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Abstract

Electronic transport through single-molecule devices is a powerful spectroscopic tool to probe
various degrees of freedom at the nanoscopic level. Among these degrees of freedom, molecular
vibrations are of particular relevance since they can result in drastic effects such as transport
blockade. While the effect of the interaction between the molecular charge and vibrations on
transport through a single magnetic molecule has already been characterized, additional research,
especially from the theoretical perspective, is still required to examine the vibrations’ coupling to
the molecular spin and its impact on the magnetic anisotropy. For this reason, the aim of this
thesis is to provide and scrutinize a theoretical model for transport through a single magnetic
molecule that takes into account the threefold interplay between charge, spin and molecular vibra-
tions. For a quantum mechanical treatment, the real-time diagrammatic technique is employed to
study transport in the sequential tunneling regime. However, exploiting Bloch-like equations, it is
proven that coherent superpositions do not influence transport for a molecule embedded between
nonmagnetic electrodes. Consequently, using classical rate equations with Fermi golden rule is
sufficient to capture the full picture. Based on this approach, it is shown that the coupling of the
molecular vibrations modulates the magnetic anisotropy of a molecule along both the uniaxial and
transverse directions, which results in various implications on transport properties, most notably
transport blockade. This demonstrates yet another possibility to modify the magnetic properties
of molecules by controlling the vibrational excitations. For instance, the anisotropy barrier can
be enhanced to potentially improve the stability of a magnetic molecule as a nanoscopic memory
element.

Keywords: molecular transport, single-molecule electronics, molecular spintronics, magnetic
anisotropy, molecular vibrations, spin-vibron coupling, quantum coherences.
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1
Introduction

The thesis at hand presents a theoretical study of transport through single molecules. In particular,
the issue under scrutiny is the effect of the threefold coupling between spin, charge and molecular
vibrations on the transport properties of magnetic molecules. Studying molecular transport lies
at the heart of contemporary research, either with the purpose of achieving functional molecular
devices or to gain better understanding of the various quantum mechanical phenomena accessible
at the single-molecule level. Accordingly, the following introduction aims to motivate and frame
the scientific context of this study. The introduction is organized as follows. Section 1.1 explains
the recent interest in molecular electronics, whereas in Sec. 1.2 the concept of single-molecule
junctions is introduced together with a brief summary of the recent studies in literature. The
properties of bare magnetic molecules under consideration in this thesis are discussed in Sec. 1.3.
Finally, in Sec. 1.4, the main research problem addressed in the present work is defined along with
an overview of the following chapters.

1.1 Molecular electronics

The microfabrication industry and its leading invention, the field-effect transistor (FET), are of
crucial importance to today’s information technologies. The scalability of this industry has sus-
tained its exponential growth over decades, maintaining Moore’s law. However, increasing chal-
lenges with further scaling down of conventional silicon integrated circuits (ICs) sparked interest in
other novel scaling routes, one of which is molecular electronics [1, 2]. Molecules are an attractive
alternative to silicon-based technologies since their size ranges from 1 to 100 nm, which enables
achieving nanoscale structures in the same length scale of cutting-edge miniaturized ICs [3]. More-
over, molecular electronics represents a paradigm shift from top-down lithography to bottom-up
approach, where well-controlled nano-structures can be self-assembled from basic building blocks
to create functional devices [4]. Self-assembly allows for associating function with structure; hence,
it provides molecules with tailor-made electronic, magnetic and light-interacting properties [5]. As
a result, molecules could cover a wide-range of applications, ranging from logic and memory to
light-harvesting devices [6].

1.2 Single-molecule junctions

Recent interest in molecules as functional devices can also be attributed to the rapid technolog-
ical advances that permit the isolation and manipulation of individual molecules [7]. Figure 1.1
illustrates a schematic of the basic building block of molecular electronics research, namely a single-
molecule junction, where a molecule is embedded between two electrodes, a source and a drain,

1



1. Introduction

Figure 1.1: Single-molecule junction. Illustration of a benzene molecule trapped between two
metallic electrodes on top of a substrate acting as a gate. Such single-molecule junctions are the
basic building block of contemporary research on molecular electronics. Image taken from Ref. [7]

on top of a metallic gate. Over the past years, immense progress has been made to fabricate
nanogaps with trapped single molecules. The most widely adopted techniques are summarized in
Fig. 1.2 with the fabrication details described in the caption. Employing these techniques, various
electronic circuitries have been demonstrated including switches [8–12], transistors [13–15] and
memories [16, 17].

Interestingly, studying charge transport through molecular junctions turned out to be a pow-
erful spectroscopic tool for investigating various degrees of freedom at the level of individual
molecules [21]. By analyzing the conductance of a molecule at low temperature1, one can ob-
tain information about its energy spectrum, in addition to, the different excitations that take
place within the molecule. Among these excitations, magnetic and vibrational ones are of particu-
lar interest in the present work, as discussed in Sec. 1.3. The question, then, arises: how to model
a molecule suspended in a molecular junction between two electrodes? For a bare molecule, the
energy spectrum can be approximated by discrete levels. Moreover, before embedding the molecule
into a junction, it can only exist in a fixed charge state, i.e., it contains a certain number of elec-
trons. Upon attachment to the electrodes, the charge state of the molecule can change because
electrons can now tunnel between the molecule and the electrodes through barriers that form at
the molecule-electrode interface. Due to these electron tunneling processes, the energy levels of
the molecule become broadened, which is characterized by the tunnel-coupling parameter Γ. If
the level-broadening is considerably smaller than the level-spacing ∆ and the thermal energy of
electrons kBT , i.e., Γ ≪ kBT and ∆, one can assume that the discrete energy spectrum of the
molecule is still valid even after coupling to the electrodes. This condition is referred to as the
weak coupling regime and is assumed throughout the present work. It should be noted that the
weak and also the intermediate2 coupling regimes are the relevant ones to study single molecules
in electronic transport measurements since the energy spectrum and, hence, the properties of the
molecule are not drastically altered due to coupling to the electrodes.

Unlike bare molecules, the electrodes are typically modeled as a continuous energy spectrum
with Fermi-Dirac statistics, as depicted in the electrochemical diagrams in Fig. 1.3(a), where the

1The temperature should be sufficiently low to allow for resolving quantization effects either due to the discrete
energy spectrum of a molecule or due to other excitations.

2The intermediate coupling is defined as the regime in-between the strong ( Γ ≫ kBT , ∆) and the weak
( Γ ≪ kBT , ∆) coupling regimes. This regime is particularly important to study higher-order tunneling processes,
in contrast to weak coupling where only first-order transport is relevant [22].
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1. Introduction

Figure 1.2: Experimental techniques used to create nanogaps for measuring single-
molecule conductance. (a) Conductance measurement using scanning tunneling microscopy
(STM). The technique works as follows: First a functionalized substrate is approached by a con-
ducting tip. Next, the tip is retracted slowly, until there is only one molecule attached to it and,
then, measurement takes place. The resultant configuration is a two-terminal setup which sets a
limit on the capability of the technique. Image taken from Ref. [18]. (b) Mechanically-controlled
break junction (MCBJ). A push rod is used to mechanically break a metallic wire on a flexible sub-
strate. By optimizing the flexibility of the substrate and precise control of the push rod, nanogaps
are obtained in which molecules can be placed. Image taken from Ref. [8]. (c) Fabrication of
nanogaps using a lithographic top-down approach. By using a shadow mask and carefully tuning
the angle of evaporation, metal electrodes can be deposited with nanogaps in between. Image taken
from Refs. [15, 19]. (d) Electromigrated molecular junction. By passing a high density current
through a metallic wire, the momentum transfer of the energetic electrons can lead to displacement
of the wire atoms; hence, creating a nanogap. Image taken from Ref. [20].

dotted line represents the chemical potential of the source µs and the drain µd. In this example, the
molecule can exist in two charge states differing by one electron, referred to as the neutral state N
and the charged state N + 1, as indicated by two energy levels in Fig. 1.3(a). In the absence of
a bias voltage, no charge transport takes place due to the equilibrium of the chemical potential
between the source and the drain. In this case, only the energy levels below the chemical potential
of the electrodes are filled, whereas the energy levels above are empty. For the electrochemical
diagram illustrated on the left-hand side of Fig. 1.3(a), the level with the energy µ(N) is filled,
which corresponds to a molecule in the neutral state N . Upon applying a bias voltage V , the
chemical potential gradient µs − µd between the source and the drain can enable electrons to
tunnel through the molecule. However, if the bias energy is less than the energy required to
add an electron to the molecule, there is a blockade of transport and the molecule exists only

3



1. Introduction

(b)

(a)

Figure 1.3: Transport through a molecular junction. (a) Electrochemical diagrams showing
blockade (left) and sequential tunneling (right). (b) Schematic illustration of a typical differential
conductance map as a function of the bias voltage V and gate voltage Vg. The white diamonds
are the regions where the molecule exist in one charge state only, either the neutral state N or
the charged state N + 1, due to transport blockade. The red arrow represents the addition energy
with respect to the gate and bias voltages, which refers to the energy required to add one electron
to the molecule to alter its charge state. Colored regions represent the sequential tunneling regime
where the molecule changes its state as electrons sequentially tunnel from the source to the drian
via the molecule.

in the neutral state N . As the bias voltage increases, the energy level µ(N + 1) enters the bias
window and the blockade is lifted as depicted on the right side of Fig. 1.3(a). Consequently,
electrons sequentially tunnel from the source to the drain one by one via the molecule; hence the
name sequential tunneling regime. In this regime, the molecule alternates between the two charge
states, N and N + 1, as electrons tunnel through. These two regimes are typically observed in
differential conductance ∂I/∂V plots, where I and V are the charge current through and voltage
across the junction, respectively. Figure. 1.3(b) shows a schematic differential conductance map,
also known as stability diagram, where the white diamonds represent the blockade regions with
stable charge states N and N + 1. On the other hand, the sequential tunneling regime with
alternating charge states is represented by the colored diamonds. It should be remarked that these
stability diagrams are acquired based on three-terminal conductance measurement. Accordingly,
for a two-terminal setup such as scanning tunnel microscopy (STM), one-dimensional differential
conductance plots are used instead, i.e., dI/dV versus bias voltage V . For the sake of completeness,
both types of plots are typically shown when discussing results in the following chapters.

4



1. Introduction

So far, only transitions that involve the charge of the molecule have been considered. However,
as already mentioned, molecules exhibit additional degrees of freedom, most importantly magnetic
ones which are the focus of this thesis. Consequently, the following section introduces the origin
of magnetic excitations in magnetic molecules and presents a similar example where transitions
occur between the different magnetic states of the molecule.

1.3 Magnetic molecules

The goal of the present thesis is to study the impact of the interaction between spin and molecular
vibration on transport properties of magnetic molecules. For this reason, the focus here is on
magnetic molecules that possess a large spin, i.e., a spin greater than that of an electron (S > 1/2).
Importantly, such molecules typically exhibit a magnetic anisotropy, that is, an energetic preference
to orient spin along a specific direction [23]. The magnetic properties of these particular molecules
can be appropriately captured by the giant-spin Hamiltonian [23, 24]

Ĥmol = −D
(
Ŝz

)2 + E
[(
Ŝx

)2 −
(
Ŝy

)2
]
, (1.1)

which means that the molecule is represented by an effective giant spin S. The first term in
Eq. (1.1) characterizes the uniaxial magnetic anisotropy of the molecule, conventionally chosen
along the z-direction, with the uniaxial anisotropy constant D. The second term describes the
transverse magnetic anisotropy with the transverse anisotropy constant |E| ≤ |D|/3 [23]. Even in
the absence of magnetic field and transverse magnetic anisotropy (E = 0), the uniaxial anisotropy
of the molecules lifts the degeneracy of the magnetic ground state and, hence, the spin states of
the molecule are split into 2S + 1 states.3 It should be emphasized that although the focus of this
thesis is on magnetic molecules, the giant-spin Hamiltonian is also applicable to other magnetic
systems, such as magnetic adatoms and clusters [25–27].

