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Towards accurate estimation of fast
varying frequency in future electricity
networks: The transition from model-
free methods to model-based approach

Alexander Stotsky

Abstract
Accurate estimation of fast varying fundamental frequency in the presence of harmonics and noise will be required for
effective frequency regulation in future electricity networks with high penetration level of renewable energy sources.
Two new algorithms for network frequency tracking are proposed. The first algorithm represents a robust modification
of classical zero crossing method, which is widely used in industry. The second algorithm is a multiple model algorithm
based on the systems with harmonic regressor. Algorithm allows complete reconstruction of the frequency content of
the signal, using information about the upper bound of the number of harmonics only. Moreover, new family of high-
order algorithms together with new stepwise splitting method are proposed for parameter calculation in systems with
harmonic regressor for the accuracy improvement. Statistical methods are introduced for comparison of two new algo-
rithms to classical zero crossing algorithm. The modified algorithm provides significant improvement compared to the
classical algorithm, and the algorithm with harmonic regressor provides further improvement of the statistical perfor-
mance indexes with respect to the modified algorithm.
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Introduction

High penetration level of (1) renewable energy sources,
(2) power electronics, (3) advanced transmission sys-
tems (like high-voltage direct current (HVDC) and oth-
ers) and (4) higher nonlinear loads and new types of
loads in future electricity networks will (1) essentially
reduce grid inertia, (2) induce faster variations of grid
frequency in the case of load events and (3) introduce
significant distortions (e.g. additional harmonics) in
voltage and current signals.

Fast deviations from fundamental frequency,
appearance of additional harmonics and noise will
result in reduction in efficiency of equipment, power
losses, heating, increased noise levels and others.

Frequency regulation, enabled via active power con-
trol of wind turbines, load-side control and others will
play an important role in future electricity networks for
performance improvement. Notice that reliable fre-
quency measurement is necessary for high-performance

network control as well as for system protection. Errors
in frequency estimates will result in erroneous control
action and even in frequency oscillations. This article
addresses a very important issue of accuracy improve-
ment of frequency estimation algorithms in the presence
of harmonics and noise (electrical noise, measurement
noise and others) in future electricity networks.

A brief overview of existing frequency estima-
tion methods is given below. All the methods are classi-
fied into two large groups: model-free methods and
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model-based methods. Recent modifications of zero
crossing method as a model-free method, which is
widely used in industrial applications, are listed in sec-
tion ‘‘Frequency estimation with zero crossing method
as a model-free approach.’’ Recent advances in model-
based methods are briefly summarized in section
‘‘Existing model-based frequency estimation methods
and further improvement of the accuracy.’’ The contri-
butions of this article are also outlined in section
‘‘Frequency estimation with zero crossing method as a
model-free approach’’ with respect to the previous
work and summarized in section ‘‘Existing model-based
frequency estimation methods and further improve-
ment of the accuracy.’’

Frequency estimation with zero crossing method as a
model-free approach

Zero crossing detection and calculation of the number
of cycles that occur in a predetermined time interval is
a direct, simple and widely used methodology for fre-
quency detection. A zero crossing is a point where the
sign of a signal changes. The signal is approximated by
linear function between two adjacent samples around
the zero crossing point for accurate detection of the
point.1 The frequency of the signal is estimated by
detection of the times when the signal crosses zero. The
time between each crossing is equal to the half of the
period of the signal. The method is a model-free
approach (the method of direct measurement), and it is
widely used in many applications (mostly in electrical
engineering applications) due to simplicity and robust-
ness with respect to disturbances which do not occur
around zero crossing point. However, the performance
of the method is significantly affected by the measure-
ment noise and higher harmonics. In particular, multi-
ple zero crossing events (which are close to each other)
appear due to measurement noise and higher
harmonics.

A number of modifications, which improve zero
crossing method for frequency detection in different
applications, are reported in the literature2–6 (see refer-
ences therein). These methods suffer more or less from
the following drawbacks: (1) slow response and inac-
curacies in the case of frequency tracking, (2) applic-
ability to certain types of signals and/or in post-
processing only and (3) computational complexity and
some others.

A simple and easy-to-implement modification of
zero crossing method with minimal delay, which is
applicable in real time for any type of signals, is
described in section ‘‘Modification of zero crossing
method: improvement of estimation accuracy.’’ The
algorithm overcomes the major part of the drawbacks
listed above. Statistical performance quantification
methods show significant improvement of the fre-
quency detection and tracking accuracy compared to

classical algorithm, see section ‘‘Simulation results and
comparisons with classical method.’’ Limitations of the
method are described in section ‘‘Limitations of the
method.’’ Further improvements can be made using
model-based estimation methods, introduced in section
‘‘Existing model-based frequency estimation methods
and further improvement of the accuracy.’’

Existing model-based frequency estimation methods
and further improvement of the accuracy

A number of interesting surveys on model-based fre-
quency estimation is available in the literature7–9 (see
references therein). A brief overview of existing fre-
quency estimation methods with application to electric-
ity networks is given below.

In general, frequency estimators can be classified as
single and multi-frequency estimators designed in con-
tinuous and discrete time domains. Multi-frequency
estimation can be multi-harmonic frequency estimation,
where each component of the signal is harmonically
related to fundamental frequency, and multi-tone fre-
quency estimation, where the signal contains multiple
frequency components, which are not related to each
other. Multi-harmonic frequency estimation is usually
applied in electricity networks, where each component
of the signal is harmonically related to the fundamental
frequency of network.

