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Abstract—A fully automatic method for abdominal organ
segmentation is presented. The method uses a robust initial-
ization step based on a multi-atlas approach where the center
of the organ is estimated together with a region of interest
surrounding the center. As a second step a convolutional neu-
ral network performing pixelwise classification is applied.
The convolutional neural network consists of several full 3D
convolutional layers and takes two input features, which are
designed to ensure both local and global consistency. Despite
limited training data, our preliminary experimental results
are on par with state-of-the-art approaches that have been
developed over many years. More specifically the method is
applied to the MICCAI2015 challenge “Multi-Atlas Labeling
Beyond the Cranial Vault” in the free competition for organ
segmentation in the abdomen. It achieved the best results
for 3 out of the 13 organs with a total mean dice coefficient
of 0.757 for all organs. Top score was achieved for the
gallbladder, the aorta and the right adrenal gland.

I. INTRODUCTION

Segmentation is a key problem in medical image analy-
sis, and an automated method for organ segmentation can
be crucial for numerous applications in medical research
and clinical care such as computer aided diagnosis and
surgery assistance. The high variability of the shape
and position of abdominal organs makes segmentation
a challenging task. Previous work done on segmentation
of abdominal organs includes, among others, multi-atlas
methods [1], patch-based methods [2], and methods based
on probabilistic atlas [3], [4]. These techniques achieve
great results for a lot of abdominal organs but might strug-
gle with segmentation of organs where the anatomical
variability is large.

Recently, deep convolutional neural networks have
shown great performance and achieved state of the art
results in many computer vision applications [5], [6]. This
fact can be partly attributed to the constant increase in
available computing power, most notably GPU computing
solutions, and the availability of large annotated datasets.
In the field of medical image analysis this development
has led to an increase in methods based on deep con-
volutional neural networks, often with great results [7],
[8]. This recent development serves as a motivation to
utilize convolutional neural network for abdominal organ
segmentation.

In this paper, a fully automatic method for segmentation
of abdominal organs in contrast enhanced CT images is
presented. The first part of the method serves as a coarse
and robust localization of the target organ. This part is

based on the feature-based multi-atlas approach presented
in [9]. The second part utilizes a deep convolutional
neural network to perform pixelwise classification. The
input features used for the network are two 3D patches
of different resolution centered around the voxel to be
classified. The first input feature has fine resolution and
is meant to provide the network with local information
ensuring local precision while the second input feature has
a coarse resolution and is meant to ensure global spatial
consistency. This dual input approach is used to give the
network enough information to make good predictions
despite the high anatomical variability of some abdominal
organs. As a final step a simple post-processing is done by
removing all parts of the segmentation except the largest
connected component.

The presented method is used in the MICCAI2015
challenge “Multi-Atlas Labeling Beyond the Cranial
Vault” where it achieved state of the art results in the
free competition for organ segmentation in the abdomen.
To this date, our method gives the best results for 3 out
of the 13 organs.

II. PROPOSED SOLUTION

Our method segments each organ independently and
can be divided into three parts:

1) Localization of region of interest using a multi-atlas
approach.

2) Pixelwise binary classification using a convolutional
neural network.

3) Postprocessing by thresholding and removing all
positive samples except the largest connected com-
ponent.

Each step will now be described in detail.

A. Localization of region of interest

This part of the method provides a robust initialization
of the segmentation. The goal is to locate the center voxel
of the organ in the target image. When this has been
done a prediction mask is placed centered around the
predicted organ center. The prediction mask later defines
the region of interest where the convolutional neural
network is initially applied. The use of an initialization
method enables us to train more specialized networks that
only need to differentiate between a certain organ and the
background. This means that the classification task that
the network needs to perform is simplified and smaller
networks can be used.



Fig. 1. Example of localization of region of interest for the Spleen.
The green sphere is the estimated center point, the red mask describes
the ground truth and the blue mask describes the estimated region of
interest.

The location of the organ center in the target image
is done using a feature-based multi-atlas approach. Each
atlas image is registered to the target using the method
described in [9]. This registration is performed individu-
ally for each organ and atlas image. The transformations
estimated are then used to transform each organ center
point from an atlas image to the target image. The median
of these transformed center points is then used as the
center point for the region of interest in the target image.
The reason for using the median, and not for instance the
mean operator, is that it provides a robust estimate of the
center point, that is, it is not affected by a few, spurious
outliers.