Furthermore, based on the sign of the uniaxial anisotropy constant D, one can distinguish two
distinctive classes of the magnetic molecules under consideration. First, for D > 0 the spin mo-
ment prefers to point along the easy axis (z-direction), resulting in a parabolic energy spectrum as
shown in Fig. 1.4 where the states of a molecule, in the absence of transverse magnetic anisotropy,
are represented in terms of the spin projections along the z-axis, i.e., the states are characterized by
the magnetic quantum number M . In particular, the magnetic ground state consists of two degen-
erate molecular states, one corresponding to the spin moment pointing in the positive z-direction
and the other pointing in the opposite direction, as marked by blue arrows in Fig. 1.4. Later in this
thesis, this behavior will be referred to as the easy-axis type of magnetic anisotropy. A well-known
example of this particular class are single-molecule magnets (SMM), a special group of magnetic
molecules exhibiting a strong uniaxial magnetic anisotropy at low temperature, which results in
a bistable magnetic states, either parallel or antiparallel to the easy-axis [23]. Importantly, to
reverse its spin-orientation from one of these metastable states to the other one, the molecule has
to overcome the parabolic potential barrier by changing its magnetization step-by-step via the con-
secutive spin states. The magnetization reversal of the molecule from the negative to the positive
z-direction, or vice versa, can be seen as flipping a bit from state 0 to 1. For this reason, SMMs are
being investigated as a prospective nanoscopic spintronic device capable of storing and processing
quantum information [28]. However, so far only few experimental demonstrations of SMMs mem-
ory exist in literature [29], since the magnetic bistability is only present at low temperature. As for

3This can be readily understood by making an analogy to electrons. An electron has a spin S = 1/2 and, hence,
it can be in 2S + 1 states from −S to S, that is the spin-up |↑⟩ and spin-down |↓⟩ states.

5
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ZFS
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z-component of the spin

Figure 1.4: Energy spectrum of a magnetic molecule with the easy-axis type of mag-
netic anisotropy. The uniaxial magnetic anisotropy splits the ground state of the molecule
into 2S + 1 states, where S is the total spin of the molecule. An energy barrier given by D

(
S
)2,

separates the two metastable ground states (blue arrows). To flip its spin-orientation, the molecule
goes through the consecutive spin states to climb over the potential barrier. The energy difference
between the ground and first excited states is usually referred to as zero-field splitting (ZFS)

E
ne

rg
y

z-component of the spin

Figure 1.5: Energy spectrum of a magnetic molecule with the easy-plane type of
magnetic anisotropy. The anisotropy of the molecules splits the spin states into 2S + 1 with S

as the total molecular spin. In contrast to Fig. 1.4, the spin moments prefer to orient along the
plane perpendicular to the easy-axis (z-axis). Thus, the states with the largest magnetic quantum
number, i.e., Sz spin projections, are the least stable.

magnetic structures where the uniaxial anisotropy constant is negative (D < 0), the spin moments
prefer to align along the plane perpendicular to the easy-axis (z-axis). Consequently, in terms of Sz

spin projections, the ground state consists of states with the lowest magnetic quantum numbers, as
schematically depicted in Fig. 1.5. This class is later called as the easy-plane magnetic anisotropy
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(b)

(a)
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Charged State N+1Neutral State N

Figure 1.6: Schematic diagrams of ground and excited state transitions in a generic
magnetic molecule. (a) Electrochemical diagram showing two transition possibilities, either
involving the ground states (left) or the excited states (right). (b) Double-well potential for a
magnetic molecule in the neutral N (left) and charged N + 1 (right) states where two transitions
are indicated. The first occurs from the ground states of the neutral molecule to the charged ground
state, while the second occurs via an excited charged molecular state, that is |N + 1, SN+1 − 1⟩.
Since transitions between molecular states occur due to the tunneling of an electron either with a
spin up or spin down, the absolute difference in magnetic quantum number between the two possible
final states must be one. In addition, due to conservation of spin momentum, only transitions
where the magnetic quantum number changes by 1/2 is allowed. For instance, a transition from
the state |SN ⟩ to |−SN+1⟩ is forbidden since |−SN+1 −SN | > 1/2. The role that spin conservation
plays as a selection rule for allowed transitions is further discussed in Sec. 2.3.

case. Examples of systems belonging to this particular class can be found in Ref. [27]. In the
discussion about the coupling between spin and molecular vibrations in Chap. 3, an example of
each class is presented to illustrate how the molecular vibrations impact their electronic transport
properties.

Now, similarly to the previous section, it is of interest to model transport through a magnetic
molecule placed in a junction. Consequently, an illustrative example is briefly discussed to demon-
strate how the magnetic spin states affect the transport characteristics. In this example, the effect
of transverse magnetic anisotropy is neglected, i.e., E = 0. Unlike nonmagnetic ones, each charge
state of a magnetic molecule is no longer represented by a single level, but rather by 2Sn + 1

7
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N N+1

ZFS

Figure 1.7: Stability diagram. Differential conductance plot, ∂I/∂V , as a function of gate Vg

and bias V voltage showing, in comparison to Fig. 1.3(b), an additional red line that reflects the
transition to the excited state of the charged molecule. The additional energy required corresponds
to the difference between the ground and first excited spin states of the charged molecule, namely
the zero-field splitting.

spin states, where Sn is the spin of the molecule at the charge state n. Thus, each molecular
state is now characterized by two quantum numbers |n,Mn⟩ where Mn is the Sz projection of the
spin-state of the molecule in the charge state n. For instance, for the molecule under discussion,
a half-integer spin SN is assumed for the neutral state and, in turn, the charged state possesses
an integer spin SN+1. As already explained, no charge transfer takes place at zero bias due to
the equilibrium of chemical potential between the source µs and the drain µd. Upon applying
bias V , the difference in chemical potential µs − µd allows an electron to tunnel from the source
to the drain, via the molecule. Figure 1.6(a) depicts two possibilities for such a tunneling event.
The first possibility, shown on the left side of Fig. 1.6(a), occurs when an electron tunnels to the
molecule causing it to alter its charge state from the neutral state N to the charged state N+1 via
a ground-state to ground-state transition. In other words, a transition from the neutral molecular
state |N,SN ⟩ to the state |N + 1, SN+1⟩ occurs. Alternatively, the molecule could make a transi-
tion from the neutral N to the charged state N + 1 via an excited spin state, as illustrated on the
right side of Fig. 1.6(a). This represents a transition from the neutral molecular state |N,SN ⟩ to
the state |N + 1, SN+1 − 1⟩.4 An example of these two transitions is indicated on the energy
spectrum of the neutral and charged molecules by blue arrows and typically observed in stability
diagrams, as shown in Fig. 1.7. The energy required to achieve this transition is the difference
between the ground and first excited spin states of the charged molecule, namely the zero-field
splitting, which is denoted by ZFS on the stability diagram. It is worth mentioning that electron
transport measurements described here could also be used to determine the magnetic anisotropy
of single magnetic molecule embedded in a junction, which cannot be measured by other exper-
imental tools since they are applicable to an ensemble of molecules rather than individual ones.
Using such spectroscopic tool, the uniaxial and transverse anisotropy constants of the Fe4 SMM
have been experimentally obtained in [30] and [31], respectively.

In the previous example, the effect of the transverse anisotropy was disregarded and, hence,
the Sz spin projection was a good quantum number to characterize the molecular spin states. How-
ever, if E ̸= 0 one can see that the second term of Eq. (1.1) breaks the rotational symmetry around

4It should be noted that there exists two similar transitions from the other ground state of the neutral molecule,
namely from the molecular state |N, −SN ⟩ to the two states |N + 1, −SN+1⟩ and |N + 1, −SN+1 + 1⟩, where it can
also be seen that the absolute difference between the magnetic quantum number of the two possible final states is
one.

8
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Figure 1.8: Energy spectrum of a magnetic molecule with spin S = 2 in the presence
of transverse magnetic anisotropy. The transverse magnetic anisotropy breaks the rotational
symmertry around the z-axis and, hence, splits the molecular states into two uncoupled sets con-
sisting of an admixture of the pure Sz projections, as shown on the schematic energy spectrum by
the two distinctive degrees of the color red. By reformulating the operators Ŝx and Ŝy in Eq. (1.1)
in terms of the ladder operators, we can see that the transverse magnetic anisotropy only mixes
every other state as indicated by the blue dashed lines. Accordingly, the two uncoupled sets, from
which the new states are composed, become

{
|−2⟩ , |0⟩ , |2⟩

}
and

{
|−1⟩ , |1⟩

}
.

the z-axis leading to mixing of Sz states. Since Ŝx = (1/2)[Ŝ+ + Ŝ−] and Ŝy = (1/2ı)[Ŝ+ − Ŝ−],
the second term in Eq. (1.1) can be rewritten as (E/2)

[(
Ŝ+
)2 +

(
Ŝ−
)2], where Ŝ+ and Ŝ− are the

spin raising and lowering operator, respectively [23]. In particular, one finds that the transverse
anisotropy couples every other state. For example, for a magnetic molecule with S = 2, the raising
and lowering operators couple the states with the Sz projection equal to −2, 0 and 2, as shown in
Fig. 1.8. The implication of the coupling between the Sz projections is an additional relaxation
mechanism, namely quantum tunneling of magnetization (QTM) [23, 32–34]. As previously dis-
cussed, transitions between the neighboring spin-states are required to overcome the anisotropy
barrier. Here one can see that an additional pathway arises due to the transverse anisotropy be-
cause mixing of the spin-states allows for transitions across the barrier. This effect gives rise to
steps in magnetization relaxation curves, which are a typical signature of SMMs.

1.3.1 Molecular vibrations

An additional degree of freedom of key relevance to the thesis at hand are molecular vibrations.
Molecules embedded in single-molecule junctions vibrate with discrete frequencies, which are a
characteristic fingerprint of these molecules [35]. Importantly, these vibrations can couple to the
charge and the spin of the tunneling electrons, so that when an electron tunnels via the molecule, it
can excite vibrations by causing a transition from a vibrational ground state to an excite one [35].
The interaction between electronic charge and vibrations has been experimentally studied in single-
molecule junctions based on carbon derivatives, specifically carbon nanotubes and fullerenes, [36–
41], and also in other single molecules [42–45]. It was shown that charge-vibron5 coupling drasti-
cally impacts the transport properties of individual molecules. For instance, in the case of strong

5Vibrons are quantized energy quanta associated with molecular vibrations.
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1. Introduction

coupling, a transport blockade can occur at low bias, which is referred to as Franck Condon block-
ade [46].

Recently, this coupling has also been observed in the context of magnetic molecules such as for
the Fe4 SMM where the signature of Franck Condon low bias blockade was detected [47]. The
aforementioned experimental studies prove the significant influence of molecular vibrations on the
transport characteristics of single molecules, in general, and magnetic molecules, in particular. In-
terestingly, molecular vibrations can couple not only to the charge, but also to the spin of magnetic
molecules, which is referred to as the spin-vibron coupling. This interaction has been experimen-
tally demonstrated by Ganzhorn et al. [48] by coupling a SMM to the mechanical oscillations of
a suspended carbon nanotube. Although, the charge-vibron coupling in the context of magnetic
molecules has been theoretically studied for the first time by McCaskey et al. [35], one aspect that
still requires a closer investigation is the additional coupling mechanism between spin and vibra-
tions. For this reason, the goal of this thesis is to investigate the impact of the interplay between
charge, spin and molecular vibrations on the transport properties of a single-magnetic molecule.

