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Abstract

This thesis investigates how the mean-variance framework for portfolio optimiza-
tion compares against that of risk-parity and the minimum conditional value-at-risk
(CVaR) portfolio. Within the risk measure of portfolio variance, we find that the
performance of the mean-variance portfolio is highly dependent on a well-conditioned
sample covariance matrix while risk-parity appears to offer increased numerical sta-
bility. But with a regularized estimate, no method consistently outperforms the
other. We suggest a minor extension to the risk-parity allocation objective with a
resulting portfolio that exhibits superior properties in several central aspects. The
minimum CVaR portfolio is built around the alternative risk measure conditional
value-at-risk and we find that while the original problem formulation is prone to
overfitting, a regularized version shows promising results worthy of further investi-
gation.
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1
Introduction

This thesis is written in cooperation with Lynx Asset Management, a hedge fund
that trades on futures markets for equity indices, commodities, currencies and bonds.
Such funds are often referred to as Commodity trading advisors, or a CTA funds.
Lynx’s investment strategies are solely based on quantitative models, and the pro-
cess of deciding which positions to take in different assets can naturally be divided
into two steps. The first step is prediction, where based on historical data a predic-
tion model generates signals indicating the direction (usually combined with signal
strengths) that prices in different assets are expected to follow. The second step, the
portfolio step, aims at combining the available assets in a way that yields a favorable
risk/return profile based on the signals generated by the prediction model together
with some measure of risk. This thesis will focus on the second step, i.e. methods
for portfolio optimization, applied to trend following trading strategies.

1.1 Futures contracts

A futures contract is a type of financial derivative, meaning that its current value
or future payoff is a function of the price of some underlying asset, for example a
stock market index. Specifically it is a standardized forward contract. A forward
contract between two parties stipulates that one party must buy and the other one
sell, a specific underlying asset for an agreed upon price at a specified future time.
Forward contracts are well suited to hedge risk exposure to commodities, currencies
etc., in a way that provides physical delivery of the underlying asset at the time
of maturity. For example, say that a non-American company receives an order to
deliver a product in one year and will be paid $100 at that time. The value of $1
in the native currency will most likely be different at the time of payment, hence
the company has a risk exposure to the exchange rate between the two currencies.
To hedge this risk, the company may enter a forward contract such that it one year
from now will receive a specified amount in the native currency in exchange for $100,
thus removing the risk of the US dollar losing value compared to the native currency.

The exchange traded futures contract is better suited for pure speculation in the
price of the underlying asset. Similar to a forward contract there is no cost associated
with entering a futures contract. But to reduce the risk of default, there is a daily
cash settlement corresponding to the price change of the futures contract over that
day. This cash settlement is transferred between the two parties’ margin accounts
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1. Introduction

associated with the open position. The size of the margin account generally depend
on the value of the underlying asset and the volatility of its price.

1.2 Background
Classic portfolio theory mainly deals with the problem of allocating capital. That
is, the problem of investing a fixed capital in different available assets, typically by
buying stocks and bonds. For a CTA fund the problem becomes a bit different seeing
as when trading futures, only a fraction of the position value is required for a margin
account and the win/loss of a position is settled daily. Basically no capital is needed
to take on positions, thus the interest does not lie in the allocation of capital but
rather in finding an interrelation between positions in different assets (the portfolio)
that has desired properties based on current information. The absolute position sizes
will only scale the realized win/loss and is thus based on how much risk is desired to
undertake. Further, when trading on futures markets there is no practical difference
between attaining a long or a short position in an asset, making it easier to construct
a well hedged portfolio that has low correlation with the ”market portfolio”.

1.3 Thesis outline
The purpose of this thesis is to compare and improve three existing methods for port-
folio optimization, with the main aim of investigating if alternatives to the standard
Markowitz model could show superior portfolio properties. The second chapter will
present the input to these models in the form of data and parameters. Chapter 3 will
review three different methods for portfolio selection, their original form along with
suggested extensions. Both the theoretical aspects of the optimization problems as
well as efficient ways of solving them in practice will be covered in this chapter.
Chapters 4 and 5 cover the methods for evaluation together with the results and
include an investigation of how the models compare under different circumstances,
how sensitive their performance is to changes in the input parameters and finally
how the relative performance is dependent on the underlying trading model.
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2
Data and parameters

2.1 Price data and returns

The data set considered throughout this thesis contains daily observations of the
Open, Close, High and Low futures prices of 74 different underlying assets dating
back as far as 1980. The collection of assets are a wide mix of stock market indices,
commodities, currencies and bonds. As discussed in section 1.1, a futures contract
has a limited time to maturity after which the contract ceases to exist. Thus con-
structing a continuous time series containing the futures price for an asset involves
patching together price series for similar contracts over time. Although there will
generally be jumps in a raw combination of such time series, these jumps can be re-
moved in a way that preserves the daily futures price differences (but not the actual
price) which is convenient when analysis is based on returns.

Let {St}Tt=0 be the price series of an asset over time. To simplify analysis when
working with time series, a common practice is to transform the data in such a way
that it can be assumed to be a stationary process, implying a time independent
mean and variance. In general a financial price series St can not be assumed to have
a constant mean, but for the return series dSt defined as

dSt = St − St−1,

a close to zero mean can generally be assumed. Many empirical studies do however
show that financial return series have a time dependent variance, often referred to as
volatility clustering [3]. To remove this property and make time series for different
assets comparable the return series will be normalized as

dŜt = dSt
σt−1

, (2.1)

where σt is the standard deviation of the time series S at time t. Using σt−1 in
equation (2.1) keeps dŜ a martingale process. Note that with this normalization
returns are additive both over time and over assets where the unit now is standard
deviations. To obtain the normalized returns requires an estimate of the standard
deviation at each time step t. There are several ways to obtain such an estimate
but a popular method making use of both the Open, Close, High and Low price was
proposed by D.Yang and Q.Zhang [11].
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2. Data and parameters

Let Ot, Ht, Lt, Ct be the time series containing open, high, low and close prices of
an asset. The rolling variance estimate σ̂2

t for this asset will be estimated according
to Yt = (Ot − Ct−1)2 + 1

2(Ht − Lt)2 − (2 log 2− 1)(Ot − Ct)2

σ̂2
t = ασ̂2

t−1 + (1− α)Yt,
(2.2)

where α ∈ [0, 1] is a filter parameter that determines how fast ”old” data should
be forgotten. Letting α = 1− 1

τ
, the parameter τ can loosely be interpreted as the

mean of how far back in time the filter weights are placed.

The transformed time series of normalized returns is denoted by

dZt = dSt
σ̂t−1

,

and is assumed to have constant zero mean and unit variance. This time series dZt
will be referred to as normalized returns and is considered in all analysis throughout
this thesis.

2.2 Dependence structure
In order to construct a portfolio with a desired risk profile some measure of risk
needs to be defined. A very common measure is the standard deviation, or volatil-
ity, of portfolio returns.

Let our universe consist ofM assets for which the normalized returns can be modeled
as random variables with zero mean and unit variance. Further, let w ∈ RM be the
position vector defining a portfolio P . Each position wi has the unit of standard
deviations and thus |wi| describes how much risk is taken in asset i; the sign of
wi represents a long (positive) or a short (negative) position. The variance of the
portfolio returns RP can then be defined as

Var(RP ) =
M∑
i=1

M∑
i=1

wiwjσi,j,

where σi,j is the correlation coefficient between assets i and j. In matrix notation
this is written as

Var(RP ) = wTΣw,

where Σ ∈ RM×M is the correlation matrix and (.)T denotes the transpose of a vector.

While the considered time series for each asset is assumed to be stationary with a
time invariant variance, this is not assumed for correlations between assets. Thus
for all t ∈ {1, . . . , T} we seek to estimate

Σt = E[dZtdZT
t ] ∈ RM×M ,
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2. Data and parameters

where we now consider the vector form of returns, i.e. dZt ∈ RM . Using only the
second moment assumes that the squared expected values of returns are if non zero
much smaller than the expected squared value, that is

E[dZt,idZt,j]� E[dZt,i]E[dZt,j] ∀i, j.

