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Abstract. Currently, atmospheric chemistry and transport
models (ACTMs) used to assess impacts of air quality, ap-
plied at a European scale, lack the spatial resolution nec-
essary to simulate fine-scale spatial variability. This spatial
variability is especially important for assessing the impacts to
human health or ecosystems of short-lived pollutants, such as
nitrogen dioxide (NO2) or ammonia (NH3). In order to simu-
late this spatial variability, the Air Quality Re-gridder (AQR)
model has been developed to estimate the spatial distribu-
tions (at a spatial resolution of 1× 1 km2) of annual mean
atmospheric concentrations within the grid squares of an
ACTM (in this case with a spatial resolution of 50× 50 km2).
This is done as a post-processing step by combining the
coarse-resolution ACTM concentrations with high-spatial-
resolution emission data and simple parameterisations of at-
mospheric dispersion. The AQR model was tested for two
European sub-domains (the Netherlands and central Scot-
land) and evaluated using NO2 and NH3 concentration data
from monitoring networks within each domain. A statisti-
cal comparison of the performance of the two models shows
that AQR gives a substantial improvement on the predictions
of the ACTM, reducing both mean model error (from 61 to
41 % for NO2 and from 42 to 27 % for NH3) and increas-
ing the spatial correlation (r) with the measured concentra-
tions (from 0.0 to 0.39 for NO2 and from 0.74 to 0.84 for

NH3). This improvement was greatest for monitoring loca-
tions close to pollutant sources. Although the model ideally
requires high-spatial-resolution emission data, which are not
available for the whole of Europe, the use of a Europe-wide
emission dataset with a lower spatial resolution also gave an
improvement on the ACTM predictions for the two test do-
mains. The AQR model provides an easy-to-use and robust
method to estimate sub-grid variability that can potentially
be extended to different timescales and pollutants.

1 Introduction

The impacts of air pollution on human health and natural
ecosystems are often evaluated using data from atmospheric
dispersion models or atmospheric chemistry and transport
models (ACTMs). The scale of these evaluations ranges from
local assessments with domains of several kilometres (e.g.
Dragosits et al., 2002; Aggarwal and Jain, 2015; Galvis et
al., 2015) to global assessments using grid cells of 1–10◦

(see for example Dentener et al., 2006). The spatial resolu-
tion used in these assessments depends on many factors, in-
cluding availability of input data, model assumptions, recep-
tor type (e.g. people, forests) and computation time. Many
of the impact assessments at a European scale are carried
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out using atmospheric concentration or deposition predic-
tions of the model developed by the Meteorological Syn-
thesizing Centre-West (MSC-W) of the European Monitor-
ing and Evaluation Programme (EMEP). The EMEP MSC-
W model (Simpson et al., 2012), called the EMEP model
hereafter, has commonly been applied for policy purposes
at a spatial resolution of ca. 50× 50 km2 (e.g. Fagerli and
Aas, 2008; Simpson et al., 2006). Although the model is in-
creasingly used at even finer resolution (e.g. 0.1× 0.1◦) even
for official MSC-W purposes (EMEP, 2015), such runs are
extremely CPU-intensive for European-scale modelling, and
cannot be used for the hundreds to thousands of simulations
required by the source–receptor matrices, which are an im-
portant output of MSC-W (EMEP, 2015). EMEP model re-
sults also underpin the Greenhouse gas – Air pollution Inter-
actions and Synergies (GAINS) model, which is a key tool
in developing European policy within both the United Na-
tions Economic Commission for Europe and the European
Union (Amann et al., 2011). However, the resolution of the
EMEP model (or any other European-scale ACTM), at least
when run in typical policy mode, is not currently high enough
to resolve the large horizontal concentration gradients found
close to sources of relatively short-lived pollutants, such as
ammonia (NH3), nitrogen dioxide (NO2) or sulfur dioxide
(SO2) (CLRTAP, 2014; Denby et al., 2011).

The EMEP model predicts the mean near-surface atmo-
spheric concentrations within each grid square, assuming a
constant deposition flux between the centre of the first ver-
tical layer (ca. 45 m) and a height of 3 m (Simpson et al.,
2012). However, within a grid square there may be concen-
trations an order of magnitude (or more) above and below
this mean value, even if the mean prediction is correct. Ne-
glecting this sub-grid variability (SGV) can strongly bias
assessments of air pollution impacts. For example, Denby
et al. (2011) estimated that urban background exposure to
NO2 is underestimated by an average of 44 % when the
50× 50 km2 grid concentrations of the EMEP model are
used. This problem is not restricted to the low grid reso-
lution used by the EMEP model, it also occurs in assess-
ments with higher resolutions. For example, Hallsworth et
al. (2010) used an ACTM to estimate NH3 concentrations
in the UK at spatial resolutions of 5× 5 km2 and 1× 1 km2.
They found that the 5 km model estimated that the NH3 criti-
cal level of 1 µg m−3 was exceeded for 40 % of the total area
of UK Special Areas of Conservation (SAC), whereas the
1 km model estimated an exceedance for only 21 %. This re-
duction in the area of exceedance when the model resolution
was increased was due to the ammonia sources (agricultural
areas) and the SAC being separated spatially. Modelling at a
higher resolution resolved the large horizontal concentration
gradients better, thus predicting higher concentrations in the
agricultural areas and lower concentrations within the SAC.
By contrast, Oxley and ApSimon (2007) found that increas-
ing model spatial resolution from 50 to 5 km and from 5 to
1 km increased the estimates of exposure to primary parti-

cles with a diameter of 10 µm or less (PM10) in urban areas.
This is because, in this case, the urban areas are also some
of the largest sources of primary PM10. A multi-model study
involving five ACTMs to simulate pollutant concentrations
across Europe found a large increase in annual mean con-
centration predictions of PM10 and NO2 in urban locations
when increasing the spatial resolution through the range 56,
28, 14 and 7 km (Cuvelier et al., 2013; Schaap et al., 2015).
For most of the models, about 70 % of the model response to
the change of resolution was due to the change in the spatial
distribution of emissions. By comparing the concentration
predictions in urban areas with measured values, model per-
formance (slope, bias and correlation) was generally found
to improve for all models as the resolution was increased.
In order to resolve the large horizontal concentration gradi-
ents found in urban areas, Cuvelier et al. (2013) suggested
that a resolution of a few kilometres down to 1 km would be
needed, but added that this is not currently feasible for appli-
cation across Europe. However, even this might not be suf-
ficient for resolving the large horizontal concentration gradi-
ents of NO2, for example.