1.4 Aim and outline

Given the significance of electronic transport through single-molecule devices, either from the per-
spective of fundamental research as a spectroscopic tool or from an application point of view, it
is evident that proper understanding of the interplay between the various degrees of freedoms in-
volved at the level of individual molecules is required. Consequently, the purpose of the thesis at
hand is to theoretically characterize the effect of the threefold coupling between charge, molecular
vibrations and spin on transport properties of magnetic molecules. The analysis starts by reviewing
the basics of transport through a single magnetic molecule, in the absence of molecular vibrations,
using the so-called real time diagrammatic technique and Fermi golden rule. We rigorously demon-
strate that using the latter approach is sufficient owing to the vanishing contributions of quantum
coherences between the molecular spin states in the case of nonmagnetic electrodes. Thus, using
Fermi golden rule formalism with stationary rate equations, the effect of charge-vibron coupling
is briefly reviewed. Finally, the main contribution of this thesis, spin-vibron interaction, is ad-
dressed. It is shown that coupling between spin and molecular vibrations induces an additional
magnetic anisotropy component in both the uniaxial and transverse directions.

The present work is organized as follows: Chapter 2 briefly introduces the model used to
describe transport through a magnetic molecule inserted in a symmetric, as well as, asymmetric
molecular junction, in addition to effect of charge-vibron coupling. The interaction between spin
and molecular vibrations and its effect on magnetic anisotropy are discussed in Chap. 3. In Chap. 4,
the role of quantum coherences in transport through a magnetic molecule is explored with the help
of the real-time diagrammatic technique.
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2
Theoretical background and model

The purpose of this chapter is to lay the theoretical framework of the present thesis by providing
a description of transport through a single magnetic molecule. To beging with, Sec. 2.1 introduces
the model used to describe a magnetic molecule embedded in a single-molecule junction in the
weak coupling regime, whereas in Sec. 2.2 and Sec. 2.3 the formalism allowing for characterization
of transport through a single magnetic molecule in the sequential tunneling regime is discussed.
Using this formalism, two examples of transport through a magnetic molecule are given in Sec. 2.4.
Finally, in Sec. 2.5, the interaction between electronic charge and molecular vibrations is incorpo-
rated into the model along with an example demonstrating its effect on transport properties.

2.1 Model of a magnetic molecule captured in a junction

In the introductory chapter, the properties of bare magnetic molecules were discussed and it was
shown that the spin states of the molecule impact its transport properties. In this chapter, the
aim is to analyze the transport in more detail by presenting a model for a single magnetic molecule
weakly tunnel-coupled to two electrodes, a source and a drain, as demonstrated in the schematic
diagram in Fig. 2.1. It should be emphasized that the discussion here refers to the weak coupling
regime which is one of the relevant regimes to study the properties of individual molecules because
the molecular level structure is preserved even after contacting the electrodes (cf. Sec. 1.2). In
general, a molecule coupled to non-interacting leads (electrodes) can be described by the general
model Hamiltonian [49, 50]

Figure 2.1: Single-molecule junction. A schematic illustration of a three-terminal junction
with an embedded magnetic molecule. The junction is comprised of two electrodes, a source and a
drain, weakly-coupled to the molecules such that electrons can tunnel from the source to the drain
via the molecule. In addition, the molecule is capacitively coupled to the gate electrode which can
be used to alter the charge state of the molecule.
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2. Theoretical background and model

Ĥ = Ĥmol + Ĥleads + Ĥtun. (2.1)

Here, the molecular Hamiltonian Ĥmol describes an individual magnetic molecule in a superposition
of charge states n. Since the charging energy of individual molecules is usually high, the molecule
is assumed to exist in only two charge states, referred to as the neutral state n = N and the charged
state n = N + 1 [49]. The molecular Hamiltonian Ĥmol reads

Ĥmol =
∑

n

Ĥspin,n + (ε− eVg)
∑
lσ

d̂†
lσd̂lσ. (2.2)

with

Ĥspin,n = −Dn

(
Ŝz

n

)2 + En

[(
Ŝx

n

)2 −
(
Ŝy

n

)2
]
. (2.3)

As mentioned in Chap. 1, Eq. (2.3) is referred to as the giant-spin Hamiltonian [23, 24]. That is,
the molecule can be represented by an effective charge-dependent spin Sn. Specifically, the first
term characterizes the uniaxial magnetic anisotropy of the molecule, conventionally chosen along
the z-direction, with the charge state dependent uniaxial anisotropy constant Dn and the spin
projection operator along the z-direction Ŝz

n. Whereas, the second term describes the magnetic
anisotropy along x and y directions, with the transverse anisotropy constant |En| ≤ |Dn|/3 [23].
Moreover, the last term in the molecular Hamiltonian (2.2) accounts for a capacitively coupled
gate Vg that allows for switching the molecule between the two accessible charge states by shifting
the energy level ε of the charged state N + 1. The operators d̂†

lσ and d̂lσ stand for the creation
and annihilation of electrons in the molecular orbital l, respectively.

The second Hamiltonian Ĥleads describes the left and right leads and it takes the following form

Ĥleads =
∑
qkσ

εq
kσâ

q†
kσâ

q
kσ, (2.4)

where the leads are labeled by an index q to differentiate the left (q = L) and right (q = R) ones,
and âq†

kσ (âq
kσ) is the creation (annihilation) operator of an electron with orbital quantum number k

and spin σ in the lead with index q. The leads represent an infinite non-interacting reservoirs of
electrons and, hence, they remain in equilibrium even if we remove or add few electrons. The
electronic distribution in the leads is described by the Fermi-Dirac statistics as follows

fq(ε) = 1

1 + exp

[
(ε− µq)
kBT

] , (2.5)

where kBT is the thermal energy, with Boltzmann constant kB. The chemical potential of the
electrodes is defined as µL(R) = µ0 ± eV/2 for a symmetrically applied bias voltage V , i.e., V/2
to the left and −V/2 to the right electrode. The equilibrium chemical potential of the electrodes
is denoted here by µ0. It should be noted that the convention used here is that the electronic
charge e < 0.

Finally, the tunneling of electrons between the leads and the molecule is captured by the Hamil-
tonian

Ĥtun =
∑
qlkσ

{
tqlσd̂

†
lσâ

q
kσ + h.c.

}
, (2.6)
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2. Theoretical background and model

where the first term corresponds to the tunneling of an electron with spin σ and momentum k from
an electrode with index q to the molecule, whereas its Hermitian conjugate in the second term
represents a tunneling process in the opposite direction. The matrix element tqlσ characterizes the
coupling between the molecule and the electrodes and will later appear as part of the expression
for the tunnel-coupling strength Γ. It is worth mentioning here that the electrode index, appearing
in the tunneling matrix element tqlσ, implies that the coupling of the molecule to the left and right
electrodes can be asymmetric as discussed in Sec. 2.4.3.

In the absence of transverse anisotropy E = 0, the states of the molecule can be characterized
by two quantum numbers |Sn,Mn⟩ where n is the charge of the molecule and Sn and Mn are the
total and Sz projection of the spin-state of a molecule in charge state n, respectively. However,
if E ̸= 0 one can see that the second term of Eq. (2.3) breaks the rotational symmetry around
the z-axis which mixes the Sz projections of the spin-states. Since Ŝz

n is Hermitian and, hence,
its eigenstates form a complete set, the spin-states of the molecule can still be represented in the
presence of transverse magnetic anisotropy as linear combinations of Sz projections. Thus, an
arbitrary molecular state |χn⟩ in the charge state n can be represented as

|χn⟩ =
∑
Mn

CMn
|Sn,Mn⟩ . (2.7)

where CMn
are the linear expansion coefficients.

2.2 Description of transport through a magnetic molecule

In the previous section, we discussed a general model for a single-molecule junction where electrons
can tunnel from the source to the drain via the molecule. Now, our aim is to determine the total
charge current through the molecule resulting from the tunneling of electrons. One way is to keep
track of the transitions between the molecular states since these transitions correspond to electron
tunneling processes. For instance, a transition from an arbitrary neutral molecular state |χN ⟩ to a
charged one |χN+1⟩ corresponds to the tunneling of an electron from the electrodes to the molecule.
Importantly, in order to characterize the contribution of an arbitrary transition between molecular
states to the current, it is required to know the rate at which this transition occurs, in addition to,
the occupation of the initial molecular state for such transition. Consequently, the question now
arises: how to obtain the occupation of the molecular states, or more generally, how to determine
the quantum state of a magnetic molecule embedded in a junction between two electrodes?

Essentially, the state of a quantum system can be fully described with the help of the density
matrix ρ

ρ =
∑

α

Pα |α⟩ ⟨α| . (2.8)

In particular, the diagonal elements of the density matrix describe the occupations (probabilities)
of the states |α⟩ that the quantum system can be in, whereas the off-diagonal elements represents
the coherent superpositions between these states (coherences). For our quantum system consisting
of a molecule and two leads, our goal is to keep track of the molecular states. Accordingly, we can
obtain a reduced density matrix for the molecule ρred by taking a trace over the degrees of freedom
in the leads [50]. Thus, the sought probabilities of the molecular states |χn⟩ can be found on the
diagonal part of the reduced density matrix of the molecule. However, it should be remembered
that, since the transverse magnetic anisotropy leads to mixing of the pure Sz states of the molecule,
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2. Theoretical background and model

it is legitimate to assume that the evolution of the off-diagonal elements is non-trivial and can have
an impact on the total current through the molecule. Thus, it is indispensable to calculate the
current using a method that captures the dynamics of the diagonal, as well as, the off-diagonal
elements of the reduced density matrix.

Nevertheless, in literature, the coherent superpositions are usually assumed to be negligible and
the classical rate equations with Fermi golden rule are typically used [30, 31, 35]. In other words,
only the diagonal elements (probabilities) of the reduced density matrix are used to character-
ize transport through magnetic molecules. By contrast, in this thesis, before resorting to Fermi
golden rule, we decided to verify the assumption that the off-diagonal elements can be ignored.
Consequently, in Chap. 4, the real-time diagrammatic technique is employed for an exact treat-
ment of the reduced density matrix to investigate the role of quantum coherences on transport
through individual magnetic molecules. We prove that coherences can be ignored in the case of
a molecule captured between nonmagnetic electrodes. Accordingly, the real-time diagrammatic
technique collapses into the classical rate equations and Fermi golden rule, which is used in the
present work throughout Chap. 2 and 3. However, in the case of ferromagnetic electrodes, coherent
superposition between molecular states can, in fact, impact the transport properties as discussed
in Sec. 4.3.1.

2.3 Sequential transport: master equation and Fermi golden
rule

The purpose of this section is to explain the method used to calculate the tunneling current
through a magnetic molecule, taking into consideration only the diagonal elements of the reduced
density matrix. In order to describe the sequential transport through a magnetic molecule in
the weak coupling limit, the transition rates between the molecular states |χn⟩ are calculated in
the leading-order of the tunnel-coupling strength Γ using Fermi golden rule. Using these rates, a
master equation can be constructed to obtain the occupational probabilities Pχn of the molecular
states [49]. The observables of the system, such as current and conductance, can be derived with
the knowledge of transition rates and probabilities, as explained below.

