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Coordination of cooperative

autonomous vehicles
Robert Hult, Gabriel R. Campos, Erik Steinmetz,

Lars Hammarstrand, Paolo Falcone, and Henk Wymeersch

Abstract

While intelligent transportation systems come in many shapes and sizes, arguably the most transfor-

mational realization will be the autonomous vehicle. As such vehicles become commercially available in

the coming years, first on dedicated roads and specific conditions, and later on all public roads at all times,

a phase transition will occur. Once sufficiently many autonomous vehicles are deployed, the opportunity

for explicit coordination appears. This paper treats this challenging network control problem, which

lies at the intersection of control theory, signal processing, and wireless communication. We provide

an overview of the state of the art, while at the same time highlighting key research directions for the

coming decades.

INTRODUCTION

The purpose of intelligent transportation systems (ITS) is to leverage advances in information technol-

ogy to alleviate major problems in the current road traffic system. Focus areas include the prevention and

mitigation of accidents, reduction of greenhouse gas emissions, and efficiency in terms of energy and

infrastructure utilization. A particularly problematic subset of traffic scenarios in terms of both safety and

efficiency are those where vehicles must coordinate the use of a common resource, such as intersections,

roundabouts and on-ramps. These are responsible for a significant fraction of traffic-related fatalities and

injuries [1]. Due to the high risk of accidents, these traffic scenarios are among the most regulated,

with vehicles guided simultaneously by traffic lights, signs, road-markings, and right-of-way rules. The

problems of traffic fatalities and inefficiency are expected to become even more pressing in the future, as

the global number of light vehicles (e.g., passenger cars and light trucks) is forecast to rapidly increase.

Proportional expansion of road infrastructure is undesirable in most countries, and might not even be

possible given continued urbanization and associated increase in population density. Hence, there is great

interest to improve safety, energy, and traffic efficiency on the existing and planned road infrastructure.
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Fig. 1: Vehicle coordination relies on a tight interaction between control, communication, and sensing.

Many of the aforementioned problems are caused by the human involvement in the coordination of

traffic. Studies have shown that over 90% of traffic accidents are completely, or in part, due to human

error [2]. This has led to a progressive shift in responsibilities from the human driver to dedicated

control systems, most recently in the form of autonomous vehicles, which aim to provide more efficient,

comfortable, and virtually accident-free road traffic. Autonomous vehicles are still limited in terms of their

sensing and coordination capabilities, as their actions depend on the on-board sensory data and models of

other vehicles’ behavior. As an example, a summary of the Urban Grand Challenge [3] mentioned that a

number of incidents could have been avoided if vehicles could anticipate the behavior of other vehicles,

and that vehicles should cooperate in order for autonomous driving to reach its full potential. The benefit

of cooperation was already recognized in a parallel track in vehicle automation, namely platooning,

which instead of complete autonomy promotes information sharing between vehicles and joint decision

making. In a platoon, the vehicles rely on vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)

communication to share information regarding the environment and internal states, and choose safe and

efficient control policies jointly [4].

The two tracks for automating vehicles have thus followed different approaches: one (the platooning

track) explicitly relies on communication among vehicles, while the second (the autonomous vehicle track)

does not. With the adoption of the IEEE 802.11p standard, as well as the possibilities of V2V and V2I

communication and other services under the future 5G wireless standard [5], the two tracks are expected

to merge, leading to a new type of large scale wireless networked control system. This merging will

likely take place in a piecemeal fashion, with first a ubiquitous availability of wireless communications,

and only later the gradual introduction of cooperative autonomous vehicles [6]. These vehicles will drive
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autonomously, but at the same time be able to leverage their communication capabilities for cooperative

planning and control, as well as cooperative perception and sensing, thus eliminating many of the traffic

safety and efficiency problems. The design and operation of such networks of cooperating vehicles places

enormous demands on the control, communications, and sensing sub-systems, as they must operate in

harmony across different brands and types of vehicle, with limited margin for error.

In this article, we give an overview of the coupling between control, communication, and sensing,

as visualized in Fig. 1. We provide a survey of the different control approaches and their associated

signal processing challenges. We hope that this article can provide an introduction for signal processing

professionals to the control-theoretic aspects of vehicle coordination and pave the way for a tighter

collaboration.

PROBLEM FORMULATION

The problem of coordinating a set of vehicles can be phrased as calculating the best control trajectories

for the individual vehicles that allow them to safely reach their destination in finite time (e.g., within a few

tens of seconds). In general, any solution should meet the basic requirements of safety (i.e., no collisions

occur) and liveness (i.e., destinations are reached eventually), while optimizing some performance metric.

