars as x and vectors as x. The
gradient of a function f(x) ∈ Rm with respect to x ∈ Rn
is written as ∇xf(x) ∈ Rn×m, i.e. as the transpose of the
Jacobian of the function with respect to x. The Hessian of a
scalar function f(x) with respect to x is written∇2

xf(x), and
the total derivative with respect to x is written d

dx . Finally,
the element on the i:th row and j:th column of a matrix A
is denoted (A)(i,j).

II. PROBLEM FORMULATION

We consider the problem of coordinating M vehicles
through an intersection under a fixed precedence order. The



Fig. 1. Schematic illustration of the modelling of the interection scenarios
considered in this paper. The red area corresponds to the zone where side
collisions may occur, defined with pin and pout for each vehicle.

control action for each vehicle is therefore sought such
that the precedence order is satisfied, collisions within the
intersection are avoided and a prescribed performance criteria
is optimized. We assume that there is one vehicle per road,
and that each vehicle moves along a pre-determined path.
The vehicles are indexed using i = 1, . . . ,M , and assumed
to be ordered as they appear in the precedence order, i.e.
so that vehicle i crosses the intersection before vehicle j if
i > j.

A. Collision Avoidance

As shown in Fig. 1 the intersection can then be modeled
as an interval, [pin

i , p
out
i ], on the path of each vehicle i. A

vehicle is considered to be inside the intersection at time
t if the position along its path, pi(t), is such that pi(t) ∈
[pin
i , p

out
i ]. If pi(t) is continuous and ṗi(t) > 0,∀t, the times

at which a vehicle enters (tini ) and exits (tout
i ) the intersection

are implicitly and uniquely defined by

pi(t
in
i ) = pin

i , and pi(t
out
i ) = pout

i , (1)

respectively. Provided that pin
i , p

out
i and pi(t) are defined

such that the vehicle geometry can be ignored, a sufficient
condition for collision avoidance is then

tout
j ≤ tinj+1, j = 1, . . . ,M − 1. (2)

B. Motion model

The dynamics along the paths are modeled as linear and
discretized on a uniform time-grid with intervals of size Ts.
Starting from the initial state xi,0 = x̂i,0, the state evolution
of vehicle i is given by

xi,k+1 = Aixi,k +Biui,k, (3)

where xi,k and ui,k is the state and control at time tk =
kTs respectively, and Ai ∈ Rni×ni , Bi ∈ Rni×mi for
some ni,mi. In particular, the system matrices are defined
as Ai := Ai(Ts) = exp(Ac,iTs) and Bi := Bi(Ts) =

∫ Ts

0
exp(Ac,i(Ts − s))Bcds, for the continuous time system

matrices Ac,i and Bc,i. The state and control of each vehicle i
are additionally subject to the following constraints capturing
e.g. actuator limitations and speed limits:

Di,kxi,k + Ei,kui,k ≤ ei,k, (4)

where Di,k ∈ Rqi×ni , Ei,k ∈ Rqi×mi and ei,k ∈ Rqi for
some qi. For ease of notation we will in the following use

wi,j =

[
xi,j
ui,j

]
and wi =


wi,0

...
wi,Ni−1

xi,Ni

 , (5)

where Ni is a time horizon associated with vehicle i.
The position of a vehicle along its path is a considered

a linear function of wi, and is consequently only defined at
the discrete times tk. To use definition (1), and allow for
continuous adjustment of tini and tout

i , a continuous represen-
tation of the position of a vehicle is needed. We therefore
use the continuous time representation of the dynamics (3),
to integrate the position at intermediate times t ∈ ]tk, tk+1[.
In particular, we define the continuous position piece-wise
according to

pi(t,wi) = Ci[Ai(t− tk),Bi(t− tk)]wi,k, t ∈ [tk, tk+1[,
(6)

where Ci ∈ R1×(ni+mi). It can be shown that this implies
that if CiA

j
c,iBc,i = 0 for j = 0, . . . ,K, i.e., that the relative

degree of the continuous time system is K + 1, pi(t,wi) is
in CK on the vector space spanned by the dynamics (3). We
also assume that d

dtpi(t,wi) > 0,∀t for wi ∈ Wi(x̂i,0),
where

Wi(x̂i,0) =

wi

∣∣∣∣∣∣
xi,0 = x̂i,0
xi,k+1 = Aixi,k +Biui,k, k ∈ Ni
Di,kxi,k + Ei,kui,k ≤ ei,k, k ∈ Ni