To beging with, the probabilities of the molecular spin-states Pχn
can be obtained from the

stationary state master equation

dPχn

dt
= 0 =

∑
q

∑
χn′ ,n′

{
W q

χn,χn′ Pχn′ −W q
χn′ ,χn

Pχn

}
, (2.9)

where W q
χn′ ,χn

is the transition rate from a state |χn⟩ to a state |χn′⟩ due to the tunneling of an
electron to or from an electrode q. Equation (2.9) describes the time evolution of the occupancy
of an arbitrary molecular state |χn⟩ based on the transition rates between this state and other
molecular states to which such transitions are allowed. Knowing the probabilities and transition
rates, the charge current flowing into an electrode q can be calculated by

Iq = e
∑
n,χn

∑
n′,χn′

(n′ − n)W q
χn′ ,χn

Pχn
. (2.10)

Accordingly, the total charge current flowing through the molecule is given by

I = (IR − IL)/2. (2.11)
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2. Theoretical background and model

It can be seen from Eq. (2.9) and (2.10) that calculating the transition rates between the molec-
ular states is a prerequisite for obtaining the probabilities and, hence, the current through the
molecule. For this reason, the remaining part of this section is devoted to calculating these tran-
sition rates using Fermi golden rule, which is defined as [49]

W |i⟩
|f⟩ = 2π

~
∣∣ ⟨f | Ĥtun |i⟩

∣∣2δ(Ef − Ei). (2.12)

Equation (2.12) defines the transition rate from an initial state |i⟩ with an energy Ei to a final
state |f⟩ with an energy Ef which occurs due to a perturbation, in this case a single electron
tunneling process. Since the tunneling of a single electron involves transitions between molecular
states corresponding to different charge states, the transition rate between two arbitrary molecular
states |χn⟩ and |χn′⟩ due to tunneling of an electron associated with the qth electrode can be
defined as

W q
χn′ ,χn

=
∑

kσ∈q

{
W |kσ;χn⟩

|0;χn′ ⟩ fq(εq
kσ) + W |0;χn⟩

|kσ;χn′ ⟩
[
1 − fq(εq

kσ)
]}
, (2.13)

where f(εq
kσ)q is the Fermi function of the qth electrode, given by Eq. (2.5). The composite state

of the molecule and the electrode q reads as

|kσ;χn⟩ ≡ |kσ⟩q ⊗ |χn⟩ . (2.14)

Equation (2.13) illustrates the two possible electron tunneling pathways between a molecule and
leads. An electron can either tunnel into the molecule (first term) or tunnel out of the molecule
(second term). As an instructive example, the detailed calculation of a tunneling-in event is given
here, whereas the tunneling-out rate can be derived in a similar manner. For the tunneling-in
process, the initial state of the system (molecule plus electrode) reads |i⟩ = |kσ⟩q ⊗ |χN ⟩, whereas
the final state is defined as |f⟩ = |0⟩q ⊗|χN+1⟩. Using Eq. (2.12), the transition rate from a neutral
molecular state |χN ⟩ to a charged one |χN+1⟩ can be written as

W |i⟩
|f⟩ = 2π

~
∣∣ ⟨f | Ĥtun |i⟩

∣∣2δ(Ef − Ei)

= 2π
~

∣∣∣∣ ⟨0|q ⟨χN+1|
∑

q′lk′σ′

tq
′

l d̂†
lσ′ â

q′

kσ′ |kσ⟩q |χN ⟩
∣∣∣∣2δ(εχN+1 − (εχN

+ εq
kσ)
)
,

(2.15)

where the tunneling matrix element tq
′

l is assumed to be spin independent. Rearranging the
expression, we arrive at

W |i⟩
|f⟩ =2π

~

∣∣∣∣ ∑
q′lk′σ′

tq
′

l ⟨0|q â
q′

k′σ′ |kσ⟩q ⟨χN+1| d̂†
lσ′ |χN ⟩

∣∣∣∣2δ(εχN+1 − (εχN
+ εq

kσ)
)

= 2π
~

∣∣∣∣ ∑
q′lk′σ′

tq
′

l δqq′δkk′δσσ′ ⟨χN+1| d̂†
lσ′ |χN ⟩

∣∣∣∣2δ(εχN+1 − (εχN
+ εq

kσ)
)

= 2π
~

∣∣∣∣∑
l

tql ⟨χN+1| d̂†
lσ |χN ⟩

∣∣∣∣2δ(εχN+1 − (εχN
+ εq

kσ)
)
.

(2.16)

Using Eq. (2.7), the molecular states are defined in the basis of the Sz spin projections as follows
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|χN ⟩ =
∑
MN

aMN
|SN ,MN ⟩ ,

|χN+1⟩ =
∑

MN+1

bMN+1 |SN+1,MN+1⟩ .
(2.17)

By plugging the molecular states into Eq. (2.16), the result reads

W |i⟩
|f⟩ = 2π

~

∣∣∣∣∑
l

tql

∑
MN+1

∑
MN

aMN
b∗

MN+1
⟨SN+1,MN+1| d̂†

lσ |SN ,MN ⟩
∣∣∣∣2δ(εχN+1 − (εχN

+ εq
kσ)
)
.

(2.18)

Here, we encounter the issue that the creation operator of the molecule d̂†
lσ is represented in

terms of the molecular orbital l, whereas we define the molecular states |χn⟩ based on the Sz spin
projections; hence, we are faced with the cumbersome matrix element ⟨SN+1,MN+1| d̂†

lσ |SN ,MN ⟩.
However, this complication can be circumvented by using the Wigner-Eckart theorem [51], which
splits this matrix element into a product of two factors. First, a reduced matrix element that
does not depend on the orientation of the angular momentum. In other words, this reduced
matrix element is independent of the magnetic quantum number of the molecular states |χn⟩.
The second factor is the Clebsch-Gordan coefficients which are the expansion coefficients resulting
from the addition of angular momenta [52]. To give an illustration, the state |SM⟩ resulting from
combining two states |S1M1⟩ and |S2M2⟩ can be written as linear combinations of the composite
state |S1M1⟩ |S2M2⟩ with the Clebsch-Gordan coefficients as the linear expansion coefficients in
the following form

|SM⟩ =
∑

M1+M2=M

⟨S1,M1;S2,M2|S,M⟩ |S1M1⟩ |S2M2⟩ . (2.19)

Going back to the transition rate in Eq. (2.18) and employing Wigner-Eckart theorem, the resulting
expression reads as

W |i⟩
|f⟩ = 2π

~

∣∣∣∣∑
l

tql

∑
MN+1

∑
MN

aMN
b∗

MN+1

⟨
SN ,MN ; 1/2, σ

∣∣SN+1,MN+1
⟩

⟨SN+1| |d̂†
l | |SN ⟩

∣∣∣∣2
× δ
(
εχN+1 − (εχN

+ εq
kσ)
)
,

(2.20)

where we can see that the magnetic quantum numbers σ, MN and MN+1 are decoupled from
the reduced matrix element ⟨SN+1| |d̂†

l | |SN ⟩. The constants
⟨
SN ,MN ; 1/2, σ

∣∣SN+1,MN+1
⟩

are
the Clebsch-Gordan coefficients signifying the addition of an electron with a magnetic quantum
number σ to a molecule with a spin SN and a magnetic quantum number MN as a result of a
tunneling-in process of an electron from the leads to the molecule. The Clebsch-Gordan coefficients
are a central consequence of using the molecular spin-state basis and they act as selection rules
that allow or forbid transitions between the molecular states |χn⟩. Since electrons are half-spin
particles, each electron-tunneling process must change the Sz spin projection of the molecular state
by half, i.e., MN+1 −MN = ±1/2. Finally, the transition rate can be written as

W |i⟩
|f⟩ = 2π

~
∣∣Tq

SN SN+1

∣∣2∣∣T σ
aN bN+1

∣∣2δ(εχN+1 − (εχN
+ εq

kσ)
)
, (2.21)

with
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T σ
aN bN+1

=
∑

MN+1

∑
MN

aMN
b∗

MN+1

⟨
SN ,MN ; 1/2, σ

∣∣SN+1,MN+1
⟩
, (2.22)

and Tq
SN SN+1

=
∑

l t
q
l ⟨SN+1| |d̂†

l | |SN ⟩ is considered as a free parameter in the calculations that
determines the coupling strength between the molecule and the leads, as explained below. Inserting
Eq. (2.21) into Eq. (2.13), it can be seen that to obtain the final expression for the tunneling rate,
one has to sum over the electronic states in the electrodes, that is,

W q
χN+1,χN

=
∑

kσ∈q

2π
~

|Tq
SN SN+1

|2|T σ
aN bN+1

|2fq(ϵqkσ)δ
(
εχN+1 − (εχN

+ εq
kσ)
)
. (2.23)

By converting the momentum summation into an integral over the density of states, the final
expression of the transition rate from a neutral molecular state |χN ⟩ into a charged one |χN+1⟩
can be given by

W q
χN+1,χN

= 1
~
∑

σ

Γσ
q |T σ

aN bN+1
|2fq(εχN+1 − εχN

), (2.24)

where the tunnel-coupling strength reads

Γσ
q = 2πρq

σ|Tq
SN SN+1

|2, (2.25)

with ρq
σ denoting the density of states of an electrode q for the spin σ population. It should be

emphasized that, in order to perform the integral resulting from the momentum summation in
Eq. (2.23), we assumed that the density of state in the leads is constant, i.e., the density of states
is the same regardless of the energy of the tunneling electron. This assumption is commonly known
as the flat-band approximation.

2.3.1 Spin Polarized Electrodes

In the previous discussion, we have seen that, for a tunneling-in process, the resultant (final)
molecular state |χN+1⟩ is determined based on the initial molecular state |χN ⟩ and, importantly,
the spin of the tunneling electron σ. Consequently, one way to modify the occupations of the
molecular states |χn⟩ and, hence, impact the transport properties through the molecule, is to
manipulate the spin population of the tunneling electrons via the use of ferromagnetic electrodes.
For instance, we can favor the tunneling of spin-up (↑) electrons over spin-down (↓) ones, or
vice versa. Accordingly, in this section, we address the spin-dependence of the tunnel-coupling
strength Γ, given in Eq. (2.25), from the theoretical perspective, whereas in Sec. 2.4.4, examples
of spin-polarized transport through a single magnetic molecule are discussed.

On the one hand, in case of nonmagnetic electrodes such as gold, the density of states of spin-
up (↑) and spin-down (↓) electrons near the Fermi level Ef is the same [22]. As a result, the
tunnel-coupling strength is independent of the spin of the tunneling electrons. However, in case of
ferromagnetic electrodes, e.g. nickel, there exists a relative difference between the spin-up (↑) and
down (↓) density of states near the Fermi level, which renders the tunnel-coupling spin-dependent.
Accordingly, a spin polarization P q for an electrode q can be defined by [53, 54]

P q =
ρq

+(Ef ) − ρq
−(EF )

ρq
+(Ef ) + ρq

−(Ef )
, (2.26)

where ρq
+(Ef ) denotes the density of states of the majority spin population (+) at the Fermi

level, whereas ρq
− refers to the minority spin population (−). The total density of states for
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Figure 2.2: Energy spectrum for a magnetic molecule in the neutral and charged
states. A molecule with spin SN = 3/2 in the neutral state and SN+1 = 2 in the charged state
is considered. The molecular states |χn⟩ are split into 2S + 1 states as a result of the uniaxial
anisotropy. In the absence of the transverse magnetic anisotropy, the molecular states are given
by the Sz spin projections. The difference between the lowest two energy states in the neutral
(charged) state is referred to as zero-field splitting ZFSN (ZFSN+1). However, in this example,
the zero-field splitting of the neutral state will be referred to as ZFS for the sake of brevity, as
indicated on the plot. The two blue arrows indicate the possible tunneling pathways from the
neutral to the charged states. These two transitions correspond to the two lines in the stability
diagram in Fig. 2.3.

the qth electrode, now, reads ρq = ρq
+ +ρq

−. Consequently, we can now rewrite the tunnel-coupling
strength Γ as

Γ±
q = 2πρ

q

2
(1 ± P q)|Tq

SN SN+1
|2. (2.27)

2.4 Examples of transport through a magnetic molecule

In order to illustrate the use of the Fermi golden rule formalism with the classical rate equa-
tions and to gain an insight into how the molecular spin states |χn⟩ manifest in the transport
through magnetic molecules, two transport examples (in the absence of molecular vibrations) are
discussed in this section. The first example assumes a magnetic molecule with only uniaxial mag-
netic anisotropy, i.e., E = 0. In contrast, the second example considers a molecule with both
uniaxial and transverse magnetic anisotropy. Furthermore, at the end of this section, we study
the effect of asymmetrically coupling the molecule to the left and right electrodes on the trans-
port properties. Finally, the issue of spin-polarized transport is addressed by assuming a molecule
embedded between two ferromagnetic electrodes.

