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Abstract SEI-forming additives play an important role in
lithium-ion batteries, and the key to improving battery func-
tionality is to determine if, how, and when these additives are
reduced. Here, we tested a number of computational ap-
proaches and methods to determine the best way to predict
and describe the properties of the additives. A wide selection
of factors were evaluated, including the influences of the sol-
vent and lithium cation as well as the DFT functional and basis
set used. An optimized computational methodology was
employed to assess the usefulness of different descriptors.
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Introduction

While high-capacity lithium-ion batteries (LIBs) have domi-
nated the market for storage devices since the end of the twen-
tieth century, there is still a growing need for better-
performing batteries that can meet future energy demands
[1–5]. The essential challenge is to develop a system with a
much higher energy density than LIBs but which also at least
matches LIBs in terms of cycle life. The stored energy is a
product of the storage of charge in the electrodes (capacity)
and the difference in potential between the electodes (voltage),
and a popular way to improve the energy density is to increase
the electrochemical potential difference between the cathode
and anode. Since the potential of the commercially used an-
ode, graphite, is already very close to the value for lithium
metal (0.1 V vs. Li+/Li0) [6], the focus is on developing cath-
ode materials that enable potentials as high as 5 V vs. Li+/Li0

to be feasible [7]. However, such a large potential difference
poses a significant challenge in terms of selecting an appro-
priate electrolyte to use in the cell. The thermodynamic stabil-
ity of the electrolyte is defined by its highest occupied molec-
ular orbital (HOMO) and lowest unoccupied molecular orbital
(LUMO) energies. Usually, the electrolyte is chosen to match
the cathode potential and to provide kinetic stability at the
anode–electrolyte interface. Currently applied electrolytes,
based on mixtures of organic carbonates, undergo reduction
processes at ca. 1 V vs. Li+/Li0 with the formation of a pas-
sivation layer—the solid electrolyte interphase (SEI). The SEI
layer limits further reduction of the electrolyte and also affects
many important battery parameters such as the capacity fade
and power density. A spontaneously formed SEI causes a
significant reduction in battery capacity, which is further
worsened by subsequent charge–discharge cycles, so the ap-
plication of a Bfunctional^ electrolyte is recommended [8].
Such an electrolyte consists of salt(s), solvent(s), and special
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functional additives; whereof SEI-forming additives are re-
sponsible for the controlled and rapid creation of an SEI layer.

SEI-forming additives have two main features: Bhigh^ re-
duction potentials and decomposition paths toward structures
that can enable cation conduction between the anode and the
electrolyte, such as oligo- or polymeric molecules similar to
polymer electrolytes. There are a few groups of compounds
that are known to fulfill these requirements. (i) Molecules
containing unsaturated carbon–carbon bonds that provide an
easy route for polymerization under reducing conditions. The
most popular of these—vinyl carbonate (VC)—is able to form
both types of polymeric species: poly(VC) and oligomers of
VC [9–13]. Other compounds such as vinylethylcarbonate
(VEC) [10, 14] and propargylmethyl carbonate (PMC) [15,
16] also effectively restrain the decrease in capacity. (ii)

Molecules with halogen atoms such as fluorinated (FEC)
[17] and chlorate carbonates (CEC) [18]. In these, the pres-
ence of the electronegative atom successfully initiates SEI
creation, although the SEIs are usually more resistant and
comprise various inorganic salts (LiF, LiCl). (iii) Sulfur-
based compounds, mostly with structures similar to carbon-
ates, such as organic sulfonates, sulfites, and sulfates.
Ethylene sulfite (ES), the analog of EC, is very easily reduced
at ca. 2 V vs. Li+/Li0, but themain product of its degradation is
inorganic Li2SO3. Better properties may be obtained by using
1,3,2-dioxathiolane-2,2-dioxide (DTD), as the creation of a
polymeric structure has been observed in this case [19, 20].