 ,

(7)
using Ni = {0, . . . , Ni − 1}. Therefore, tini and tout

i are
uniquely defined for a given wi ∈W(x̂i,0) through

pi(t
in
i ,wi) = pin

i , and pi(t
out
i ,wi) = pout

i , (8)

provided that pi(tNi ,wi) > pout. Finally, we assume that
the convex polyhedron Wi(x̂i,0) is bounded, and that the
following technical assumption holds:

Assumption 1: For 0 ≤ td ≤ tNi
, d ≥ pi(t0,wi) let

Si(td, d) = {wi | pi(td,wi) − d = 0}. Provided that
Wi(x̂i,0) ∩ Si(td, d) 6= ∅, we assume that ∃

¯
wi, w̄i ∈

Wi(x̂i,0) ∩ Si(td, d) satisfying

pi(t,
¯
wi) < pi(t,wi) < pi(t, w̄i), ∀t > td, (9)

for all wi ∈ Wi(x̂i,0) ∩ Si(td, d) such that wi 6=
¯
wi and

wi 6= w̄i.
Assumption 1 states that if a vehicle passes a position d
at time td, then there exists a unique control sequence that
maximizes the position for t > td, and one that similarly
minimizes it. In other words, the dynamics are thus such
that there exists a notion of maximum and minimum control
with respect to the position pi(t,wi).



C. Optimal Control Formulation

We restrict our attention to objective functions on the form

Ji(wi) = Vi(xi,Ni
) +

Ni−1∑
k=0

li,k(wi,j), (10)

where Vi(·) and all li,k(·) are convex, quadratic functions.
Writing ti = [tini , t

out
i ]>, T = [t>1 , . . . , t

>
M ]>, W =

[w>1 , . . . ,w
>
M ]> and M = {1, . . . ,M}, the intersection

coordination problem for a fixed order then reads as:

min
T,W

M∑
i=1

Ji(wi) (11a)

s.t. wi ∈Wi(x̂i,0), i ∈M (11b)

pi(t
in
i ,wi) = pin

i , i ∈M (11c)
pi(t

out
i ,wi) = pout

i , i ∈M (11d)

tout
i ≤ tini+1, i = 1, . . . ,M − 1 (11e)

Problem (11) is a nonlinear program (NLP) with
∑M
i=1(2 +

ni+mi)Ni decision variables, a convex quadratic objective,∑M
i=1 niNi affine equality constraints, M − 1 +

∑M
i=1 riNi

affine inequality constraints and the 2M nonlinear equality
constraints (11c)-(11d).

III. DECOMPOSITION

To reduce the computational requirements of solving the
coordination problem (11) with long horizons and large
state spaces, a two-level decomposition of Problem (12) was
presented in [8]. In this decomposition, the top level consists
of a time-slot allocation problem and the low level consists
of one optimal control problem for each of the M vehicles.
More specifically, Problem (11) is equivalent to

min
T

M∑
i=1

Φi(ti, x̂i,0) (12a)

s.t. ti ∈ Di(x̂i,0), ∈M (12b)

tout
i ≤ tini+1, i = 1, . . . ,M − 1 (12c)

where

Φi(ti, x̂i,0) := min
wi

Ji(wi) (13a)

s.t. wi ∈Wi(x̂i,0) (13b)

pi(t
in
i ,wi)− pin

i = 0 (13c)
pi(t

out
i ,wi)− pout

i = 0 (13d)

and
Di(x̂i,0) = dom(Φi(ti, x̂i,0)). (14)

Problem (13) is thus a parametric quadratic program, and
Di(x̂i,0) is the set of ti for which (13) is feasible. Since we
only consider the problem for given initial states, we drop
the dependence on x̂i,0 from for Di(x̂i,0) and Φi(ti, x̂i,0)
in the remainder of the paper.

We will in Section V present a method of solving (11) by
applying a numerical algorithm to (12). To that end, we will
first establish some properties of Di and Φi(ti).