The most important requirement is safety. Hence, vehicles may never be steered to states from which

future collisions are unavoidable. Secondly, the coordination algorithm must guarantee that all vehicles

are allowed to both enter and exit the coordination area in finite time so that permanent stops and traffic

deadlocks are avoided. Finally, a performance criterion is necessary to favor one among multiple solutions.

In summary, a coordination problem can be stated as a constrained optimal control problem, where a

performance criterion is optimized with respect to the vehicles control input trajectories, subject to safety

and liveness requirements:

minimize performance criterion (1a)

subject to safety constraints, (1b)

liveness constraints. (1c)

The constrained optimal control framework clearly allows one to conveniently accommodate perfor-

mance, safety, and liveness. However, as will be discussed later in this paper, the partial lack of formal

analysis tools limits their practical applicability. In particular, the impact of imperfect sensing data and

communication impairments on stability and feasibility (i.e., the capability of finding a solution that meets

safety and liveness requirements) of problem (1) is not completely understood under realistic commu-
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nication protocols and sensing scenarios. In the absence of sensing and communication impairments, a

simplified version of the generic problem (1) can be specified mathematically as follows.

Safety constraints: Consider a set of N vehicles (agents), whose motion is described by

ẋi(t) = fi(xi(t), ui(t), t), (2)

where xi ∈ Xi ⊆ Rn and ui ∈ Ui ⊆ Rm are the state and input/control vectors, respectively, ẋi(t) denotes

the time derivative of xi(t), and the sets Xi, Ui reflect physical and design constraints. Examples of such

constraints are acceleration limitations and the vehicles’ minimum and maximum speeds. Examples of

the state xi are vectors comprising the vehicle’s position and velocity in one, two, or three dimensions.

Let Gi(xi) describe the vehicle geometry, being the closed and compact set of spatial coordinates that

vehicle i occupies when its state is xi. Hence, a collision between two vehicles i and j occurs at time t

if

Gi(xi(t)) ∩ Gj(xj(t)) 6= ∅. (3)

Furthermore, we denote by Γi the closed and connected set of spatial coordinates that comprises the

paths of vehicle i so that a vehicle is on its path if Gi(xi(t)) ⊆ Γi. Provided that each vehicle stays on

its path, a collision between vehicles can consequently only take place within a critical region where

Γi ∩ Γj , i.e., where paths fully or partly overlap (i.e., where paths are the same, cross, or merge).

Liveness constraints: Assume that all paths Γi are fixed and constant, and let the target set Ti ⊂ Γi be

the set of spatial coordinates that vehicle i strives to reach (e.g., the road after an intersection, roundabout,

or onramp). If Gi(xi(t)) ⊂ Ti
is satisfied in finite time for all vehicles, the coordination is said to be deadlock-free and all vehicles

are eventually coordinated through the critical regions. For an illustration of the introduced notations, see

Fig. 2.

Performance criterion: In general, the cost for vehicle i, denoted by Ji(xi(t), ui(t)), can be expressed

as

Ji(xi(t), ui(t)) =

∫ +∞

0
Λi(xi(t), ui(t), t)dt,

where the stage cost Λi(xi(t), ui(t), t) could be, e.g., instantaneous power consumption so that Ji(xi(t), ui(t))

is the total consumed energy. Other examples of Λi(xi(t), ui(t), t) include a deviation from a target speed,

or a measure of discomfort for the driver.

Overall Problem and its Receding Horizon Formulation

With the introduced notations and concepts, the N -vehicle optimal coordination problem is now

naturally formulated as the following infinite time, constrained optimal control problem.
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Fig. 2: Example of a traffic coordination scenario at a three-way intersection. The geometries of vehicles 1 and 2 are highlighted

in red, and their paths Γi dashed and colored. The critical region, Γ1 ∩ Γ2 is shown in dashed red, the target sets T1, T2 in

green, and the paths before the critical region in yellow. The vehicle geometry Gi(xi(t)), depending on the vehicle state xi(t),

is also depicted.