Recent developments in continuous time frequency
estimation are reported in previous studies10–12 for sin-
gle frequency case and in Xia13 for multi-frequency
case (see also references therein). Notice that errors
related to discretization of continuous time algorithms
together with difficulties associated with quantification
of the performance of discretized system in the presence
of different types of errors give the first preference to
discrete time algorithm design in digital signal process-
ing applications. Continuous time algorithms are more
suitable for estimation of periodic disturbances for con-
trol of continuous time systems.12 In addition, discrete
time design covers larger class of algorithms since many
discrete time algorithms do not have continuous time
counterparts. Finally, accurate estimation of multi-
frequency signals is not possible with single frequency
model.

Multi-frequency discrete time estimator, where the
model of multi-frequency signal is presented in the form
of linear difference equation with unknown coefficients,
which define the frequencies and amplitudes, can be
found, for example, in Stotsky14 (see also references
therein). The method which was designed for frequency
detection may be inaccurate in the case of frequency
tracking. Besides, this method and similar methods,
see, for example, Quinn and Hannan,9 are sensitive to
unmodeled harmonics, measurement noise, numerical
inaccuracies and others.
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Promising multi-harmonic frequency estimators are
based on optimization techniques, which maximize per-
iodogram as a function of frequency,15 or minimize the
error sum of squares with respect to unknown quanti-
ties, such as frequencies, phase shifts and coefficients.
The latter, which is often called nonlinear least-squares
method, is also associated with the maximum-
likelihood approach.16 The best model matching pro-
vides the most accurate estimates. However, a number
of extremum seeking algorithms, which are often rea-
lized as iterative search procedures, can be ineffective
due to local extrema and restricted region of attraction,
which in turn are present due to a highly nonlinear
nature of the problem. Computational complexity is an
additional problem associated with the search
procedures.

These difficulties can be avoided by applying multi-
ple model approach, where the set of models is defined
and each model is associated with different fundamen-
tal frequency. Residual error, which is associated with
this set, can be presented as a function of frequency and
the frequency which corresponds to the minimal value
of residual error is the true frequency. Moreover, mini-
mal residual error is also associated with the variance of
the measurement noise.17 Accuracy of calculation of
residual errors plays an important role in the frequency
determination, using this method. Each model in the set
represents the system with harmonic regressor, and the
parameters of the models can be calculated using
recently developed high-order algorithms,18,19 which
provide high accuracy of the parameter and residual
error estimation. The family of high-order algorithms is
extended in Appendix 1, where new stepwise splitting
method is also developed.

All the residual errors can be calculated simultane-
ously, using parallel calculations, which essentially
reduce execution time of the algorithm.

A simple and computationally efficient minimum
seeking algorithm, realized as the interval reduction
method, is developed in section ‘‘Systems with har-
monic regressor: multiple model approach’’ for fast
and accurate calculation of the minimal value of the
residual error and high-performance estimation of
the frequency and the variance of the measurement
noise.

Statistical performance quantification methods show
significant improvement of the frequency tracking accu-
racy of model-based algorithm described in section
‘‘Systems with harmonic regressor: multiple model
approach’’ compared to classical model-free zero crossing
algorithm and modified algorithm (described in section
‘‘Modification of zero crossing method: improvement of
estimation accuracy’’), see comparisons in section
‘‘Comparison of the frequency tracking algorithms’’ and
discussion in section ‘‘Conclusion and discussion: the
transition from zero crossing method to complete recon-
struction of the frequency contents of the signals.’’

Finally, the contributions of this article can be sum-
marized as follows:

1. New simple and easy-to-implement modification of
zero crossing method with minimal delay, which is
applicable in real time for any type of signals;

2. New multi-harmonic frequency estimator based on
multiple model approach with simple and compu-
tationally efficient minimum seeking algorithm for
residual error, realized as the interval reduction
method;

3. New family of high-order algorithms and new step-
wise splitting method for accurate calculations of
the inverse of information matrix.

Modification of zero crossing method:
improvement of estimation accuracy

Description of the method

Accuracy improvement in detection of location of zeros
using information around two adjacent samples around
the zero crossing point is the main idea for robust mod-
ification of classical zero crossing method. A local
coordinate system in the form of the window is defined
as soon as a zero is detected using conventional method
(see Figure 1). The accuracy of zero detection is
improved after several steps defined by the window size
mentioned above. Linear model of the signal is fitted to
the measured data in the least-squares sense in the local
coordinate system. Zero is calculated with linear inter-
polation in the system of local coordinates and trans-
formed to the global coordinate system. Notice that the
window is usually asymmetric with respect to zero
crossing point. Few samples only are used after zero
crossing point, minimizing a delay in frequency estima-
tion for control. Figure 1 shows that this method can
be successfully applied for lumping together two zeros
which are close to each other.

Notice that double/multiple zeros which are close to
each other is a significant problem in the classical zero
crossing frequency detection algorithm. The time period
calculated for these two neighboring zeros is very short,
and the estimated frequency which is very high is usu-
ally rejected as an outlier. The methods, which pick up
one of these zeros rejecting other ones, have low estima-
tion accuracy, and the histogram method for averaging
multiple zeros4 is effectively applicable for a certain
type of signals only. The method proposed in this arti-
cle is efficient for lumping together multiple zeros which
are close to each other and significantly improves accu-
racy of detection of zeros in the presence of any distur-
bances around zero crossing point (see Figure 1(b)).
The method has one parameter only to be adjusted, this
being a size of the window. The method is applicable
for a wide class of signals and the performance can be
restrictedly adjusted via the choice of the window size.
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Simulation results and comparisons with classical
method

The performance of modified algorithm is quantified in
Figure 2, where two histograms, which evaluate estima-
tion accuracy of the system frequency, are presented. A
signal with the frequency of 50Hz with the third and
the seventh harmonic was contaminated with a white

noise and processed by classical and modified zero
crossing algorithms. Statistical methods are applied for
comparison and quantification of the performance of
classical and modified zero crossing algorithms.
Statistical methods are associated with one-sample t
and two-sample F hypothesis tests. One-sample t-test
shows that both algorithms estimate actual frequency