The correlation matrix Σt at time t will be taken as a linear combination of daily
observations according to

Σt =
t−1∑
s=0

csdZt−sdZ
T
t−s,

where cs are filter coefficients. Again there is a wide variety of options in how to
set this coefficient but focus will be kept on variations of an exponential moving
average, i.e. a coefficient with exponential decay.

In practice problems can arise from the fact that the estimates for assets at the
beginning of their time series can be unstable and to deal with this a burn-in period
is introduced, meaning that we enforce that X number of historical data points are
required in order to use the correlation estimate. The main reason for this (besides
a stable estimate) is to ensure that the estimated matrix will be positive definite
which numerically may not hold for daily observations. This is a crucial property of
a correlation matrix ensuring a strictly positive variance of portfolio returns.
An exponential moving average of the daily observations can be written as

Σt =
t−1∑
s=0

(1− α)αsdZt−sdZT
t−s,

with α ∈ [0, 1]. Now the half-life s of a daily observation can be solved for by

(1− α)αs = (1− α)
2 ⇒ s = − log 2

logα.

Letting α = 1 − 1
τ
, s ≈ τ log 2. The parameter τ is used as input when estimating

Σt; some multiple of the half-life τ log 2 could be a reasonable way to set the burn-in
period.

2.2.1 Regularized correlation estimate
Estimating a high-dimensional correlation matrix quickly becomes a difficult prob-
lem. In a setting with M assets, there are (M2 −M)/2 parameters to estimate. In
our case of M = 74 that is 2701 parameters and it is safe to assume that there will
be large errors in many of these estimates.

A frequently observed property of the sample correlation matrix is a high condition
number [4], i.e. that the matrix is ill-conditioned and it is not uncommon to see close
to singular estimates. In many applications making use of the correlation matrix,
this property may amplify errors. An example is when solving a linear system
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2. Data and parameters

of equations where the solution involves the precision matrix (inverse correlation
matrix).
As we will see later, this problem applies to some methods for portfolio optimiza-
tion, and a common approach to increase numerical stability is regularization of the
sample correlation matrix.

Recall that for a normal matrix A, the condition number κA can be calculated as

κA = |λmax(A)|
|λmin(A)| ,

where λ refers to eigenvalues. It has been suggested in [7] that the larger eigenvalues
of the correlation matrix are generally overestimated whilst the smaller eigenvalues
are underestimated. To overcome the problem of an ill-conditioned matrix and
reduce the impact of estimation errors, Ledoit and Wolf proposed a shrinkage esti-
mator for the correlation matrix, a linear combination of Σ and the identity matrix
I [4]. Consider adding some multiple of the identity matrix to Σ according to

Σ̂ = Σ + λI, (2.3)

where λ ∈ R. As the correlation matrix is symmetric, it can be decomposed as

Σ = PDP T

where P is a orthonormal matrix consisting of eigenvectors of Σ, and D is a diagonal
matrix with the corresponding eigenvalues. It is easy to see that

PDP T + λI = P (D + λI)P T ,

and thus adding some multiple of the identity matrix to Σ will increase all eigenvalues
by the constant λ. Note that the eigenvalues’ ordering by size stays unchanged.
This approach deals with the potential problems of a close to singular estimate,
a high condition number, and the confidence placed on directions with very large
or small eigenvalues. Note in equation (2.3) that as λ increases towards infinity
the properties of the regularized correlation matrix approaches that of the identity
matrix. To simplify evaluation, the shrinkage estimator will be calculated as

Σ̂ = (1− λ)Σ + λI,

where λ ∈ [0, 1] will be referred to as the regularization coefficient or the degree of
regularization.

2.3 Prediction model
When constructing a portfolio we want to take into account our beliefs about fu-
ture price movements generated from some prediction model (or trading strategy).
CTA funds generally use a variety of trading strategies to meet their investment

6



2. Data and parameters

objectives; the subset that will be considered in this thesis is trend following mod-
els. Researching profitable prediction models is however outside the scope of this
work, and therefore a well known simple trend following model will be used for all
comparisons of portfolio strategies. This model is based on moving averages taken
on price series.

Working with the normalized return series dZt defined in section 2.1, consider the
normalized price series Zt computed as the cumulative sum of returns

Zt =
t∑

τ=0
dZτ ,

this series will have the unit of standard deviations instead of a currency. A moving
average of a price series can be interpreted as a trend with respect to some time
horizon, a slow moving average can be seen as the long term trend and a fast moving
average can be seen as the short term trend. An example is shown in figure 2.1.

Consider a trend following trading strategy where the expected return of an asset
is proportional to the difference between a fast exponential moving average (EMA)
and a slow EMA. That is, prices are expected to go up if the fast EMA (short term
trend) is higher than the slow EMA and vice versa. The absolute difference between
the EMA’s can be regarded as a trend strength.

As the difference between moving averages on a price series is a sequence of linear
operations, and the price series is made up of a cumulative sum of returns (also
linear) it is easy to deduce that this procedure can be simplified to one linear fil-
ter applied directly to the normalized returns. This trading strategy generating
expected returns µ, can thus be described as

µt =
t∑

s=1
csdZt−s,

where cs is the filter parameter. An example of how cs changes with s, the number
of days back in time, is shown in figure 2.2 where cs is scaled to sum to 1. This way
the behaviour of cs (depending on the two parameters for the fast and slow EMA)
can be summarized by one parameter, its weighted mean τ representing how fast
the model forgets historical data. Formally

τ =
∞∑
s=1

css,

and this parameter will be used as a reference to what time horizon the trading
strategy is considering.
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2. Data and parameters

Price
Slow EMA
Fast EMA

Figure 2.1: An example of a long and a short moving average taken on a price
series.
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Figure 2.2: The coefficient value cs placed on returns s time steps back in our
considered trend following trading strategy, here with ”mean” τ = 125.
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3
Models

3.1 Mean-Variance portfolio

The foundation of modern portfolio theory was laid out by Harry Markowitz in his
paper on Portfolio Selection in 1952 [6]. He proposed a model for constructing an
optimal portfolio, where optimal is under the assumption that investors are rational
and seek high returns with low risk.

Let y ∈ RM be a random variable representing the normalized returns (from section
2.1) of the M markets in our universe. Further, let y have an arbitrary distribution
but assume that its first and second moments are well defined and finite. That is

−∞ < E[yi] <∞ ∀i,
E[y2

i ] <∞ ∀i.

Consider constructing a portfolio consisting of these M assets, and let w ∈ RM

denote the positions vector. Then the random variable yp = yTw is the portfolio
return and its first two moments are computed as

E[yp] =
M∑
i=1

wiE[yi] = µTw,

E[y2
p] =

M∑
i=1

M∑
i=1

wiwjE[yiyj] = wTΣw, (3.1)

where µ and Σ denote the expected returns and the correlation matrix respectively.
In mean-variance (MV) analysis, only the first two moments are considered and the
risk of a portfolio is quantified by the variance of returns which will be approximated
by equation (3.1). The objective is to find an optimal trade-off between risk and
return, in the sense that the portfolio weights w maximize the expected return for
a given portfolio variance (propensity for risk), i.e. w solves the problem

max
w

µTw

s.t. wTΣw ≤ σ2
TGT .

(3.2)

With a linear objective function maximized over a convex set (Σ is positive definite),
this problem is clearly convex. For σ2

TGT > 0, the Karush-Kuhn-Tucker (KKT)
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3. Models

conditions are both necessary and sufficient to ensure global optimality [1, p. 142-
143]. The KKT conditions for (3.2) become

µ+ νΣw = 0M , (3.3)
ν(wTΣw − σ2

TGT ) = 0, (3.4)
ν ≥ 0,

where ν is the Lagrange multiplier. Now, equation (3.3) implies that

w? = 1
ν

Σ−1µ, (3.5)

with ν > 0 and it is easy to see that equation (3.4) is satisfied by choosing the
scale factor ν such that wTΣw = σ2

TGT . The fact of importance is that the input
parameter σ2

TGT only scales the weights equally and does not impact the relative
position sizes (the strategy). In other words the solution given by (3.5) (with ar-
bitrary constant ν) gives the interrelation between weights, and the final positions
are proportional to this solution, scaled to satisfy the target volatility of the portfolio.