Problem 1 (Optimal Coordination Problem (OCP)):

minimize
x(t),u(t)

N∑
i=1

Ji(xi(t), ui(t)) (4a)

subject to ẋi(t) = fi(xi(t), ui(t), t), xi(0) = xi,0 (4b)

xi(t) ∈ Xi, ui(t) ∈ Ui (4c)

Gi(xi(t)) ⊆ Γi (4d)

Gi(xi(t)) ∩Gj(xj(t)) = ∅,∀t ≥ 0, i, j 6= i (4e)

∃ T <∞ : Gi(xi(T )) ⊆ Ti, (4f)

where x(t) = [xT1 (t), ..., xTN (t)]T , u(t) = [uT1 (t), ..., uTN (t)]T represent the states and control signal for

each vehicle over the entire operating horizon (i.e., all t ≥ 0). The OCP is thus the problem of finding

the best admissible control inputs ui(t) for the dynamical systems fi(xi(t), ui(t), t) (4b), starting from

the initial conditions xi,0, that respect the state constraints (4c), while keeping all vehicles i within

their paths Γi (4d), avoiding collisions between vehicles (4e), and eventually clearing the coordination

region (4f). The problem captures the basic requirements: safety through (4e), liveness through (4f), and

performance through the objective function. Problem 1 can be conveniently reformulated in a discrete time

domain by discretizing the systems dynamics (4b). Furthermore, in order to solve a finite dimensional

problem, receding horizon control (RHC) or model predictive control (MPC) schemes can be used [7],

August 19, 2016 DRAFT



6

Past Future

Predicted output

Optimal input @ k

Optimal input @ k + 1

Output reference

Prediction horizon

Measured output

Previous inputs

k k + 1 k +N

Fig. 3: Illustration of a receding horizon control scheme. The sketch depicts how, in a receding horizon control algorithm, a

present decision is made based on the current state of the system and its predicted future behavior.

where a finite time optimal control problem is solved every sampling time instant. In particular, as

explained in Fig. 3, RHC seeks future input and state trajectories at every sampling time instant over a

finite time horizon, so as to minimize the cost function, subject to the constraints. The first element of

the computed control input sequence is applied to the system and, at the next time step, the problem is

formulated and solved over a shifted time horizon. This RHC approach also allows us to account for

the future, but by only committing the control action for the current time, we are able cope with limited

disturbances (e.g., due to imperfect sensing or communication). This is important, as we will see in the

next section.

CHALLENGES IN SOLVING THE COORDINATION PROBLEM

Although finite dimensional, solving Problem 1 in a receding horizon framework is extremely chal-

lenging, not only from the control perspective, but also due to imperfect communications as well as

uncertainties induced by the sensors. While all these challenges are inter-related, we break them down

as follows.

Control Challenges

The main control-related challenges involve first the ability to compute good, feasible control actions,

and, second, the ability to guarantee that the closed-loop system has certain desired properties. Regarding

the former, note that the mathematical problem of finding the actions of N vehicles that allows them

to pass the coordination zone without colliding is inherently a combinatorial problem. For a given

initial configuration, a multitude of feasible temporal crossing orders (i.e., different orders in which

one vehicle passes a coordination zone before another) might exist, and the optimal ordering can only

be found by a structured exploration of the different alternatives. It is therefore no surprise that even the
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problem of finding a feasible solution to (4) is NP-hard in general [8]. Exact solutions to the OCP are

therefore intractable for relevant problem sizes, and either heuristics or approximations must be employed.

Regarding the properties of closed loop control, several challenges are present. For instance, given the

severity of constraint violations in the optimal coordination problem, any controller needs to ensure

persistent feasibility. If satisfied, this property ensures that any action taken does not put the system in a

state from which no feasible actions exists, i.e., that no vehicle is ever put in a state from which a collision

is inevitable. The closed loop controller must also ensure stability, e.g., to ensure that the crossing order

does not change every time the solution is recomputed. Additionally, the aforementioned issues are linked,

as the computational challenges of the mathematical coordination problem for instance might promote

distributed solutions. In that case, the closed loop controller needs to guarantee the above properties while

the solution is obtained iteratively and possibly asynchronously over the wireless vehicular network.

Communications Challenges

Irrespective of how the OCP is solved, information exchange is required between the involved entities

(e.g., vehicles and possibly dedicated infrastructure). First and foremost, this includes the information

necessary to formulate the OCP, e.g., the models of vehicle dynamics, road geometry, state measurements,

and static and dynamic map information. In addition, it also includes information required to solve it, e.g.,

internal messaging in a distributed, iterative algorithm. Communication between entities will be greatly

affected by the impairments associated with wireless channels, including the inherent randomness and

correlation of the channel, interference due to simultaneous transmissions, and a limited communication

range. In combination with limited communication resources (bandwidth, power), this results in packet

drops and random latencies in packet arrivals. For automobile applications, it was pointed out that the

current standards for V2V and V2I communication cannot ensure time-critical message dissemination in

dense scenarios [9]. In general, it is desired to keep the communication load low, as wireless channel

congestion is envisioned to be one of the major challenges related to vehicular networks [10], [11].