Figure 1. A signal with the frequency of 50 Hz with the third and the seventh harmonic contaminated with a white noise is plotted in
subplot (a) aiming to show double zero avoidance with improved zero crossing detection algorithm. The signal for which zero crossing
should be detected is plotted with a blue line. The system of local coordinates in the form of the window is defined as soon as a zero
(plotted with a round sign of a black color) is detected using conventional method of linear interpolation between two adjacent samples
around the zero crossing point. Linear model of the signal (plotted with a red line) is fitted to the measured data in the least-squares sense
in the local coordinate system, and zero of linear function (plotted with a round sign of a black color) is calculated using linear interpolation.
A signal with the frequency of 50 Hz with third and seventh harmonics contaminated with a white noise is plotted with a blue line in
subplot (b). The first harmonic is plotted with a green line. A linear model of the signal (plotted with a red line) is fitted to the measured
data plotted with a blue line around zero points in the least-squares sense. The frequency determined by classical zero crossing algorithm is
50:934 Hz and the frequency determined by modified algorithm is 50:2232 Hz. Modification of zero crossing algorithm described in
section ‘‘Modification of zero crossing method: improvement of estimation accuracy’’ essentially improves estimation accuracy in the
presence of noise and harmonics.

Figure 2. A signal with the frequency of 50 Hz with the third and the seventh harmonic was contaminated with a white noise and
processed by classical and modified zero crossing algorithms. The histogram of frequency estimation with classical zero crossing
algorithm is plotted in subplot (a). The histogram of frequency estimation with modified zero crossing algorithm is plotted in subplot (b).
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of 50Hz statistically correct. The test indicates a failure
to reject the null hypothesis that the mean value of
both data sets is 50Hz at a sufficiently low significance
level. Two-sample F-test for equal variances shows that
the reduction of the variance provided by the modified
algorithm is statistically significant. It means that mod-
ified algorithm provides much better accuracy of the
frequency detection.

Limitations of the method

A time delay associated with the curve fitting is the first
drawback of this method. Besides, the accuracy of esti-
mation deteriorates (due to linearity of the model
around zero crossing point, see Figure 1) with more sig-
nificant influence of harmonics. The model-based fre-
quency estimation method, described in the next
section, overcomes these difficulties.

Systems with harmonic regressor:
multiple model approach

Description of the minimal residual method

Suppose that a measured signal yk can be presented in
the following form

yk =uT
ku�+ jk ð1Þ

where u� is the vector of unknown constant parameters
and uk is unknown harmonic regressor presented in the
following form

uT
k = ½cos(q0k) sin(q0k) cos(2q0k)

sin(2q0k) . . . cos(hq0k) sin(hq0k)�
ð2Þ

where q0 is unknown fundamental frequency of net-
work (e.g. q0 =50 Hz or q0 =60 Hz), h is unknown
number of harmonics and jk is a zero mean white
Gaussian noise, k=1, 2, . . . is the step number. The
system has three following unknown quantities: the
fundamental frequency of network q0, the number of
harmonics h and the vector of parameters u�. It is
assumed that the upper bound �h of the number of har-
monics is known and hł �h. The algorithm for fre-
quency and parameter estimation can be presented in
the following steps, which are executed in each step k:

Step 1: Multiple model estimation for initial set of fre-
quencies. Define the frequency interval as the following
vector of size r

f1 = ½q̂11 q̂12 q̂13 . . . q̂1(r�1) q̂1r� ð3Þ

where the frequencies q̂1i, i=1, . . . , r, rø 3 are pre-
sented in increasing order. The frequency interval
should cover unknown fundamental frequency of the
system q0.

Substep 1: Multiple model estimation of the variance.
The regressor vector ûi is introduced for each fre-
quency q̂1i as follows

ûT
i = ½cos(q̂1ik) sin(q̂1ik) cos(2q̂1ik)

sin(2q̂1ik) . . . cos(�hq̂1ik) sin(
�hq̂1ik)�

ð4Þ

forming a multiple model of the regressor with the fre-
quencies corresponding to the components of the vector
(3). Notice that the size of the model of each regressor
(4) is larger than or equal to the size of unknown regres-
sor (2) since hł �h.

Multiple model of the signal (1) with adjustable
parameters ui is presented in the following form

ŷi = ûT
i ui ð5Þ

The signal yk is approximated by the multiple model
ŷi for each frequency corresponding to the components
of the vector (3) in the least-squares sense in each step k
of a moving window of a size w.

The frequency estimation algorithm is based on
minimization of the following error Ei with respect to
argument i, which corresponds to the certain frequency
in the multiple model (5)

Ei =
Xp= k

p= k�(w�1)
(ŷpi � yp)

2 ð6Þ

for a fixed step k, where køw.
The least-squares solution for estimation of the para-

meter vector ui can be written as follows

Aiui = bi ð7Þ

Ai =
Xp= k

p= k�(w�1)
ûpiû

T
pi ð8Þ

bi =
Xp= k

p= k�(w�1)
ûpiyp ð9Þ

where the matrix Ai is an information matrix, and the
parameter vector ui satisfies (7). The parameter vector
is calculated with high accuracy using high-order algo-
rithms, described in Stotsky,18,19 see also Appendix 1
and section ‘‘Accuracy, high-order algorithms, stepwise
splitting and parallel computing’’ for details.