The MV portfolio strategy has been praised in theory but often criticised for poor
performance in practice. First of all, there is the obvious problem of estimating the
(M2−M)/2 correlation parameters as well asM expected returns. Further, the solu-
tion in form of optimal weights is a function of the inverse correlation matrix and as
discussed in section 2.2.1 the sample correlation matrix is generally ill-conditioned
including close to zero eigenvalues. Because of this, directions corresponding to
small eigenvalues will tend to be overrepresented in the optimal portfolio and small
changes in the expected returns will cause large changes in the optimal weights re-
sulting in extensive turnovers (and thus large trading costs).

To reduce both the exposure to estimation errors and the condition number of the
sample correlation matrix, Σ in equation (3.5) will be replaced by the shrinkage
estimator (the regularized matrix) discussed in section 2.2.1. As previously stated
the absolute scaling of weights is of no interest in terms of strategy, hence the
regularization factor λ ∈ [0, 1] is the only manually set parameter and for the
purpose of comparison with other models the weights are scaled to give the portfolio
unit variance with respect to Σ.
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3. Models

3.2 Risk-Parity portfolio
Over the last few decades attention has shifted from the Mean-Variance framework
balancing risk and expected returns towards models that mainly focus on diversifi-
cation of risk [5]. The risk-parity (RP) portfolio falls under this category and aims
at allocating risk in the sense that each asset should have equal contribution to the
overall portfolio risk. Initially we will follow the reasoning and suggestions found in
[8][10].

The risk σP of a portfolio is defined in the same way as the previous section through
the standard deviation of portfolio returns, σP =

√
wTΣw. The marginal contribu-

tion to risk (MCR) for asset i can thus be obtained by

MCRi = ∂σp
∂wi

= (Σw)i√
wTΣw

.

Since it holds that
M∑
i=1

wiMCRi =
M∑
i=1

wi
(Σw)i√
wTΣw

=
√
wTΣw = σP ,

the quantity wiMCRi can be interpreted as the contribution from asset i to the
overall portfolio risk σP . As the objective of risk-parity is to let each asset contribute
equally to the portfolio risk, we seek to find a set of weights w ∈ RM such that

wiMCRi = σP
M

∀i,

which is equivalent to

wi(Σw)i = σ2
P

M
∀i. (3.6)

Different from the MV objective, this system of equations is non-linear and does
not have a closed form solution. Instead it will be shown that a position vector w
satisfying the RP objective in equation (3.6) can be found by solving the following
optimization problem

min
w

−
M∑
i=1

log(wi)

s.t wTΣw ≤ σ2
TGT ,

(3.7)

where σ2
TGT again is an input parameter. For now, assume that all weights are

positive so the objective function is well defined. As Σ is a positive-definite matrix
the constraint is clearly convex. Further, the objective function is a sum of convex
functions and is thus also convex. With σ2

TGT > 0 the Slater constraint qualification
holds and the KKT conditions are both necessary and sufficient for global optimality
[1, p. 142-143]. The KKT system for (3.7) becomes

−w−1 + 2νΣw = 0M (3.8)
ν(wTΣw − σ2

TGT ) = 0 (3.9)
ν ≥ 0,
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where ν is a Lagrange multiplier. It is easy to see that (3.8) is equivalent to

wi(Σw)i = 1
2ν = c ∀i, (3.10)

which is equivalent to the RP objective in equation (3.6) for some value of ν. Further,
as w−1 6= 0 equation (3.8) implies that ν > 0, thus (3.9) implies that wTΣw = σ2

TGT .
Using equation (3.10) yields N/(2ν) = σ2

TGT , i.e. ν? = N/(2σ2
TGT ) which agrees with

equation (3.6). These results also imply that a scaling of the input parameter σ2
TGT

by a factor β only results in an equal scaling in the weights by the factor
√
β.

To summarize we have shown that for positive weights w the problem (3.7) is convex
and thus have one and only one global optimum. We have also shown that at this
optimum the risk-parity objective in equation (3.6) is satisfied.

3.2.1 Extension to negative weights
The RP optimization problem in equation (3.7) has an implicit constraint that all
positions are kept positive. A slight modification to keep the objective function well
defined for negative weights is to consider the problem

min
w

−
M∑
i=1

log(|wi|)

s.t wTΣw ≤ σ2
TGT .

(3.11)

The objective function is now defined for negative weights, but it is no longer convex.
It is however symmetric in each quadrant, i.e. for each individual set of signs on the
M weights in our position vector w. As it was previously shown that the problem
is convex for the case of positive weights, it follows that problem (3.11) is convex
if a sign constraint is enforced on each weight wi. This further implies that there
is one portfolio (defined by w) that satisfies the RP objective in equation (3.6) for
each possible set of signs, which for M different assets equals 2M different portfolios
that are equivalent in the risk-parity sense. With an increasing number of assets it
quickly becomes infeasible to find them all. A suggested approach is to choose the
RP portfolio which has the same signs on each asset as the expected returns, i.e.
the signs suggested by the underlying trading strategy.

Assume that some expected return µ is provided from a trend following trading
model and we want to find the RP portfolio w whit sign(wi) = sign(µi), ∀i. Consid-
ering that the objective function of problem (3.11) is symmetric in each quadrant
the only difference from the case of all positive weights is the variance constraint.
In practice a convenient way of setting up this optimization problem is to rotate the
correlation matrix Σ with elements Σi,j according to

Σ̂i,j = Σi,j sign(µiµj),

and then solve the original problem (3.7) using positive weights. After obtaining
a strictly positive solution w? the only modification needed is set w? to agree with
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3. Models

the signs of µ. The drawback is of course that the weight signs need to specified
beforehand.

3.2.2 Modified risk-parity
The risk-parity portfolio is as mentioned a model focusing on risk-allocation and not
on expected returns. While this might be a favorable property for example in an
index fund, for a CTA fund where research focus lies on building prediction models
the portfolio optimization method should preferably make use of these predictions.
The previously considered risk-parity model discards information in the form of the
”strength” of a signal (prediction), only the directions are used.
We suggest an approach to include the signal strength by modifying the RP-objective
in equation (3.6) according to

wi(Σw)i = c|µi| ∀i, (3.12)
thus letting asset i carry a larger contribution to the overall portfolio risk if the
signal comes with a high level of confidence.

To find weights w that satisfy equation (3.12) the optimization problem in equation
(3.7) needs to be modified. Taking the steps of the KKT-system backwards it is
easy to see that the similar problem

min
w

−
M∑
i=1
|µi| log(wi)

s.t wTΣw ≤ σ2
TGT

(3.13)

yields such a solution. This is still a convex problem with the same solution prop-
erties as (3.7) in terms of existence and uniqueness. In later evaluations this model
will simply be referred to as the modified risk-parity portfolio (RPmod).

3.2.3 Lagrangian relaxation of the RP problem
We will make use of some Lagrangian duality theory in order to get closer to an
unconstrained optimization problem. Define the Lagrangian function L for (3.7) as

L(w, ν) = −
∑

log(wi) + ν(wTΣw − σ2
TGT ).

Then (for ν ≥ 0) the Lagrangian relaxation of (3.7) becomes
min
w

L(w, ν). (3.14)

Note that this is in fact a relaxation as L(w, ν) is less than or equal to the objective
function value in (3.7) for feasible w.
As (3.7) is a convex problem, L(w, ν) is also convex and one can show [1, p. 157-160]
that there exists at least one Lagrangian multiplier ν? ≥ 0 such that

w? solves (3.7) ⇐⇒


w? ∈ argminwL(w, ν?)
ν?(w?TΣw? − σ2

TGT ) = 0
w?TΣw? − σ2

TGT ≤ 0
(3.15)
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Further, as L(w, ν) is differentiable the condition that w? ∈ argminwL(w, ν?) is
equivalent to ∇wL(w?, ν?) = 0, and note that the right hand side of (3.15) reduces
to the KKT conditions of the original problem (3.7). This can be used by recalling
the calculations made below equation (3.10) where we found the explicit value ν? =
N/(2σ2

TGT ). For this ν? it holds that w?TΣw? = σ2
TGT where w? = argminwL(w, ν?).