Computational studies are a popular means to develop
better-performing additives, as they are faster and much less
expensive than experimental trial-and-error testing. Many
such studies have focused on explaining the reduction mech-
anisms associated with SEI formation, mainly for carbonate
compounds such as EC, DMC, and VC [21–28], via a homo-
lytic ring-opening mechanism. Less attention has been direct-
ed into the study of, for example, sulfur-containing com-
pounds [29–31]. However, the most effective way to develop
new additives appears to be computational screening [32–34],
which involves focusing on specific features connected to a
few descriptors. Such descriptors significantly simplify anal-
ysis when a very large number of compounds are considered.
They enable the characteristics of new derivatives to be pre-
dicted based on fundamental molecular parameters. The most
commonly used descriptors are the LUMO energy, the elec-
tron affinity (EA), and the chemical hardness (η). The first two
describe the thermodynamic ability to accept a new electron
and are used to assess the reduction potential, whereas η is a
measure of reaction resistance and can serve as an indicator of
the kinetics. Halls and Tasaki showed that a small η and low
LUMO are favorable for SEI-forming additives [35]. Another
couple of properties of importance were proposed by Park: the

Fig. 1 Chemical structures of the SEI-forming additives; all geometries
were optimized using C-PCM M06-2X/6-311++G(d,p)

Fig. 2a–c The three
thermodynamic cycles—(a), (b),
and (c)—used to calculate
reduction potentials. As the
change in energy of an electron
upon switching from a vacuum to
solution is very small, it was
neglected (i.e., defined as exactly
zero). A denotes the additive
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dipole moment (μ), and the binding energy with a lithium
cation (BE). A higher μ leads to a stronger nonbonding inter-
action with Li+, whereas weak binding between the additive
and the lithium cation facilitates processes on the anode and
ensures rapid formation of the SEI [36]. In some cases, a
sufficient change in bond length could also be a descriptor
that predicts the vulnerability of a bond to the fragmentation
of the additive during the reduction process [33].

To obtain trustworthy predictions for applications, it is cru-
cial to apply a proper methodology, encompassing the selec-
tion of a method, model, and computational approach [37]. In
2004, Han tested several different DFT functionals with the
aim of evaluating additive performance by describing the re-
duction of EC and VC [26]. However, since then there has
been further progress in this area of research, including a new
family of Minnesota functionals [38–41]. Several redox-
process benchmarking papers have already been published
which show that some functionals, especially M06-2X, pro-
vide better results than previously thought [42–45]. However,
while they generally show improved performance as com-
pared to wavefunction-based methods, it is essential to com-
pare the results they yield to concrete experimental data for
additives used in battery electrolytes in order to identify the
best methodology. Another issue is how to include the effects
of solvents: Lespes et al. [46] recommend the use of an im-
plicit solvent model coupled with an explicit representation of
the first solvation shell. However, as this approach is compu-
tational expensive, especially if there are a large number of
molecules to be tested and their stable configurations are not
known, implicit models are usually used. The type of solvent
and its permeability (dielectric constant) applied in the model
vary, as does the approach used to calculate the reduction
potential (e.g., the effect of salt is the source of debate)
[27–29, 47, 48].

In the work reported in the present paper, we compared
different ways of predicting reduction behavior using a meth-
odological benchmark. Various basis sets, DFT functionals,
and solvation models were tested. Finally, a methodology
was chosen, and a search for appropriate descriptors was con-
ducted. All of the data were generated for several well-known
SEI-forming additives (EC, FEC, VC, VEC, PMC, vinyl ac-
etate (VA) [16], 2-vinyl pyridine (VP) [49], ES, DTD, and
BOB; Fig. 1), enabling us to correlate the chosen methodolo-
gy with corresponding experimental data.

Computational details

All calculations were carried out with the Gaussian09 package
[50] using Hartree–Fock (HF) and several DFT functionals:
mPW2PLYP [51], TPSSh [52], B2PLYP [53], B3LYP [54],
VSXC [55], PBE0 [56], M06-2X [39], M06L [57], M11 [40],
and MN12L [41]. Four triple-zeta basis sets with polarization
and diffuse functions from different families were tested: 6-
311++G(d,p) [58, 59], def2-TVPD [60], aug-pcseg-2 [61],
and aug-cc-pVTZ [62]. The influence of solvent was exam-
ined using the conductor-variant polarized continuum model
(C-PCM) [63, 64] wi th the M06-2X funct ional .
Tetrahydrofuran ( r =7.4), acetone ( r = 20.5), acetonitrile
( r = 35.7), and water ( r = 78.4) were employed as model sol-
vents. All of the geometries were optimized both in vacuum
and in each of the solvents tested. The reduction potentials
were calculated in three different ways using thermodynamic
cycles (Fig. 2): (a) ignoring the influence of the lithium cation,
(b) assuming the simultaneous reduction and coordination of
the lithium cation (electroneutrality); and (c) assuming that the
lithium cation is coordinated to the molecule during the entire
reduction process. A correction of −1.46 V was used to