Finally, the variance Vi of the measurement noise jk,
associated with the multiple model is defined as follows

Vi =
Ei

w� 2�h� 1
ð10Þ

Substep 2: Calculation of the frequency via minimization
of the variance. The model for Vi is defined as follows

V̂= aq2 + bq+ c ð11Þ
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where q is the frequency and a, b and c are the coeffi-
cients calculated using least-squares method to provide
the best fit of Vi over the frequency interval f1.
Estimated frequency is defined as

�q1 = � b

2a
ð12Þ

which corresponds to the minimal value of V̂, which is
also an estimate of the variance of measurement noise jk.

The frequency �q1 is used as the central point for
interval, which should be chosen in the next step.

Notice that the initial frequency interval (3) should
be sufficiently large in order to cover unknown fre-
quency. However, inaccuracies in calculations of the
variances Vi for each model, especially in the points
located close to the boundaries, result in a biased esti-
mate of the frequency. These inaccuracies have more
significant impact on larger intervals and therefore the
frequency interval should be reduced in the next step of
estimation for the sake of accuracy improvement.

Step 2: Multiple model estimation for updated set of fre-
quencies. Define updated frequency interval as the fol-
lowing vector of size r

f2 = ½q̂21 q̂22 . . . �q1 . . . q̂2(r�1) q̂2r� ð13Þ

where the range of the frequency interval defined by f2
in (13) is reduced with respect to the range of the fre-
quency interval defined by f1 in (3), that is,
(q̂2r � q̂21)\ \ \ (q̂1r � q̂11).

Notice that the frequencies from the interval f1 can
be included in the interval f2 (if they fit to this interval),
which improves curve fitting accuracy without addi-
tional computational effort. The substeps 1 and 2 are
repeated for this new set of frequencies (13) resulting in
updated estimate of the frequency �q2, which is used as
central point for interval defined in the next step.

Reduction of the range of the interval in each step
ensures the convergence of estimated frequency �qz,
where z=1, 2, . . . to its true value q0 as the step num-
ber increases and the range of the interval reaches its
minimal value.

This algorithm is the fast convergent algorithm due
to the model-based minimization of the variance in each
step and few steps are required only for estimation of
the fundamental frequency with a very high accuracy.
Notice that two steps are usually sufficient for accurate
estimation of the frequency.

The algorithm of minimization of the variance and
estimation of the frequency in two steps is illustrated in
Figure 3. A time chart of the frequency and variance
estimation for the same case is plotted in Figure 4.
Finally, estimation of the first harmonic of the signal is
plotted in Figure 5.

Notice that any overtones, including half harmonics,
can be included in the model (4) provided that these
overtones are present in the signal (1). Inclusion of

Figure 3. Estimation of the frequency in two steps. The
following set of frequencies is selected in the first step of
estimation ½48:5 49 50 50:5 51� Hz. This set covers actual
frequency of 49:5 Hz. Each point in this set is plotted with a star
sign of a blue color. The frequency of 49:5382 Hz was
determined after the first step of estimation as an argument
corresponding to the minimal value of parabola plotted with a
blue line. The frequency of 49:5382 Hz is used as the central
point of new set of frequencies with the range, which is reduced
compared to the range of the initial set. The following set of
frequencies was determined in the second step of estimation
½48:9132 4949:2257 49:5382 49:8507 5050:1632� Hz, where the
frequencies 49 and 50 Hz were transferred from the initial
interval. Each point in this set (excepting the frequencies of 49
and 50 Hz) is plotted with a round sign of a red color. The
frequency of 49:5079 Hz was determined in the second step of
estimation in the same way. Minimal value of parabola plotted
with a red line corresponds to the actual value of the variance of
measurement noise, which is equal to 0:005.

Figure 4. A time chart of frequency estimation is presented in
the first subplot, where the frequency signal is plotted with a
black line and actual frequency, which is equal to 49:5 Hz, is
plotted with a red line. The second subplot is a time chart of
estimation of the variance of measurement noise, which is
plotted with a black line, and actual variance, which is equal to
0:005, is plotted with a red line.

Stotsky 1169

 by guest on November 17, 2016pii.sagepub.comDownloaded from 

http://pii.sagepub.com/


additional number of overtones increases the size of
the regressor vector. This size together with the win-
dow size w can be reduced using the stepwise regres-
sion method of subsequent inclusion of the
harmonics/overtones in the regressor.17 This increases
computational complexity of the algorithm, but pro-
vides more accurate estimate in the case of fast fre-
quency transients.

Notice also that a priori (inaccurate) estimate of the
frequency obtained with other methods such as zero
crossing method, the method of estimating coefficients
of difference equations9,14 and others can be used as a
starting point for choosing initial frequency interval in
Step 1. Accuracy of the frequency estimate can be
improved further, using the method described in this
section. Computational complexity of the algorithm
can be reduced, since a minimal length of the interval
can be used only (and the algorithm converges in one
step in this case), provided that a priori estimate is
accurate enough.

Accuracy, high-order algorithms, stepwise splitting
and parallel computing

Accuracy of the frequency estimation depends on
the curve fitting accuracy, which in turn depends on the
number of frequencies (the number of models in the
set) and the accuracy of estimation of the variance Vi

for each harmonic regressor. The latter in turn depends
on the accuracy of calculation of the parameter vector
ui for each regressor. This indicates a trade-off between
the frequency estimation accuracy and computational
complexity and hence the accuracy can be improved
with additional computational burden.

The parameter vector can be calculated with high
accuracy, using high-order algorithms, described in
Stotsky18 for an SDD (strictly diagonally dominant)
information matrix Ai (for a sufficiently large window
size), and for a positive definite information matrix (for
a small window size), described in Stotsky.19 A large
window size is used in the case of relatively slow varia-
tions of the frequency, and fast frequency variations
can be accurately estimated in the window of a small
size.