Hence (3.15) reduces to

w? solves (3.7) ⇐⇒ w? = argminw L(w, ν?),

and thus the solution to the unconstrained, relaxed (convex) problem (3.14) with
ν = ν? also satisfies the original problem (3.7).
The same applies for the modified RP problem in the previous section. Similar
calculations yield ν? = (∑i |µi|)/(2σ2

TGT ). Note that the original RP problem is the
special case µi = 1 for all i.

3.2.4 Solving the RP optimization problem in practice
We focus on solving the Lagrangian relaxation of the modified RP problem, that is

min
w

−
M∑
i=1
|µi| log(wi) + ν?wTΣw (3.16)

and recall that with ν? = (∑i |µi|)/(2σ2
TGT ) the solution to this problem satisfies

(3.13) (let |µi| = 1 for all i to get (3.7)).

An efficient way to solve this is to use the Alternating Direction Method of Multi-
pliers (ADMM algorithm) that splits the problem into several smaller sub problems
that are solved iteratively. The details of this algorithm can be found in [2] and we
will follow the steps suggested by the authors. The ADMM algorithm is well suited
for solving problems that can be split up on the form

min
x,z

f(x) + g(z)

s.t Ax+Bz = c,

where typically the variables x and z comes from splitting the original objective
variable into two separable parts. Note that we can formulate (3.16) as

min
x,z

−
M∑
i=1
|µi| log(xi) + ν?zTΣz

s.t x− z = 0,
(3.17)

where the variable w has been split into two parts and at an optimal solution it
holds that x? = z? = w?.
In the previous section we defined the Lagrangian function for our problem. The
augmented Lagrangian for (3.17) is defined as

Lρ(x, z, y) = −
M∑
i=1
|µi| log(xi) + ν?zTΣz + y(x− z) + ρ

2 ||x− z||
2
2 (3.18)
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where y is the Lagrange multiplier and ρ is a penalty coefficient. The last term is
the penalty term and is the addition to the ordinary Lagrangian. The penalty term
is supposed to give robustness to the procedure of iterating towards a solution [2].
Equation (3.18) can be rewritten in scaled form as

Lρ(x, z, y) = −
M∑
i=1
|µi| log(xi) + ν?zTΣz + ρ

2 ||x− z + u||22 + ρ

2 ||u||
2
2

where u = (1/ρ)y is the scaled dual variable. From here, the iterative scheme of the
ADMM algorithm can be formulated as

xk+1 = arg minx
(
−
∑
i

|µi| log(xi) + ρ

2 ||x− z
k + uk||22

)
(3.19a)

zk+1 = arg minz
(
ν?zTΣz + ρ

2 ||x
k+1 − z + uk||22

)
(3.19b)

uk+1 = uk + (xk+1 − zk+1)

3.2.4.1 The x-update

To solve (3.19a), note that we can separate each xi and solve M independent one-
dimensional problems as it holds that

min
x

∑
i

(
−|µi| log(xi) + ρ

2(xi − zki + uki )2
)

=
∑
i

min
xi

(
−|µi| log xi + ρ

2(xi − zki + uki )2
)
.

For each xi this is a problem in one variable and we find the minimum by setting
the derivative to zero,

∂

∂xi

(
−|µi| log xi + ρ

2(xi − zki + uki )2
)

= 0

⇒ −|µi|
xi

+ ρ(xi − bki ) = 0 ⇒ x2
i − bki xi −

|µi|
ρ

= 0,

which has solutions

x?i = 1
2

bki ±
√

(bki )2 + 4|µi|
ρ

 ,
where bk = zk− uk. Note that one of these solution is always positive and the other
negative (assuming |µi| > 0). Since there is an implicit constraint of w > 0 in (3.16),
an convenient way to ensure this is to always choose positive solution x?+

i .

3.2.4.2 The z-update

The z-update is not as easily separable so we will keep the vector notation. Our
objective is to solve (3.19b), which is a quadratic function and the minimum is found
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by setting the gradient to zero. Letting b = xk+1 + uk yields

∇z

(
ν?zTΣz + ρ

2 ||z − b||
2
2

)
= 0 ⇒ 2ν?Σz + ρ(z − b) = 0

⇒ [2ν?Σ + ρI] z = ρb ⇒ z? = ρ [2ν?Σ + ρI]−1 b

Thus we need to solve a linear system of equations in each iteration. This procedure
can however be simplified by decomposing the matrix Σ once into the matrices
H and D such that HDHT = Σ, i.e. the columns of H contains the orthonormal
eigenvectors of Σ and D is a diagonal matrix of the corresponding eigenvalues. Then

zk+1 = ρH [2µ?D + ρI]−1 HT (xk+1 + uk),

where the matrix to be inverted is now a diagonal matrix. Hence the only compu-
tations needed in each iteration are a few matrix multiplications.

3.2.5 Exploring different RP portfolios
The risk-parity method was initially presented as long only method (only positive
weights) but was extended to deal with negative weights. In doing so, the optimiza-
tion problem for which the optimal solution is a RP portfolio became non-convex.
Recall that in a setup with M different markets, there are 2M portfolios that satisfy
the RP objective in each time step, i.e. one solution for each set of weight signs
(each quadrant). The question becomes which of these is the best choice. They are
all equal in the risk-parity sense and hence some additional criterion to compare
portfolios needs to be introduced.

To include a bit of the mean-variance objective, consider searching for the RP port-
folio with the highest expected return. There is however no convex optimization
problem that finds this portfolio. Instead, we will use the following greedy iteration
scheme

1. Start from the signs suggested by µ,
2. Change the sign in each market one by one and solve for the respective RP

portfolio,
3. If no improvement on expected return of the portfolio is found, stop. Otherwise

choose the sign change that gave the highest expected portfolio return and go
back to 2.
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3.3 Minimum conditional value-at-risk portfolio
This model, also called Least Expected Shortfall (LES), is built around a different
risk measure; the value-at-risk. The value-at-risk, or VaRβ, of a portfolio connected
to a confidence level β is informally defined as the smallest amount α such that the
probability of a loss larger than α is smaller than or equal to 1−β. The conditional
value-at-risk, CVaRβ, is then defined as the average loss given that the loss exceeds
this α.

In our universe ofM assets, assume that the the random variable y ∈ RM represents
the returns of all assets in some time step. Given that our portfolio is defined by a
set of weights w ∈ RM , the portfolio loss corresponding to these weights is −wTy.
If we further assume that y has a density p(y), the CVaRβ of this portfolio can be
defined as

CVaRβ(w) = 1
1− β

∫
−yTw≥VaRβ

(−yTw)p(y)dy. (3.20)

An optimization problem similar to that of mean-variance finding optimal weights
based on this risk measure would be on the form

max
w

µTw

s.t. CVaRβ(w) ≤ C,

where µ are the expected returns and C is a constant. But we will follow the steps
taken by Rockafellar and Uryasev [9], where focus lies on the dual of problem 3.3
and thus construct a portfolio that minimizes the CVaR for a given β, density and
a target return. As equation (3.20) depends on the value-at-risk, this appears to be
a complex problem. But it has been shown in [9] that if we define Fβ as

Fβ(w, α) = α + 1
1− β

∫
R
(yTw + α)−p(y)dy, (3.21)

where (x)− = −min(0, x), it holds that

min
w

CVaRβ(w) = min
w,α

Fβ(w, α),

where the right hand side is a convex problem. Thus the problem to solve for optimal
weights is

min
w,α

Fβ(w, α)

s.t. µTw ≥ µTGT .
(3.22)

The density p(y) included in equation (3.21) is however unknown. To deal with this,
it has been suggested in [9] to approximate Fβ using q samples yk from p(y) taken
as historical data. Define

F̃β(w, α) = α + 1
q(1− β)

q∑
k=1

(yTk w + α)−,

17



3. Models

where yk ∈ RM are historical returns. The approximation of problem (3.22) using
F̃β(w, α) can now be formulated as a linear program on the form

min
u,α,w

α + 1
q(1− β)

q∑
k=1

uk

subject to yTk w + α + uk ≥ 0 for k = 1, . . . , q
uk ≥ 0 for k = 1, . . . , q

µTw ≥ µTGT ,

(3.23)

where uk are auxiliary variables, µTGT is the target return for the portfolio and µ
contains the expected returns for each asset. For both mean-variance and the risk-
parity portfolios we found that the input parameter of a target variance (σ2

TGT ) only
scaled all weights equally. This also holds for µTGT in problem (3.23). Note that it
is possible to scale the problem (3.23) with a factor C as

min
u,α,w

C

(
α + 1

q(1− β)

q∑
k=1

uk

)

subject to C
(
yTk w + α + uk

)
≥ 0 for k = 1, . . . , q

Cuk ≥ 0 for k = 1, . . . , q
CµTw ≥ CµTGT ,

is an equivalent problem with the same solution as (3.23). Thus it is easy to see
that scaling µTGT with a factor C will only result in all variables (w, α, u) being
scaled with the same factor.