Table 1 Comparison of the dipole moments, HOMO and LUMO energies, ionization potentials, electron affinities, chemical hardnesses, binding
energies, and reduction potentials determined using different dielectric constants in C-PCM and M06-2X/6-311++G(d,p) calculations

EC DTD

Vacuum THF Acetone ACN Water Vacuum THF Acetone ACN Water
ɛr = 1 ɛr =7.4 ɛr =20.5 ɛr =35.7 ɛr =78.4 ɛr =1 ɛr =7.4 ɛr =20.5 ɛr =35.7 ɛr =78.4

μ (D) 5.62 7.06 7.25 7.30 7.33 6.01 7.66 7.88 7.94 7.98

HOMO (eV) −10.45 −10.61 −10.62 −10.62 −10.62 −10.75 −10.77 −10.77 −10.77 −10.77
LUMO (eV) −0.38 0.02 0.05 0.05 0.06 −0.46 0.00 0.03 0.04 0.04

IP (eV) 11.44 9.68 9.47 9.41 9.38 11.83 9.82 9.63 9.63 9.55

EA (eV) −1.06 0.43 0.58 0.62 0.65 −0.48 0.36 0.55 0.61 0.65

η (eV) 6.25 4.63 4.44 4.40 4.36 6.15 4.73 4.54 4.51 4.45

BE (kJ mol−1) 209.5 38.64 22.29 18.64 15.97 180.22 26.11 12.23 9.57 7.43

Ered (V vs. Li+/Li0) a −1.11 0.97 1.18 1.23 1.27 −1.87 1.58 1.85 1.90 1.94

b 5.85 2.15 1.78 1.70 1.64 6.34 2.70 2.34 2.31 2.19

c 3.80 1.90 1.71 1.67 1.64 4.60 2.55 2.33 2.30 2.24

Exp. 1.36 [69] 2.13 [19]
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convert absolute potentials to the Li+/Li0 scale [65].
Additionally, several descriptors (μ, HOMO, LUMO, IP,
EA, η, and BE) were determined for each additive, based on
the optimized ground-state structure. A–Li+ ion-pair com-
plexes were obtained by optimizing the starting geometries
generated by the random insertion of Li+ at 25 different posi-
tions relative to each choice of A.

Results and discussion

We performed our benchmarking in three steps: first, we test-
ed the effects of varying the solvent model and the dielectric
constant; second, for a chosen solvation mode, we carried out
DFT and basis set benchmarking; finally, using the best-
performing methodology, we searched for descriptors that
could enhance the computational screening of SEI-forming
additives.

Influence of the solvent model

Two well-known SEI-forming additives of LIBs, EC and
DTD, were chosen for study, and selected molecular

properties of those additives were analyzed for different di-
electric constants using the C-PCM, and the results were com-
pared with those from vacuum computations (Table 1). Upon
shifting from vacuum to solution, larger dipole moments were
observed (a result of the polarization of the solute by the
solvent [66, 67]), and a linear relationship was seen
(Fig. 3a). In addition, a small increase in the HOMO–
LUMO gap was observed. This was mostly an effect of an
increased LUMO rather than a decreased HOMO, as the latter
is quite insensitive to solvation (Fig. 3c, d). Similar depen-
dences were also noted for IP, EA, and η, as they have the
same origin. A significant decrease was observed in the BE,
which is logical given that solvents facilitate the dissociation
of ion pairs: the BEs upon solvation in water were 4–8% of the
BEs in vacuum (Fig. 3b). Since BOB is an anion, it behaved
differently; its data points were out of range of the plots pre-
sented in Fig. 3.

Considerable changes in predicted reduction potentials
were observed due to the shifted LUMO levels and the influ-
ence of the solvent. Indeed, the directions of the changes
depended on the approach applied. Neglecting the lithium
cation (a) resulted in very low reduction potentials in the gas
phase. Introducing Li+ into the system (b, c), even when it was

Fig. 3a–d Comparison of dipole moments (a), BEs (b), HOMO energies (c), and LUMO energies (d) calculated in the gas phase and by C-PCM (in
water)
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only in present in its reduced form, increased the reduction
potentials. When solvent effects were taken into account, the
predicted reduction potentials moved even closer to the exper-
imentally observed values, so this is necessary for any accu-
rate quantitative prediction of Ered. The results for different
solvents (i.e., dielectric constants) show that varying the di-
electric constant only had a significant impact at low values of
this constant [68]; the effect of any increase in the constant
was minimal when r was greater than approximately 20.
Thus, water—the best-parameterized solvent—can be used

as a decent approximation for all solvents with r > 20 [34],
so water was used as the solvent in all subsequent calculations.