Several potential methods could be used to estimate the
SGV of the concentration predictions of short-lived air pol-
lutants across Europe. Firstly, the EMEP model could be ap-
plied at a higher resolution. This has been done in the UK for
a resolution of 5× 5 km2 (EMEP4UK) (Vieno et al., 2010,
2014), and for Europe at ca. 7× 7 km2 (Schaap et al., 2015;
EMEP, 2015), but such runs are extremely CPU-demanding
and are not suitable for routine use, especially where ACTMs
need to be run tens to hundreds of times for emission con-
trol assessments, for example. A European application at
1× 1 km2 resolution or higher is currently not feasible, even
for research purposes. As well as being too demanding on
computation time, such runs would also require a consis-
tent and accurate high-resolution emission dataset, which is
not currently available. A second solution is the “stitching
together” of national modelling simulations at a high reso-
lution (see, for example, de Smet et al., 2013; Janssen and
Thunis, 2016). This approach has the advantage of making
use of national expertise and emission and meteorological
datasets. However, the disadvantages are that it is likely to
lead to “border effects” as a result of differing methodologies
and/or input datasets used by neighbouring countries and re-
sults may not be available for all countries, making it difficult
to carry out a consistent assessment for the whole of Europe.
The third solution is to apply geo-statistical techniques to
the low-resolution concentration data (e.g. from the EMEP
model) that makes use of other relevant spatial datasets.
These techniques can be used to either estimate the proba-
bility distribution of the concentration (or a related quantity)
within each grid square or to explicitly estimate the spatial
distribution of the concentration within the grid square. An
example of the former approach is that of Denby et al. (2011),
who estimated the population-weighted concentrations of
NO2, PM10 and O3 within each EMEP 50× 50 km2 grid
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square using information on measured concentrations and
their covariance with population density, which was then pa-
rameterised using emission and altitude data. Another exam-
ple is the SGV parameterisation of Ching et al. (2006) for the
CMAQ model based on sub-grid concentration distributions
of benzene and formaldehyde, calculated using the ISCST3
short-range dispersion model. The same CMAQ simulations
were used by Isakov et al. (2007) to develop a method to ex-
plicitly model the sub-grid spatial distributions of concentra-
tions at a resolution of 200× 200 m2. Their method used re-
lationships between the sub-grid concentrations and sub-grid
emission strengths derived from short-range dispersion mod-
elling results, although it was only applied to a small area
(Philadelphia County). A different geo-statistical approach
was used by Janssen et al. (2012), in which they estimated
sub-grid concentrations for Belgium by using empirical rela-
tionships between long-term atmospheric concentrations and
land-use characteristics. A Europe-wide approach was de-
veloped for NO2 and particulate matter by Kiesewetter et
al. (2013, 2014), although only at a resolution of 7× 7 km2.
In their work, concentrations simulated by the EMEP model
at a resolution of 28× 28 km2 were disaggregated using an
“urban increment”. This increment was calculated from the
concentration predictions of the CHIMERE model (Bessag-
net et al., 2004) at a resolution of 7× 7 km2. The relation-
ship between the differences in the concentration predictions
of the two models and the emission rate (from near-ground-
level sources only) used for each 7 km grid square was used
to calculate the urban increment. Model evaluation using an-
nual mean concentrations from more than 1500 urban back-
ground monitoring stations showed that the model can pre-
dict concentrations within a factor of 2 of the measured value
for most locations. The authors also developed a parameter-
isation to estimate the additional concentration increment at
the locations of roadside air-quality stations, although this
approach relies heavily on measurement data.

In this paper we present the development, testing and eval-
uation of a simple geo-statistical post-processing methodol-
ogy (the Air Quality Re-gridder (AQR) model) that combines
high-spatial-resolution emission data and a simple param-
eterisation of short-range dispersion to estimate the spatial
distribution of concentrations of short-lived pollutants within
the EMEP model grid squares. This sub-grid model is used
to calculate the annual mean concentrations of NO2 and NH3
for 2008 at a resolution of 1× 1 km2 for two test domains
(central Scotland and the Netherlands) and evaluated using
monitoring network data from within the two domains. Sec-
tion 2 provides information on the methods and datasets used
and Sect. 3 describes the model development process. Sec-
tion 4 presents the results of the sub-grid modelling, a model
evaluation and an analysis of the sensitivity of the model to
some of the parameters and datasets used, whilst Sect. 5 dis-
cusses model performance and its applicability, uncertainties
and potential improvements and extensions.