A new family of high-order algorithms is described
in Appendix 1, where new matrix splitting methods are
also proposed. Performance of new high-order algo-
rithms is compared to the performance of existing algo-
rithms. A new computationally efficient method,
named as stepwise splitting for accurate recursive calcu-
lation of the inverse of information matrix (which is a
positive definite matrix for a small window size) in
moving window, is also described there. Stepwise split-
ting method is very efficient even for inversion of ill-
conditioned and rank-deficient matrices.

Parallel computing associated with multiple process-
ing units (such as a single computer with multiple pro-
cessors, several networked computers, specialized
hardware and others) can be applied for reduction of
computational complexity via simultaneous execution
of high-order algorithms for estimation of parameters
and variance for each harmonic regressor in multiple
model, where the number of models has a direct impact
on estimation accuracy. Each processing element
should calculate the variance for each harmonic regres-
sor simultaneously, and the results of these calculations
are applied further for minimization of the variance.

Parallel computing provides computational enhance-
ment and essentially reduces execution time of the algo-
rithm,20 which allow accurate estimation of the
variance for each harmonic regressor and hence accu-
rate estimation of the frequency.

Comparison of the frequency tracking
algorithms

Comparison of classical and modified zero crossing
algorithm, described in section ‘‘Modification of zero
crossing method: improvement of estimation accuracy,’’
and algorithm with harmonic regressor, described in
section ‘‘Description of the minimal residual method’’
for the case of frequency tracking, is presented in
Figure 6, which shows histograms of the tracking
errors; in Figure 7, which shows a time chart of fre-
quency estimates; and in Figure 8, which shows fre-
quency estimates in the case of fast frequency transient.

Statistical hypothesis test shows that the classical
algorithm does not estimate time-varying frequency
statistically correct (see Figure 6). One-sample t-test
indicates a rejection in the null hypothesis that the
mean value of the data set is zero at a sufficiently low
significance level, which means that the algorithm

Figure 5. Estimation of the first harmonic of the signal. The
signal with the frequency of 49:5 Hz with the second and the
fifth harmonic was contaminated with a white measurement
noise. The signal is plotted with a blue solid line, and its first
harmonic is plotted with green solid line. Approximations of the
signal and the first harmonic are plotted with red and black
dashed lines, respectively.
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provides biased estimation. Modified algorithm and
algorithm with harmonic regressor provide statistically
correct estimates of time-varying frequency according
to the same test. Besides, two-sample F-tests for equal
variances show that the reduction of the variance pro-
vided by the modified algorithm with respect to the
classical algorithm and the reduction of the variance
provided by the algorithm with harmonic regressor
with respect to the modified algorithm are statistically
significant. It means that modified zero crossing
method provides significant improvement of estimation
performance compared to the classical method, and the
algorithm with harmonic regressor provides further sig-
nificant improvement compared to modified zero cross-
ing method.

Notice that the same conclusions are valid in the case
of frequency determination (where actual frequency is
constant) for which the histograms are similar to histo-
grams presented in Figure 6.

Figure 8, which shows the frequency estimates in the
case of significant load event in electricity network,
indicates a significant delay in the estimate, provided
by the modified algorithm. Algorithm with harmonic
regressor provides the best estimate, compared to two
other algorithms in the case of fast frequency transient.

Besides, algorithm with harmonic regressor provides
frequency estimate in each step of moving window,
whereas classical and modified algorithms update the
estimates at each zero crossing event only. Therefore,
the quality of the derivative signal of the frequency,21

which is very important in the frequency control

Figure 6. A signal with time-varying frequency and the second and the fifth harmonic was contaminated with a white noise and
processed by classical, and modified zero crossing algorithms, and by the algorithm with harmonic regressor. A time chart of the
frequency estimates is shown in Figure 7. Subplots (a), (b) and (c) show histograms of the deviations between actual frequency and
estimated frequency for (a) classical zero crossing algorithm, (b) modified zero crossing algorithm and (c) algorithm with harmonic
regressor.

Figure 7. The signal with time-varying frequency and the
second and the fifth harmonic was processed for frequency
estimation by three algorithms: (1) classical zero crossing
algorithm, plotted with a black line; (2) modified algorithm,
plotted with a green line; and (3) algorithm with harmonic
regressor, plotted with a red line. Actual frequency of the signal
is plotted with a blue line. Histograms of the estimation errors
are plotted in Figure 6.

Figure 8. The signal of 50 Hz in the case of significant load
event in electricity network was processed for frequency
tracking by three algorithms: (1) classical zero crossing
algorithm, plotted with a black line; (2) modified algorithm,
plotted with a green line; and (3) algorithm with harmonic
regressor, plotted with a red line. Actual frequency is plotted
with a blue line.
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problems, is better for the algorithm with harmonic
regressor. This in turn has a significant impact on the
performance of frequency regulation and in turn on the
safety, stability and efficiency of overall electricity
network.

Conclusion and discussion: the transition
from zero crossing method to complete
reconstruction of the frequency contents
of the signals

Significant distortions associated with harmonics and
fast changes of the fundamental frequency of voltage
and current signals are expected in future electricity net-
works. These disturbances will also appear around zero
crossing points of the signals, deteriorating accuracy of
the grid frequency estimation via classical zero crossing
method. Modifications of zero crossing method, aiming
for improvement of estimation accuracy, are all based
on more accurate detection of zero crossing point and
require additional signal processing techniques, such as
least-squares method, described in section
‘‘Modification of zero crossing method: improvement of
estimation accuracy.’’ Least-squares method requires in
turn some delay for the best fit. This delay is significant
for noise-contaminated signals with a large number of
harmonics. This delay introduces significant limitations
in the performance of modified zero crossing methods
in the case of fast frequency tracking, see, for example,
Figure 8 for details. In other words, such limitations are
associated with a trade-off between the quality of the
frequency estimation signal for constant (or slowly
varying) frequency and tracking performance in the
case of fast changes of the frequency.