DFT functional and basis-set benchmarking

The reduction potential is the most important parameter that
determines if and when a given compound can be used as an
SEI-forming additive. Thus, we calibrated the computational
method against experimental reduction potential data from
electrochemical studies [16, 19, 28, 49, 69–72]. To determine

Table 2 Reduction potentials predicted using the three different thermodynamic cycles (a), (b), and (c) and various functionals; all values shown in the
table are in V vs. Li+/Li0

Additive Exp. Thermodynamic cycle HF mPW2PLYP TPSSH B2PLYP B3LYP VSXC PBE0 M062X M06L M11 MN12L

ECa 1.36 [69] a 1.05 1.30 1.32 1.29 1.49 1.62 1.26 1.27 1.28 1.38 1.01

b 1.50 1.78 1.63 1.73 1.80 2.07 1.71 1.63 1.43 1.86 1.35

c 1.37 1.65 1.62 1.63 1.79 1.99 1.61 1.64 1.59 1.76 1.34

FECa 0.7 [70] a 0.48 0.82 0.80 0.81 1.05 1.44 0.71 0.68 0.78 1.03 0.59

b 0.65 0.99 0.85 0.99 1.08 1.57 0.92 0.77 0.85 1.21 0.85

c 0.57 0.90 0.88 0.93 1.11 1.54 0.86 0.79 0.89 1.14 0.71

VCa 1.40 [69] a 0.82 0.86 0.87 0.84 1.07 1.11 0.80 0.87 0.91 0.96 0.61

b 1.18 1.21 1.07 1.15 1.27 1.45 1.12 1.15 1.09 1.15 0.82

c 1.10 1.14 1.12 1.11 1.32 1.42 1.07 1.20 1.13 1.22 0.85

VECa 2.2 [28] a 1.75 1.86 1.93 1.85 2.13 2.30 1.88 1.83 1.93 2.00 1.67

b 2.20 2.31 2.26 2.27 2.45 2.77 2.31 2.18 2.24 2.46 1.99

c 2.07 2.18 2.25 2.17 2.45 2.69 2.22 2.18 2.22 2.18 1.99

PMCa 0.83 [16] a 1.39 1.39 1.39 1.51 1.66 1.52 1.42 1.25 1.21 1.23 0.98

b 1.88 1.87 1.76 1.82 1.97 1.93 1.71 1.61 1.54 1.63 1.21

c 1.80 1.78 1.78 1.75 1.99 1.88 1.77 1.64 1.45 1.55 1.24

VA 0.88 [16] a −1.28 0.07 0.25 0.07 0.30 0.27 0.19 0.16 0.07 0.23 −0.06
b −0.04 0.59 0.61 0.54 0.67 0.64 0.67 0.56 0.40 0.76 0.30