2 Materials and methods

The two domains used in this study are central Scotland
and the Netherlands (Fig. 1). These domains were chosen
because they provide a contrast between a built-up, indus-
trialised and agricultural region (the Netherlands) and a re-
gion with both large cities and intensive industrial and agri-
cultural areas, as well as more extensively used or semi-
natural areas (central Scotland). Both domains also have NH3
and NOx emission inventory data at a ca. 1× 1 km2 reso-
lution. Spatially distributed annual NH3 and NOx emission
data for the study year (2008) were obtained from the Na-
tional Atmospheric Emissions Inventory (http://naei.defra.
gov.uk/) for the Scottish domain and from the National In-
stitute for Public Health and the Environment (RIVM), for
the Netherlands (Fig. 1). In order to evaluate AQR for an
emission dataset with a lower spatial resolution that could
be used for a Europe-wide application of the model, the
2008 “EC4MACS” emissions with a spatial resolution of
ca. 7× 7 km2 (EC4MACS, 2012, also used in Schaap et al.,
2015) were also used for the two domains.

In order to parameterise the pollutant dispersion from
source areas, three different atmospheric dispersion mod-
els were used. These were ADMS (v4.1) (Carruthers et
al., 1994), AERMOD (v12345) (Cimorelli et al., 2002) and
LADD (Dragosits et al., 2002). These three models were cho-
sen because they have been extensively evaluated for the at-
mospheric dispersion of NO2 and NH3, with the exception of
LADD, which has only been evaluated for NH3 (Theobald
et al., 2012). The meteorological data used for the atmo-
spheric dispersion simulations were derived from the mete-
orological data used in the EMEP model simulation (gener-
ated by the Weather Research Forecast (WRF) model ver-
sion 3.6.1; http://www.wrf-model.org). Surface and vertical
profile data at the centre of each EMEP model grid square
were extracted in AERMOD format using the Mesoscale
Model Interface Program (MMIF; https://www3.epa.gov/ttn/
scram/dispersion_related.htm#mmif) and subsequently con-
verted into the input formats for ADMS and LADD. In order
to test the sensitivity of AQR to the meteorological data used,
additional simulations were carried out using two domain-
specific real meteorological datasets and a synthetic meteo-
rological dataset derived from data from an arbitrary loca-
tion. The two domain-specific datasets used were from the
Easter Bush experimental site, for Scotland (von Bobrutzki
et al., 2010), and Cabauw, for the Netherlands (obtained from
the Cesar Database: http://www.cesar-database.nl/). The syn-
thetic dataset was derived from data from the Lyneham me-
teorological station in the UK for 1995 (LYNE95) (Spanton
et al., 2004), which was a fairly typical year with regards
to mean air temperature and wind speed. This dataset was
chosen because it has been used in various model evaluation
studies and has been made freely available to the dispersion
modelling community (e.g. Hall et al., 2000; Theobald et
al., 2012). This dataset was modified (LYNE95mod) by ran-
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Figure 1. Spatial distributions of annual emissions of NOx (left) and NH3 (right), for the Dutch (top) and Scottish (bottom) domains. The
EMEP 50× 50 km2 grid is also shown (in blue).

domising the wind direction data and scaling the wind speed
so that the annual mean value was equal to the annual domain
mean value used in the EMEP model for the 2008 study year
(5.1 m s−1). The wind directions were randomised for two
reasons: (1) to make the meteorological data less location-
specific so that they can be used within different modelling
domains and (2) to provide a generic dispersion dataset that
could be of use to the air-quality modelling community.

Evaluation of the AQR model was carried out using 2008
annual mean concentration data from local and national mon-
itoring networks in the two study domains. For Scotland,
NO2 data were obtained from the Air Quality in Scotland
website (http://www.scottishairquality.co.uk/) (48 stations:
37 traffic and 11 non-traffic sites) and from RIVM for the
Netherlands (43 stations: 13 traffic and 30 non-traffic). The
evaluation was done for all sites and for the traffic and non-
traffic sites separately since the traffic sites are strongly in-
fluenced by the exact site location and are unlikely to be
representative of a 1× 1 km2 grid square. For NH3 concen-
trations in the Scottish domain, monitoring data were ob-

tained from the UK National Ammonia Monitoring Net-
work (NAMN) (Sutton et al., 2001) (http://uk-air.defra.gov.
uk/networks/network-info?view=_nh3), which has 14 sites
within the domain. In addition, NH3 monitoring data from 21
sites in a local network covering 36 km2 (Vogt et al., 2013)
were also used. For the Netherlands, NH3 concentration data
from the Measuring Ammonia in Nature (MAN) network
(Lolkema et al., 2015) were provided by RIVM (108 sta-
tions). Model performance was assessed using the evalua-
tion statistics of the R package “Openair” (Carslaw and Rop-
kins, 2012). Four performance metrics were used to compare
the modelled concentrations with the observed values: frac-
tion of model predictions within a factor of 2 of the obser-
vations (FAC2), normalised mean bias (NMB), normalised
mean gross error (NMGE) and the Pearson correlation coef-
ficient (r) (see Appendix A for definitions).
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Figure 2. Schematic showing the process of producing the sub-grid concentration predictions from short-range dispersion model simulations
and high-spatial-resolution emission data.

3 Model development

The sub-grid 1× 1 km2 concentration estimates were calcu-
lated from three components: the EMEP 50× 50 km2 con-
centration predictions, the 1× 1 km2 emission data and an
estimate of short-range (< 50 km) pollutant dispersion. Fig-
ure 2 shows a schematic of the process. Short-range pol-
lutant dispersion was parameterised using a simple sce-
nario of a single 1× 1 km2 source with an emission rate of
1 Mg km−2 yr−1 in the centre of a square domain (of dimen-
sions 101× 101 km2). Although individual sources are gen-
erally smaller than this, this value was used to match the spa-
tial resolution of the emission data. For NO2, the assump-
tion was made that annual mean NO2 concentrations are lin-
early correlated with those of NOx . This allowed us to use
the NOx emissions for the calculation of NO2 concentra-
tions without considering photochemical reactions. An anal-
ysis of the 2008 mean annual concentrations for the 1478
sites in the Air Quality e-Reporting database (formerly Air-
Base) of the European Environment Agency shows that mea-
sured NO2 and NOx concentrations are approximately lin-
early correlated with a linear correlation coefficient, r2, of
0.93. For the dispersion of NH3, the source was assumed to
be at ground level (a suitable approximation for most agricul-
tural sources, which account for more than 90 % of emissions
in Europe). Emissions of NOx , on the other hand, can occur
over a range of emission heights, depending on the source
type. Since the emission height will affect the resulting NO2
concentrations at ground level, it needs to be taken into ac-
count. This was done by assigning a representative emis-
sion height for each emission sector (Selected Nomenclature
for Air Pollution (SNAP) code) that contributed more than
1 % of the total domain emissions (Table 1). These emis-