Overall, the communication sub-system forms a bottleneck for the OCP, related both to its formulation

and the means by which it is solved.

Sensing Challenges

The vehicles’ own perception of their current location and the position of surrounding vehicles is

fundamentally uncertain. Both are based on observations from sensors such as cameras, radar, lidar,

global navigation satellite system (GNSS) and inertial navigation sensors, which deliver observations

that are corrupted by noise and clutter (spurious non-object detection). In addition, the sensors often fail

August 19, 2016 DRAFT



8

to detect objects, e.g., vehicles and pedestrians, leading to uncertainty whether all relevant objects are

known to the sensing system. Moreover, as each autonomous vehicle is equipped with a different sensor

setup with different types of observations, the accuracy of each vehicle’s perception of the current traffic

situation will typically vary over time and will not be coherent among the vehicles [12]. There are methods

to handle time-varying and non-coherent uncertainties, but these require that an uncertainty description

is communicated among the involved vehicles, further increasing the demand on the communication

system. Even with perfect communication, it is still non-trivial to associate the information from one

vehicle with other vehicles’ local understanding of the same situation. In the literature, this is called

the data association problem, which is known to be an NP-hard problem [13]. Processing and sharing a

large amount of data requires suitable compression algorithms in combination with application-specific

semantic representations, amenable for inclusion in the OCP. These different types of uncertainties are

generally ignored in RHC solutions to the OCP, as long as the immediate future is relatively certain.

However, in general we may not be able to guarantee performance, liveness, or safety of the resulting

solutions. Moreover, the solutions may no longer be stable, which is undesirable from the point of view

of the passengers.

SOLVING THE COORDINATION PROBLEM

Despite (or perhaps because of) the inherent difficulty of solving the OCP, many solutions have been

presented in the context of automated vehicles. These works have been carried out by several communities,

resulting in differences of focus and techniques. The resulting techniques can be classified into two groups:

rule-based and optimization-based.

Rule-based Solutions

In a large number of existing approaches, e.g., [14]–[16], the vehicle coordination problem is solved

using a set of fixed rules, implemented through an interaction protocol. This protocol specifies the

content and timing of communications, as well as the possible responses to actions of other participants.

To simplify the set of rules, protocols generally assume that individual agents take on partial local

responsibility (e.g., resolving rear-end collisions and lane keeping), while a coordination manager resolves

any multi-path conflicts at the intersection. A canonical protocol operates as follows: (i) a vehicle requests

permission to enter the coordination zone at a given time with a given velocity; (ii) the intersection

manager takes the request and decides whether it can lead to a collision-free crossing. If so, the request

is accepted, otherwise it is denied; (iii) when a vehicle’s request is denied, it decelerates and sends a new

request. Once a request is accepted, the vehicle applies a suitable control action to meet specifications
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on when it is allowed to use the coordination zone. From these simple rules, it follows that only requests

of vehicles with a safe option are accepted, while all vehicles for which no reservation can be found will

slow down and eventually stop.

The benefits of rule-based schemes are the distribution of computation and the economic use of the

communication resources (since the rule-set and interaction protocol is known to all participants). In

terms of performance, rule-based solutions are generally only possible to evaluate a posteriori as the

actions taken by the vehicles are generated implicitly by application of the rule set. The rules are usually

claimed to be chosen to optimize some objective (commonly throughput), but formal results are missing

in most cases. The general lack of formal guarantees in terms of the objective and constraints of the OCP

form the main weakness of rule-based solutions. Extensions of these works include liveness guarantees

[17], and refinements on the individual control policies [18]. The approaches presented in [15], [16], [19],

[20] share similar concepts but differ in terms of the set of rules determining the priority of each vehicle.

In summary, while rule-based methods may outperform current regulatory mechanisms, they most likely

under-utilize the potential of automated vehicles in coordination scenarios.