The prediction mask is estimated using the ground truth
segmentations of the atlas images. Let the ground truth
segmentations be represented by a binary image of the
same dimension as the atlas image G(l), where l is the
image id, and G

(l)
ijk = 1 if and only if voxel with index

i, j, k in image with id l is foreground (or organ). Further,
define D(l) as the binary image formed by dilating G(l)

by a cube of size 25 × 25 × 25 voxels and translating it
so that the center of the organ is located at the center of
the image. The prediction mask P is then defined as the
binary image where each element Pijk is

Pijk =

{
1 if 1

N

∑N
l=1D

(l)
ijk ≥ δ

0 otherwise
(1)

where N is the number of atlas images and δ is a threshold
set to δ = 0.5 for the majority of the organs.

Finally, the region of interest R is defined as the
prediction mask centered around the estimated center
point. An example of a localization of region of interest
is show in Figure 1.

B. Voxel classification using a convolutional neural net-
work

The convolutional neural network is applied using a
sliding window approach. For each voxel to be segmented

two cubes of different resolutions centered around said
voxel are extracted and used as input features to the
network. The network in return outputs a probability,
denoted pijk, of the voxel being organ.

To speed up the process the network is not applied to
every voxel in the area that is being segmented, denoted
S. Instead, it takes steps of three in each dimension
over S. The probabilities output by the network are then
interpolated to every voxel in S. Lastly, all voxels in S
that has been assigned an interpolated probability neither
close to zero nor close to one will be classified by the
network once more. The idea behind this approach is that
for easily classified regions the network is only applied to
a grid of the voxels while for regions where classification
might be harder, such as the boundaries of organs, the
network classifies every voxel explicitly.

To reduce the dependency on the quality of the initial
region of interest where the convolutional neural network
is applied, a region growing algorithm is used. Call the
set of voxels that should be segmented S. Further, call
the set of voxels already classified by D and the set of
voxels with an assigned probability larger than 0.5 by O.
The region growing algorithm can then be described by
Algorithm 1.

Initialize
• S as the region of interest R
• D as ∅
• O as ∅.

while S 6= ∅ do
• Classify voxels in S
• Set D = D ∪ S, and O as the set of voxels

with an assigned probability larger than 0.5
• Let O+ be the set O dilated by a cube of

size 12× 12× 4 voxels
• Set S = O+ \D

end

Algorithm 1: Region growing algorithm for convolu-
tional neural network classification.

The usage of the region growing algorithm means that
even though the initial region of interest only covers part
of the organ, a successful segmentation is still possible.

Convolutional neural network setup: The convolutional
neural network used performs pixelwise binary classifica-
tion. The input features for the network are two image
cubes, one with a fine resolution similar to the original
CT image and the other with a coarse resolution. The fine
resolution input feature is meant to provide the network
with local information ensuring local precision while
the coarse resolution input feature is meant to ensure
global spatial consistency. These inputs are then processed
separately by two sets of 3D-convolution and max-pooling
layers. Afterwards the aggregated image features of both
these image patches are merged and processed by two
consecutive fully connected network layers. Finally, a
two-way softmax operation is applied calculating the



Fig. 2. Structure of the convolutional neural network used, both type and size of each layer is shown. The following abbreviations are being
used: Conv: Convolutional layer, ReLu: Rectified Linear Unit, MP: Max Pooling, FC: Fully Connected and SM: Soft Max. Both inputs are cubes
containing 27x27x12 voxels and are centered around the voxel being classified. Input x1 has as high resolution with voxels of size 1 × 1 × 3
mm3, while input x2 is downsampled by a factor of five in each dimension.

probabilities for foreground or background classification.
Between each layer a rectified linear unit is added as
an activation function. A schematic of the convolutional
neural network is shown in Figure 2.

Implementation and Training: For the implementation
of the convolutional neural network the framework Torch7
was used [10]. For each convolutional neural network
the training and validation set were extracted from the
region of interest calculated as described previously and
the area around the part of the image describing the organ.
This was done for each image in the training set. For the
majority of the organs a balanced training set was used,
meaning that there was an equal amount of foreground
and background samples in the training set. However,
since some of the organs are quite small this leads to
a relatively small training set. Several methods, listed
below, were used to deal with this problem.