Taking into account such limitations, future fre-
quency estimation algorithms should be model based,
which allows complete reconstruction of the frequency
contents of the signals (over a moving window with a
changeable size), and recovering fast frequency varia-
tions from noise-contaminated signals. Such algo-
rithms, which are based on multiple models and require
minimum information about the frequency content of
signal, are described in section ‘‘Systems with harmonic
regressor: multiple model approach.’’ Simulation
results show statistically significant improvement of
estimation performance compared to classical zero
crossing method and its modifications for frequency
tracking.

Finally, future parallel computing technologies, which
allow simultaneous calculations for multiple models, will
result in fast and high-performance frequency estimation.
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3. Köhler B, Hennig C and Orglmeister R. QRS detection

using zero crossing counts. Prog Biomed Res 2003; 8(3):

138–145.
4. Grillo D, Pasquino N, Angrisani L, et al. An efficient

extension of the zero-crossing technique to measure fre-

quency of noisy signals. In: Proceedings of the IEEE

international instrumentation and measurement technology

conference (I2MTC), Graz, Austria, 13–16 May 2012.

New York: IEEE.
5. Wall R. Simple methods for detecting zero crossing. In:

Proceedings of the 29th annual conference of the IEEE

industrial electronics society (IECON ’03), Roanoke,

VA, 2–6 November 2003, pp.10–30. New York: IEEE.
6. Duric M and Durisic R. Combined Fourier and zero

crossing technique for frequency measurement in power

networks in the presence of harmonics. RE&PQJ 2010;

1(3): 463–469.
7. Jacobsen E and Kootsookos P. Fast, accurate frequency

estimators. IEEE Signal Proc Mag 2007; 24(3): 123–125.
8. Kim Y, Kim C, Ban W, et al. A comparative study on

frequency estimation methods. J Electr Eng Technol

2013; 8(1): 70–79.
9. Quinn B and Hannan E. The estimation and tracking of

frequency, part of Cambridge series in statistical and

probabilistic mathematics. Cambridge: Cambridge Uni-

versity Press, 2013.
10. Bobtsov A, Efimov D, Pyrkin A, et al. Switched algo-

rithm for frequency estimation with noise rejection. IEEE

T Automat Contr 2012; 57(9): 2400–2404.

11. Pin G, Chen B, Parisini T, et al. Robust sinusoid identifica-

tion with structured and unstructured measurement uncertain-

ties. IEEE T Automat Contr 2014; 59(6): 1588–1593.
12. Belleter D, Galeazzi R and Fossen T. Experimental verifi-

cation of a global exponential stable nonlinear wave encoun-

ter frequency estimator. Ocean Eng 2015; 97: 48–56.
13. Xia X. Global frequency estimation using adaptive identi-

fiers. IEEE T Automat Contr 2002; 47(7): 1188–1193.
14. Stotsky A. Frequency determination in control applica-

tions: excitation-based approach. Proc IMechE, Part I: J

Systems and Control Engineering 2012; 226(8): 1142–1148.
15. Walker A. On the estimation of a harmonic component

in a time series with stationary independent residuals.

Biometrika 1971; 58(1): 21–36.
16. Li T-H. A fast algorithm for efficient estimation of fre-

quencies. In: Proceedings of the signal processing IX: the-

ories and applications: proceedings of EUSIPCO-98 (eds S

Theodoridis, I Pitas, A Stouraitis and N Kalouptsidis),

Island of Rhodes, Greece: University of Groningen,

Johann Bernoulli Institute for Mathematics and Com-

puter Science, 8–10 August 1998, vol. 1, pp.65–68.

1172 Proc IMechE Part I: J Systems and Control Engineering 230(10)

 by guest on November 17, 2016pii.sagepub.comDownloaded from 

http://pii.sagepub.com/


17. Stotsky A. Automotive engines: control, estimation, statis-

tical detection. Berlin, Heidelberg: Springer-Verlag, 2009.
18. Stotsky A. Combined high-order algorithms in robust

least-squares estimation with harmonic regressor and

strictly diagonally dominant information matrix. Proc

IMechE, Part I: J Systems and Control Engineering 2015;

229(2): 184–190.
19. Stotsky A. Accuracy improvement in least-squares esti-

mation with harmonic regressor: new preconditioning

and correction methods. In: Proceedings of the IEEE 54th

annual conference on decision and control, Osaka, Japan,

15–18 December 2015, pp.4035–4040. New York: IEEE.
20. Amdahl G. Validity of the single processor approach to

achieving large-scale computing capabilities. AFIPS Conf

P 1967; 30: 483–485.
21. Stotsky A and Forgo A. Recursive spline interpolation

method for real-time engine control applications. Control

Eng Pract 2004; 12: 409–416.
22. Benzi M. Preconditioning techniques for large linear sys-

tems: a survey. J Comput Phys 2002; 182: 418–477.
23. Chen K. Matrix preconditioning techniques and applica-

tions. Cambridge: Cambridge University Press, 2005.
24. Horn R and Johnson C. Matrix analysis. Cambridge:

Cambridge University Press, 1985.
25. Durand E. Solutions numeriques des equations algebriques,

vol. 2. Paris: Masson, 1972.
26. Gustafsson F. Adaptive filtering and change detection.

Hoboken, NJ: John Wiley & Sons, 2000.

Appendix 1

New family of high-order algorithms and
stepwise splitting method

High-order algorithm description: additive splitting,
matrix inversion lemma and preconditioning

Any positive definite and symmetric matrix A can be
split as follows (see, for example, Benzi,22 Chen23 and
references therein)

A=S�D ð14Þ

where S is a positive definite and symmetric matrix, and
D is a symmetric matrix. Possible choices of matrices S
and D for an additive splitting of A are discussed below.