sion heights correspond approximately to the mean effec-
tive emission heights used in the EMEP model for the sector
emissions. In order to test the sensitivity of the AQR model to
the emission heights used, additional simulations were car-
ried out using emission heights half and double these val-
ues. For the ground-level source, all three dispersion models
(ADMS, AERMOD and LADD) were used to simulate the
annual mean near-ground-level concentrations of NH3 and
NO2 on a 1 km grid (for the 101× 101 km2 domain). For the
elevated source scenarios, only ADMS and AERMOD were
used to simulate the annual mean concentrations because the
LADD model is not suitable for simulating dispersion from
elevated sources (Theobald et al., 2012). A height of 1.5 m
was used for the near-ground-level concentrations, because
this height is commonly used for concentration monitoring
and impact assessments (Cape et al., 2009). These short-
range dispersion simulations were carried out using the me-
teorological data extracted from the WRF simulations at the
centre of each EMEP model grid square. No removal pro-
cesses (chemical reactions, dry or wet deposition, etc.) were
simulated because these processes depend strongly on local
conditions (concentrations of other chemical species, meteo-
rological conditions, surface characteristics, etc.).

The result of these simulations was nine concentra-
tion fields (kernels), three for ground level sources (three
models× one source height) and six for elevated sources
(two models× three source heights) for each meteorologi-
cal dataset (corresponding to each of the EMEP model grid
squares). A model-average dispersion kernel (D) for each
source height was obtained by taking the mean value of
the dispersion model concentration estimates for each kernel
grid cell.
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Table 1. Emission heights used for each main emission sector.

SNAP Emission sector Effective emission
code height used (m)

1 Combustion in energy and transformation industries 400
2 Non-industrial combustion plants 0
3 Combustion in manufacturing industry 400
4 Production processes 50
7 Road transport 0
8 Other mobile sources and machinery 0
9 Waste treatment and disposal 200

These model-average kernels were then combined with the
emission data using a moving window approach to obtain the
sub-grid concentration estimate (C):

C (i,j)=

SNAP∑
s

n∑
i′

m∑
j ′

E
(
i′,j ′

)
D′
(
i− i′,j − j ′

)
,

where i and j are the sub-grid-cell coordinates, s is the emis-
sion sector, i′ and j ′ are the emission grid cell coordinates,E
is the emission rate of the emission grid cell (Mg km−2 yr−1)

and D′ an interpolated dispersion kernel (inverse distance
squared weighted interpolation of the kernels for the source
EMEP grid square and the eight adjacent grid squares). Since
the dispersion kernel has a size of 101× 101 grid cells, the
values of i′ and j ′ range from i−50 and j−50 to i+50 and
j+50, respectively, with the constraint that they lie within
the modelling domain.

The resulting “sub-grid distributions” provide an estimate
of the spatial variability of the concentrations at a 1× 1 km2

resolution, which were then used to “redistribute” the EMEP
predictions within each 50× 50 km2 grid square. This step is
necessary since AQR does not take into account large-scale
processes such as long-range transport or chemical trans-
formations of pollutants, processes that are included in the
large-scale model (the EMEP model, in this case). The sim-
plest way to do this redistribution would be to multiply the
sub-grid distributions by the EMEP predictions and then di-
vide by the mean value of the sub-grid distribution for each
50× 50 km2 grid square. This approach conserves the sub-
grid distribution for each 50× 50 km2 square and also has
the same mean concentration as the EMEP prediction. How-
ever, it also could lead to large discontinuities at the edges of
the EMEP grid squares if the ratio between the mean of the
sub-grid distribution and the EMEP prediction differ greatly
from that of adjacent squares. To avoid this problem, the ra-
tio of the EMEP predictions to the mean value of the sub-grid
distribution for each 50× 50 km2 square was interpolated on
a 1× 1 km2 grid (using a spline interpolation of the values at
the centre of each grid square in ArcGIS 10.2 (Environmen-
tal Systems Research Institute, Redlands, CA, USA)). The
interpolated field was then multiplied by the sub-grid distri-
bution and then the process was repeated over 10 iterations.

In fact only four to five iterations were necessary to give con-
centration fields that differed by a maximum of 1 %. A more
detailed description of the process is provided in the Supple-
ment.

In order to test the sensitivity of the model to the meteoro-
logical data, the above process was repeated with the kernels
obtained from the dispersion simulations, using the domain-
specific meteorological data and with kernels derived from
the dispersion simulations using the synthetic meteorologi-
cal data (more details provided in the Supplement).