IV. PROPERTIES OF PROBLEM (12)

In this section, we discuss the properties of the objective
function Φi(ti) of Problem (12) and constraint set Di (14).
In [8] it was shown that the function Φi(t) has a single
unique minimum, but that it is not convex in general. We
show here that Φi(ti) is C0, and piece-wise CK on Di
if the position function pi(t,wi) is CK . We also show
that Di can be defined by two linear and two nonlinear
inequalities. In particular, these inequalities can be evaluated
by solving linear programs (LPs). Finally, we show that also
the nonlinear constraints are C0, and piece-wise CK if the
position function pi(t,wi) ∈ CK when wi ∈Wi.

It will be useful to consider a condensed version of (13),
where the state xi,k is eliminated via the dynamics (3) using:

xi,k+1(ui) = Ak+1
i x̂i,0 +

k∑
j=0

Ak−ji Biui,j , (15)

so that wi = Giui + bix̂i,0, where ui =
[u>i,0, . . . ,u

>
i,Ni−1]>. The condensed objective is written

as Jc
i (u∗i ) and the condensed constraints Wi(x̂i,0)

as hi(ui, x̂i,0) := hi(ui) ≤ 0, where hi(ui) =
[hi,1(ui), . . . , hi,qiNi(ui)]

>. Furthermore, we write the
condensed position function as pi(t,wi) = pc

i (t,ui). The
following continuity result can then easily be shown:

Lemma 1: If pi(t,wi) ∈ CK for all wi satisfying the
dynamics (3), then pc

i (t,ui) ∈ CK and ∇ui
pc
i (t,ui) ∈ CK

for all ui.

A. Properties of Φi

In this subsection we discuss the continuity class of the
objective functions Φi(ti). For notational convenience, the
sub-system indices are dropped in the remainder of this
section. In its condensed form, (13) reads as

Φ(t) = min
u

Jc(u) (16a)

s.t. h(u) ≤ 0 (16b)
pc(t,u) = 0 (16c)

where

pc(t,u) =

[
pc(tin,u)− pin

pc(tout,u)− pout

]
. (17)

Under the assumption that Linear Independence Constraint
Qualification (LICQ) [11] holds, the primal-dual solution z∗

to (16) for a given t satisfies the KKT conditions

r(z∗, t) =

 ∇wLv(z∗, t)
hA(u∗)
pc(t,u∗)

 = 0. (18)

where

Lv = Jc(u) + µ>AhA(u) + ν>pc(t,u). (19)

Here z = [u>,µ>A ,ν
>]> and A is the index set of the

strictly active constraints h(u∗) at the solution, i.e. A =
{i s.t. hi(u

∗) = 0, µ∗i > 0}. If in addition, the Second
Order Sufficient Condition (SOSC) [11] holds at the solution,



u∗ is the unique minimizer of Problem (16), and µ∗A,ν
∗ are

the corresponding unique Lagrange multipliers.
Proposition 1: If LICQ holds for Problem (16) for every

parametric solution u∗(t), then Φ(t) is continuous on D.
Furthermore, if pc(t,u) ∈ CK and SOSC hold then Φ(t) ∈
CK at every t where no constraint is weakly active.

Proof: Since LICQ holds ∀t ∈ D, since Jc(u) is
continuous and since the feasible set of (16) is compact,
we have from [6] that Φ(t) is continuous on D.

Furthermore, Lemma 1 guarantees that pc(t,u) ∈ CK
and ∇up

c(t,u) ∈ CK . Since r(z, t) ∈ C inherits the
continuity class of pc(t,u) and ∇up

c(t,u), we have that
r(z, t) ∈ CK . Since SOSC and LICQ also hold by as-
sumption, ∇zr(z∗(t), t) is full rank [11]. The implicit
function theorem (IFT), as stated in, e.g., [10], therefore
guarantees the existence of a function z∗(t) ∈ CK such
that r(z∗(t), t) = 0 in an open neighborhood of t. Since
Jc(u∗) is quadratic and Φ(t) = Jc(u∗(t)), it follows that
Φ(t) ∈ CK in a neighborhood of t.
It should be observed that as a consequence of Proposition 1,
Φ(t) is only C0 at entry and exit times t where a change in
the active set A occurs.