Optimization-based Solutions

In this second group of solution approaches, the coordination problem is treated as a mathematical

program from the outset and solved using standard tools and algorithms from optimal control. By

doing so, one can potentially separate the feasibility and optimality aspects, and use general, multi-

objective performance measures so derive formal guarantees for both performance and safety. However,

as a consequence, the computational complexity issues are inherited from the original problem. The

contributions of the surveyed papers [21]–[24] are therefore mainly reformulations, approximations, and

heuristics that aim to remedy the computational tractability issues. One class of solutions [21], [22] casts

an equivalent of the OCP as a safety verification problem. The verification problem entails determining

the largest set of (infinite horizon) control actions that avoid any conflict at all future times, and is used in

[21] to synthesize a least restrictive supervisor for human drivers: if the verification fails, the supervisor

overrides the human’s command, e.g., desired acceleration. Determining the overriding control signals

can be posed as a type of OCP wherein the objective corresponds to minimizing the total time needed

to clear the intersection or the deviation from the desired control signal, given by the human driver [22].

A more general approach to the OCP was considered in [23], presenting a hierarchical decomposition

of (4), where the problem is split up into one centralized time-slot allocation problem and several local

vehicle-level optimal control problems. In the latter, each vehicle computes approximations of its local

solutions, parameterized by its occupancy time interval Ti. Loosely speaking, the local optimal cost is
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expressed as a function of locally feasible Ti’s and transmitted to the central controller. The controller can

then find the optimal values of Ti and broadcasts this information to the vehicles. Using this approach,

the OCP is posed as the search for approximately optimal, non-overlapping occupancy time slots, which

is a rather small mixed integer optimization problem. Finally, yet another approach was taken in [24],

where the combinatorial aspect is resolved through a cooperatively pre-determined decision order (or

priority), enabling sequential decision making. Once a decision order is agreed upon, the highest priority

vehicle solves a local optimal control problem, ignoring all of the remaining vehicles. The solution is

communicated to the second vehicle in the ordering, who uses it to solve its own problem: finding the

best solution that crosses the coordination zone either before or after the first vehicle. In general, vehicle

i in the order will have access to the occupancy intervals of all higher priority vehicles and solves a small

local problem. An RHC extension of this approach was developed and demonstrated in [24], where at

each time instance both the priority assignment and sequential decision-making is repeated.

The primary benefits of the optimization-based approaches are the inherent flexibility and ease with

which different and tunable objective functions, dynamics and physical constraints are included in the

design phase, but also modified in the operating phase of the coordination system. This gives to the

designer, operator, or the passenger the control over what kind of solution the system outputs, and the

ability to change this during operation. Furthermore, extensive results regarding the issues of persistent

feasibility, stability and robustness of model-based and optimization-based control schemes (i.e., as in

model predictive control) are available in the literature, as are approximate schemes with quantifiable

sub-optimality. The optimization-based coordination schemes could potentially leverage such results and

formally provide the required safety guarantees. The major weakness of the optimization-based schemes

is the complexity, directly inherited from the original formulation (4), which grows exponentially with

the number of possible conflict relationships between the vehicles.

THE ROLE OF SIGNAL PROCESSING IN THE OCP

From the above discussion, it is clear that the OCP explicitly relies on sensing and perception algorithms

as well as on wireless communication for its formulation and solution, even though sensing and commu-

nication aspects have largely been ignored in the development of control algorithms. Conversely, specific

control applications and their demands are usually not considered in the design of sensing and perception

algorithms, nor in the design of wireless communication systems. In this section, we describe recent

progress in sensing and wireless communication, and how it relates to solving the OCP. Furthermore, we

discuss the need for a tighter integration between the different sub-systems, and present ideas on how

smart signal processing can be utilized to achieve this.
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Wireless Communication

Current vehicular communication standards (IEEE Wireless Access in Vehicular Environments and

ETSI ITS G5), rely on WiFi-like communication over 10 MHz channels in the 5.9 GHz band and have

defined both periodic awareness messages and event-triggered safety messages. These standards can

support low-rate (up to 10 Hz) broadcast messages between vehicles within a communication range of

about 500 meters [10], but will fail under the high load of the ultra-fast communication that is needed to

solve the OCP. In contrast, OCP-like problems have been considered explicitly in 5G research [25], with

assumed reliability of 99.9% and status updates of 100 ms, considering a steering frequency of 10 Hz.