4 Results

4.1 Sub-grid concentration predictions and model
evaluation

Figure 3 shows the sub-grid concentration predictions for
NO2 and NH3 for the two domains (data for the individ-
ual domains are provided in Fig. S3.1 in the Supplement).
The EMEP concentration fields are also shown for compar-
ison. Table 2 shows the evaluation statistics of the EMEP
and AQR models for annual mean NO2 concentrations for
the Dutch and Scottish monitoring data. In general, AQR is
an improvement on the EMEP model alone because the lat-
ter generally underestimates concentrations (negative NMB).
The mean error of the EMEP model is largest for the Scot-
tish dataset with a NMGE of 82 and 70 % for the datasets
with and without traffic stations, respectively. The model per-
forms worst for the Scottish traffic stations with a mean un-
derestimation of 84 %. The EMEP model performs consider-
ably better for the Dutch dataset, with 91 % of predictions
within a factor of 2 of the observed values, although this
drops to 69 % when considering the traffic stations only. The
AQR model (using 1×1 km2 emissions) also performed best
for the Dutch dataset, with a smaller mean bias and error
and a better correlation than the EMEP model alone. How-
ever, the EMEP model had a lower mean bias and error for
the non-traffic stations. The AQR model is also an improve-
ment on the EMEP model alone for the Scottish dataset (both
with and without traffic stations), as well as for the combined
dataset (Netherlands plus Scotland). Similarly to the EMEP
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Figure 3. Sub-grid model predictions (top row) of annual mean concentrations of NO2 and NH3 for the two domains. EMEP model predic-
tions at a resolution of 50× 50 km2 are shown for comparison (bottom row).

model, AQR performed worst for the Scottish traffic stations,
although was a notable improvement over the EMEP model
alone. The use of the lower-resolution emissions actually im-
proved the performance of AQR for some of the statistics
(most notably for the non-traffic stations in the Netherlands
domain).

Table 3 shows the evaluation statistics of the EMEP and
AQR models for annual mean NH3 concentrations for the
Dutch and Scottish monitoring data. In general AQR was an
improvement on the EMEP model alone, which performed
worse for the local monitoring network, as all monitoring
locations were within a single EMEP 50× 50 km2 square.
The AQR model (using 1×1 km2 emissions) also performed
worst for this dataset, although its performance was still an
improvement on that of the EMEP model alone, as it was for
all the datasets except for the National Ammonia Monitoring
Network sites in Scotland. The use of the 7× 7 km2 emis-
sions worsened the performance of AQR (with respect to the
simulations using the 1× 1 km2 emissions) for all datasets
except for the National Ammonia Monitoring Network sites,
for which it had a similar performance to the model using the
higher-resolution emissions. Figure 4 shows the scatterplots
of NO2 and NH3 concentration predictions of the EMEP and
AQR models vs. the observed values for all sites in both do-
mains.

4.2 Sensitivity of sub-grid model predictions to model
parameters

The use of alternative meteorological datasets only had a
small effect on the concentration estimates of the AQR model
(Fig. 5). The use of domain-specific data from a single loca-
tion affected the concentration predictions by an average of
6 % for NO2 and 5 % for NH3 although differences of up to
23 % were found for individual measurement sites. Similarly,
the use of the synthetic meteorological data affected concen-
trations, on average, by 6 and 5 % for NO2 and NH3, respec-
tively, with a maximum difference of 28 %. Randomising
the wind direction data of the domain-specific datasets gave
very similar results to those using the synthetic meteorology
dataset, with maximum differences of only 1 % (not shown).
This suggests that the meteorological factor that most influ-
ences the estimates of the AQR model is the wind direction
distribution.

The AQR model estimates are also not very sensitive to
the NOx emission height. On average, the effect on the con-
centration predictions of halving or doubling the emission
heights is less than 2 %, with a maximum difference of 6 %
(not shown). This lack of sensitivity to the exact source
height reflects the fact that ground-level sources contribute
significantly more to near-source concentrations than ele-
vated sources. Since the concentrations predicted by AQR
were not greatly affected by the meteorological data or the
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Table 2. Performance evaluation of the EMEP and sub-grid models for annual mean NO2 concentrations. The best-performing model for
each statistic is highlighted in bold. FAC2 is the fraction of model predictions within a factor of 2 of the observations, NMB is the normalised
mean bias, NMGE is the normalised mean gross error and r is the Pearson correlation coefficient. Italic font highlights the model performance
for the sub-grid model using the lower-resolution emission data.

Dataset n
EMEP model Sub-grid model

FAC2 NMB NMGE r Emission data FAC2 NMB NMGE r

Netherlands (All) 43 0.91 −0.24 0.31 0.54
1× 1 km2 0.98 0.05 0.24 0.83
7× 7 km2 1.0 −0.08 0.21 0.79

Netherlands (No traffic stations) 30 1.00 −0.06 0.18 0.73
1× 1 km2 0.97 0.07 0.29 0.86
7× 7 km2 1.0 0.01 0.21 0.81

Netherlands (Traffic stations only) 13 0.69 −0.45 0.45 0.17
1× 1 km2 1.0 0.02 0.16 0.48
7× 7 km2 1.0 −0.18 0.21 0.32

Scotland (All) 48 0.06 −0.82 0.82 0.16
1× 1 km2 0.46 –0.50 0.54 0.43
7× 7 km2 0.23 −0.63 0.63 0.51

Scotland (No traffic stations) 11 0.27 −0.70 0.70 0.40
1× 1 km2 0.91 –0.08 0.30 0.80
7× 7 km2 0.64 −0.38 0.39 0.85

Scotland (Traffic stations only) 37 0.00 −0.84 0.84 0.05
1× 1 km2 0.32 –0.56 0.57 0.48
7× 7 km2 0.11 −0.67 0.67 0.51

All 91 0.46 −0.58 0.61 –
1× 1 km2 0.70 –0.27 0.41 0.39
7× 7 km2 0.59 −0.40 0.46 0.27

Table 3. Performance evaluation of the EMEP and sub-grid models for annual mean NH3 concentrations. The best-performing model for
each statistic is highlighted in bold. FAC2 is the fraction of model predictions within a factor of 2 of the observations, NMB is the normalised
mean bias, NMGE is the normalised mean gross error and r is the Pearson correlation coefficient. Italic font highlights the model performance
for the sub-grid model using the lower-resolution emission data.