2.4.1 Molecule with uniaxial magnetic anisotropy only

In this example, we consider a molecule with only uniaxial magnetic anisotropy (D > 0 and E = 0).
As previously explained, the magnetic anisotropy along the z-direction splits the eigenstates of the
molecule into 2S + 1 states where S is the total spin of the molecule. The energetic preference to
align the spin moment along the z-axis (easy axis) results in a parabolic energy spectrum in which
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Figure 2.3: Differential conductance plots of a molecule with uniaxial magnetic
anisotropy only. (a) A stability diagram of the molecule given in Fig. 2.2. The molecule
exists in the stable charge state N (N + 1) in the lower left (right) corner of the diagram, whereas
it alternates its charge state in the sequential tunneling region in the middle as electrons hop from
the source to the drain via the molecule. The two parallel lines represent the four possible transi-
tions from a neutral molecular state |χN ⟩ to a charged molecular state |χN+1⟩. (b) A differential
conductance plot is presented by taking a cut at a gate voltage Vg = −1 (ZFS/|e|), as indicated by
the vertical dashed line in (a). Analogously to the two parallel lines in (a), the two peaks represent
the allowed tunneling events from the neutral to the charged state.

the molecular states with highest magnetic quantum number constitute the ground state of the
molecule. For the example at hand, we study a magnetic molecule with a total spin SN = 3/2 in
the neutral state and a spin SN+1 = 2 in the charged state, as depicted in the energy spectrum in
Fig. 2.2. Referring to Eq. (2.2), we see that the anisotropy parameter can be charge-dependent.
Accordingly, for the calculations performed here, we assume DN = 100 µeV for the neutral state
and DN+1 = 120 µeV for the charged state, with a difference of 20% between both parameters.
The order of magnitude of both parameters was adopted based on magnetic molecules with similar
properties such as the Fe4 SMM studied in Ref. [30, 31]. The calculations were conducted for a
temperature T = 0.16 K (kBT = 14 µeV). The temperature T is chosen considerably lower than
the zero-field splitting to allow for resolving the transitions between the molecular states |χn⟩.
Moreover, the tunneling-coupling strength to both left and right electrodes are assumed to be
equal to 1 µeV to satisfy the condition Γ ≪ kBT for the weak-coupling regime. Finally, we should
remark that, in order to gain a clear physical interpretation from the differential conductance plots,
all the energy units are represented in terms of the zero-field splitting (ZFS) of the neutral state
as indicated on Fig. 2.2.

Following the recipe of Fermi golden rule with the stationary-state rate equations, the charge
current and also the differential conductance dI/dV are calculated through this symmetrically
tunnel-coupled molecule. Figure 2.3(a) illustrates a differential conductance map, which is the
typical result of conductance measurement through a three-terminal single-molecule junction. By
tuning the capacitively applied gate voltage Vg, we can alter the charge state of the molecule. At
large positive gate voltage and small bias voltage [lower right corner of Fig. 2.3(a)], the molecule
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exists only in the charged state N + 1, whereas at large negative gate voltage [lower left corner of
Fig. 2.3(a)], the molecule remains in the neutral state N , as indicated on the stability diagram.
The region in-between represents the sequential tunneling region where the molecule alternates
between the two charge states as electrons tunnel from the source to the drain via the molecule.1

When an electron tunnels into the molecule from the leads, the molecule makes a transition
from a neutral molecule state |χN ⟩ to a charged molecular state |χN+1⟩. For the molecule at hand,
there exists four possible pathways for such a transition. At low bias voltage, the molecule can
either make a transition from the state |3/2⟩ to the state |2⟩ (cf. Fig. 2.2) or from the state |−3/2⟩
to the state |−2⟩. It should be noted that, for the sake of brevity, we refer to the molecular states
using the magnetic quantum number only, i.e., |Sn,Mn⟩ ≡ |Mn⟩. As the bias voltage increases,
additional transitions become accessible, namely the transition from the state |3/2⟩ to the state |1⟩
(cf. Fig. 2.2) and from the state |−3/2⟩ to the state |−1⟩. Due to the degeneracy between molecular
states with the same absolute value of the magnetic quantum number, for instance the states |1⟩
and |−1⟩, these four transitions appear only as two lines in the differential conductance plot, as in
Fig. 2.3(a). Importantly, we note that there is no transition to the state |0⟩ since such transition
requires changing the spin moment by an amount larger than 1/2, which is more than the spin of
a single tunneling electron. This can be attributed to the spin conservation selection rule, imposed
by the Clebsch-Gordan coefficients which forbid any transition if MN+1 − MN ̸= 1/2. For this
reason, there exists only two possible transitions from a charged molecular state |χN+1⟩ to a neutral
one |χN ⟩. Particularly, from the states |2⟩ and |−2⟩ to the states |3/2⟩ and |−3/2⟩, respectively.

In addition to the stability diagram in Fig. 2.3(a), we can also keep track of the transitions be-
tween the molecular states via one-dimensional differential conductance plots such as Fig. 2.3(b).
These plots are typically obtained in a two-terminal configuration such as using a scanning tun-
neling microscope (STM) on a molecule that lies on a substrate (cf. Fig. 1.2). The two terminals,
here, refer to the source and the drain, i.e., there is no gate electrode to manipulate the charge
state of the molecule through adjusting the energy level of the charged state. For the molecule
under consideration, Fig. 2.3(b) illustrates a cut along a constant gate voltage Vg = −1 ZFS/|e|.
The two differential conductance peaks correspond to the two lines in Fig. 2.3(a), representing the
transitions between the neutral molecular states |χN ⟩ to the charged molecular states |χN+1⟩.

2.4.2 Molecule with both uniaxial and transverse magnetic anisotropy

In the following example, a molecule with both uniaxial and transverse magnetic anisotropy com-
ponents is studied. Unlike the previous example, we assume a molecule with a total spin SN = 1/2
in the neutral state and SN+1 = 1 in the charged state. The reason for choosing this particular
molecule is twofold. First, the eigenvalues and eigenstates of the spin S = 1 molecule can be
obtained analytically, which is not the case for larger spin values (S > 1). Thus, this example is
appealing for understanding the details of the molecular Hamiltonian given in Eq. (2.2). Second,
for the spin-vibron interaction discussed in Chap. 3, it will be shown that the molecular Hamilto-
nian cannot be diagonalized except for a molecule with S = 1. Accordingly, it is instructive to get
familiar with this molecule in the present section, since it is central to the discussion of spin-vibron
interaction that follows in Chap. 3.

Our goal now is to determine the eigenstates and energies of the aforementioned molecule.
To begin with, for the neutral state N , one should notice that the notion of uniaxial magnetic

1It should be emphasized that the gate voltage is chosen such that the ground state of the neutral N and
charged N + 1 states are degenerate at Vg = 0, as indicated in the energy spectrum in Fig. 2.2.
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Figure 2.4: Energy spectrum for a magnetic molecule in the neutral and charged
states. A molecule with spin SN = 1/2 in the neutral state and SN+1 = 1 in the charged state is
considered. For the neutral state, the energy spectrum consists of two degenerate molecular states
since the uniaxial and transverse magnetic anisotropy do not influence spin-half systems. For the
charged state N + 1, the transverse magnetic anisotropy breaks the rotational symmetry around
the z-axis. As a result, the eigenstates of the charged molecule become an admixture of the pure
Sz projections of the spin, and the ground state doublet becomes split.

anisotropy does not apply since the molecule behaves as an electron with either spin up or down.
Additionally, the eigenvalues of

(
Ŝ+

n

)2 and
(
Ŝ−

n

)2 are zeros since these quadratic ladder operators
couple every other state. As a result, the neutral molecule is also not affected by the transverse
magnetic anisotropy and, hence, its energy spectrum consists of two degenerate molecular states,
namely |χ1/2⟩ = |1/2⟩ and |χ−1/2⟩ = |−1/2⟩. By contrast, for the charged state N + 1, the
transverse magnetic anisotropy splits the Sz spin projections into two time-reversed sets,

{
|0⟩
}

and
{

|−1⟩ , |1⟩
}

. Significantly, the molecular states |χN+1⟩ become an admixture of the Sz pro-
jections belonging to one of these two sets. In order to obtain these molecular states and their
corresponding energies, we write down the charged state spin Hamiltonian

Ĥspin,N+1 =

−D 0 E

0 0 0
E 0 −D

 , (2.28)

where the constants E and D are the transverse and uniaxial anisotropy parameters for the charged
molecule, respectively. Diagonalization of the matrix in Eq. (2.28) yields the following eigenfunc-
tions with the corresponding eigenvalues, as illustrated in the energy spectrum given in Fig. 2.4,

|χ0⟩ = |0⟩ → ε0 = 0, (2.29)

|χ+⟩ = 1√
2

|1⟩ + 1√
2

|−1⟩ → ε+ = −D + E, (2.30)
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|χ−⟩ = 1√
2

|1⟩ − 1√
2

|−1⟩ → ε− = −D − E. (2.31)

Similar to the previous example, we wish to obtain the differential conductance dI/dV through
the molecule, which gives us an insight into the transitions between the molecular states |χn⟩. For
the calculations conducted here, we assume a uniaxial magnetic anisotropy constant D = 100 µeV
at a temperature T = 0.05 K (kBT = 4.5 µeV) with the same tunnel-coupling strength used
in Sec. 2.4.1. The temperature, here, is assumed to be even lower than the previous example
to allow for resolving the small energy difference between the molecular states |χ+⟩ and |χ−⟩,

0 2 4 6
0

0 2 4 6
0

(a) (b)

(d)(c)

Figure 2.5: Differential conductance plots of a molecule with both uniaxial and trans-
verse magnetic anisotropy. (a) -(b) A stability diagram of the molecule given in Fig. 2.2 in
the absence (a) and presence (b) of transverse magnetic anisotropy. The transverse anisotropy
component leads to splitting of the degenerate ground state of the system, which can be seen by
the additional line that appears in (b). (c) -(d) A differential conductance plot is presented by
taking a cut at a constant gate voltage Vg = −1 (ZFS/|e|), as depicted by the vertical dashed lines
in (a) and (b). Analogous to the additional line in (b), the leftmost differential conductance peak
in (c) splits into two peaks, as seen in part (d).
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referred to as the tunnel-splitting ∆. The energies are represented in terms of the zero-field
splitting of the charged state N + 1 (ZFS = 100 µeV).

Using the formalism of Sec. 2.3, the differential conductance through this molecule has been cal-
culated twice, in the absence (E = 0) and presence (E = 0.2D) of transverse magnetic anisotropy.
When E = 0, there are four possible transitions from the neutral to the charged molecular states.
The first two transitions occur from the state |1/2⟩ to the states |1⟩ and |0⟩. Additionally, we have
two other transitions from |−1/2⟩ to the states |−1⟩ and |0⟩. Due to the degeneracy between states,
these four transitions appear as two peaks in the differential conductance plots (or equivalently,
two lines in the stability diagrams) in left-hand side of Fig. 2.5. By contrast, in the presence of
transverse magnetic anisotropy E = 0.2D, the degeneracy between the two states |−1⟩ and |1⟩ is
lifted and they split into the two states |χ−⟩ and |χ+⟩, as demonstrated in Fig. 2.4. Consequently,
the line corresponding to transitions to the degenerate states |−1⟩ and |1⟩ in Fig. 2.5(a) splits into
two lines as demonstrated in Fig. 2.5(b), with the vertical height between these lines denoting the
energy difference between the two states |χ−⟩ and |χ+⟩, that is 2E. The same effect can be seen
from the one-dimensional differential conductance plots. By comparing Fig. 2.5(c) and (d), it is
clear that the leftmost peak in (c) splits into two peaks whose summation gives the same height
as the original one. To sum up, the mixing of the Sz states, owning to the transverse magnetic
anisotropy, results in additional transitions between the neutral and charged states that can be
observed on the stability diagrams obtained from conductance measurements.

