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Abstract— The Wiener-Hammerstein model is a block-
oriented model consisting of two linear blocks and a static
nonlinearity in the middle. Several identification approaches
for this model structure rely on the fact that the best linear
approximation of the system is a consistent estimate of the
two linear parts, under the hypothesis of Gaussian excitation.
But, these approaches do not consider the presence of other
disturbance sources than measurement noise. In this paper
we consider the presence of a disturbance entering before the
nonlinearity (process noise) and we show that, also in this
case, the best linear approximation is a consistent estimate
of underlying linear dynamics. Furthermore, we analyse the
impact of the process noise on the nonlinearity estimation,
showing that a standard prediction error method approach can
lead to biased results.

I. INTRODUCTION

Block-oriented models represent a common and efficient
approach for nonlinear system identification. They are suit-
able for both actual description of some physical properties
and often a good approximation of more general nonlinear
behaviours. They consist of interconnection of linear time-
invariant dynamic blocks and static nonlinear blocks.

One example, which we consider in this paper, is the
Wiener-Hammerstein (W-H) model, consisting of two linear
dynamic blocks and a static nonlinearity in the middle, see
Figure 1. The signals u(t) and y(t) are, respectively, the
measurable input and output of the system. The intermediate
signal x(t) is not available. In this paper we will consider
the presence of the process noise w(t), entering before the
nonlinearity, and measurement noise e(t). We will assume
that these signals are independent and G1 and G2 are two
stable, LTI systems.

In the literature, two main branches dealing with the
identification of W-H systems can be found:
• approaches considering only measurement noises (input

and/or output) affecting the system. For this branch,
early results can be found in [1] and [2]. More recent
works are [4], where the design of special excitation sig-
nals is discussed, and [13], where a nonparametric ap-
proach is introduced. In this area, several identification
algorithms rely on the fact that, under some assumptions
on the data, the best linear approximation (BLA) model
is a consistent estimate of the concatenation of the
two linear blocks [11], [5]. Hence, given the BLA, the
remaining problem is to divide the dynamics into two
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Fig. 1: The Wiener-Hammerstein model. The input u(t) and
the output y(t) are measurable, but not the intermediate
signal x(t). Noise sources are represented by w(t) and e(t).
G1, G2 and f are, respectively, two linear systems and a
static nonlinear function.

parts, and estimate the nonlinearity. This is done, for
example, in [12], [17], [10]. In [15] an algorithm based
on the best split of the BLA is proposed, while fractional
approaches, where the position of poles and zeros from
BLA is parametrized using fractional exponents, can
be found in [16] (frequency-domain) and [6] (time-
domain).

• the second branch consists of works considering process
noise as well, but in this case the assumption is that
right split of the linear parts is known. For example in
[8] a Maximum Likelihood identification algorithm is
implemented.

The main contribution of this paper is consistency results
for approaches based on the BLA, in case the system is
affected by process noise. In particular, after an introduction
to the problem (Section II), we will show that the BLA still
provides an unbiased estimate of the linear parts and, in
principle, it can be used as an initial guess for the iterative
search of the model parameters (Section III). Then, we will
consider the problem of splitting the dynamics contained
in the BLA and study how the process noise affects the
estimation of the nonlinear function f (Section IV). Finally,
simulation examples will be shown in order to confirm the
obtained results (Section V).

II. PROBLEM SETTING

The Wiener-Hammerstein system, defined in Figure 1, can
be described by the following equations:

y(t) = G2(q, β)f(x(t), γ) + e(t) (1a)
x(t) = x0(t) + w(t) (1b)
x0(t) = G1(q, α)u(t) (1c)

where G1 and G2 belongs to a parametrized model class such
as FIR filters, rational transfer functions (OE models) or state
space models. The nonlinear function f may be polynomial,
spline, piecewise linear, neural network, in general a basis

2016 IEEE 55th Conference on Decision and Control (CDC)
ARIA Resort & Casino
December 12-14, 2016, Las Vegas, USA

978-1-5090-1837-6/16/$31.00 ©2016 IEEE 3042



function expansion. In this framework, the identification
problem aims to estimate the parameters α, β and γ that
best match the input/output behaviour described by the data.