B. Properties of the Constraint Set D
In this subsection, we show that D = dom(Φ(t)) can be

described by two linear and two nonlinear inequalities. We
discuss the continuity class of the nonlinear inequalities, and
show that they can be evaluated by solving linear programs.

Proposition 2: D = {t | F(t) ≤ 0} with

Fi(t) =


bin
L − tin
tin − bin

U

tout − bout
U (tin)

bout
L (tin)− tout

 , (20)

where the upper bound on tin, bin
U, is given by

bin
U := max

u,t
t (21a)

s.t. h(u) ≤ 0 (21b)

pc(t,u)− pin = 0 (21c)

and the lower bound bin
L through the corresponding minimiza-

tion. Similarly, the upper bound on tout, bout
U (tin), is given by

bout
U (tin) := max

u,t
t (22a)

s.t. h(u) ≤ 0 (22b)

pc(tin,u)− pin = 0 (22c)
pc(t,u)− pout = 0 (22d)

and the lower bound bout
L (tin) as the corresponding minimiza-

tion.
Proof: By definition, minimization and maximization of

(21) defines bounds bin
L ≤ tin ≤ bin

U. Similarly, by definition
the minimization and maximization of (22) defines bounds
on tout, given tin, i.e., bout

L (tin) ≤ tout ≤ bout
U (tin). We thus

have that t ∈ dom(Φ(t))⇒ F(t) ≤ 0.

We then need to show that F (t) ≤ 0 ⇒ t ∈ dom(Φ(t)).
Let bin

L and bin
U denote the optimal cost of the maximization

and minimization of (21) and umax and umin the primal
solutions respectively, and let uθ = θumax + (1 − θ)umin.
Due to convexity of h(w), we then have h(uθ) ≤ 0 for θ ∈
[0, 1]. Due to the continuity of pc(t,u), ∃θ ∈ [0, 1] such that
pc(t,uθ)−pin = 0, ∀t ∈ [bin

L , b
out
L ]. For a given tin ∈ [bin

L , b
in
U],

the same argument holds for bout
L (tin) and bout

U (tin). It follows
that F (t) ≤ 0⇔ t ∈ dom(Φ(t)).

As a consequence of Proposition 2, bin
L can be computed

independently of bout
L (tin), while bout

L (tin) is a nonlinear func-
tion of tin and requires bin

L . We show next that the solutions to
problems (21) and (22) can be computed by solving Linear
Programs (LPs).

Proposition 3: The lower bound bin
L , can be computed as

the solution to
pc(t,uin)− pin = 0, (23)

where uin is the solution to the linear program (LP)

max
u

pc(tN ,u) (24a)

s.t. h(u) ≤ 0. (24b)

Similarly, bout
L (tin) can be computed as pc(t,uout(tin)) −

pout = 0, where uout(tin) is the solution to the LP

max
u

pc(tN ,u) (25a)

s.t. h(u) ≤ 0 (25b)

pc(tin,u) = 0 (25c)

The upper bounds bin
U and bout

U (tin) can be computed via the
corresponding minimizations.

Proof: Consider the case of bout
L (tin). For a given tin,

we have that pc(tN ,u
out) ≥ pc(tN ,u) for all u feasible in

(25). From Assumption (1), it then follows that uout = ū,
where ū is the condensed form of w̄.

Then, by Assumption (1) pc(t,uout) > pc(t,u), ∀t > tin

and all feasible u 6= uout. With pc(t∗,uout)− pout = 0 and
pc(tout,u)−pout = 0, we consequently have t∗ < tout, for all
feasible u 6= uout. Consequently, t∗ = bout

L (tin). The result
for bin

L , b
in
U and bout

U (tin) follows.
We finally state the continuity class of the nonlinear

functions bout
L (tin) and bout

U (tin) in the following Proposition:
Proposition 4: If LICQ and SOSC hold at the solution to

LP (24) for all tin ∈ [bin
L , b

out
L ], then the functions bout

L (tin) and
bout
U (tin) are continuous on [bin

L , b
in
U]. If in addition pc(t,u) ∈

CK , the functions bout
L (tin) and bout

U (tin) are piece-wise CK on
open subsets of [bin

L , b
in
U].