c −0.10 0.51 0.64 0.49 0.70 0.60 0.61 0.55 0.45 0.72 0.33

VP 0.8 [49] a −0.08 0.56 0.74 0.55 0.79 0.74 0.78 0.72 0.75 0.76 0.63

b 0.36 0.91 1.00 0.89 1.04 1.11 1.11 0.99 0.98 1.10 0.83

c 0.40 0.89 1.08 0.90 1.13 1.12 1.13 1.08 1.06 1.12 0.95

ESa 2.1 [71] a 0.88 1.45 1.56 1.46 1.75 1.88 1.46 1.40 1.54 1.54 1.31

b 1.67 2.16 2.04 2.12 2.28 2.58 2.07 2.03 2.00 2.25 1.79

c 1.53 2.08 2.09 2.07 2.33 2.57 2.02 2.04 2.05 2.17 1.82

DTDa 2.13 [19] a −1.01 2.02 2.18 1.95 2.41 2.76 1.97 1.94 2.11 2.08 1.63

b 2.36 2.31 2.31 2.28 2.57 2.91 2.23 2.19 2.20 2.41 1.81

c 2.29 2.23 2.39 2.25 2.62 2.92 2.23 2.24 2.25 2.39 1.90

BOB 1.8 [72] a 0.40 1.13 1.31 1.10 1.39 1.26 1.29 1.28 1.09 1.42 0.99

b 0.88 1.61 1.67 1.55 1.74 1.82 1.75 1.72 1.47 1.96 1.46

c 0.77 1.48 1.65 1.44 1.76 1.65 1.65 1.70 1.45 1.85 1.44

Standard deviation a 1.41 0.48 0.40 0.51 0.41 0.48 0.45 0.44 0.44 0.37 0.59

b 0.57 0.39 0.35 0.38 0.45 0.62 0.34 0.30 0.32 0.39 0.35

c 0.60 0.37 0.36 0.37 0.47 0.59 0.36 0.31 0.31 0.33 0.33

Average deviation a −0.98 −0.27 −0.19 −0.28 −0.02 0.07 −0.24 −0.28 −0.25 −0.16 −0.48
b −0.16 0.15 0.10 0.11 0.27 0.47 0.14 0.06 0.00 0.26 −0.18
c −0.24 0.06 0.13 0.05 0.30 0.42 0.10 0.08 0.03 0.19 −0.16

a A chemical bond is broken during the reduction
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Fig. 4a–c Deviation, δEred, of the reduction potential predicted using
thermodynamic cycle (a), (b), or (c) (plots a–c, respectively) and each
DFT functional from the corresponding experimental value. Average and
standard deviations are also shown

Table 3 Reduction potentials obtained using thermodynamic cycle (b)
and various functionals and basis sets; all values are in V vs. Li+/Li0