However, these numbers only relate to the dissemination of the final control signal, not the collection of

information needed to pose the OCP, nor the iterative message exchange needed to solve it, nor consider

scalability with a large number of vehicles. To get a rough indication for how many vehicles can be

supported in a centralized implementation of the OCP, consider a communication system operating in

time division multiple access (TDMA) mode, between N vehicles and a controller. This means that each

vehicle is assigned a time slot where it during the uplink phase can transmit its state information to the

controller. Assume these time slots last around 100 µs, accounting for the actual payload (see Fig. 4), as

well as overhead (OH) in terms of guard intervals (GI), training sequences (TS) and cyclic redundancy

check (CRC) bits (for comparison, preamble and tail bits in 802.11p adds an overhead of approximately

45 µs). The computation, assumed to scale linearly in N , is set to 10 µs per vehicle, for some value of

the prediction horizon. In the downlink, 200 µs data packets with the control signals are sent back to

each of the vehicles. Since communication can never be guaranteed to succeed, we will consider that the

OCP operates under a minimal requirement in terms of the fraction of information that is needed from

the vehicles (say 99% or 99.9%). The communication system is then designed to retransmit data until the

requirement is met. Given this information, Fig. 5 depicts the number of vehicles that can be supported

for different control requirements and different communication failure probabilities. We observe that,

when either the channel is very reliable or when the control requirement is loose, then over 300 vehicles

can be supported. However, this number drops quickly when the channel becomes more unreliable. Note

that packet error rates in excess of 10% are not uncommon in practice. Based on this quick analysis, it is

easy to see that the communication forms a bottleneck for the OCP, especially in urban scenarios where

several hundred vehicles can be within communication range. To deal with the conflicting demands on

the communication system in terms of latency, throughput, and node density, new V2X communication

architectures were proposed in [26]. In addition, dedicated physical layer communication techniques, as

well as highly optimized medium access control algorithms will need to be developed, to complement
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Fig. 5: Number of vehicles that can be supported in the OCP as a function of the communication failure probability.

and support these architectures. Signal processing can further relieve the burden on the communication

sub-system by censoring less critical information, by tailored compression and semantic algorithms, and

by assigning communication resources to those vehicles that are expected to be the most critical to the

OCP. At the same time, signal processing is also expected to play an increasing role in the security of

the OCP (through ultra-fast authentication and verification), privacy preservation (rendering the OCP and

its solutions anonymous and untraceable), and analytics (both within a vehicle and between vehicles, in

particular after accidents).
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BUS

Fig. 6: Illustration of the sensing problem to support the OCP. The host vehicle (bottom) is approaching an intersection.

Information about the intersection is stored in a detailed map containing position of landmarks, geometry of lanes and traffic

rules, etc. The aim of the perception sub-system is to position the host vehicle, other relevant road users as well as other obstacles

(construction site) in the map such that the OCP can calculate an optimal path (shown in dashed). Both the host position and

the state of other vehicles (pose and velocities) are described, including uncertainty measures (depicted as grey ellipses). In this

example, four of the vehicles are cooperative and exchange information about their positions and current perception to each

other as well as the construction site.

Sensing and Perception

To support the OCP, the sensing and perception sub-systems have two main goals. First of all, to

estimate the host vehicle’s current location (typically on a highly detailed map). Secondly, to determine

the position of other road users using noisy sensor observations from onboard sensors such as camera,

radar, lidar, and GNSS. Both of these problems are challenging in themselves but can be alleviated by

allowing information exchange from cooperating vehicles. Fig. 6 depicts an illustration of the problem.

The self-localization problem, in this context, is typically solved by matching current sensor obser-

vations of the position of landmarks/features with position of sensor landmarks/features stored in a

detailed map. This map is either pre-constructed offline and streamed to the vehicle from the cloud, or

constructed sequentially and jointly with the estimation of the vehicle’s position (referred to as SLAM, for

simultaneous localization and mapping [27]). In the case where the map is pre-constructed, the mapping

and the localization problem can be separated and only the localization part needs to be solved online [28].

However, offline mapping is time-consuming and may need to be repeated periodically. In contrast, under
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SLAM, there is no need for offline mapping, rendering it less sensitive to changes in the environment.

However, the SLAM problem is inherently more difficult than self-localization in a pre-constructed map,

and thus tends to give inferior positioning accuracy. The problem of estimating the position of relevant

road users, including uncertainty measures, is known as a multi-sensor and multi-object tracking problem,

which is a well studied problem within several applications. In contrast to the classical formulation, objects

in an automotive setting typically give rise to multiple radar and lidar measurements, thus violating the

classical point source assumption (one measurement per object). Instead, objects such as vehicles, need

to be treated as extended objects, which is less studied and typically leads to more complex algorithms.