Dataset n
EMEP Sub-grid model

FAC2 NMB NMGE r Emission data FAC2 NMB NMGE r

Netherlands 108 0.85 0.23 0.39 0.69
1× 1 km2 0.92 0.10 0.24 0.84
7× 7 km2 0.90 0.28 0.40 0.71

Scotland – Local network 21 0.52 −0.47 0.65 –
1× 1 km2 0.62 –0.04 0.52 0.55
7× 7 km2 0.52 −0.48 0.66 –

Scotland (National Ammonia
14 0.71 0.07 0.46 0.73

1× 1 km2 0.57 0.26 0.45 0.77
Monitoring Network) 7× 7 km2 0.57 0.07 0.43 0.81

All 143 0.79 0.17 0.42 0.74
1× 1 km2 0.84 0.09 0.27 0.84
7× 7 km2 0.81 0.20 0.42 0.75

emission heights, model performance was very similar (not
shown).

5 Discussion

5.1 An improvement, but is it enough?

These results show that a simple and robust geostatistical ap-
proach can be used to improve the EMEP model predictions
of NO2 and NH3 annual concentrations. This improvement
is not surprising considering the large difference in spatial
resolutions (50 km vs. 1 km) and the strong link between
short-lived pollutants and the spatial distribution of emis-
sions. In fact, it is worth looking at whether this improve-
ment is mainly a result of the high-resolution emissions and

has very little to do with the use of short-range dispersion es-
timates. This can be done by repeating the analyses with the
1× 1 km2 grid cell emissions as the initial sub-grid distri-
bution. Figure 6 shows that doing this for NO2 substantially
overestimates concentrations for the mid-range of measured
values, whereas for NH3, concentrations are substantially un-
derestimated at many sites. The model performance statis-
tics for these simulations show that using just the emissions
gives lower values of FAC2 (0.60 vs. 0.70 for NO2 and 0.28
vs. 0.84 for NH3) and larger bias and error (NMB: 0.36 vs.
−0.27 for NO2 and−0.36 vs. 0.09 for NH3; NMGE: 0.72 vs.
0.41 for NO2 and 0.79 vs. 0.27 for NH3). Model error is even
larger than that for the EMEP model alone (0.72 vs. 0.61 for
NO2 and 0.79 vs. 0.42 for NH3), which demonstrates that
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Figure 4. Modelled concentrations plotted against measured values for all sites for (a) NO2 and (b) NH3. NO2 traffic stations are indicated
by bold symbol outlines. Plot data provided in the Supplement.

Figure 5. Modelled concentrations plotted against measured values for all sites for (a) NO2 and (b) NH3 using the original meteorology (as
in Fig. 4) and using the domain-specific and synthetic meteorological datasets.

short-range dispersion estimates are necessary for improving
on the EMEP model predictions.

However, is the improvement of AQR over the EMEP
model alone large enough to warrant the inclusion of such
a sub-grid model into the output processing options of a
chemical transport model? In order to answer this question,
we can use the concept of model acceptability suggested by
Chang and Hanna (2004). This concept can be used to eval-
uate whether the EMEP model and/or the AQR model per-
form acceptably and, therefore, whether the AQR model rep-
resents an improvement on the EMEP model alone, in terms
of model acceptability. Hanna and Chang (2012) suggested
that an “acceptable” model is one that meets the criteria for
more than half of a series of statistical tests. The performance
metrics used are fractional bias, geometric mean bias, nor-
malised mean square error, geometric variance and FAC2

(see Appendix A for definitions and acceptability criteria). In
the current study, we define an acceptable model as one that
meets at least three of these five criteria (for each dataset).
Although the concept of model acceptability of Chang and
Hanna (2004) was defined for research-grade experimental
data, the fact that we are considering annual mean concen-
trations (instead of high-temporal-resolution measurements)
should make the approach suitable for use with operational
models and monitoring data, such as those used here. For
the two combined datasets (NO2-All and NH3-All) shown
in Fig. 4, the EMEP model meets none and five of the five
criteria for NO2 and NH3, respectively, whereas AQR meets
three and five criteria, respectively (Table 4). This suggests
that AQR is a significant improvement (in terms of model ac-
ceptability) for NO2 (even when the lower-resolution emis-
sion dataset is used), but not for NH3, since the EMEP model
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Figure 6. Modelled concentrations plotted against measured values for all sites for (a) NO2 and (b) NH3 using the original sub-grid param-
eterisation (Emission plus dispersion) and using just the spatial distribution of emissions as the sub-grid distribution (Emission only).

Table 4. Number of model acceptability criteria met for each model and evaluation dataset. Bold font represents acceptable model perfor-
mance (≥ 3 criteria met).