Given a data set {u(t), y(t)}Nt=1 of N input and output
samples, a common approach for parameter estimation is to
find the best fit of the model by minimizing the criterion

VN (α, β, γ) =
1

N

N∑
t=1

(y(t)−G2(q, α)f(G1(q, β)u(t), γ))2.

(2)
In case the process noise w(t) is zero, this criterion is
the prediction error criterion (PEM). If the measurement
noise is white and Gaussian, (2) is also the Maximum
Likelihood criterion and the estimate is thus consistent, under
the hypothesis of identifiability and persistent excitation, (see
[9]).

If the process noise is not zero, it is still reasonable to use
the error criterion (2). In [7], this criterion is used for Wiener
system affected by process noise, and it is called approxi-
mative Prediction Error Method (approximative PEM), since
the predictor used in the model will not lead to a criterion
that can be written as a Maximum Likelihood function.

Independently on the presence of process noise, the pre-
dictor used in (2) is a nonlinear function of the parameters,
hence, in general, the optimization problem is not convex.
Therefore iterative search methods must be used in order to
compute the estimate and generating a good initial guess is
crucial in order to avoid local minima. As already mentioned
in the introduction, if there is no process noise, the BLA
represents a consistent estimate of the product of the two
linear parts and it can be used to generate this initial guess.
This is done in several identification algorithms, because the
true linear systems G1 and G2 are actually described by one
possible split of the BLA. Hence, the remaining question for
approaches based on BLA splitting, is to find the right split
and estimate the parameters of the nonlinearity.

In the next section we will show that, actually, also in
presence of process noise, the BLA is a consistent estimate
of the concatenation of the linear parts.

III. CONSISTENCY OF THE BLA

First, we define precisely the BLA. The best linear ap-
proximation of a time-invariant nonlinear system to a given
class of stationary input signals U , containing sequences of
length N, is defined as the best linear system approximating
the system’s output in the mean square sense [5], [11],

GBLA(q) = argmin
G∈G

1

N

N∑
t=1

(y(t)−G(q, θ)u(t))2, (3)

where G(q) is a linear model belonging to the class of linear
systems G. Clearly, the BLA depends on the class of input
signals U .

We also recall Bussgang’s theorem [3] about cross spectra
transformation.

Theorem 1: (Bussgang) Let m(t) and n(t) be two real-
valued, jointly Gaussian stationary process. Let f be a

nonlinear function and g a stochastic process defined by

g(t) = f(n(t)). (4)

Then the cross spectrum between m and n is proportional
to the cross spectrum between m and g:

Φmg(ω) = kΦmn(ω) (5)

where k is areal-valued constant (that may be zero).
Now we can use the result from Bussgang’s theorem

to extend the consistency result of the BLA to our more
general situation with process noise. We consider the Wiener-
Hammerstein structure with process noise, as defined in
Figure 1. The equations defining the true system are

y(t) = G0
2(q)f(x(t)) + e(t) (6a)

x(t) = x0(t) + w(t) (6b)
x0(t) = G0

1u(t) (6c)

where G0
1, G0

2 and f(.) indicate the true linear parts and
nonlinear function. Then we have the following theorem.

Theorem 2: If the following assumptions are satisfied,

1) The input u(t) and the process noise w(t) are inde-
pendent, Gaussian, stationary processes;

2) The measurement noise e(t) is a stationary stochastic
process, independent of u and w;

3) G(q, θ) is an arbitrary transfer function parametriza-
tion with freely adjustable gain, such that G(q, θ0) =
G0

1(q)G0
2(q), for some parameter value θ0;

4) Parameter θ is estimated from u and y using an output
error method,

θ̂N = argmin
θ

1

N

N∑
t=1

(y(t)−G(q, θ)u(t))2, (7)

then

G(q, θ̂N )→ kG0
1(q)G0

2(q) w.p. 1 as N →∞ (8)
Proof: Since e and u are independent, the cross spectra

between u and y, y0 will be the same: Φyu = Φy0u. Since
u and w are Gaussian, then x(t) is also Gaussian and
Bussgang’s theorem tells us that Φzu = kΦxu. Signals u
and w are also independent, then Φxu = Φx0u. Thus, we
have the following result,

Φzu(ω) = kΦxu(ω) = kΦx0u(ω) = kG0
1(eiω)Φu(ω). (9)

Similarly, for the second linear system, we get

Φyu(ω) = G0
2(eiω)Φzu(ω) = kG0

2(eiω)G0
1(eiω)Φu(ω).