Proof: Let bout
L (tin) = f(u∗(tin)) be a solution to

(23), where u∗(tin) is the minimizer of (24). By assumption,
∂
∂tp

c(t,u) > 0, due to which the IFT gives that f ∈ CK
when pc(t,u) ∈ CK .

It follows that the composition f(u∗(tin)) is of continuity
class Cmin(K,Ku), where Ku is the continuity class of u∗(tin).
Similar to Proposition 1, when there are no weakly active set
at the solution and both LICQ and SOSC hold for Problem
(24), then , u∗(tin) is of continuity class Ku = K. Hence,
bout
L (tin) ∈ C0 and picewise in CK on the open subsets of



[bin
L , b

out
L ] for which the solution to (24) has only strictly active

constraints.
Note that as with Φ(t), Proposition 4 entails that F(t) is
only C0 when tin is such that the solution to any of the LPs
(25) has weakly active constraints.

V. SOLUTION APPROACH

In this section we propose a numerical algorithm to
solve the coordination problem. We detail how the needed
derivatives of Φi(ti) and Fi(ti) are computed, and show that
these are available to a small additional cost when Φi(ti)
and Fi(ti) are evaluated. Due to availability of second order
sensitivities and fast convergence, a second-order method is
proposed.

We propose to solve the NLP (12) using sequential
quadratic programming (SQP) [11]. The solution is then
obtained through the Newton iterations

T+ = T + α∆T (26)

γ+ = γ + α(γs − γ) (27)

λ+ = λ + α(λs − λ) (28)

where γ = [γ>1 , . . . ,γ
>
M ]> and λ = [λ>1 , . . . ,λ

>
M−1]>

are the multipliers associated with the constraints (12b) and
(12c) respectively, α ∈ (0, 1] the stepsize and the Newton
directions ∆T = [∆t1, . . . ,∆tM ],γs,λs are obtained as the
primal-dual solution to the QP problem

min
∆T

1

2
∆T>H∆T +

M∑
i=1

∇>Φi(ti)∆ti (29a)

s.t. Fi(ti) + (∇Fi(ti))>∆ti ≤ 0, i = 1, . . . ,M (29b)

tout
i + ∆tout

i ≤ tini+1 + ∆tini+1, i = 1, . . . ,M − 1.
(29c)

Here, H is the Hessian ∇2
TL(T,γ,λ) of the Lagrange

function of problem (12), defined as

L(T,γ,λ) = λ>CT +

M∑
i=0

Φi(ti) + γ>i Fi(ti), (30)

and CT ≤ 0 is a stack of the collision avoidance constraints
(12c). Since the couplings between the vehicle sub-problems
(13) are linear, ∇2

TL(T,γ,λ) is block diagonal and the
objective (29a) is separable and according to

M∑
i=1

1

2
∆tiHi∆ti +∇Φi(ti)

>∆ti (31)

where

Hi = ∇2
(
Φi(ti) + γ>i Fi(ti)

)
= ∇2Φi(ti) +∇2

tib
out
L i(t

in
i )γLi +∇2

tib
out
U i(t

in
i )γUi .

(32)

Here, γUi , γ
L
i are the multipliers associated with tout

i −
bout
U i(t

in
i ) ≤ 0 and bout

L i(t
in
i ) − tout

i ≤ 0 respectively. Regu-
larization is used when Hi is not positive definite and the
step size α is adjusted via a suitable line-search procedure.

Remarks:
• It should be observed that in the iterations of the

SQP procedure, evaluations of the objective might be
required at some ti /∈ Di, since Di is not polyhedral
in general. Consequently, evaluation might be necessary
at some ti for which some of the lower-level problems
(13) are infeasible. This issue can be addressed by a
suitable relaxation of the exit time constraint (13d) using
exact penalty functions [11].

• It is important to observe that the objective function
of the upper Problem (12) is continuous but non-
differentiable when some constraints are weakly active
in one of the lower-level problem (13). It follows
that the proposed SQP strategy ought to be deployed
using tools from non-smooth Newton schemes, where
globalization and possible regularizations are used to
guarantee convergence, e.g. as in [7].

A. Computation of derivatives

To compute the required derivatives of the objective and
constraints, we deploy tools from parametric optimization.
For ease of notation the sub-system index is dropped.