1) For organs present in pairs, kidneys and adrenal
glands, training samples from both the left and the
right organ were used. Note that this does not pose
a problem during inference since the initialization
part of the method will separate the organs. Hence,
the network will not need to differentiate between
for example the left and the right kidney.

2) Expansion of the training set by adding slightly
distorted CT images, transforming them using a
random affine transformation similar to the identity
transformation. The transformation T was random-
ized as

T =


1 + δ11 δ12 δ13 0
δ21 1 + δ22 δ23 0
δ31 δ32 1 + δ33 0
0 0 0 1


where δij are independently and uniformly ran-
domized numbers between −0.25 and 0.25 for
i = 1, 2, 3 and j = 1, 2, 3.

3) Including a greater number of background samples
than foreground samples in the training set. This
leads to a larger but unbalanced training set.

The choice of what methods to use were empirically
decided individually for each organ. The evaluation used
for the decision was how well the network performed on
the validation set.

The networks were trained in mini batches using
stochastic gradient descent with Nesterov’s momentum
[11] and weight decay. The training parameters were set
to: batch size 100, learning rate 5 · 10−3, momentum
weight 0.9, weight decay 10−5. The error function used
was negative log likelihood. When an unbalanced training
set was used the loss was multiplied by a factor k for fore-
ground samples where k is the ratio between background
and foreground samples. To avoid overfitting the layers of
the network were restricted using dropout during training
[12]. The networks were trained for ten epochs or more,
the network obtaining the highest validation score were
finally picked to be used for the segmentation.

C. Postprocessing

As a final step the probabilities from the convolutional
neural network are thresholded with a value of 0.5 creat-
ing a binary image. For this binary image everything but
the largest connected component is set to zero producing
the final segmentation.

III. EXPERIMENTAL RESULT

This method were tested by submitting an entry to the
MICCAI2015 challenge “Multi-Atlas Labeling Beyond
the Cranial Vault” in the free competition for organ
segmentation in the abdomen [13]. In this challenge, there
are 30 CT images coupled with manual segmentations
of the following organs: (1) spleen, (2) right kidney, (3)
left kidney, (4) gallbladder, (5) esophagus, (6) liver, (7)
stomach, (8) aorta, (9) inferior vena cava, (10) portal vein
and splenic vein, (11) pancreas, (12) right adrenal gland,
(13) left adrenal gland. The numbers in the parentheses
will from now on be referred to as organ id. These
30 images and segmentations are available for method
development and validation. Out of the 30 images 20 were
used for training and 10 were used for testing.

In addition to these images training data from the
VISCERAL challenge was also used for training. The
VISCERAL training data consists of 20 unenhanced



Fig. 3. Example of the resulting segmentation of the spleen for on CT
slice. In both images the edge of the ground truth is marked in black. In
the left image the edge of the initial region of interest is marked in red
and in the right image the edge of the final segmentation is marked in
blue. Note that even though the initial region of interest did not contain
the entire organ the final result still does, this is due to region growing.
This segmentation was one of the most successful in the validation set
and achieved a DICE coefficient of 0.967.

whole body CT images and 20 contrast enhanced CT
images over the abdomen and thorax. In these images
organ with organ ids 1, 2, 3, 4, 6, 8, 11, 12 and 13 were
manually segmented. The unenhanced whole body CT
images were excluded from the training set for organs
with organ id 1, 2, 6, 8, 10, 11 and 12 since they differed
too much from the enhanced CT images. All images were
resampled to the same resolution of 1 mm × 1 mm
× 3mm. For the right kidney, a network trained on a
training set formed by samples from both the right and
the left kidney was used. For the stomach, the data set
was expanded with distorted CT images and for the left
adrenal gland an unbalanced data set was used with twice
as many background samples as foreground samples.

For the test set of the MICCAI challenge the CT images
are available for download. The competitors then apply
their methods, segmenting the organs present in the CT
images. The segmentation files are then submitted to a test
server that calculates the DICE coefficient for each organ
and posts the result to the publicly available leaderboard.
The final results are given in Table I with the currently
two best competitors:

• IMI - algorithm name: IMI deeds SSC jointCL sub-
mitted by Mattias Heinrich at the Insitute of Medical
Informatics, Lübeck, Germany.