(10)
Now, we know that θ̂N , asymptotically, will minimize (see

e.g. Chapter 8 in [9]) the function

V (θ) =E(y(t)−G(q, θ)u(t))2

=
1

2π

∫
(Φy(ω)− 2Re[G(e−iω, θ)Φyu(ω)]

+ |G(eiω, θ)|2Φu(ω))dω.

(11)
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In (11), we can add and subtract the quantity
k2|G0

1(eiω)G0
2(eiω)|2Φu(ω), obtaining

V (θ) =
1

2π

∫
(Φy(ω) + k2|G0

1(eiω)G0
2(eiω)|2Φu(ω)

− k2|G0
1(eiω)G0

2(eiω)|2Φu(ω)

− 2Re[G(e−iω, θ)Φyu(ω)]

+ |G(eiω, θ)|2Φu(ω))dω.

(12)

Since Φy(ω) and k2|G0
1(eiω)G0

2(eiω)|2Φu(ω) are θ-
independent terms, minimizing V (θ) is the same as mini-
mizing

W (θ) =
1

2π

∫
(k2|G0

1(eiω)G0
2(eiω)|2Φu(ω)

− 2Re[G(e−iω, θ)Φyu(ω)]

+ |G(eiω, θ)|2Φu(ω))dω.

(13)

We can substitute now the relation for Φyu(ω) from (10),

W (θ) =
1

2π

∫
(k2|G0

1(eiω)G0
2(eiω)|2Φu(ω)

− 2Re[kG(e−iω, θ)G0
2(eiω)G0

1(eiω)Φu(ω)]

+ |G(eiω, θ)|2Φu(ω))dω

(14)

that leads to

W (θ) =
1

2π

∫
(|kG0

1(eiω)G0
2(eiω)−G(eiω, θ)|2Φu(ω)dω,

(15)

which is minimized by G(eiω, θ) = kG0
1(eiω)G0

2(eiω).
The result is that, up to a gain, the linear system G(q)

(BLA) will be a consistent estimate of the concatenation of
G0

1 and G0
2. Hence, in principle, we can still use the BLA

to obtain the underlying dynamics of the W-H system. The
next step, then, would be to decide how to split the BLA
into G1 and G2 and estimate the nonlinearity.

In the next section we will address the problem of the
estimation of the nonlinearity, in presence of process noise.

IV. IMPACT OF THE PROCESS NOISE ON THE
ESTIMATION OF THE NONLINEARITY

The main result of this section is to show that, due to
process noise, the estimation of the nonlinearity will be
inconsistent, using a standard PEM approach. This result is
important since it influences the splitting of the BLA into
the two linear parts.

In general, several splits of the dynamics from the BLA
are possible, and one of them will be the correct one (G0

1,
G0

2). The question, then, is how to find the right split when
process noise is present. When there is no process noise, and
under the assumption of white Gaussian measurement noise,
the model containing the right split of the dynamics will
also be the true predictor for the system. This means that a
prediction error method used to estimate the parameters will
be a Maximum Likelihood criterion, and the estimate will
be, thus, consistent [15]. This is what is done, for example,
in the ”brute force” approach in [15]. With this approach, the
dynamics contained in the BLA are split in all possible ways

between G1 and G2, and for each possible split a Wiener-
Hammerstein model is estimated by fitting the parameters of
the nonlinearity, using PEM.

On the contrary, if process noise is present, the previous
approach is not possible any more, due to the bias in the
nonlinearity. This case will be considered in the next section
and we will show that, when the right split is available, a
standard PEM approach provides a biased estimation of the
parameters of the nonlinearity.

A. Biased Estimation of the Nonlinearity

In this section we show that the estimation of the param-
eters of the nonlinearity of a Wiener-Hammerstein model is
biased, in presence of process noise and when the true linear
parts are known.

Assume that the true system is within the model class, i.e.
there exist parameters (α0, β0, γ0) such that

y(t) = G2(q, α0)f(G1(q, β0)u(t) + w(t), γ0) + e(t). (16)

The approximate PEM criterion, introduced in Section II, is
described by

VN (α, β, γ) =
1

N

N∑
t=1

(y(t)−G2(q, β)f(G1(q, α)u(t), γ))2.