3.3.1 Extensions
The original model in equation (3.23) solving an approximation of the problem to
minimize the conditional value at risk has shown poor results in practice. This
section will walk through suggested steps to tackle issues including sensitivity to the
time horizon q, large turnovers and huge spread positions.

3.3.1.1 Using a fixed α

The first step will be to drop the direct connection to the definition of conditional
value at risk. Instead of minimizing the mean of historical portfolio returns below
the value at risk for some given confidence level, consider setting a fixed value for
α and thus removing one variable from the optimization problem. This problem
would be to find a portfolio that solves

min
w

q∑
k=1

ck(yTk w + α)−

s.t µTw ≥ µTGT ,

(3.24)

where ck can be taken as a simple mean (ck = 1/q) or be decreasing in time, i.e. old
data would carry less weight. Note that this formulation is similar to the dual of
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the mean-variance problem but with a different risk measure (the sum in equation
(3.24)).

Choosing a positive α in problem (3.24), the objective becomes to minimize the
average of portfolio losses larger than α. If instead α would be negative, the aim
moves towards pushing all historical portfolio returns towards some target return
defined by α.

There are a few things to consider in order for (3.24) to be a well formulated problem
and useful in practice,

• Without constraints on variance the norm of the solution is not really con-
trolled, meaning that the linear constraints might be easy to manipulate and
the resulting portfolio may be very far from the positions suggested by the
trading model (µ).

• Only considering extreme events (as intended with CVaR) will lead to a small
number of observations having an impact on the objective function and the
result will be sparse portfolios since w = 0 is an attractor (optimum of the
unconstrained problem).

• The terms (yTk w+α) and (µTw−C) are assumed to carry the same meaning,
i.e. be comparable in some way. Thus µ and yk should have at least similar
norms. Further, the values on α and C should preferably be connected.

3.3.1.2 Regularization

The potential issues laid out in the previous section need to be addressed. Consid-
ering that the linear program basically tries to fit a portfolio to historical data, this
problem might be prone to overfitting causing poor performance in practice. To
regularize the problem in equation (3.24), consider the following reformulation for
λ > 0,

min
w

λwTw +
M∑
k=1

ck(yTk w + α)−

s.t µTw ≥ ||µ||.
(3.25)

A penalty on the norm of the position vector is introduced to avoid manipulation
of the linear constraints. Further, the target return has been set to the norm of
the expected returns µ. This will have the effect that when λ → ∞, the solution
w? approaches µ and when λ → 0, w? approaches the solution to the previously
considered problem in equation (3.24). Hence λ is a way to control how far the
solution can go in directions agreeing well with historical returns, and also control
the angle between the vectors µ and w?. This is intended to reduce overfitting to
the input data.

To be a well formulated problem, α should be set in relation to ||µ||. Moreover, the
norms of µ and yk should preferably be of the same order of magnitude. For sim-
plicity consider letting ||µ|| = ||yk|| = 1. Then, both µTw and yTk w ∈ [−||w||, ||w|| ].
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As ||w|| ≥ 1, reasonable values for α could be α ∈ [−1, 1] or larger depending on
λ. The parameter λ will cause the optimal solution to over time have some average
norm ||w|| where deviations from ||µ|| suggest how large role the risk term (the sum
in equation (3.25)) plays in determining the optimum. The impact of this terms will
vary over time depending on how well µ agrees with the historical returns yk.

The problem of fixating a value on α remains. While the new penalty term on
the norm in equation (3.25) might help to avoid sparse portfolios, the value on α
should not be set to high. To guarantee that enough data points is used during the
optimization, α could be assigned a negative value. Then in order to keep the model
within the class of ”tail risk optimizers”, while letting α be negative, a suggested
extension is to put a power on the terms in the sum of equation (3.25) and thus
place a larger penalty on losses (that increases non-linearly with the size of the loss).

3.3.1.3 Piecewise linear penalty

To approximate the penalty on the terms in the sum of equation (3.25) with a power
larger than one, consider a sum of penalties for different values of α,

min
w

λwTw +
n∑
i=1

di

q∑
k=1

ck(ŷTk w + αi)−

s.t µ̂Tw ≥ 1,
(3.26)

where {αi}ni=1 is an increasing sequence and α1 < 0 (here ||µ̂|| = ||ŷk|| = 1). The
coefficients di will be used to control which power is approximated and with this
approach the need to specify the parameter α directly is eliminated. Instead, specify
which power to put on the deviations of yTk w from something close to its maximum
value (which will depend on λ). The coefficients di can be obtained though regression
after choosing a suitable power with a given sequence of α’s, in later presented results
the power (.) 3

2 has been used.

3.3.1.4 Efficient solver

The optimization problem in equation (3.26) can be formulated as a quadratic pro-
gram and there is a variety of standard software that deals with problems of this
kind. However, (3.26) becomes very computationally expensive to solve seeing as
with around one year of historical data together with a few different values on α the
quadratic program formulation will include over a thousand variables.

In this setting many of the solvers in standard software become inefficient to use in
practice, thus we suggest an ADMM formulation with faster convergence.

The unconstrained formulation of problem (3.26) is

min
w

λwTw +
n∑
i=1

di

q∑
k=1

ck(yTk w + αi)− + I∞(µTw ≥ 1) (3.27)
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where I∞(.) is an indicator function taking the value zero if the condition is true and
taking the value of infinity otherwise. To simplify notation below, let Y ′ ∈ Rq×M

denote the historical data of returns (q observations ofM assets) and let Y ∈ Rnq×M

contain n copies of Y ′. Further, let

b =



α1
α1
...
α1
α2
...
...
αn


and f =



c1d1
c2d1
...

cqd1
c1d2
...
...

cqdn


,

q

hence both b and f ∈ Rnq. Now problem (3.27) can be rewritten on ADMM form
as

min
x,z

λxTx+
nq∑
k=1

fk(zk + bk)− + I∞(µTw ≥ 1)

s.t Y x− z = 0,
(3.28)

where z ∈ Rnq. Taking the steps of the ADMM formulation as laid out in [2], the
augmented Lagrangian of problem (3.28) on scaled form is defined as

Lρ = λxTx+
nq∑
k=1

fk(zk + bk)− + I∞(µTw ≥ 1) + ρ

2 ||Y x− z + u||22,

where u is the scaled dual variable. Now the iterative scheme of the ADMM algo-
rithm can be formulated as

xi+1 = arg minx
(
λxTx+ I∞(µTw ≥ 1) + ρ

2 ||Y x− z
i + ui||22

)
(3.29a)

zi+1 = arg minz
( nq∑
k=1

fk(zk + bk)− + ρ

2 ||Y x
i − z + ui||22

)
ui+1 = ui + (Y xi+1 − zi+1).