However, including multiple measurements per object also allows for a richer description of the object

such as orientation and physical dimensions.

Both self-localization and estimating the position of other road users can be performed cooperatively

[29]. For instance, for the latter problem, in addition to exchanging position estimates, information about

the physical extension can be shared, thus greatly simplifying the inference and reducing the uncertainty

in the position of the objects. However, as the sensor observations are typically not labeled, in order to use

the measurements properly we need to be able to correctly associate them with the information coming

from the other vehicles and accurately match them to the local view of the traffic situation, adjusting

for delays due to data transmission and asynchronous sensor operation. For self-localization with offline

mapping, the map resides in the cloud and can thus easily be shared among the cooperating vehicles. By

sharing position estimates in the joint map, together with uncertainty measures, each vehicle can jointly

estimate a more accurate ego-position as well as the position of all the other vehicles by fusing with the

local perception from the on-board sensors [30]. This way, the self-location problem and positioning of

other road users are solved simultaneously. This also leads to the possibility of quickly detecting and

sharing changes in the map (e.g., the construction site in Fig. 6). To increase the positioning accuracy,

estimates of relative position to a selected set of high quality landmarks can be exchanged between the

vehicles and used in a similar manner. For SLAM, cooperation is also beneficial. There are two types

of C-SLAM (cooperative-SLAM): centralized and distributed. In the former, the cooperating systems

communicate their position estimates and current sensor observations to the cloud where a joint map is

formed and shared among the systems [31]. In the distributed versions, however, this information is instead

communicated to the individual vehicles, which build and keep their own map using all the information.

Both of these C-SLAM methods require that the cooperating entities have a fairly homogeneous sensor

setup such that landmarks seen by one system are also detectable by the other systems. In addition, for

the detailed sensors typically used for autonomous vehicles, communicating raw sensor observations is

probably not feasible, thus compression and semantic labeling is needed.
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Fig. 7: Visualization of a part of the position trajectories along each road for 6 coordinated vehicles under perfect communication

and sensing. For each vehicle, the intersection starts at 0 [m] and ends at 10 [m]. The colored lines represent the trajectories

of each vehicle. The correspondingly colored boxes visualizes the time slots during which the intersection is occupied by each

vehicle. Note that collisions would occur if the time slots were to overlap. In this idealized case, the time slots are tightly

packed. Hence, there is no safety margin and the performance of the system in terms of the objective (5) is pushed to its limits.

PERFORMANCE OF THE OCP IN THE PRESENCE OF COMMUNICATION AND SENSING IMPAIRMENTS

To illustrate the role sensing and communication play in solving the coordination problem, we consider

an intersection scenario of the type illustrated in Fig. 2, where incoming vehicles periodically measure

and send their state information (uplink) to a centralized controller. The control is performed in a receding

horizon fashion, where the controller solves a finite time OCP, and broadcasts the resulting control actions

to the vehicles (downlink). We simplify the OCP by modeling vehicles as points with positions xi(t),

velocities ẋi(t) and controls/accelerations ui(t) = ẍi(t) along one dimensional trajectories, aligned with

the center of each road. The intersection is then modeled as an interval [Li, Hi] on each trajectory. The

objective (4a) is chosen to be

Ji(xi(t), ui(t)) = Qi

∫ tf

0
(vref

i − ẋi(t))2dt+Ri

∫ tf

0
u2i (t)dt (5)

where vref
i is a constant reference speed, tf is a time horizon, and Qi > 0, Ri > 0 are weights set by

the user. The liveness constraint (4f) is stated as as xi(tf ) ≥ Hi for all vehicles. Finally, the problem is

discretized and solved using standard optimization tools.
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Fig. 8: The velocity profile for the 6 coordinated vehicles. Note that the coordination is performed with relatively small adaptations

to the velocity of the vehicles well before the intersection is reached by the first vehicle (this happens at around 12.5 seconds,

as can be seen in Fig. 7).

First, we study an idealized case with perfect communication, no measurement errors, and a perfect

match between the dynamics used in the controller and the actual dynamics of the vehicle. We consider

an instance of the problem where N = 6 vehicles start 300 meters away from the intersection at a desired

speed of 80 km/h. Fig. 7 shows the solution to the idealized coordination problem in terms of position

along their trajectories. We see that the vehicles cross the intersection, one right after the other. Fig. 8

shows the velocity profiles of each of the vehicles. The vehicles immediately adjust their speeds to avoid

collisions in such a way that minimizes their total cost.