(17)
Consistency of the parameters means that

α̂, β̂, γ̂ → α0, β0, γ0 when N →∞, (18)

where [α̂, β̂, γ̂] = argminVN (α, β, γ). The true dynamics are
given from the BLA, and they are fixed, i.e. α = α0, β = β0.

Then we have the following theorem.
Theorem 3: Let the nonlinearity f(x(t)) be polynomial

or well approximated by a polynomial function. Under the
assumption of ergodicity, the estimate of γ, obtained by
minimization of the approximate PEM criterion, see (17),
is biased.

Proof: By using the input-dependent transformation of
the process noise after the nonlinearity, similarly to what has
been done in [7], the true system can be written as

y(t) = G2(q, β0)[f(G1(q, α0)u(t), γ0) + w̃(t)] + e(t) (19)

where

w̃(t) = f(G1(q, α0)u(t) +w(t), γ0)− f(G1(q, α0)u(t), γ0).
(20)

Statistical properties are not preserved in the transformation
from w(t) to w̃(t). In particular, signal w̃(t) is not indepen-
dent of u(t), as it happens for w(t). This will be used later
in the proof.

By using expression (20), the cost function VN (α, β, γ)
can be written as

VN (α, β, γ) =
1

N

N∑
t=1

[G0
2(f0(t)+w̃(t))+e(t)−G2f(t, γ)]2,

(21)
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where, to simplify the notation, the following symbols are
introduced,

G2 = G0
2 , G2(q, β0) (22a)

f0(t) , f(G1(q, α0)u(t), γ0) (22b)
f(t, γ) , f(G1(q, α0)u(t), γ). (22c)

The approximate PEM criterion then, becomes

VN (γ) =
1

N

N∑
t=1

[G0
2(f0(t) + w̃(t)) + e(t)−G0

2f(t, γ)]2

=
1

N

N∑
t=1

[G0
2(f0(t)− f(t, γ))]2

+
1

N

N∑
t=1

[G0
2w̃(t) + e(t)]2

+
2

N

N∑
t=1

[G0
2(f0(t)− f(t, γ))(G0

2w̃(t) + e(t))].

(23)

Under the ergodicity assumption, the time averages tend
to the mathematical expectations as N tends to infinity. The
operator E, then, denotes both mathematical expectation and
averaging over time. Since the measurement noise e(t) is
zero mean and signals u(t) and w(t) are independent, as N
tends to infinity, the criterion tends to

V̄N (γ) =[G0
2E(f0(t)− f(t, γ))]2 + [G0

2Ew̃(t)]2 + Ee(t)2

+ 2|G0
2|2[E(f0(t)− f(t, γ))w̃(t)].

(24)

This cost is quadratic except for the last term E(f0(t) −
f(t, γ))w̃(t), linear in f(t, γ). We want to show that, due to
the presence of this term, the estimation of γ is biased, i.e.

∃γ∗ 6= γ0 : V̄N (γ∗) < V̄N (γ0). (25)

Let us consider an arbitrarily small ε such that

γ∗ = γ0 + ε. (26)

Since ε is small, we can focus on the first order Taylor
approximation of the term E(f0(t) − f(t, γ))w̃(t), at γ0.
This will be

−E

[
df(t, γ)

dγ

∣∣∣∣
γ0

w̃(t)

]
ε. (27)

Since ε is arbitrary, it is enough to show that

E

[
df(t, γ)

dγ

∣∣∣∣
γ0

w̃(t)

]
6= 0. (28)

Let us consider a linearly parametrized nonlinearity, i.e.

f(x0(t), γ) = γT g(x0(t)), (29)

with x0(t) = G1(q, α0). Thus,

df(t, γ)

dγ

∣∣∣∣
γ0

= g(x0(t)). (30)

On the other hand, w̃(t) can be written, in terms of g(x0),
as

w̃(t) = γT0 [g(x0(t) + w(t))− g(x0(t))] (31)

Since g is a polynomial nonlinearity, it exists at least one
n ≥ 2, such that g(x0 +w) = (x0 +w)n 6= 0. This term can
be expanded as

(x0 +w)n = xn0 +nxn−10 w+
(
n
2

)
xn−20 (w)2 +O(w3). (32)

Therefore we have

g(x0) = xn0

w̃(t) = γT0 [(xn0 + nxn−10 w +O(w3))− xn0 ],
(33)

and, since w is zero mean, the expression (28) becomes

γT0 E
[
xn0
((
n
2

)
xn−20 (w)2 +O(w3)

)]
. (34)

Therefore, the argument of the expectation operator contains
one term in the form x2n−20 w2. Since, x0 and w are indepen-
dent and they are raised to positive powers, their expectation
is different from 0.