Additive Exp. Basis set M06-2X M06L M11 MN12L

EC* 1.36 6-311++G** 1.63 1.43 1.86 1.35

def2-TVPD 1.66 1.45 1.78 1.25

aug-pcseg-2 1.68 1.44 1.80 1.30

aug-cc-pVTZ 1.59 1.49 1.64 1.18

FEC* 0.7 6-311++G** 0.77 0.85 1.21 0.85

def2-TVPD 0.72 0.68 1.00 0.62

aug-pcseg-2 0.72 0.57 0.98 0.38

aug-cc-pVTZ 0.72 0.72 1.02 0.63

VC* 1.40 6-311++G** 1.15 1.09 1.15 0.82

def2-TVPD 1.09 0.91 1.19 0.65

aug-pcseg-2 1.10 0.90 1.21 0.72

aug-cc-pVTZ 1.06 0.96 1.08 0.59

VEC* 2.2 6-311++G** 2.18 2.24 2.46 1.99

def2-TVPD 2.19 2.13 2.40 1.86

aug-pcseg-2 2.22 2.12 2.43 1.92

aug-cc-pVTZ 2.13 2.14 2.24 1.79

PMC* 0.83 6-311++G** 1.59 1.54 1.63 1.21

def2-TVPD 1.39 1.21 1.49 1.28

aug-pcseg-2 1.46 1.30 1.52 1.36

aug-cc-pVTZ 1.49 1.30 1.44 1.36

VA 0.88 6-311++G** 0.56 0.40 0.76 0.30

def2-TVPD 0.61 0.29 0.78 0.23

aug-pcseg-2 0.31 0.15 0.37 0.21

aug-cc-pVTZ 0.54 0.37 0.62 0.23

VP 0.8 6-311++G** 0.99 0.98 1.10 0.83

def2-TVPD 1.04 0.89 1.13 0.81

aug-pcseg-2 1.05 0.90 1.15 0.88

aug-cc-pVTZ 0.94 0.84 0.94 0.69

ES* 2.1 6-311++G** 2.03 2.00 2.25 1.79

def2-TVPD 1.65 1.50 1.82 1.20

aug-pcseg-2 1.70 1.54 1.86 1.30

aug-cc-pVTZ 1.80 1.75 1.91 1.44

DTD* 2.13 6-311++G** 2.19 2.20 2.41 1.81

def2-TVPD 1.50 1.37 1.67 0.94

aug-pcseg-2 1.62 1.46 1.73 1.09

aug-cc-pVTZ 1.79 1.79 1.86 1.24

BOB 1.8 6-311++G** 1.72 1.47 1.96 1.46

def2-TVPD 1.80 1.40 1.96 1.37

aug-pcseg-2 1.72 1.31 1.83 1.30

aug-cc-pVTZ 1.71 1.40 1.76 1.30

Standard deviation 6-311++G** 0.30 0.32 0.39 0.35

def2-TVPD 0.35 0.42 0.35 0.60

aug-pcseg-2 0.34 0.42 0.34 0.56

aug-cc-pVTZ 0.28 0.34 0.30 0.49

Average deviation 6-311++G** 0.06 0.00 0.26 −0.18
def2-TVPD −0.05 −0.23 0.11 −0.39
aug-pcseg-2 −0.03 −0.22 0.11 −0.36
aug-cc-pVTZ 0.03 −0.14 0.11 −0.29
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the best DFT functional, a Pople basis set was used: 6-311++
G(d,p). Analysis of the three thermodynamic cycles showed
that the influence of the lithium cation often had to be consid-
ered (Table 2). Lower standard deviations were only obtained
without Li+ (i.e., with thermodynamic cycle (a)) when the
B3LYP and VSXC functionals were applied. For most
methods, the difference between the results obtained using
cycles (b) and (c) was very small. To further compare the
different methods, the averages and standard deviations ob-
tained using the computational method with various func-
tionals were compared to the corresponding experimental data
(Fig. 4). Overall, the M06-2X functional was found to be the
best performer, although the other functionals of the
Minnesota family (M06L, M11, and MN12L) also provided
good results. This is consistent with other reported studies that
have benchmarked the DFT prediction of redox properties
against highly accurate wavefunction methods [42–45].

Based on the Minnesota family of DFT functionals, the
impact of the type of basis set used was examined using cycle

(b) (Table 3). The standard deviations obtainedwith the various
the basis sets considered confirmed that M06-2X was the best
functional. The popular 6-311++G** basis set gave quite good
results compared to the other larger and more advanced basis
sets; only the Dunning basis set, aug-cc-pVTZ, provided data
that were in better agreement with the experimental data. The
Dunning basis set is, however, computationally much more
expensive; 46 basis functions are used for each first-row atom,
while all other basis sets comprise 22–24 basis functions.
Hence, due to its combination of accuracy and efficiency, we
chose the Pople basis set 6-311++G(d,p) for subsequent use.

Descriptor search

To facilitate the rapid screening of SEI-forming additives, it is
advisable to find simple parameters that can easily be calcu-
lated for a large number of molecules. The most important
properties should be the LUMO energy and the EA; however,
based on our analysis (Fig. 5, Table 4), there were no signif-
icant trends in these properties. Therefore, descriptors are per-
haps more suited to assessing the impact of small changes in
the molecular structure, as already reported [73]. Comparisons
of completely different molecules appear to be difficult when
using a theoretical method that has been simplified by ignor-
ing geometry relaxation, cation interactions, and so on.

Useful information can be obtained by analyzing the chemi-
cal hardness, which—besides the HSAB concept [74]—is a vi-
able measure of the tendency of a molecule to donate/accept an
electron to/from an electrode. As a soft molecule can easily
accept an electron and its reduced form is quite stable, the reduc-
tion of hardmolecules immediately causes significant changes in
geometry (e.g., bond cleavage). This is an important consider-
ation when attempting to predict Ered, as it requires the correct
definition of the electrode reaction. As noted in Tables 2 and 3,
for seven of the studied compounds, the cleavage of a chemical
bond must occur to theoretically obtain reduction potentials sim-
ilar to the experimentally derived values. It is very difficult to
determine/guess if bond breaking should be considered to be part
of the process that occurs at the electrode process for a complete-
ly new compound, but we have found that the chemical hardness
is a very good descriptor. Additives softer than ca. 3.5 eV have
stable reduced states and their path to SEI formation is deter-
mined by any electrode process; the electrode has no influence
on the observed reduction potential. In contrast, the reduction of
compounds harder than ca. 3.5 eV induces significant structural
changes during the initial electrode-controlled process.

Conclusions

Based on the analysis of ten SEI-forming compounds, we were
able to find themost efficient procedure to predict their reduction
behavior. The application of an implicit solvent was found to be

Fig. 5a–b Relationship between the experimental reduction potential
and a the LUMO energy or b the EA (both obtained using C-PCM
M06-2X/6-311++G(d,p))
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necessary for any accurate prediction, but solvent permeability
was not a crucial influence when it was >20. In addition, the
lithium cation was observed to have a crucial influence on the
thermodynamic cycle. Comparison of different methods and ba-
sis sets showed that functionals from the Minnesota family, es-
pecially M06-2X, were the best tools to describe the reduction
potential. The popular Pople basis set 6-311++G(d,p) seems to
be suitable, even though slightly better results can be obtained
from the larger—and hence computationally more expensive—
Dunning basis set aug-cc-pVTZ. Analysis of popular descriptors
revealed that it is impossible to assess the reduction potential
based on simple parameters such as the LUMO energy in a wide
range of chemical compounds; such screening is only useful
when considering compounds that show only small differences
in structure. The chemical hardnesswas, however, found to be an
useful property for predicting changes during the electrode pro-
cess, even for very different chemistries.
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