The x-update

The objective is to solve problem (3.29a), which has the constraint µTw ≥ 1. With
a Lagrangian relaxation of this problem, the x-update is taken as the minimizer of

Lx = λxTx+ ν(1− µTw) + ρ

2 ||Y x− z + u||22,

where ν ≥ 0 is the Lagrange multiplier. Note that this is a quadratic problem in x,
hence the minimum is found by setting the gradient to zero.
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∇xLx = 2λx+ ρY T (Y x− z + u)− νµ = 0
⇒ (2λI + ρY TY )x = ρY T (z − u) + νµ

⇒ x? = g0 + νg1,

(3.30)

where
g0 = ρ(2λI + ρY TY )−1(Y T (z − u))
g1 = ν(2λI + ρY TY )−1µ.

(3.31)

To satisfy the explicit constraint of µTw ≥ 1, note that with the obtained solution
x?,

µTx? = µTg0 + νµTg1,

and if we can show that µTg1 always is positive, then this constraint can be satisfied
by increasing ν (if necessary). To see that this holds, note that

µTg1 = µT (2λI + ρY TY )−1µ > 0,

assuming that either Y has full column rank (the matrix Y TY is positive definite)
or that λ > 0. To summarize, the x-update x? is given by equations (3.30) and
(3.31) where ν ≥ 0 is taken as the smallest value such that µTx? ≥ 1. Note that the
matrix inversion in each iteration can be avoided by decomposing the matrix Y TY
once, thus reducing the time complexity using a similar approach as discussed in
section 3.2.4.2.

The z-update

The z-update is taken as the minimizer of

Lz =
nq∑
k=1

fk(zk + bk)− + ρ

2 ||Y x− z + u||22.

Letting r = Y x+ u, this can be written as

Lz =
nq∑
k=1

[
fk(zk + bk)− + ρ

2(zk − rk)2
]
,

which shows a convenient way of solving nq independent one-dimensional problems

min
zk

fk(zk + bk)− + ρ

2(zk − rk)2. (3.32)

Recall that (t)− = −min(0, t); thus three possibilities need to be considered.

Case z?k < −b k

The solution is found from
d

dzk

[
−fk(zk + bk) + ρ

2(zk − rk)2
]

= 0

⇒ z?k = fk
ρ

+ rk,
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which is only a valid candidate if z?k < −bk.

Case z?k > −b k

Here,
d

dzk

[
ρ

2(zk − rk)2
]

= 0

⇒ z?k = rk,

which is only a valid candidate if z?k > −bk. The third case if of course that z?k = bk.
The one of the valid candidates that minimizes equation (3.32) is taken as the zk-
update.
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4
Methods

4.1 Choice of filter parameters

4.1.1 Variance estimate
Section 2.1 discussed normalizing the time series of asset returns using estimates
σ̂2
t for each asset. As described in equation (2.2), this estimate is based on an

exponential moving average (EMA) with a parameter τ that roughly describes how
many days back in time the average weight is placed. Figure 4.1 shows the realized
average variance of the normalized return series for different values of τ ; recalling
the objective of unit variance reasonable values of τ appears to be between 15 and
60.

4.1.2 Correlation estimate
Recalling section 2.2, the correlation matrix Σ will be estimated using EMAs taken
on daily observations dZtdZT

t ∈ RM×M , i.e.

Σt =
t−1∑
s=1

csdZt−sdZ
T
t−s.

The coefficients in a single EMA may however decrease to fast (Σ contains a lot
of parameters) and it is possible to explore variations such as a double EMA (data
filtered recursively), or a combination of these. An example of the filter coefficients
behavior for different options is shown in figure 4.2 and the choice between these
will depend on how fast the correlation estimate should include new information
and forget old data.

All results presented in the next chapter is based on a correlation matrix constructed
as the average of a single and a double EMA, several values of the filter parameter
τ are tested.

4.2 Model evaluation
All methods for portfolio selection have been evaluated on the set of historical data
from section 2.1, using the same underlying trading strategies. All strategies are
trend following models generating expected returns µt ∈ RM for each time step t
and recall that daily time steps is considered. For practical reasons, it is assumed

25



4. Methods

10 20 30 40 50

1

1.2

1.4

1.6

τ

dZ2
i

10 20 30 40 50

1

1.1

1.2

τ

dZ2

Figure 4.1: Guidance in how to choose the filter parameter τ for the variance
estimate. Left: Average variance per market. Right: Average variance over all
markets.

that information received at time t cannot be used until time t+ 1. That is, based
on information at time t the portfolio model calculates optimal positions w, and the
next day (time t+1) we are able to obtain these positions by trading on the opening
price. The unit of standard deviations is kept when calculating revenues making it
possible to sum results over different assets that are traded in different currencies.

Sharpe ratio
The main key value that will be used to compare portfolio strategies is the Sharpe
ratio of portfolio returns. Let Rt, t = 1, . . . , T , denote the resulting revenue at time
t after implementing a portfolio strategy. The Sharpe ratio measures the return
(revenue) per unit of risk (standard deviation of returns), and is simply defined
as the ratio between the mean and the standard deviation of the time series Rt. A
common measure of reference is the annualized Sharpe ratio obtained by multiplying
with the factor

√
252 as there is roughly 252 trading days per year. That is,

Annualized Sharpe ratio = Mean(Rt)
Std(Rt)

252√
252

.

Drawdown
A complement to the Sharpe ratio will be to look at the drawdown properties of a
portfolio strategy, where a drawdown refers to a time period where the equity curve
is below the ”all time high”. For a managed fund a good selling point to present to
potential investors would be small and short drawdowns. The equity curve E(t) is
the cumulative sum of portfolio returns Rt and to simplify comparisons it will be
scaled to have an annualized standard deviation equal to 1,

E(t) = 1√
252 · Std(Rt)

t∑
τ=1

Rτ .
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Figure 4.2: A visualization of the filter coefficient as a function of s, the number
of time steps back. This example is for a filter ”mean” of τ = 125.

The drawdown series D(t) is then defined as

D(t) = E(t)−max
τ≤t

E(τ),

note that D(t) ≤ 0 and has the unit of annualized standard deviations. The quan-
tity that will be compared is the average of D(t).

Holding time
The final key value in evaluations is the holding time. This is meant to give a sense
of how fast a portfolio strategy changes its positions (weights w). A large holding
time indicates that positions are held over a longer period of time and will thus
result in lower trading costs. Let

Holding time = 2
∑M
i=1

∑T
t=1 |wt,i|∑M

i=1
∑T
t=1 |wt,i − wt−1,i|

. (4.1)
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5
Results

5.1 Comparing MV and RP

This section will show a comparison between mean-variance and the risk-parity port-
folios, evaluating the key values described in section 4.2 and their sensitivity to the
input parameters. This is a natural setup since these methods are more alike, they
use the same measure of risk and takes the same input. Results will be based on one
underlying trading strategy, namely the trend following model described in section
2.3 with τ = 200, which is considered to be following the long trend. TF will be the
abbreviation of the trend following model without portfolio optimization and recall
that RPmod is the modified risk-parity method from section 3.2.2.

To give an indication of how sensitive the portfolio models performance is to the
input, the evaluation will be made for several randomly drawn pairs of input pa-
rameters. Recall from section 4.1.1, that for the filter parameter τ estimating the
variance of price series using the Yang-Zhang method, reasonable values was found
to be between 15 and 60. Hence this parameter will be drawn uniformly in this
range, yzτ ∈ [15, 60]. The estimate of the correlation matrix has a similar filter
parameter τ . Since this estimate includes considerably more parameters a slower
filter will be used. This parameter will be uniformly drawn as Στ ∈ [80, 180]. For
each randomly drawn pair of parameters, the portfolio methods will be evaluated
for several degrees of regularization (denoted λ ∈ [0, 1]) of the correlation matrix Σ,
see section 2.2.1.

Figure 5.1 shows the comparison of the Sharpe ratio. For each portfolio method,
the shaded area contains the mean ±2σ of results from 1000 randomly drawn pairs
of parameters. For the trend following model (TF) without portfolio optimization
only the mean is shown. But as the parameter yzτ also effects the result of TF,
this variation is included in results for the portfolio strategies. A better measure for
comparison purposes may therefore be the marginal Sharpe, i.e. the difference in
Sharpe from applying the portfolio strategy. This is shown in figure 5.2 and gives
a clearer picture of the portfolio models contributions. It is clear that the modified
risk-parity model outperforms both MV and RP which show similar results. RP-
mod shows a smaller band width, less sensitivity to an ill-conditioned correlation
matrix and a significantly higher best case (for the λ resulting in the highest Sharpe).