Remark The above theorem only considers non-linear
functions that can be well approximated by polynomials. For
other common choices of non-linearities, such as piece-wise
linear function, the proof must be developed differently, but
similar arguments can be used.

The theorem tells that the estimate will not be consistent,
due to the presence of process noise. Thus, the ”brute force”
algorithm, consisting in splitting the dynamics in all possible
ways and estimating the nonlinearity, will not provide a
consistent estimate.

This will make it harder to find the right split of the BLA
and, then, the open question is whether we can find another
approach that provides unbiased estimate of the nonlinearity
in presence of process noise. One approach could be to try
to extend the result in [7], where a consistent Maximum
Likelihood estimator is presented for the Wiener model, to
the Wiener-Hammerstein case. This will be addressed in
future research.

V. SIMULATION EXAMPLES

In this section two simulation examples are shown in
order to illustrate the theoretical results obtained in previous
sections. Two different Wiener-Hammerstein systems with
process noise are simulated to obtain data. For comparison,
for each system two different data sets are generated, one
with process noise (w/ pc) and one without (w/out pc).
The generated data are used to estimate the best linear
approximation of the system, and then, assuming the right
split of the linear dynamics, to estimate the parameters of the
nonlinearity. Monte-Carlo simulations are used to generate
estimation distributions over 1000 sets of 1000 data points
for each example.

In both cases it will be shown that the estimation of the
best linear model is unbiased (see Section III), but when
the parameters of the nonlinearity are identified, the process
noise causes a bias in the estimation (see Section IV).
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TABLE I: BLA estimation - Example 1

Poles/Zeros True Estimated (µ± σ)
p1 0.4 0.3988± 0.1000
p2 0.8 0.7998± 0.0401

TABLE II: Nonlinearity estimation - Example 1

Par True Est w/ pc (µ± σ) Est w/out pc (µ± σ)
c0 1.0 1.4591± 0.3934 1.0010± 0.0009
c1 1.0 2.4337± 0.3344 0.9987± 0.0008
c2 0.01 0.0014± 0.0213 0.0095± 6.3 ∗ 10−5

c3 0.01 −0.0075± 0.0034 0.0101± 9.5 ∗ 10−6

The PEM criterion for BLA and the approximative PEM
criterion for nonlinearity estimation are minimized using a
software package for the Mathematica platform [14]. To
estimate the BLA, an Output Error model structure is used
[9].

A. Example 1: Two first order systems with polynomial
nonlinearity

The first example is a Wiener-Hammerstein system con-
sisting in two first order linear systems with a polynomial
nonlinearity in the middle:

x0(t) =
q

q − a1
u(t)

z(t) =f(x0(t) + w(t))

y(t) =
q

q − a2
z(t) + e(t)

(35)

where the f(x) is a third degree polynomial:

f(x(t)) = c0 + c1x(t) + c2x
2(t) + c3x

3(t) (36)

The model structures and the degree of the polynomial are
assumed to be known. The input u is white Gaussian noise
with standard deviation 1 and the process noise w is also
Gaussian with standard deviation 4. The measurement noise
e is Gaussian with variance 1. The signals u, w and e are
mutually independent. The values a1 and a2 correspond to
two real poles in p1 = 0.4 and p2 = 0.8.

First the BLA estimation is performed. In Table I, there
is the comparison between the true poles p1 and p2 and the
corresponding poles of the estimated OE model (BLA). The
simulation confirms the theoretical results: the estimation
is consistent. Mean (µ) and standard deviation (σ) are
computed over 1000 runs.