Pollutant Dataset

No. of criteria met

EMEP Sub-grid Sub-grid
(1× 1 km2 (7× 7 km2

emissions) emissions)

NO2

Netherlands All 5 5 5
Netherlands No traffic stations 5 5 5
Netherlands Traffic stations only 3 5 5
Scotland All 0 2 1
Scotland No traffic stations 0 5 3
Scotland Traffic stations only 0 2 0

All 0 3 3

NH3

Netherlands 5 5 5
Scotland Local network 2 5 2
Scotland National Network 5 5 5

All 5 5 5

alone already performs acceptably for this dataset. This can
be explained by looking at the number of criteria met for the
individual datasets (Table 4). For NO2, The EMEP model
performed acceptably for the Netherlands (All) but not for
Scotland (All). This is partly due to the Dutch network hav-
ing a larger proportion of non-traffic sites (70 % vs. 23 %),
which would be more representative of the 50× 50 km2 grid
cells. However, the EMEP model also performed acceptably
for the Dutch traffic stations but neither the EMEP model nor
the AQR model performed acceptably for the Scottish traffic
stations. Looking more carefully at the traffic stations used in
the domains reveals that station siting may have an influence
on model performance. According to the information avail-
able regarding the Scottish traffic sites, monitoring stations

are located between 0.5 and 16 m from the road edge. Al-
though no information is available regarding the exact loca-
tions of the Dutch monitoring stations, Nguyen et al. (2013)
point out that one station in the Amsterdam Municipal Health
Service (GGD) network (not used in this study) “is very close
to the road (< 2.5 m)”. This suggests that, in general, sites
in the Dutch network are > 2.5 m from the road, whereas
in the Scottish network 17 of the 37 traffic sites are closer
than this. This difference in station siting could be the rea-
son why neither the EMEP nor the AQR model performed
acceptably for the Scottish dataset. For NH3, the EMEP and
AQR models performed acceptably for the two national net-
works but only AQR performed acceptably for the local net-
work. This is probably because the national networks site
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their monitoring stations far from the influence of individ-
ual emission sources in order to be representative of a large
area, whereas the local network was located in an area with
intensive poultry farming and was designed to assess the in-
fluence of individual sources. Since the majority (86 %) of
the sites used in the analysis belonged to the national net-
works, overall model performance was similar to model per-
formance for those networks. The sub-grid approach, there-
fore, is most useful where there are large horizontal concen-
tration gradients, such as within large cities (for NO2) or ar-
eas with intensive agriculture (for NH3), which is where the
largest impacts are most likely to occur.

It is also worth briefly comparing the improvements in
model performance with those reported by other studies.
Denby et al. (2011) showed that the population-weighted
concentration for NO2 was, on average, 44 % higher with
their sub-grid parameterisation than that calculated using the
original concentrations from the EMEP model. Although not
directly comparable (since we do not calculate population-
weighted concentrations), NO2 concentrations estimated us-
ing the AQR model are, on average, 77 % higher than those
of the EMEP model at the monitoring station locations. De-
spite this increase, the AQR estimates are still, on average,
27 % lower than the measured concentrations. Janssen et
al. (2012) showed that their approach of downscaling mod-
elled concentrations from 15× 15 km2 to 3× 3 km2 reduced
model error by about 20 %. The AQR model for NO2 reduced
model error by 30–40 %, although for a larger change in res-
olution (50× 50 km2 to 1× 1 km2). In the study by Schaap
et al. (2015), increasing the spatial resolution from approx.
56× 56 km2 to 7× 7 km2 increased the correlation (r) be-
tween the models’ predictions and hourly urban background
NO2 concentrations from approx. 0.1–0.4 to 0.6–0.7 and re-
duced model bias by approx. 60–90 % for most of the mod-
els. For a similar change in spatial resolution (50× 50 km2

to 7× 7 km2), the AQR model for annual mean NO2 concen-
trations using the low-resolution emissions increased r from
0.16–0.54 to 0.51–0.85 and reduced model bias by approx.
20–70 %.

5.2 How can the sub-grid approach be applied?

Two potential uses of the sub-grid approach can be envis-
aged: a Europe-wide application to provide a spatial assess-
ment of exceedance of NO2 and NH3 annual limit values
or critical levels and the assessment of individual emission
hotspots in areas where detailed modelling assessments are
not available but high-resolution emission data are. In the
latter case, if the hotspot domain is located within a single
EMEP 50× 50 km2 grid square, the smoothing step would
not be necessary. The Europe-wide application would require
high-spatial-resolution emission data for the whole domain.
There is, as far as we are aware, currently no European emis-
sion inventory with a spatial resolution close to 1× 1 km2.
The highest resolutions available are the 7× 7 km2 emission

inventories produced for various EU projects (Kuenen et al.,
2014; EC4MACS, 2012). As shown above, the use of emis-
sion data at this resolution still gives an improvement on
the concentration predictions and even performs better than
the sub-grid model using the higher-resolution emissions, in
some cases.

5.3 Advantage, disadvantages, uncertainties and
potential improvements

The AQR model can provide more accurate concentration
predictions than the EMEP model alone, especially close
to emission sources. However, this approach has only been
tested for annual mean NO2 and NH3 concentrations, al-
though it could potentially be extended to other short-lived
pollutants and shorter timescales (daily or hourly). This
means that the model cannot currently be used to assess
exceedance of short-term limit values (e.g. for Europe, an
hourly mean concentration of 200 µg NO2 m−3 more than
18 times in one year) although, as shown by Kiesewetter et
al. (2013), the annual mean limit values for NO2 are the more
stringent target. Critical levels for ammonia are expressed as
annual mean concentrations and so a sub-grid model with a
higher temporal resolution is not necessary. The other limita-
tion of the approach is the need for high-resolution emission
data although, as shown above, the use of emission data with
a resolution of 7× 7 km2 already produces improvements in
model performance compared with the original ACTM con-
centration estimates.