2.4.3 Asymmetric tunnel-coupling

So far, we have restricted our attention to molecules placed in a symmetric junction. In other
words, the tunnel-coupling strength to the left and right electrodes have been assumed to be
equal, ΓR = ΓL. In this section, however, our goal is to investigate the effect of asymmetric coupling
between the left and right electrodes on transport properties through single magnetic molecules.
One should note that using scanning tunneling microscopy (STM) is desirable here since this
technique allows for a tunable coupling strength Γ (cf. Fig. 1.2). Accordingly, in this section, the
results are presented using the one-dimensional differential conductance plot which are typically

Figure 2.6: Asymmetric molecular junction. Electrochemical diagram of an asymmetrically
coupled molecule. Due to the application of a bias voltage V > 0, the chemical potential of the left
electrode is shifted by eV/2, whereas the right one is shifted by −eV/2, where e < 0, as defined
earlier. The tunnel-coupling strength to the left electrode ΓL is higher than that to the right
one ΓR, i.e., ΓL > ΓR.
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Figure 2.7: Probabilities of molecular states for a symmetrically and asymmetrically
coupled molecules. The probabilities of the molecular states |χn⟩ are plotted as a function of
bias voltage V at a constant gate voltage Vg = −1 (ZFS/|e|), which corresponds to the cut in
the stability diagrams in Fig. 2.5. For the calculations performed here, ΓL = 9ΓR. The tunnel-
coupling strengths are chosen such that the total coupling ΓL + ΓR is consistent with the example
in Sec. 2.4.2 (a) Probabilities of the spin states of the molecule given in Fig. 2.4 in the symmetric
coupling case. The probability PN = P1/2 = P−1/2. When the bias voltage V is high enough for
all transitions to take place, the probabilities of all the molecular spin states become equal to 0.2.
(b) Probabilities for an asymmetrically coupled molecule, where the molecule prefers the neutral
charge state N , even at high bias voltage.

obtained with such a two-terminal configuration. Now, in order to examine this asymmetry, we
consider the same molecule as in Sec. 2.4.2 while varying the tunneling-coupling strengths, ΓL ̸= ΓR.
In the previous examples, only the positive bias range V > 0 was considered since stability diagrams
were symmetric around V = 0. By contrast, when ΓR ̸= ΓL, this symmetry is broken. Thus, to
demonstrate the full picture, two cases are considered for V > 0, namely ΓL > ΓR and ΓL < ΓR.
The first case is discussed here, whereas the latter can be found in App. C.1.

The main consequence of asymmetric coupling of a molecule to the left and right electrodes is
that either the charging or the discharging process of the molecule is favored. To give an illustra-
tion, for the asymmetrically coupled molecule in Fig. 2.6, the coupling to the left electrode ΓL is
assumed to be stronger than to the right one ΓR (ΓL > ΓR). As a result, the charging rate of the
molecule (WR

χN+1,χN
∝ ΓR) is lower than the discharging rate (WL

χN ,χN+1
∝ ΓL) [cf. Eq. (2.24)],

assuming that the bias voltage V is applied as captured in the electrochemical diagram in Fig. 2.6.
Thus, the molecule preferably exists in the neutral charge state N . This effect is demonstrated by
the change in the occupation probabilities between the symmetric and asymmetric cases, as plotted
in Fig. 2.7. In the symmetric case, when the bias voltage V is high enough for all transitions to
occur, the molecular spin states are equiprobable, each with a probability of 0.2. In contrast, for
the asymmetric case, the molecule prefers the neutral state N , which is indicated by the dominant
probability of the neutral state PN .

To examine the impact of asymmetric coupling on transport observables, we calculate the cur-
rent I and the differential conductance dI/dV for ΓL = 9ΓR. We choose the tunnel-coupling
strengths such that the total coupling strength Γ, defined as Γ = ΓL + ΓR, is the same as in
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Figure 2.8: Differential conductance (a) and current (b) of a molecule in the sym-
metric and asymmetric coupling cases. These two plots were obtained at a gate volt-
age Vg = −1 (ZFS/|e|). The asymmetric coupling magnifies the weak transitions that occur
at higher bias voltage, in contrast to the symmetric case where the differential conductance is
dominated by the transition to the ground state of the charged molecule, that is the molecular
state |χ−⟩ (the leftmost peak). As indicated on the plot, the current and, hence, the differential
conductance, is normalized by a factor (e/~) ΓLΓR/(ΓL + ΓR) to allow for comparing the two
coupling scenarios.

Sec. 2.4.2 for the sake of comparison. For the symmetric case in Fig. 2.8(a), we can see that
the dominant transition, i.e., the highest differential conductance peak, correspond to the transi-
tions from the two degenerate neutral molecular states |1/2⟩ and |−1/2⟩ to the ground state of
the charged molecule |χ−⟩. However, for the asymmetric case in Fig. 2.8(a), it is clear that all
transitions, including those allowed at higher bias voltage, now occur with approximately equal
amplitudes. This behavior can be understood as follows: By referring to Eq. (2.10) for the charge
current, we infer that the contribution of each transition to the current depends on two factors,
the transition rate W and the occupation of the initial molecular state of the transition P. First,
since all the three peaks correspond to transitions from a neutral molecule state |χN ⟩ to a charged
one |χN+1⟩, all the involved transition rates are proportional to the tunnel-coupling strength to the
right electrode, i.e., (WR

χN+1,χN
∝ ΓR). Secondly, as indicated by the probability plot in Fig. 2.7(b),

the occupation of the neutral molecular states |1/2⟩ and |−1/2⟩ varies only slightly when increasing
the bias voltage V , which guarantees that the occupation of the initial states for the three peaks
is almost the same. In the light of these two factors, the transitions from the neutral molecular
states |1/2⟩ and |−1/2⟩ to the three charged molecular states |χ−⟩, |χ+⟩ and |χ0⟩ give rise to a
similar current contribution, as evident by the steps in the red curve in Fig. 2.8(b).

Based on this illustrative example, we conclude that asymmetric coupling of individual magnetic
molecules can magnify weak transitions that take place at high bias voltages. Thus, this can be
a valuable tool for experimental studies on magnetic molecule to observe the various transitions
between the molecular spin states.
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(a) (b)

Figure 2.9: Spin-valve molecular junction in the parallel (a) and antiparallel (b)
configuration. Electrochemical diagram of a molecule coupled to ferromagnetic electrodes. Due
to the application of a bias voltage V > 0, the chemical potential of the left electrode is shifted
by eV/2, whereas the right one is shifted by −eV/2. (a) The depicted molecular junction is in
the parallel configuration, i.e., the spin of the majority population of electrons is the same in the
left and right electrodes. (b) For the antiparallel configuration, the majority population of the
right electrode consists of spin-up (↑) electrons, whereas for the left one it consists of spin-down
(↓) electrons.

2.4.4 Spin-polarized transport

Another important degree of freedom in the leads is the spin polarization. As established in
Sec. 2.3.1, for ferromagnetic electrodes, there exists a difference between the density of states of
spin-up and down electrons near the Fermi level. In this section, the impact of spin polarization
is explored by considering a molecule trapped between two ferromagnetic electrodes. For the sake
of consistency, we consider the same magnetic molecule studied in the previous section with a
spin SN = 1/2 in the neutral state and SN+1 = 1 in the charged state.

In order to characterize how the spin-polarization of the electrodes can alter the occupation
of molecular states and, hence, affect transport observables, we study two opposite cases. In the
first case, the spin of the majority population of electrons in the left and right electrodes is the
same, which we refer to as the parallel magnetic configuration (P), as depicted in Fig. 2.9(a). By
contrast, for the second case, the majority spin is different in both electrodes, which we denote by
the antiparallel magnetic configuration (AP) [cf. Fig. 2.9(b)].

Prior to comparing the parallel and antiparallel magnetic configurations, we start by analyzing
the spin-resolved current in the case of nonmagnetic electrodes, that is the spin polarization in the
left and right electrodes equal zero (PR = PL = P = 0). The transition rate in Eq. (2.13) can be
rewritten as

W q,σ
χn′ ,χn

=
∑
k∈q

{
W |kσ;χn⟩

|0;χn′ ⟩ fq(εq
kσ) + W |0;χn⟩

|kσ;χn′ ⟩
[
1 − fq(εq

kσ)
]}
, (2.32)

where, compared to Eq. (2.13), the summation over the spin σ is omitted, i.e., the transition rate
is derived for a specific electronic spin orientation, either up or down. Accordingly, the charge
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current entering into an electrode with an index q due to the flow of electrons with a spin σ can
be given by

Iσ
q = e

∑
n,χn

∑
n′,χn′

(n′ − n)W q,σ
χn′ ,χn

Pχn
. (2.33)

The symmetrized charge current for a specific electronic spin orientation σ, then, reads as

Iσ = Iσ
R − Iσ

L
2

. (2.34)

In turn, the total charge current, given in Eq. (2.11), can be written as I = I(σ=↑) + I(σ=↓),
which means that the total charge current through the molecule can be decomposed into two
contributions for spin-up and spin-down electrons. To give an illustration, Fig. 2.10(a) shows the
spin-resolved current for the molecule studied in Sec. 2.4.2 in the case of nonmagnetic electrodes.
We can see that spin-up and spin-down electrons contribute equally to the total current I. That is
to say, the current through the molecule can be thought of as two independent channels of spin-up
and spin-down electrons. Furthermore, each of these two channels give rise to the same amount
of current (I↑ = I↓) owning to the non-polarized electrodes, i.e., the density of states for spin-up
and down electrons are identical near the Fermi level.

For the parallel magnetic configuration, we choose the majority population to be spin-up (↑)
electrons with a spin polarization P = 0.7 (PL = PR = P = 0.7). The reason for choosing
such a large polarization value is to ensure that the impact of the ferromagnetic electrodes on
transport observables is manifest for the purpose of illustration. Unlike in the non-polarized case,
the current contribution from the spin-up and spin-down channels are not equal in the parallel case.
In particular, the spin-up electrons contribute more to the total current, as shown in Fig. 2.11(a).
Furthermore, one should note that, in case of the parallel magnetic configuration, the probabilities
of the molecular states |1/2⟩ and |−1/2⟩ are equal, similar to the case of non-polarized electrodes,
which could be understood as follows: First, for the sake of the argument, we ignore transitions
to the state |0⟩ since they occur at high bias only. Next, considering the transition between the
state | − 1/2⟩ and the two states |χ+⟩ and |χ−⟩, we can see that, since such transitions require a
spin-down electron (minority), the tunneling rate into and out of the state |−1/2⟩ will be relatively
low, compared to the transitions between the state |1/2⟩ and the same two charged states |χ±⟩
which requires a spin-up electron (majority). In other words, the tunneling rate into and out of
the state | − 1/2⟩ is low, whereas, for the state |1/2⟩ the rate is high. As a result, both states end
up with equal probabilities in the steady state.

Finally, we address the issue of the antiparallel magnetic configuration where the majority
population of the right electrode is chosen to be spin-up electrons, unlike in the left one where
the majority of electrons are spin-down, as schematically illustrated in Fig. 2.9(b). Comparing
Fig. 2.10(a) and Fig. 2.11(a), we infer that the total charge current I is identical in the non-
polarized and parallel cases, whereas, for the antiparallel case, the total current behaves differently
as shown in Fig. 2.12(a). Such a dissimilarity is also displayed in the occupations of the molecular
states, given in Fig. 2.12(b). In contrast to the parallel configuration, the probabilities of the
molecular states |1/2⟩ and | − 1/2⟩ are not equal in the antiparallel case, due to the conservation
of spin momentum which determines the allowed and forbidden transitions between the molecular
states |χn⟩.