Derivatives of the objective function: The first-order
derivative of Φ(t) with respect to tin is [2]:

dΦ(t)

dtin
=
∂LQP

∂tin
= νQP ∂p

(
tin,wQP

)
∂tin

, (33)

Here, wQP is the primal solution of the QP (13) given t,
νQP is the Lagrange multiplier associated to the in time
constraint (13c), and LQP is the corresponding Lagrange
function. Differentiating (33) gives

d2Φ

dtin
2 =

dνQP

dtin
∂p

∂tin
+ νQP

(
∂2p

∂tin
2 +

∂2p

∂tin∂w

dwQP

dtin

)
.

(34)
where the arguments have been dropped for brevity. The
derivatives dΦ

dtout ,
dΦ

dtindtout and d2Φ
dtout2 are obtained similarly.

Given t ∈ D, the primal-dual solution zQP of (13) satisfies
the corresponding KKT conditions, here compactly written
as rQP(zQP(t), t) = 0. For tin, we then have

drQP

dtin
=
∂rQP

∂tin
+
(
∇zr

QP
)> dzQP

dtin
= 0, (35)

and similar expression holds for tout. The second order
derivatives of Φ(t) thus require the solution dzQP

dtin of the
linear system (35).

Derivatives of the constraints: For the derivatives of the
constraint bout

L (tin), Proposition 3 ensures that bout
L (tin) =

f(tin,wLP(tin)), where f(tin,wLP(tin)) denotes the solution
to p(tout,w∗LP(tin)) − pout = 0 and wLP(tin) is the primal
solution to the corresponding LP (25). It follows that

dbout
L (tin)

dtin
= (∇wf)

> dwLP(tin)

dtin
(36)

As in (35), the first-order derivative of the primal solution is
obtained through the solution of the linear system(

∇zr
LP
)> dzLP

dtin
= −∂r

LP

∂tin
(37)



where rLP(zLP(tin), tin) = 0 and zLP(tin) are the KKT
conditions and primal-dual solution of the LP for tin, re-
spectively. The second order derivatives d2wLP

dtin2 are thereafter
given as the solution to(

∇zr
LP
)> d2zLP

dtin
2 =

∂2rLP

∂2tin
−R>

dzLP

dtin
, (38)

where R is such that

(R)(i,j) =

(
∇z

∂rLP
j

∂zi

)>
dzLP

dtin
, (39)

using rLP(z) = [rLP
1 (z), . . . , rLP

p (z)] and z = [z1, . . . , zp].
Efficient computation of derivatives: We emphasize here

that the computations required to formulate the QP sub-
problem (29) are completely separable between the vehicles.
In particular, for each iteration in the SQP procedure, each
vehicle can separately solve the corresponding QP (13) to
evaluate the objective Φi(ti), and the two LPs (25) to
evaluate the constraints bout

L i(t
in) and bout

U i(t
in).

If a second-order method is used to solve (13), the
last iterate of the QP solver will involve a factorization
of ∇zr

QP(zQP, t). The computation of ∇2
tΦ, is therefore

cheap, as this factorization can be reused to solve (35) for
dzQP

dt . The same applies to the sensitivities of the constraints,
computed through the LPs (25).

VI. NUMERICAL EXAMPLE

We consider a scenario where all vehicles share the
sampling time Ts , horizon length N and where their motion
is modeled as a double integrator, i.e.,

xi,k+1 =

[
1 Ts
0 1

]
xi,k +

[
1
2T

2
s

Ts

]
ui,k, ∀i ∈M. (40)

Here, xi,k = [pi,k, vi,k]> contains the position and velocity
and ui,k is the acceleration. The position function is then

pi(t,wi) = pi,k + (t− tk)vi,k +
1

2
(t− tk)2ui,k (41)

where tk = kTs and k = floor(t/Ts). The constraints are

¯
ui ≤ ui,k ≤ ūi, ε ≤ vk, where

¯
ui, ūi ∈ R and ε > 0. The

objective is

Ji(wi) = (vref
i − vi,N )2Qi +

N−1∑
k=0

(vref
i − vi,k)2Qi + u2

i,kRi

(42)
where vref

i is a constant desired speed and Qi > 0, Ri > 0.
In our implementation of the algorithm, the stepsize α

is chosen through backtracking on a T1 merit function [11]
and the termination criterion is taken as the ∞-norm of the
KKT-residual of the upper problem (12).