Figure 5.3 shows the corresponding results for the average drawdown. Here both
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Figure 5.1: Trend following filter using τ = 200. The shaded area contains the
mean ±2σ based on random parameters yzτ ∈ [15, 60] and Στ ∈ [80, 180]. The
results are shown as a function of the regularization factor λ.

RP models show superior performance to the MV portfolio, and appear to be much
less sensitive to an ill-conditioned correlation matrix. The modified risk-parity again
shows the lowest sensitivity to input parameters in the form of a tight band width.

The resulting holding times as defined in equation (4.1) is shown in figure 5.4. All
models exhibit similar dependence on the regularization factor λ, but that a lower
condition number on Σ leads to smaller variations in portfolio positions should come
as no surprise. The original RP naturally has a lower holding period since it switches
positions in a binary way when µ changes sign. Note that when comparing MV and
RPmod it must be taken into account that RPmod showed better performance for
lower values on λ relative to MV, where it might take on larger trading costs. The
impact of trading costs will be further discussed in coming sections.

5.1.1 Factors that have an impact on results
Results over the full 35 year period do however not tell the whole story. The question
becomes when and why does one portfolio model perform better? To get an idea
of how the models differ in portfolio positions, consider the objective differences for
the very simplified case of full regularization of the correlation matrix,

MV: (Σw)i = cµi

RP: wi(Σw)i = c

RPmod: wi(Σw)i = c|µi|
⇒ {Σ = I} ⇒

w = µ

w = sign(µ)

w = sign(µ)
√
|µ|.

(5.1)
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Figure 5.2: Trend following filter using τ = 200. The shaded area contains the
mean ±2σ based on random parameters yzτ ∈ [15, 60] and Στ ∈ [80, 180]. The
results are shown as a function of the regularization factor λ.
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Figure 5.3: Trend following filter using τ = 200. The shaded area contains the
mean ±2σ based on random parameters yzτ ∈ [15, 60] and Στ ∈ [80, 180]. The
results are shown as a function of the regularization factor λ.
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Figure 5.4: Trend following filter using τ = 200. The shaded area contains the
mean ±2σ based on random parameters yzτ ∈ [15, 60] and Στ ∈ [80, 180]. The
results are shown as a function of the regularization factor λ.

Equation (5.1) shows that if ignoring correlations, the positions of the MV portfolio
is taken as the expected returns µ. The RP model becomes a binary version of the
underlying trend follower while the modified RP is something in between MV and
RP. RPmod ”shrinks” the expected returns while keeping the signs and could be
considered to place less confidence in the signal strength |µ|. A reasonable hypoth-
esis of when the RP methods outperforms MV in terms of Sharpe could therefore
be when the signal strength is a poor estimate of future price movements. This
could be quantified as when a binary version of the prediction model outperforms
the original model (TF) in terms of higher Sharpe. Comparing RPmod and MV,
figure 5.5 shows the difference in Sharpe between RPmod and MV plotted against
the Sharpe difference between a binary version of TF and the original TF (trading
sign (µ) instead of µ). The two quantities show a high degree of correlation as indi-
cated by the correlation coefficient ρ = 0.875. Further investigation however reveals
a parameter dependence for how the Sharpe of RPmod compare to that of MV.
The colormap of figure 5.5 shows the filter parameter yzτ in each evaluated pair of
parameters which clearly has an impact on these quantities. Figure 5.6 shows how
the marginal Sharpe of the respective model depend on this parameter and suggests
that MV has a linear dependence while RPmod appears less sensitive.

Keeping the hypothesis of when RPmod outperforms MV but reducing the impact of
input parameters, we will look at the rolling Sharpe over time. Figure 5.7 shows the
difference in rolling Sharpe one year back in time for the same quantities considered
in figure 5.5. These results are for the same underlying TF model, with parameters
yzτ = 30, Στ = 100 and (for MV and RPmod) the regularization factor λ that gave
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Figure 5.5: How the difference in Sharpe between MV and RPmod depend on
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parameters, using the degree of regularization resulting in the highest Sharpe for
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the variance estimate. Showing results for 1000 random pairs of input parameters.

33



5. Results

Figure 5.7: Showing similarities between the Sharpe difference between RPmod
and MV, and the marginal contribution of the signal strength |µ|.

the highest Sharpe ratio for the respective model. It is obvious that how the Sharpe
ratio compares between MV and RPmod during a time period greatly coincides with
the quality of the estimated signal strength |µ|. But it is unclear if this property is
the reason for the superior Sharpe properties of the modified RP portfolio. Figure
5.8 compares RPmod and MV and shows the corresponding results for the two parts
of the Sharpe ratio, average return and standard deviations of returns. Comparing
to figure 5.7 it appears as if the discussed factor, the quality of |µ|, only has an
impact on the mean return of the portfolio, for which the difference roughly seems
to even out over time. Instead this figure implies that the excess in Sharpe comes
from a lower realized standard deviation of returns (recall that both models were
scaled to have the same theoretical standard deviation of returns).

It is possible to speculate in why the modified risk-parity model shows lower realized
standard deviation of returns compared to mean-variance. As the name implies, RP
focuses on risk allocation while MV ”streches” out in directions with high expected
portfolio return. For the MV portfolio this usually results in spread positions (tak-
ing a long and a short position in two correlated assets) making it possible for the
position vector to have a larger norm under the same variance. Since the RP models
currently have a sign restriction, meaning that signwi = signµi ∀i, the RP portfolio
is relatively free from spread positions. A contributing factor to this property is that
since µ is based on a trend following trading strategy, correlated assets will tend to
have the same sign.
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Figure 5.8: Parts of the rolling Sharpe ratio, comparing RPmod and MV. The ex-
cess in Sharpe for the RPmod model appears to come from a lower realized variance
of returns.
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Figure 5.9: Parts of the rolling Sharpe ratio, comparing RPmod and MV when
searching for the RPmod portfolio with the highest expected return.

It may however be beneficial for the RP models to include the option of taking spread
positions. This theory has been tested through the method described in section
3.2.5, searching for a RPmod portfolio with a high expected return. The results
from this approach corresponding to figure 5.8 (same parameters) is shown in figure
5.9, and shows a trade-off between a higher average return but also a higher realized
standard deviation of returns. Experimental simulation does however suggest that
this approach has a positive impact on the Sharpe ratio over longer periods of time,
but also that the current iteration scheme results in much higher turnover (trading
costs). Taking the RP model down this path looks promising but requires further
development of the algorithm to maximize expected returns over the non-convex set
of RP portfolios.
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5.2 LES
The portfolio model described in section 3.3 that approximately minimizes the con-
ditional value-at-risk takes different input parameters compared to mean-variance
and risk-parity, and will be evaluated separately. As previously discussed, this origi-
nal model suggested in [9] has not shown any promising performance. Shortcomings
include a negative marginal Sharpe, high sensitivity to the input data, and large
turnover. Figures 5.10 and 5.11 show the Sharpe ratio and the holding time of this
portfolio as a function of its input parameters. Figure 5.10 suggests that no positive
marginal Sharpe can be expected, while figure 5.11 shows that this model has a
very low holding time compared to the prediction model (and also comparing to the
portfolio models in the previous section). As discussed in section 3.3, these issues
appear to come from overfitting to historical data. This section will instead focus on
results from the final version presented in equation (3.26) which will still be referred
to as Least Expected Shortfall (LES).

Figure 5.10: The Sharpe ratio of the minimum CVaR portfolio as a function of
its parameters q and β, compared to the prediction model TF without portfolio
optimization.