Now the two linear parts are fixed according to the right
split and the nonlinearity is estimated, using the approxi-
mative PEM (see Section IV). In Table II, the estimation
of the nonlinear parameters in presence of process noise
(Est w/ pc) is shown together with the true values of the
parameters (True) and the estimation when w(t) ≡ 0 (Est
w/out pc). While the estimation with w(t) ≡ 0 provides
unbiased results, if process noise is affecting the data then
the estimate is not consistent any more. Especially parameter
c1 shows a big bias.

Fig. 2: Example 1. Histograms over 1000 Monte-Carlo simu-
lations of the estimates of the parameters of the nonlinearity
in presence of process noise (see also Table II). Parameters
c0 and c1 show bias in the estimate.

TABLE III: BLA estimation - Example 2

Poles/Zeros True Estimated (µ± σ)
p1,2 0.8± 0.4i (0.7965± 0.012)± (0.3999± 0.0154)i
p3,4 0.4± 0.7i (0.3954± 0.037)± (0.6997± 0.0504)i
z1 0.6 0.5714± 0.1015

In Figure 2, histograms of the estimates distribution are
shown for the parameters of the nonlinearity.

B. Example 2: Two second order systems with polynomial
nonlinearity

The second example is a Wiener-Hammerstein system
consisting in two second order linear systems with a poly-
nomial nonlinearity in the middle:

x0(t) =
q − b1

q2 + a1q + a2
u(t)

z(t) =f(x0(t) + w(t))

y(t) =
q

q2 + a3q + a4
z(t) + e(t)

(37)

where the f(x) is a third degree polynomial:

f(x(t)) = c0 + c1x(t) + c2x
2(t) + c3x

3(t) (38)

Signals u, w and e have same statistical properties as
previous example and standard deviations, respectively, 5,
5 and 1. Linear parameters b1, a1, a2, a3, a4 correspond,
respectively, to a real zero in z1 = 0.6 and two pairs of
complex poles in p1,2 = 0.8± 0.4i and p3,4 = 0.4± 0.7i.

Also in this case the BLA is consistent (Table III). In Table
IV, the true nonlinear parameters and their estimation (with
and without process noise) are compared. In this case the
estimation of c1 is clearly biased and the variance of c0 is
very high, when process noise is present. On the other hand,
the estimation when w(t) ≡ 0 is consistent.

In Figure 3, histograms of the estimates distribution are
shown for the parameters of the nonlinearity.
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TABLE IV: Nonlinearity estimation - Example 2

Par True Est w/ pc (µ± σ) Est w/out pc (µ± σ)
c0 0.0 0.3517± 2.8729 0.0000± 0.0014
c1 0.7 1.2484± 0.0812 0.7000± 1.5 ∗ 10−5

c2 0.01 0.0099± 0.0002 0.0100± 2.5 ∗ 10−8

c3 0.005 0.0048± 1.04 ∗ 10−6 0.0050± 1.2 ∗ 10−10

Fig. 3: Example 2. Histograms over 1000 Monte-Carlo simu-
lations of the estimates of the parameters of the nonlinearity
in presence of process noise (see also Table IV). There is a
clear bias in the estimation of parameter c1.

VI. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this paper we focused on the problem of identifica-
tion of Wiener-Hammerstein models, when disturbances are
affecting the input of the nonlinerity. Several identification
algorithms are based on the split of the dynamics contained
in the best linear approximation, which is a consistent
estimate of the concatenation of the two linear parts, when
only measurement noise is present. Here we addressed the
consistency aspects of the BLA, also in presence of process
noise. We obtained the following results:

• the presence of process noise does not influence the
consistency of the best linear approximation (BLA) of
the system; with or without process noise the BLA
represents an unbiased estimate of the concatenation of
the two linear parts;

• once the two linear parts are known, estimating the
nonlinearity, using a standard PEM approach, leads
to a biased result. This affects several identification
algorithms based on the BLA, since it makes harder
to split the dynamics into the correct linear blocks.

All the results have been illustrated using Monte-Carlo
simulations, confirming the theoretical results.

B. Future Works

Future research will address the problem of finding an
identification algorithm for Wiener-Hammerstein systems
based on the split of the BLA, which also provides consistent
estimate of the nonlinearity when process noise is present.
In particular, it will be interesting to investigate possible
splitting problems of the dynamics contained in the BLA,
when disturbances are affecting the input of the nonlinearity.
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