Splitting (14) facilitates calculation of the inverse of
matrix A, which can be used as a preconditioner for
high-order algorithms18,19 that solve the equation
Au= b with respect to the parameter vector u, see sec-
tion ‘‘Description of the minimal residual method.’’

New family of algorithms of order h=1, 2, . . . can
be obtained via sequential application of the matrix
inversion lemma (Woodbury matrix identity)

Gk =(S�1D)hGk�1(DS�1)h

+
Xh�1
j=0

(S�1D)j½S�1 +S�1DS�1�(DS�1)j
ð15Þ

where Gk is an estimate of A�1, G0 is arbitrary (G0 can
be chosen as an inverse diagonal matrix of the diagonal
entries of A), the spectral radius r(S�1D)\ 1,
k=1, 2, . . .. The matrix S is easy invertible matrix (or
the matrix whose inverse is known). For example, for
an SDD matrix S, the inverse can be calculated easily
and accurately using high-order algorithms described
in Stotsky.18 In addition, the inverse of S is known in
the recursive calculations of the inverse of information
matrix in a moving window, see section ‘‘Application
to recursive calculation of the inverse of information
matrix in moving window.’’ Splitting (14) can also be
written in the following form

I� S�1A=S�1D ð16Þ

where I is the identity matrix, and r(S�1D)\ 1 for sym-
metric and positive definite matrices A and S, provided
that 2S� A is a positive definite matrix, which imposes
restriction on the choice of S and D.24

Notice that the matrix S�1 can be used as a precon-
ditioner for high-order algorithms described in
Stotsky18,19 provided that 2S.A.

Comparison of high-order algorithm (15) and high-
order algorithms described in Stotsky18,19 is given in
section ‘‘Comparison.’’

The family of high-order algorithms (15) is presented
in Table 1.

Algorithm (15) has the following error model

Gk � A�1 = (S�1D)hfGk�1 � A�1g(DS�1)h ð17Þ

which can be written in the following form

Gk � A�1 = (S�1D)hkfG0 � A�1g(DS�1)hk ð18Þ

The convergence rate increases with the order h and
is determined by the eigenvalues of the matrix S�1D,
which are the same as eigenvalues of DS�1.

Notice the following simplified version

Gk =(S�1D)Gk�1 +S�1 ð19Þ

of the first-order algorithm in Table 1 is presented in
Durand.25 The convergence rate of the first-order algo-
rithm in Table 1 is at least two times higher than the
convergence rate of truncated algorithm (19).

Splitting (14) provides the basis for a new method,
which is called stepwise splitting, described in section
‘‘Stepwise splitting and matrix inversion by parts using
high-order algorithms,’’ and gives a flexible framework
for calculation of preconditioners for different types of
matrices, see sections ‘‘Splitting for positive definite,
symmetric and almost SDD matrix A’’ and section
‘‘Splitting for an SDD matrix A.’’ It is shown that step-
wise splitting can be applied to recursive calculation of
the inverse of information matrix in moving window,
see section ‘‘Application to recursive calculation of the
inverse of information matrix in moving window,’’ and
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to inversion of ill-conditioned matrices, see section
‘‘Application to positive definite, symmetric and ill-
conditioned matrices.’’

Stepwise splitting and matrix inversion by parts using
high-order algorithms

Suppose that the matrix A is presented in the form
(14), where D and S are symmetric matrices (The step-
wise splitting method is also applicable for the non-
positive definite matrices S. Notice that the informa-
tion matrix S is the positive definite matrix for systems
with harmonic regressor, see, for example, the applica-
tion to recursive calculations described in section
‘‘Application to recursive calculation of the inverse of
information matrix in moving window’’) and S�1 is
known. Suppose that r(S�1D)ø 1, and high-order
algorithms cannot be applied directly for inversion of
the matrix A. Nevertheless, the inverse of this matrix
can be calculated by parts with the stepwise splitting
algorithm described below.

This algorithm represents the calculations of the
finite sequence of matrices Si and Di (initialized as
S1 =S and D1 =D in (14)) and the associated sequence
of scaling factors ai, where i=1, 2, . . . , i�, and ai�=1
such that

ai = jjS�1i Dijj‘ + e ð20Þ

A= fSi �
1

ai
Dig|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Si+1

�ai � 1

ai
Di|fflfflfflfflffl{zfflfflfflfflffl}

Di+1

ð21Þ

where Si � (1=ai)Di, and ((ai � 1)=ai)Di are denoted as
Si+1 and Di+1, respectively, in each step, and
i= i+1 while ai . 1, and e is a small positive number.
Algorithm converges when ai, calculated in (20) is less
than one (or equal to one) and is assigned to one
ai�=1. The norm jj � jj‘ is defined as the maximum
absolute row sum norm.

The inverse of the matrix Si+1 =Si � (1=ai)Di,
which is presented in the form (14), is calculated using
high-order algorithm (15) or algorithm described in
Stotsky18 with preconditioning matrix S�1i . The choice
of ai in (20) guarantees that the following norm is less
than one in each step, that is

I� S�1i Si �
Di

ai

� �����
����

‘

=
jjS�1i Dijj‘

ai
\ 1 ð22Þ

and minimizes the number of steps of the algorithm.
The matrix A remains the same in each step, and the
matrix Di is stepwise scaled so that the convergence
condition (22) is satisfied.

Stepwise splitting procedure associated with (20) and
(21) is the transformation of splitting (14) to the follow-
ing splitting

A=Si� �Di� ð23Þ
jjI� S�1i� Ajj‘ = jjS�1i� Di�jj‘ \ 1 ð24Þ

where ai�=1. Any high-order algorithm can be applied
for accurate calculation of the inverse of matrix A (and
the parameter vector) with S�1i� as a preconditioning
matrix.