The difference in the probabilities of the two states |1/2⟩ and | − 1/2⟩, as well as, the be-
havior of the total current I can be understood via the following two-fold argument. First, let
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us consider a charged molecule at a bias voltage greater than zero (V > 0), as depicted in
Fig. 2.9(b). Since for the left electrode Γ↓

L > Γ↑
L, the majority of the tunneling-out electrons

have a down spin. As a result, the tunneling rate from the two charged molecular states |χ±⟩
to the neutral state |−1/2⟩, i.e., WL,↓

|−1/2⟩,|χ±⟩ ∝ Γ↓
L, is relatively higher than the rate to the

state |1/2⟩, that is WL,↑
|1/2⟩,|χ±⟩ ∝ Γ↑

L [cf. Eq. (2.32)]. Secondly, starting with a neutral molecule in
the state | − 1/2⟩, we note that the majority of tunneling-in electrons are spin-up electrons due
to the fact that Γ↑

R > Γ↓
R. Thus, the favorable charging transition is from the neutral molecular

state | − 1/2⟩ to the charged molecular state |0⟩. However, this transition is only available at
bias of V ≈ 4 (ZFS/|e|). Now, in the light of the previous argument, we conclude that at a bias
voltage V < 4 (ZFS/|e|) the tunneling rate out of the state | − 1/2⟩ is substantially lower than
the tunneling rate into it and, hence, it acts almost as a dark state that absorbs much more than
it emits, leading to a suppression of the total current through the molecule. In consequence, the
total current I, shown in Fig. 2.12(a), is significantly lower than in the parallel configuration at
low bias. Only when the bias is high enough for the transition from the state | − 1/2⟩ to |0⟩ to
occur, the total current through the molecule increases to catch up with the parallel case. This
sudden increase in current corresponds to the sharp drop in the occupation of the state | − 1/2⟩.

The above discussion is summarized in Fig. 2.13, where the differential conductance for the
non-polarized electrodes, parallel and antiparallel magnetic configurations is plotted. It can be
seen that the transition from the molecular state | − 1/2⟩ to the state |0⟩ (rightmost peak) is the
dominant one in the antiparallel case. Moreover, it is clear that the non-polarized and parallel cases
behave similarly. The only difference, as mentioned before, are the contributions of the spin-up
and down channels to the total current I.

To conclude, ferromagnetic electrodes can lead to the magnification of certain magnetic transi-
tions which, in turn, amplifies the magnitude of the corresponding differential conductance peaks, as
it was demonstrated in the case of the antiparallel configuration. This magnification can allow one
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Figure 2.10: Transport through a molecule attached to non-polarized electrodes
(a) Current through the molecule, given in Fig. 2.4, in the non-polarized case at a gate volt-
age Vg = −1 (ZFS/|e|). The spin resolved current Iσ shows equal contributions from spin-up I(σ=↑)

and spin-down I(σ=↓) to the total current I. (b) Probabilities of the molecular states |χn⟩ of the
molecule. The probabilities of the states |1/2⟩ and | − 1/2⟩ are equal (cf. Fig. 2.12).

28



2. Theoretical background and model

0 2 4 6
0

0.5

1

0 2 4 6
0

5

10

15

(b)(a)

P
ro
b
a
b
ili
tie
s

Figure 2.11: Transport through a molecule attached to ferromagnetic electrodes in
the parallel magnetic configuration (a) Current through the molecule, given in Fig. 2.4, in
the parallel case at a gate voltage Vg = −1 (ZFS/|e|). The majority population of electrons are
chosen to be with a spin up in the left and right electrodes. Thus, the total current I is dominantly
composed of spin-up electrons. (b) Similar to the non-polarized case, probabilities of the molecular
states |1/2⟩ and | − 1/2⟩ are equal (cf. Fig. 2.12). A spin polarization P = 0.7 was used for these
calculations, i.e., PL = PR = P = 0.7.
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Figure 2.12: Transport through a molecule attached to ferromagnetic electrodes in
the antiparallel configuration (a) Current through the molecule, given in Fig. 2.4, in the
antiparallel case at a gate voltage Vg = −1 (ZFS/|e|). Due to the conservation of spin momentum,
the state | − 1/2⟩ acts as a dark state, leading to a suppression of current at low bias compared
to the parallel case. Only when the bias voltage V is high enough for the transition from | − 1/2⟩
to |0⟩ to occur, the transport suppression is lifted and the current exhibits a sharp step. This
increase of the current corresponds to the substantial drop in the probability of the state | − 1/2⟩
in (b). It should be emphasized that, unlike the parallel and non-polarized cases, the probabilities
of the states | − 1/2⟩ and |1/2⟩ are not equal.
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Figure 2.13: Differential conductance plot in the antiparallel (AP), parallel (P)
and non-polarized (P = 0) cases. This differential conductance is obtained at a gate volt-
age Vg = −1 (ZFS/|e|), as indicated by the bias cut in Fig. 2.5. The parallel and non-polarized
cases exhibit the same differential conductance amplitudes. Whereas, the antiparallel configuration
results in magnification of the transition from the molecular state | − 1/2⟩ to the state |0⟩.

to gain insights into the energy spectrum of the molecule and, hence, it is of particular relevance
to the spin-vibron coupling discussion in Sec. 3.2.1.

2.5 Charge-vibron interaction in magnetic molecules

Up to this point, the molecules were considered only as a magnetic core without taking into ac-
count additional degrees of freedom that stem from their molecular nature. In fact, molecules
embedded in single-molecule junctions can vibrate with discrete frequencies, which are a charac-
teristic fingerprint for these molecules [35]. Importantly, molecular vibrations can couple to the
degrees of freedom of the tunneling electrons, namely the charge and the spin, as established in
Sec. 1.3.1 [47]. In this section, we address the interaction between charge and molecular vibrations
in magnetic molecules along with examples to illustrate its impact on transport properties, whereas
the coupling between spin and molecular vibrations will be discussed in Chap. 3.

2.5.1 Integration of molecular vibrations in transport model

The effect of charge-vibron interaction in magnetic molecules can be incorporated into the model
presented in Sec. 2.1 by adopting an Anderson-Holstein-like model [55, 56]. Recently, this effect has
been experimentally and theoretically discussed for magnetic molecules in Refs. [35, 47] and it is
instructive to review the model here before building upon it to include the spin-vibron interaction
in Chap. 3. In general, a magnetic molecule trapped in a single-molecule junction, in the presence
of molecular vibrations, can be described by the Hamiltonian

Ĥmol =
∑

n

Ĥspin,n + (ε− eVg)n̂d +
∑

i

~ωib̂
†
i b̂i +

∑
i

λi~ωi

(
b̂†

i + b̂i

)
n̂d, (2.35)

where a short-hand notation n̂d ≡
∑

lσ d̂
†
lσd̂lσ has been introduced for the number operator of

the molecule, which quantifies the presence of an additional electron. The last two terms in the
equation above describe molecular vibrations, with the operator b̂†

i (b̂i) creating (annihilating)
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2. Theoretical background and model

the ith quantized vibrational mode. In particular, the penultimate term represents energies of
the various vibrational states of a molecule in terms of a set of independent harmonic oscillators
characterized by vibrational angular frequencies ωi. The last term, on the other hand, accounts
for the coupling between electronic charge and vibrational modes with the dimensionless coupling
strength λi. It can be seen that due to the coupling between molecular vibrations and the charge
of the molecule, the molecular Hamiltonian Ĥmol, in the Hilbert space of the molecular spin states,
now possesses off-diagonal terms. Consequently, the Sz projections of the spin are no longer a
good quantum number and, hence, we wish to apply a canonical transformation to diagonalize
the Hamiltonian (2.35). Before discussing the details of the diagonalization method, we should
emphasize that it is of particular relevance to work in the Sz basis since it allows for tracking
the transitions between the various molecular states |χn⟩, which is essential to understand the
differential conductance plots for magnetic molecules.

2.5.2 Diagonalization of molecular Hamiltonian: Lang-Firsov transfor-
mation

In order to eliminate the charge-vibron coupling from the molecular Hamiltonian Ĥmol, which is
the source of the off-diagonal terms, the Lang-Firsov canonical transformation is performed [57],
which basically results in a change of basis to quasi-particles referred to as polarons, i.e., electrons
surrounded by clouds of vibrations. This canonical transformation has the form

Ĥ′
mol = Û Ĥmol Û

−1 = eŜĤmole−Ŝ with Ŝ =
∑

i

λi

(
b̂†

i − b̂i

)
n̂d. (2.36)

It should be remarked that the transformation given in Eq. (2.36) is unitary, Û† = Û−1, in order
to maintain the Hermiticity of the molecular Hamiltonian, that is, the transformation kernel Ŝ
must be anti-Hermitian, Ŝ† = −Ŝ. Now, using the Baker-Hausdorff formula [57]

eÂB̂e−Â =
∞∑

n=0

1
n!
[
Â, B̂

]
n

= B̂ +
[
Â, B̂

]
+ 1

2
[
Â,
[
Â, B̂

]]
+ 1

6
[
Â,
[
Â,
[
Â, B̂

]]]
+ h.o., (2.37)

the operators can be transformed, one by one, resulting in the total diagonalized Hamiltonian,
Ĥ′ = eŜĤe−Ŝ . Here, we only present the resultant operators, denoted by tildes, whereas the
details of the transformation can be found in App. A.1. The transformed creation and annihilation
operators of the molecule read

ˆ̃d†
lσ = X̂†d̂†

lσ and ˆ̃dlσ = X̂d̂lσ, (2.38)

where X̂† = exp
[

−
∑

i λi

(
b̂i − b̂†

i

)]
. Since the number operator commutes with other number oper-

ators, e.g., [n̂′
d, n̂d] = 0, they remain unchanged upon this canonical transformation. Likewise, the

creation and annihilation operator for the leads remain unchanged due to vanishing commutations
with Ŝ. As for the molecular vibrations, the creation and annihilation operators are changed into
the new basis as follows

ˆ̃b†
i = b̂†

i′ − λin̂d and ˆ̃bi′ = b̂i′ − λin̂d. (2.39)

The transformed molecular Hamiltonian, obtained by substituting the aforementioned operators
into Eq. (2.35), can be then written as
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2. Theoretical background and model

Ĥ′
mol =

∑
n

Ĥspin,n +
(
ε− eVg +

∑
i

~ωiλ
2
i

)
n̂d +

∑
i

~ωib̂
†
i b̂i. (2.40)

It can be seen that the Lang-Firsov transformation eliminated the off-diagonal terms, representing
electron-vibron coupling. Thus, the molecular Hamiltonian becomes diagonal with respect to the
creation and annihilation operators of vibrations, in addition to the spin projection operator Ŝz.
Moreover, the transformation also shifts the energy of the charged state of the molecule by an
amount ~ωiλ

2
i , which is dependent on the coupling strength λi. However, this constant energy

shift is neglected in our calculations since it can be absorbed in the energy shift induced by the
capacitively applied gate voltage Vg.

Since the coupling between vibrations and electronic charge is now eliminated, the transformed
molecular Hamiltonian Ĥ′

mol is diagonal in the eigenstates of the Sz projections of the spin. Ac-
cordingly, the new states that characterize the system are a product of the molecular spin states
and the eigenstates of a harmonic oscillator, |SNMN ⟩⊗|nq⟩, where |nq⟩ is the vibrational eigenstate
of a molecule with nq =

∑
i ni where ni represents how many energy quanta, vibrons, are placed

in the ith vibrational mode. Since vibrons are bosonic excitations, the number of energy quanta
in an arbitrary vibrational mode is not restricted, as vibrons are not subject to the Pauli exclusion
principle.