In the examined scenario, there are 4 vehicles, where
vref
i = 80 [km/h],

¯
ui = −2 [m/s2], ūi = 2 [m/s2] and

Qi = Ri = 1, identical for all vehicles. Furthermore we set
N = 150 and Ts = 0.1, and define the intersection with
pin = 0 and pout = 10 for all vehicles. The initial states
are set as in Table I, and are such that all vehicles collide
if coordination is not performed. Finally, the algorithm is

TABLE I
INITIAL STATES FOR VEHICLES IN NUMERICAL EXAMPLE

i 1 2 3 4
pi,0 [m] -160 -163 -166 -166
vi,0 [km/h] 70 75 80 85
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Fig. 2. The iterates of the upper problem (12). The pictures shows a subset
of the feasible sets Di, demarkated in black, contours of Φi(ti), and the
iterates of the SQP procedure. The blue markers is the initial guess used, the
red markers the iterates of the algorithm and the black crosses the solution.

initialized at the optimal non-cooperative solution, i.e., at
the timeslots given from the separate solution of the vehicle-
level optimal control problems.

A. Results

For this particular example, the algorithm converges to a
tolerance of 10−6, with full steps (α = 1) in 4 iterations.
In the process it thus solves 4 QPs (Problem (13)) and 10
LPs (Two times the bounds on tin(24), eight times (25)) per
vehicle. The iterates T of the SQP algorithm, produced as
in (26), are visualized together with the objective functions
Φi(ti) and feasible sets Di in Fig. 2. The position, velocity
and acceleration trajectories of the vehicles produced by the
solutions of (13), corresponding to the iterates in the upper
problem (12), are shown in Fig. 3 and Fig. 4.

The numerical results demonstrate that from a non-
cooperative starting point, the algorithm quickly reaches
a practically acceptable solution. In particular, after two
iterations no constraints are violated and the change in the
primal variables of the upper Problem (12) is in the order
of milliseconds, far beyond any practical requirements. As
evident from Fig. 3 and Fig. 4, the corresponding change in
the solution of the vehicle problems (13) is equally small.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we first formulated the optimal intersection
coordination for autonomous vehicles under a given prece-
dence order. We proceeded with proposing a decomposition
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Fig. 3. The position trajectories of the example scenario. The horizontal
black lines marks the beginning and end of the intersection and the colored
fields marks timeslots during which a vehicle is inside the intersection, i.e.,
the solution to (12), with one color per vehicle. The correspondingly colored
graphs are the trajectories obtained by solving (13) for the different vehicles.
Here the dashed is what the algorithm starts from, the dotted the trajectories
during the algorithm’s iterations and the solid the solution.
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Fig. 4. The velocity (left) and acceleration (right) for the different vehicles.
Color and linestyle as in Fig. 3

of the problem into a upper level time-slot allocation problem
and multiple vehicle-level optimal control problems. We
then showed the properties of the decomposed problem and
proposed a solution using SQP. Although formal convergence
guarantees are not presented, no issues have been observed
in practice.

In a practical setting with a central coordination controller,
the presented decomposition and SQP allows for the calcula-
tions of the cost, constraints and their derivatives to be done
in parallel, on board the vehicles, and thereafter transmitted
to the central controller over the wireless. Consequently,
as the numerical example demonstrates, the method then
allows the problem to be solved within a few rounds of
communication (one round per SQP iteration in the case
of full line search steps), exchanging only the evaluation of
the objective and constraints and the associated sensitivity

information each round. Since, in practice, the reliance
on wireless communication would affect the algorithm, an
interesting future research direction is a comparison with re-
spect to communication usage between the method suggested
herein and other methods. We also aim at investigating the
extension of the coordination control scheme described in
this paper to closed loop control, and in particular to address
the combinatorial side of the problem, i.e., that of finding the
precedence order we in this paper assume given. Finally, we
are currently working on a distributed interior point method
where the issue of piece-wise differentiability of the objective
is resolved and where convergence guarantees can be given.
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