The algorithm provides calculation of the inverse of
matrix A with improved accuracy compared to the cal-
culation based on straightforward application of the
matrix inversion lemma without accuracy control.

Application to recursive calculation of the inverse of information
matrix in moving window. Consider evolution of informa-
tion matrix A in one step of the window which is mov-
ing in time, represented in the form (14), where A is an
information matrix in the current step, S is information
matrix in the previous step and finally D is the differ-
ence between two rank one matrices, associated with
regressors which enter and leave the window, see
Stotsky17 and Gustafsson26 for details. Notice that the
matrix D may even contain the sum of a number of
rank one matrices, if the window changes its size in the
case of transient, for example. Notice that the inverse
of the matrix S is known from the previous step. The
inverse of the information matrix is calculated in each
step using information about the inverse of the matrix
S from the previous step and stepwise splitting algo-
rithm (20 and 21). The number of steps of the algo-
rithm depends on the window size and decreases, if the
window size increases.

Application to positive definite, symmetric and ill-conditioned
matrices. Stepwise splitting method can also be applied
to ill-conditioned matrices for which the condition
number is too large. Ill-conditioned matrix A can
always be presented in the form (14), where S is an
SDD positive definite matrix and D is the diagonal
matrix. An SDD matrix S is easy invertible matrix and
small elements are added stepwise to the diagonal ele-
ments of S for accurate calculations of inverse of ill-
conditioned matrix, using algorithm (20 and 21).

Reduced orders and number of steps can be used in
matrix inversion algorithm (15) in the stepwise method
compared to the method described in Stotsky19 for ill-
conditioned matrices. Such reduction makes stepwise
method more computationally efficient compared to
other methods.

Table 1. New family of high-order matrix inversion algorithms.

Order Matrix inversion
algorithms, Gk =

1 (S�1D)Gk�1(DS�1) + ½S�1 + S�1DS�1�
2 (S�1D)2Gk�1(DS�1)2 +

P1
j = 0

(S�1D)j½S�1 + S�1DS�1�(DS�1) j

3 (S�1D)3Gk�1(DS�1)3 +
P2
j = 0

(S�1D)j½S�1 + S�1DS�1�(DS�1) j

. .

h (S�1D)hGk�1(DS�1)h +
Ph�1

j = 0

(S�1D)j½S�1 + S�1DS�1�(DS�1) j,
r(S�1D) \ 1

1174 Proc IMechE Part I: J Systems and Control Engineering 230(10)

 by guest on November 17, 2016pii.sagepub.comDownloaded from 

http://pii.sagepub.com/


Notice that the algorithm is also very efficient for
calculation of approximate inverse of rank-deficient
matrices.

Splitting for positive definite, symmetric and almost
SDD matrix A

The matrix S can be chosen as an SDD matrix in (14)
and D can be chosen as a diagonal matrix as it is
described in section ‘‘Application to positive definite,
symmetric and ill-conditioned matrices.’’ Diagonal ele-
ments of D are the complements/corrections to the
diagonal elements of A in this case so that the matrix
S=A+D is an SDD matrix.

The elements of the matrix D can be chosen as fol-
lows. If a diagonal element of the matrix A in a row is
larger than the sum of absolute values of other ele-
ments in that row, then corresponding element in the
matrix D is equal to zero. In the rows where diagonal
elements of the matrix A are less than the sums of abso-
lute values of other elements the minimal positive val-
ues should be chosen as diagonal elements of the
matrix D (providing row wise corrections), so that the
matrix S=A+D becomes an SDD matrix. Such a
presentation can be applied to the matrices for which
diagonal elements dominate in a number of rows and/
or diagonal elements in the rows are slightly less than
the sums of absolute values of other elements in these
rows. In other words, the matrix A is almost SDD
matrix (close to SDD matrix). The matrix D contains
zero and small positive diagonal elements only in this
case, which ensures that the spectral radius is less than
one, r(S�1D)\ 1.

Splitting for an SDD matrix A

In this case, the matrix S can be chosen as a diagonal
matrix in (14), which contains the diagonal elements of
an SDD matrix A, and the matrix D with zero diagonal
elements contains off-diagonal elements of the matrix
A. Then, jjS�1Djj‘ \ 1, see (16).

Notice that other types of splitting are also described
in Benzi22 and Chen23 (see also references therein).

Comparison

Performance of the algorithm (15) can be compared to
the performance of the high-order matrix inversion
algorithm described in Stotsky19 for inversion of posi-
tive definite symmetric matrices. Information matrix
associated with the system with harmonic regressor
with three frequencies is used for comparison.

Transient upper bound of the estimation error is
defined as k2hk for algorithm (15), and the same bound
is defined by khk for the algorithm in Stotsky,19 where h
is the order of the algorithms, k=1, 2, . . .. The num-
ber 0\ k \ 1 is associated with the spectral radius of
the matrix S�1D. Comparison of two upper bounds
associated with algorithm (15) and algorithm described
in Stotsky19 is presented in Figure 9. High-order algo-
rithm described in Stotsky19 has significantly higher
convergence rate, excepting for the case of low orders,
where the rates are comparable in the initial steps of
estimation.

Notice that the transient upper bounds on estimation
errors do not give complete picture of the performance
of the algorithms.

Figure 9. Two transient upper bounds of the matrix inversion
errors defined as k2hk with h = 1, 2, . . . , 20 for algorithm (15)
(named as ‘‘new high-order algorithm’’), and defined as khk

with
h = 2, 3, . . . , 20 for the algorithm in Stotsky19 (named as
‘‘existing high-order algorithm’’) are plotted as red and white
surfaces, respectively, where k = 0:999, and h is the order of the
algorithms, k = 1, 2, . . . , 10.
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