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EXTENDED ABSTRACT

To secure safety, reliability and performance of an electri-
fied vehicle, it is important to monitor the State of Charge
(SoC) of its battery. Today, there are no sensors that
can measure SoC directly. Instead, it is usually estimated
with an algorithmic filter. Since batteries are nonlinear, all
feasible filters are only able to approximate the posterior
densities which, in other words, means that their perfor-
mances will be more or less suboptimal (Särkkä, 2013).

To be able to evaluate the performance of a filter, it is of
great value to know how well a parameter or a state can be
estimated. It can then be decided if it is worth spending
time on tuning the filter, or implementing a more advanced
filter. Furthermore, analyzing the achievable accuracy can
be a way to better understand the application.

One suitable measure for benchmarking the performance
is the Cramér-Rao Lower Bound (CRLB), which is a lower
bound on the Mean Square Error (MSE) of any estimator.

In this paper we adopt a method to numerically determine
the posterior CRLBs with a Monte Carlo-based algorithm.
The posterior CRLBs are calculated for combined esti-
mation of the states and the parameters of a commonly
used equivalent circuit model. It is investigated how the
posterior CRLBs depend on the amplitude and the fre-
quency of the current. Furthermore, the posterior CRLBs
are computed for a commercially available lithium- ion
battery using data from laboratory experiments, and the
results are compared to the MSEs of an Extended Kalman
Filter (EKF). It is shown that the MSEs of the EKF are
close to the posterior CRLBs, which means that the EKF
seems to be a good observer for this application.

Battery model

In online applications it is common to model batteries as
equivalent circuits (see e.g. (Seaman et al., 2014)). The
drawback is that equivalent circuits have a limited relation
to the nonlinear chemical phenomena inside the battery
and, therefore, only describe the system in a neighborhood
around the present state values. A remedy to this is to
continuously adapt the parameters of the equivalent circuit
in order to adapt the model to the present state of the
battery. This means that, in addition to the states, also the
parameters in the equivalent circuit have to be estimated.

The zero-order hold discrete time state space model of a
commonly used equivalent circuit model is[
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y(k) = Uocv(zsoc(k)) + u1(k) + u2(k) +R0icell(k), (1c)
where k is the time step, zsoc is SoC, u1 and u2 are volt-
ages, R1 and R2 are resistances in parallel with capacitors
C1 and C2, R0 is the ohmic resistance, τ1 = R1C1 and
τ2 = R2C2 are time constants of the circuit, ∆t is the
sampling time, Qn is the nominal capacity, and ηi is the
Coulombic efficiency.

Cramér-Rao Lower Bound

The posterior CRLB was initially proposed in H. L.
V. Trees (2001) as a lower bound for the MSE of any
estimator, i.e.

MSE(x̂k) ≥ J−1
k , (2)

where x̂ is the estimator for an n-dimensional state vector
and J represents the n× n Fischer matrix, defined as

Jk = E{−∇xk∇T
xk
log p(xk, yk)}, (3)

where p(xk, yk) denotes the joint probability density of the
states and the measurement.

In general, analytical expressions of the posterior CRLBs
are intractable for nonlinear systems and therefore, they
are usually calculated numerically. In Taylor et al. (2003),
a Monte Carlo-based algorithm, similar to a particle filter,
is proposed. In Klintberg et al. (2016) this algorithm
is adopted for calculating the posterior CRLBs for the
battery model.

Combined state and resistance estimation

In combined estimation of the states and a parameter, it is
expected that the accuracy is reduced compared to when
the parameter is perfectly known. The question is, how
much degradation of the accuracy can be expected and
under what circumstances is it significant?



To investigate how the accuracy is affected when the
resistance is estimated compared to when it is perfectly
known, the CRLBs for the two cases are compared. As
can be seen in Figure 1, the posterior CRLB for the SoC
is higher in combined estimation whenever the current is
nonzero.
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Fig. 1. Posterior CRLBs for standalone estimation of the
states compared to combined estimation of the states
and the resistance.

To investigate the dependency on current, the posterior
CRLBs are calculated with sinusoidal current profiles with
different amplitudes and with different frequencies. In
Figure 2 it can be seen that the resulting posterior CRLB
is lower for the resistance and higher for SoC for higher
amplitudes of the current.

In Figure 3, it can be noticed that the posterior CRLBs de-
creases for both SoC and the resistance as the frequencies
of the current increases.
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Fig. 2. Posterior CRLBs for different amplitudes of sinu-
soidally shaped currents. The amplitudes are 50 A,
100 A and 150 A.

Comparison with EKF on experimental data

In this section the EKF is evaluated against the pos-
terior CRLBs in combined estimation of the states, the
resistance and the capacity. The evaluation is performed
on an equivalent circuit model tuned to fit experimental
data, which means a nonlinear OCV-curve and parameters
that depend nonlinearly on SoC and the current. The
experimental data come from lab tests of a commercially
available lithium-ion cell intended for use in a plug-in
hybrid electric vehicle.
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Fig. 3. Posterior CRLBs calculated with different frequen-
cies of sinusoidally shaped currents.

The MSEs of the EKF were obtained from 100 Monte
Carlo simulations where new trajectories were generated
for every simulation. In Figure 4 it can be seen that the
MSEs for the EKF are close to the posterior CRLBs, which
means that an EKF seems to be a good observer for this
application.
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Fig. 4. Posterior CRLBs compared to MSEs from the EKF.
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