To analyze the impact of communication and sensing errors, we reduce the problem size and focus on a

two vehicle case. Both vehicles start 80 m away from the intersection with a speed of 70 km/h, which will

lead to a collision if the central coordinator does not intervene. We introduce a slight mismatch between

the true dynamics and the controller model of the dynamics, to avoid degenerate behavior in the presence

of packet losses. Packet losses can occur with a probability p ∈ [0, 1] in the uplink communication,

while the downlink communication is assumed to be perfect. In case a packet is lost, the controller can

use the latest received message from a vehicle to predict its current position and speed: the vehicle is

simply assumed to obey the previously issued control command. Sensing errors are generated by adding

Gaussian noise with a standard deviation σp and σv to vehicle i’s position and velocity, respectively.

Performance is evaluated in terms of (i) the total cost realized by each vehicle and (ii) the frequency

with which collisions occur. Fig. 9 shows the average cost as well as the collision probability, based on

10,000 Monte Carlo runs, as a function of the uplink packet loss probability p for different combinations

of sensing uncertainty. When there is no sensing uncertainty, we observe that both the probability of

collision and the average cost are small, provided p is small (since the true dynamics and OCP model
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Fig. 9: Average cost (blue) and probability of collision (red) as a function of uplink packet loss probability p for different

combinations of sensing uncertainty. From bottom to top: no measurement noise (diamonds), velocity measurement noise (circles),

position measurement noise (squares), and both position and velocity measurement noise (pentagons).

are well matched), but rapidly increase when p > 0.5. The reason for this increase is two-fold. First

of all, it is possible that the coordinator receives the first packet only when the cars are quite close

to the intersection, thus requiring more aggressive control and possibly leading to collisions. Secondly,

the controller may operate based on highly outdated information when successive uplink transmissions

fail, leading to an integration of the mismatch between true dynamics and OCP models, and thus to

severe state estimation errors at the controller. When there is sensing uncertainty in either position or

velocity, the controller must frequently revise its plan, leading to increases in cost, even under perfect

communication. Interestingly, position uncertainty has a higher impact than velocity uncertainty, since

velocity uncertainty must be accumulated over multiple failed transmissions to become significant. With

increasing packet losses, there is relatively limited impact on the cost, but collisions become more and

more frequent. We thus conclude that even when the OCP has an accurate model for each of the vehicles,

sensing uncertainties quickly lead to severe problems, unless the communication system is very reliable.

These problems can be avoided by formulating robust versions of the OCP, accounting for worst-case

uncertainties, but at a significant cost in terms of the performance.

THE ROAD AHEAD

The coordination problem for cooperative, autonomous vehicles has unique properties compared to

other networked control applications due to its safety-critical nature and the challenging communication

environment. In this article, we cast such coordination problems as constrained optimal control problems.
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We have highlighted key challenges in control, communication, and sensing, along with an overview of

recent progress in each of these disciplines. In particular, the theory of distributed optimal control is

deemed promising to further develop coordination algorithms that simultaneously accommodate safety

and performance. Moreover, uncertainties due to pedestrians and legacy vehicles can be included in such

formulations. Nevertheless, scalability and robustness are still challenging problems that deserve further

study, in particular, with respect to inherently unreliable exchange of information and limited sensing of

the surrounding environment.

Joint design paradigms, where control, sensing, and communications are simultaneously designed are

a promising path forward. While communication-aware control design paradigms exist (i.e., networked

control design frameworks), control- and sensing-aware communications need to be further developed in

order to facilitate the solution of the coordination problem. In particular, control-aware communication and

sensing systems can establish relationships between the vehicles’ mathematical models and the minimal

communication and sensing resources necessary to guarantee convergence, stability, and feasibility of

the coordination algorithm. Hence, algorithms could be designed so that the coordination plan and the

communication or sensing resource allocation are simultaneously decided, thus inherently prioritizing the

information exchange of critical vehicles (e.g., vehicles close to the intersection or vehicles that are most

likely to be involved in a predicted collision). We believe that joint design of control, communication and

sensing systems will pave the way for a safer, more efficient, and sustainable road transportation, and that

algorithmic aspects associated with signal processing implementations can help address the associated

real-world challenges. Proposing and analyzing such joint design frameworks is a formidable and long-

term research challenge, which will require cooperation among signal processing, communication, and

control communities.
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