• CLS - algorithm name: CLSIMPLEJLF organwise

TABLE I
FINAL RESULTS MEASURED IN DICE METRIC FOR ORGAN

SEGMENTATION IN CT IMAGES. OUR APPROACH GIVES THE BEST
RESULTS FOR 3 OUT OF THE 13 ORGANS. HERE ’-’ MEANS THAT ONE

OF THE SPECIFIED METHODS ACHIEVED BEST RESULT.

Organ IMI CLS other best Our

Spleen 0.919 0.911 0.964 0.930
Right Kidney 0.901 0.893 - 0.866
Left Kidney 0.914 0.901 0.917 0.911
Gallbladder 0.604 0.375 - 0.624
Esophagus 0.692 0.607 - 0.662
Liver 0.948 0.940 - 0.946
Stomach 0.805 0.704 - 0.775
Aorta 0.857 0.811 - 0.860
Inferior Vena Cava 0.828 0.760 - 0.776
Portal Vein and Splenic Vein 0.754 0.649 0.756 0.567
Pancreas 0.740 0.643 - 0.602
Right Adrenal Gland 0.615 0.557 - 0.631
Left Adrenal Gland 0.623 0.582 - 0.583

Average 0.790 0.723 - 0.757

submitted by Zhoubing Xu at the Vanderbilt Univer-
sity, Nashville, TN, USA.

• other best - this column contains results from other
competitors, the score is only shown if they are the
highest for that organ.

IV. DISCUSSION

In Table II a comparison of the validation score and the
test score of our method is presented. As can be seen from
the table there is a large difference between validation
and testing scores for some organ. This means that our
networks do not generalize well to the test set for these
organs which might be an indication of overfitting and
that the input features and structure of our network is not
ideal to learn high order information that generalize to
all other CT images. However, since the validation data
has not been used for the actual training, only for the
decision on when to stop the training, these differences
might not be only due to overfitting. Instead it might be
due to the existence of anatomical variations in the test set
that differs too much from anything seen in the training
and validation images for the network to perform well. A
specific example of where our method performed badly
on the test data, for an organ with good validation result,
is shown in Figure 4. Here, the network has classified
most of the right kidney correctly. However, it has also
classified a lot of surrounding organs or tissue as right
kidney as well.

The ideal solution to this problem would be to include
more images in the training set. This however, requires
more manually segmented CT images which are not
always easy to acquire. Other approaches to solve this
problem would be to train a network on several organs,
and then fine tune the network weights for each specific
organ. This could enable the network to learn higher order
features that differentiates well between all organs in the
CT image, not only between the organs located closest to
the organ that is currently being segmented.



TABLE II
COMPARISON OF VALIDATION SCORE AND TEST SCORE MEASURED

IN DICE METRIC FOR ORGAN SEGMENTATION IN CT IMAGES.

Organ Validation Test

Spleen 0.944 0.930
Right Kidney 0.940 0.866
Left Kidney 0.928 0.911
Gallbladder 0.744 0.624
Esophagus 0.724 0.662
Liver 0.947 0.946
Stomach 0.823 0.775
Aorta 0.892 0.860
Inferior Vena Cava 0.823 0.776
Portal Vein and Splenic Vein 0.632 0.567
Pancreas 0.689 0.602
Right Adrenal Gland 0.600 0.631
Left Adrenal Gland 0.580 0.583

Average 0.790 0.757

Fig. 4. Example of the resulting segmentation of the right kidney for
a CT slice from the test set. The final segmentation is marked in blue.
This segmentation was one of the examples where the method performed
badly.

V. CONCLUSION

In this paper, a method for abdominal organ segmenta-
tion was presented. The method uses a robust initialization
algorithm based on a multi-atlas approach for finding a
region of interest where the organ to be segmented is
located. As a second step a convolutional neural network
is applied performing pixelwise classification, the network
uses two sets of input features to ensure both global
and local consistency. The method was evaluated by
submitting an entry to the MICCAI2015 challenge “Multi-
Atlas Labeling Beyond the Cranial Vault” in the free
competition for organ segmentation in the abdomen. This
entry achieved on par with state-of-the-art for a majority
of the organs to be segmented with a mean dice coefficient
of 0.757. Future work includes redesign of the network
structure and input features used, this to improve the
performance of the network and how well it generalizes.
Also, a more sophisticated method for postprocessing can
be used, incorporating shape information.
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