Results are based on the same underlying trend follower used in the previous section.
As discussed in section 3.3.1.3, an increasing sequence of α ∈ [−1, 1] is used and
the coefficients di are fitted to approximate the power (.) 3

2 . Figure 5.12 shows the
Sharpe ratio as a function of the time horizon q and the penalty parameter λ. For
comparison, the best results from previously considered models are included (best in
the sense of the highest Sharpe using this input). The LES model shows a significant
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Figure 5.11: The holding time of the minimum CVaR portfolio as a function of
its parameters q and β, compared to the prediction model TF without portfolio
optimization

boost in Sharpe with reasonably stable results for a range of values on q and λ. Recall
that as λ → 1, the LES model returns the input µ, and note that this figure only
shows λ-values up to 0.9. Similar results are exhibited for the average drawdown,
shown in figure 5.13. This quantity does however appear to be more sensitive to
the number of historical observations, q, for low values on λ. Figure 5.14 shows the
resulting holding times and it is clear that LES is a ”faster” model, i.e. has a higher
turnover. This will of course reduce the marginal contribution to Sharpe, but this
is not the main problem affiliated with implementing this portfolio method. The
next section will show that some reformulation of the optimization problem (3.26)
is required in order to be well suited for diversified portfolio selection.
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Figure 5.12: The Sharpe ratio of the LES model as a function of its parameters
q and λ. This is compared to the highest value obtain from other models for the
same prediction model (TF).
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Figure 5.13: The average drawdown of the LES model as a function of its param-
eters q and λ. This is compared to the value obtain from other portfolio models for
the same TF (µ) and the degree of regularization yielding the highest Sharpe in the
respective model.
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Figure 5.14: The holding time of the LES model as a function of its parameters
q and λ. This is compared to the value obtain from other portfolio models for the
same TF (µ) and the degree of regularization yielding the highest Sharpe in the
respective model.
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5.3 Results for different prediction models
All previous results has been for portfolio methods applied on one and the same
trend following prediction model. This section will test if the results follow when
varying this input µ. Recall from section 2.3 that the TF model (µ) was charac-
terized by its filter parameter τ describing the considered time horizon. The other
filter parameters will be kept fixed.

In the previous section the LES model showed stable results for q ∈ [230, 330].
Fixing this parameter to the middle point of this interval allows for an easier com-
parison. All models should now be evaluated for different TF models (TFτ ) and
their regularization factor λ ∈ [0, 1]. Figure 5.15 shows the maximum Sharpe ratio
for any value on λ as a function of the TF parameter τ . The observation that the
modified RP portfolio outperforms MV and RP in terms of Sharpe appears to hold
over the different trading models while MV and RP shows similar performance. The
results for the LES model stands out as it appears to be almost independent of the
input µ. Unfortunately this is the result of poor diversification, as the LES model
finds basically the same positions for similar inputs µ which is a terrible property
for a portfolio selection method. This feature is shown in figure 5.16 that shows
the average correlation of portfolio returns between models, before (TF) and after
applying the different methods of portfolio optimization. Obviously the LES model
destroys all possible diversification from trading different strategies (different TF
models), unless for λ close to unity for which it returns the input µ. Another ob-
servation from figure 5.16 is that both RP models appear to increase diversification
contrary to the MV model. Excluding the LES model from the remaining results on
the grounds of unacceptable diversification properties, figure 5.17 shows the aver-
age drawdown for the degree of regularization λ yielding the highest Sharpe in the
respective portfolio model (in other words the value on λ used in figure 5.15). This
figure suggests that the MV portfolio will exhibit better drawdown properties than
the RP models for ”fast” prediction models, i.e. following the shorter trend. Recall
that section 5.1 used a trend following prediction model with TFτ = 200.

For a final reality check, a trading cost will be included in evaluations. Keeping
the unit of returns, the trading cost will be in terms of daily standard deviations of
returns. The theory behind this is that since the information at time t is used to
trade at time t+1, prices can be expected to have moved some amount proportional
to the standard deviation during this time leap (over night). We will examine if the
marginal contribution to Sharpe is still positive when adding trading costs and also
if these costs affect the portfolio models differently. Figure 5.18 shows the highest
marginal Sharpe (for any λ) of the different portfolio models as a function of the
trading cost and the underlying trading model. These results are consistant with
previous analysis as the trading costs affect MV and RPmod in a similar way and
does not change how these models compare in terms of Sharpe. But as previously
discussed the original RP model naturally has a lower holding time and is thus more
affected by trading costs.
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Figure 5.15: The maximum Sharpe ratio, for any value on λ, as a function of the
TF parameter τ .
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Figure 5.16: The average correlation of returns between trading models, before
(TF) and after applying the different methods of portfolio optimization, as a function
of λ.
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Figure 5.18: The highest marginal Sharpe (for any λ) of the different portfolio
models as a function of the trading cost and the TF parameter τ .
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6
Discussion

The aim of this thesis has been to compare and improve three existing methods for
portfolio optimization, with the main purpose of investigating if alternatives to the
standard mean-variance model could show superior portfolio properties. The Sharpe
ratio of portfolio returns based on historical data has been the primary measure of
performance followed by the average drawdown of the equity curve defined in section
4.2. While the mean-variance portfolio has been criticised for poor performance in
practice, the results in sections 5.1 and 5.3 suggests that this is mainly because of
sensitivity to an ill-conditioned covariance matrix and with a regularized estimate
this model exhibits a positive contribution to both the Sharpe ratio and the average
drawdown over time. It can thus be considered a very viable option for portfolio
section.

Perhaps the most significant result in this thesis is that the modified RP portfolio
suggested in section 3.2.2 has shown superior performance compared to both MV
and the original RP in several central aspects. The results in section 5.3 suggests
that RPmod exhibits a higher marginal Sharpe for all considered time horizons of
the underlying prediction model. The drawdown results were however not unam-
biguous and suggest that the MV portfolio will have better drawdown properties for
”faster” prediction models. But how likely are these results to hold in practice? The
comparison in section 5.1 considered one underlying prediction model and focused
on investigating the sensitivity of the portfolio performance when varying the other
input parameters (filter parameters for the variance and correlation estimates). As
the correlation estimates is a grave approximation of reality, and small changes in
the variance estimate causes small variations in the return series, models for which
the performance is very sensitive to this input will be likely to perform worse out
of sample. The results point to the modified RP portfolio as the most stable to
changes in these inputs considering both the Sharpe ratio and especially the aver-
age drawdown, while MV and RP show similar behaviour. This suggests that the
observed performance of RPmod is more likely to hold in practice.

A closer look at how the rolling Sharpe ratio over time compare between the modified
RP model and MV was investigated in section 5.1.1 and revealed some interesting
results. Risk-parity focuses on allocating risk, and our results show that RPmod ex-
hibits almost a consistently lower realized variance of returns while over time keeping
an average return very close to that of MV. During shorter periods of time, how the
average return compares between MV and RPmod will depend on the quality on
the estimated signal strength in which RPmod places less confidence. Evidence has
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been found suggesting that there is potential gain to be made from searching for a
RPmod portfolio with a high expected return (recall that for M assets there is 2M
portfolios satisfying the RP objective in each time step). Finding the RP portfolio
with the highest expected return is however a non-convex optimization problem.
The greedy iteration scheme presented in section 3.2.5 requires modifications to be
useful in practice, the main issue being increased trading costs. Other possibilities
includes stochastic optimization algorithms with a well formulated fitness function.

The model from section 3.3.1.3, built upon the framework of minimizing the con-
ditional value-at-risk of a portfolio was evaluated in section 5.2 and showed some
very promising results suggesting that this alternative risk measure can contribute
greatly to both Sharpe and drawdown properties. However, it turned out that the
final form of the optimization problem was poorly suited for portfolio selection. The
issue being that the risk term (the sum) of equation (3.26) has a dynamic impact
on the solution, having the consequence that with two similar inputs µ the model
returns the same positions. In practice this will lead to a lack of diversification
when trading several different (but similar) prediction models. It may be possible
to counteract this behaviour by enforcing a more strict, explicit constraint on the
norm of the position vector. In other words enforcing that the angle between µ
and the position vector be smaller than some suitable constant. Further work could
focus on reformulating the ADMM algorithm in section 3.3.1.4 to fit this purpose.
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