The various assumptions and simplifications made in the
development of AQR introduce uncertainty in the model es-
timates. The omission of NOx photochemistry and the as-
sumption that annual mean NO2 concentrations are linearly
correlated with those of NOx was justified above by the
fact that measured concentrations across Europe are approx-
imately linearly correlated (r2

= 0.93). However, a more in-
depth analysis of the European measurements shows that if a
constant factor is used to estimate NO2 concentrations from
the measurements of NOx , the estimated NO2 concentrations
differ from the measure values by an average of 16 %, which
is a small uncertainty compared with the uncertainty in emis-
sions, meteorological conditions, etc. The uncertainty as a
result of not modelling the chemical transformation of NH3
(e.g. to particulate ammonium) is more difficult to quantify
since the reactions depend on many factors such as the mete-
orological conditions and the concentrations of other pollu-
tants. However, the fact that the errors (NMGE) in the AQR
estimates of NH3 concentrations are of a similar order of
magnitude to the errors in the NO2 estimates suggests that
the benefits of AQR in handling sub-grid distributions out-
weigh any chemical impacts. In addition, such errors would
be largest far from the sources, once NH3 concentrations are
diluted more to levels comparable to incoming sulphate or
HNO3 concentrations. Another source of uncertainty is the
omission of deposition processes in the short-range disper-
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sion parameterisations, but wet-deposition has been implic-
itly included in ACTM predictions, and timescales for dry
deposition are usually far larger than those for sub-grid mix-
ing. Again, given the AQR model has a mean error of 41 and
27 % for NO2 and NH3, respectively, the benefits of AQR
seem greater than any uncertainty as a result of omitting
these processes. Finally, another simplification is the use of a
1× 1 km2 source for parameterising short-range dispersion.
In reality sources are generally smaller than this and so this
simplification may result in incorrect concentration gradients
close to small or linear NOx sources (e.g. chimney stacks or
motorways). However, on average, transport emissions con-
tribute more than 90 % of the estimated concentrations, most
of which are in urban areas where a 1× 1 km2 source is prob-
ably an adequate representation of a dense urban road net-
work. In addition, we rarely know the location of stacks in
emission inventories to better than 1 km resolution, and usu-
ally with no or very limited information on plume rise and
height.

With regards to potential improvements, in addition to the
extension to shorter time periods, it also should be possible to
incorporate stack parameters (effective emission heights and
the contribution of stack emissions to the emissions of a par-
ticular grid square) from officially reported data and/or other
data sources, if these become more readily available. This
would potentially improve concentration estimates close to
large stack sources. As shown above, model performance is
poorer for sites very close to roads and so the inclusion of a
roadside increment model could also improve the model esti-
mates. However, by increasing the complexity of the model,
we have to be careful not to lose sight of the objective of the
AQR model, which is to provide a robust and simple method
of post-processing concentrations estimated by an ACTM.

The sub-grid approach also has the potential to be ap-
plied to other pollutants for which there is a strong rela-
tionship between emissions and concentrations. Zhang and
Wu (2013) analysed air-quality simulations of the CMAQ
model to quantify the influence of a range of processes on the
atmospheric concentrations of several pollutants. The species
that were most strongly influenced by emission processes
were NH3, NO, NO2, SO2, PM2.5, SO2−

4 , elemental carbon
and primary organic aerosol and are, therefore, potential can-
didates for an extension of the model. The spatial distribution
of ozone, a secondary pollutant, cannot be estimated based
on emissions but its inverse relationship with NOx could be
exploited to model the sub-grid variability. Apart from con-
centrations, it may also be possible to develop a sub-grid
model for processes such as wet deposition of nitrogen or sul-
phur, for which high-resolution rainfall maps could be used
to estimate the sub-grid distributions. Dry deposition of re-
duced nitrogen could also be modelled using the NH3 con-
centration distribution and land-cover parameters, assuming
that most of the deposition is in the form of NH3. Dry de-
position of oxidised nitrogen would be more difficult since
there is no one dominant species that contributes.

6 Conclusions

The sub-grid spatial variability of the annual mean NO2 and
NH3 concentrations predicted by an atmospheric chemistry
and transport model can be estimated by combining the pre-
dictions with high-spatial-resolution emission datasets and
short-range dispersion fields. This paper describes the de-
velopment of the Air Quality Re-gridder (AQR) model and
its application to two test domains in Europe. Comparison
of annual mean concentrations estimated by AQR with mea-
sured values within both domains shows that the AQR model
represents an improvement on the predictions of the atmo-
spheric chemistry and transport model, reducing both model
error and bias and increasing the spatial correlation with the
measured concentrations.

7 Code/data availability

The AQR model code (in the R programming language) plus
example input and output files for the simulations using syn-
thetic meteorological data are provided in the Supplement.

The data shown in Figs. 4, 5 and 6 are provided in the
Supplement.
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Appendix A: Descriptions of the performance metrics
used

Table A1. The four metrics relating modelled concentrations (Mi) with the observed values (Oi), used for evaluating model performance.

Performance measure Definition

Fraction of model predictions within a factor of 2 of the observations (FAC2): 0.5≤ Mi
Oi
≤ 2.0

Normalised mean bias: NMB=

n∑
i=1

Mi−Oi

n∑
i=1

Oi

Normalised mean gross error: NMGE=

n∑
i=1
|Mi−Oi |

n∑
i=1

Oi

Pearson correlation coefficient: r = 1
(n−1)

n∑
i=1

(
Mi−M
σM

)(
Oi−O
σO

)

Table A2. The five performance measures relating modelled concentrations (Mi) with the observed values (Oi), used to assess model
acceptability.

Performance Definition Optimum Acceptability
measure value criterion

Fractional bias (FB) FB= 2 (O−M)
(O+M)

0 |FB |< 0.3

Geometric mean bias (MG) MG= exp
(
lnO − lnM

)
1 0.7 <MG< 1.3

Normalised mean square error (NMSE) NMSE= (O−M)2

O M
0 NMSE< 1.5

Geometric variance (VG) VG= exp
[
(lnO − lnM)2

]
1 VG< 4

Fraction of model predictions within a factor of 2 of the
observations (FAC2)

0.5≤ Mi
Oi
≤ 2.0 1 FAC2> 0.5
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The Supplement related to this article is available online
at doi:10.5194/gmd-9-4475-2016-supplement.
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