Similar to the molecular Hamiltonian, the tunneling Hamiltonian Ĥtun can be changed into the
new basis by substituting the transformed creation and annihilation operators of the molecule,
given in Eq. (2.38), as follows

Ĥ′
tun =

∑
qlkσ

{
tqlσX̂

† d̂†
lσâ

q
kσ + tqlσX̂ â†q

kσd̂lσ

}
. (2.41)

Significantly, the coupling between charge and molecular vibrations reappears in the tunneling
Hamiltonian via the factor X̂. Now, the transition rates, calculated by Fermi golden rule, consist
of two distinctive parts. The first is an electronic part as previously derived in Eq. (2.24), whereas
the second is a vibronic part defined as | ⟨n′

q| X̂ |nq⟩ |2 ≡ |Jnq,n′
q
|2, where |n′

q⟩ and |nq⟩ are the
final and initial vibrational states, respectively and Jnq,n′

q
is the overlap integral between the wave

functions of the initial and final states. Accordingly, building upon Eq. (2.24), the transition rate
from a neutral molecular state |χN ⟩ with |nq⟩ vibrons to a charged molecular state |χN+1⟩ with |n′

q⟩
vibrons can be written as

W q
f,i = 1

~
∑

σ

Γσ
q |T σ

aN bN+1
|2|Jnq,n′

q
|2fq(εχN+1 + n′

q~ω − εχN
− nq~ω), (2.42)

with the composite states |i⟩ and |f⟩ defined as

|i⟩ = |χN ⟩ ⊗ |nq⟩ , (2.43)

and

|f⟩ = |χN+1⟩ ⊗ |n′
q⟩ . (2.44)

The squared matrix element |Jnq,n′
q
|2 in Eq. (2.42) is typically referred to as the Franck-Condon

factor, Fnq,n′
q

≡ |Jnq,n′
q
|2, and it acts as a new selection rule for the transitions between the various

vibrational states. Franck-Condon factors are the main consequences of the interaction between
charge and vibrations in molecules and can result in drastic implications, such as transport blockade
as illustrated later in Sec. 2.5.4.
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2. Theoretical background and model

The question now arises, how does the coupling between electronic charge and molecular vibra-
tion affect the transport through a single magnetic molecule? In the next section, an illustrative
example is discussed to demonstrate the implications of the aforementioned coupling, which mainly
comes from the Franck-Condon factors in the transition rates and the vibrational energy in the
molecular Hamiltonian Ĥ′

mol.

2.5.3 Example of transport through a magnetic molecule with charge-
vibron interaction

In the example at hand, we examine the same molecule as that discussed in Sec. 2.4.1 while
taking into consideration the effect of charge-vibron interaction. For the sake of illustration, we
assume only one vibrational mode of an energy ~ω = 2 meV with a coupling strength λ = 1.3.
These two values were obtained based on similar magnetic molecule studied in [35, 47]. With
this in mind, it is instructive to note that the typical frequencies of molecular vibrations range
from tens of gigahertz (≈ 0.04 meV) to hundreds of terahertz (≈ 400 meV) [58]. Contrary to the
previous sections, the energy units are kept in meV, which allows for comparing the transitions
on the stability diagram with the vibrational energies. However, this comes at the expense of
missing the details of the magnetic transitions, which happens at a smaller energy scale in this
particular example (cf. Sec. 2.4.1 for the values of the anisotropy parameter, thermal energy and
tunnel-coupling strength).

The fundamental difference arising due to molecular vibrations is that, instead of two parabolas
for the neutral and charged states (cf. Fig. 2.2), the energy spectrum of the molecule consists
now of infinite repetitions of these two parabolas, separated by the vibrational energy quanta ~ω,
as schematically depicted in Fig. 2.14(b). The two bottommost parabolas refer to the vibrational
ground state of the molecule |nq = 0⟩, whereas the two on top of them refer to the first vibrationally
excited state |nq = 1⟩, and so on till infinity. However, in practice, it is not possible to excite an
infinite number of vibrons at a limited bias voltage V . Thus, it is only relevant to allow for a
certain number of vibrational quanta that is attainable within the applied bias V . For instance,
in the present example, only four vibrational quanta are considered. The resultant differential
conductance is shown in Fig. 2.14(a). It can be seen that the differential conductance pattern is
repeated at a bias voltage V = 4 meV, which corresponds to a vibrational energy ~ω = 2 meV
since the applied bias is symmetric V/2. As a result, for each magnetic transition, there exists cor-
responding ones that involve excitation of molecular vibrations. These excitations can be thought
of as parallel transport channels attainable at higher bias voltages.

To give an illustration, the three blue arrows on Fig. 2.14(b) represent the same magnetic tran-
sition from the neutral molecular state |3/2⟩ to the charged one |2⟩, but they differ in terms of how
many vibrations are excited due to the tunneling of an electron into the molecule. The occurrence
of these three transitions is determined by two factors. Most evidently, in order to populate a
vibrationally excited state, a certain bias voltage is required. For instance, the first vibrational
excitation |nq = 1⟩ happens at eV/2 = ~ω = 2 meV. Accordingly, due to the charge-vibron cou-
pling, we can see that the transition from the state |3/2⟩ to |2⟩, can take place at eV = 2m~ω
with m = 0, 1, 2, 3, . . . . Secondly, the vibronic part of the transition rates gives rise to Franck-
Condon selection rules and, hence, an additional weighting factor is imposed on transitions to the
multiple vibrational states. That is to say, the three blues lines on Fig. 2.14(b) indicating identical
transitions from the perspective of the spin part of the states, are now weighted based on the wave
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Figure 2.14: Differential conductance plot and energy spectrum of a magnetic
molecule, with molecular vibrations included. (a) A stability diagram of the molecule given
in Fig. 2.2. Due to the presence of molecular vibrations, the edges of the sequential tunneling re-
gions are repeated at a bias voltage V = 4 meV, corresponding to a vibrational energy ~ω = 2 meV
since a bias of ±V/2 is applied to the electrodes. It should be noted that the magnetic transitions
observed before in Fig. 2.3 are not easily resolved here owning to the energy scale used in this
example. (b) Energy spectrum of a magnetic molecules where the two charge state parabolas
are repeated an infinite number of times based on the number of excited vibrations. (a) and (b)
are linked by horizontal lines that shows the correspondence between the repeated pattern in the
differential conductance and the repeated energy spectrum due to the excited vibrational states.

function overlap between the initial neutral state N and the various vibrational excitations of the
charged state N + 1.

2.5.4 Franck-Condon blockade

Interestingly, the interaction between charge and molecular vibrations can result in more dras-
tic effects on transport through a single magnetic molecule. For a strong charge-vibron cou-
pling (λi ≫ 1), it is favorable to alter the charge state of the molecule by a transition via a
vibrationally excited state, rather than via the vibrational ground state [46]. As mentioned be-
fore, this can be attributed to the wave function overlap, which comes about in the transition
rates as Franck-Condon factors. Consequently, if the bias voltage V is not large enough to excite
a vibrational state (eV < ~ωi), tunneling of electrons is prohibited and, hence, the transport is
blocked. This blockade, referred to as Franck Condon blockade, takes place at low bias voltage,
and cannot be lifted with gate voltage Vg. Recently, this blockade has been observed in the context
of magnetic molecules, specifically the Fe4 SMM, which emphasizes that molecular vibrations play
a fundamental role in transport properties of single molecules, in general, and magnetic molecules,
in particular [47].

Now, to examine the Franck-Condon blockade, we calculated the differential condutance through
an individual magnetic molecule for different values of the charge-vibron coupling strength λ.
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Figure 2.15: Franck-Condon blockade. Differential conductance plot, at a gate voltage Vg = 0
meV, for the two coupling strength, λ = 1.3 and λ = 2.6. For the strong coupling case, λ = 2.6,
a blockade of transport takes place at low-bias voltage because transitions that involve excited
vibrational states are favorable. By contrast, at λ = 1.3 transport dominantly occurs through the
vibrational ground state, as evident by the magnitude of the leftmost peak.

For the purpose of illustrating the blockade effect, we simply double the charge-vibron coupling
strength λ used in the previous example (cf. Sec. 2.5.3). Yet, it should be remarked that this new
coupling strength (λ = 2.6) is close to the fitting parameter obtained in Ref. [47] for the Franck-
Condon blockade in the Fe4 SMM (λ ≈ 2.21). Using these two values, the differential conductance
was acquired at a constant gate voltage equal to zero meV, as shown in Fig. 2.15. At a coupling
strength λ = 1.3, the transitions through the vibrational ground states are favored, as evident by
the dominant leftmost peak (red curve). However, upon doubling the coupling strength (λ = 2.6),
transitions via the vibrational ground state are suppressed. Thus, a blockade of transport at low-
bias occurs since the vibrationally excited states are not accessible. At higher bias voltages, the
tunneling electrons possess energy high enough to excite vibrational states and, hence, the blockade
is lifted, as represented by the two blue peaks in Fig. 2.15 which correspond to transitions to the
first (eV = 2~ω) and second (eV = 4~ω) excited states.
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3
Spin-vibron interaction in

magnetic molecules

As already established, a single molecule embedded in a junction can vibrate with discrete frequen-
cies. Importantly, not only do molecular vibrations couple to the charge of tunneling electrons, but
they can also couple to the spin of the molecule, which impacts its magnetic properties. Although
the charge-vibron coupling has been recently studied by McCaskey et al. [35], the interaction be-
tween spin and vibrations and its effect on transport properties of magnetic molecules has not been
investigated in literature so far. Consequently, in this chapter, we provide and scrutinize a model
for transport through a single magnetic molecule that takes into account the spin-vibron coupling.
It is shown that this coupling results in renormalization of both the transverse and the uniaxial
magnetic anisotropy of the molecule.

This chapter is divided into two parts. First, the spin-vibron coupling is incorporated into the
model Hamiltonian for a molecule with only uniaxial magnetic anisotropy. For this purpose, a
solution by canonical transformation is derived along with examples to demonstrate the implica-
tions of the spin-vibron coupling on transport characteristics. The second part extends the model
by assuming a molecule with both uniaxial and transverse magnetic anisotropy and addresses the
cases for which there is an exact solution. Finally, we present an example for a molecule where the
vibrations couple to the magnetic anisotropy along the uniaxial and transverse directions.

3.1 The coupling of molecular vibrations to the uniaxial
component of molecular spin

The coupling between the spin and the vibrational degrees of freedom of individual molecules can
occur along the uniaxial, as well as, the transverse direction of the magnetic anisotropy. In order to
simplify our analysis of this coupling, in this section we consider a molecule without a transverse
anisotropy component, i.e., E = 0. The question then to be addressed is: how to describe the
spin-vibron interaction in the model Hamiltonian used in Sec. 2.5? Building upon the spin-vibron
interaction term discussed in Refs. [48, 59, 60], the molecular Hamiltonian in Eq. (2.35) can be
extended as follows:

Ĥmol =
∑

n

Ĥspin,n + (ε− eVg)n̂d + Ĥvib + Ĥch-vib + Ĥsp-vib, (3.1)

with

Ĥsp-vib =
∑

n

∑
i

Λi
n~ωi

(
Ŝz

n

)2(b̂†
i + b̂i). (3.2)
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3. Spin-vibron interaction in magnetic molecules

In Eq. (3.1), Ĥvib denotes the energy of molecular vibrations, whereas Ĥch-vib accounts for the
charge-vibron interaction term, as introduced in Sec. 2.5.1. Significantly, the newly added term
in Eq. (3.1), Ĥsp-vib, represents the coupling between molecular vibrations and the total effective
spin of the molecule, quantified by the dimensionless coupling strength Λi

n, which can be thought
of as an induced anisotropy due to coupling to the ith vibrational mode. It should be mentioned
that the derivation of that additional term is primarily based on how molecular vibrations modify
the ligand field, generating additional magnetic anisotropy in the molecule [48].

It can be seen that the Sz spin projections are no longer a good quantum number for describing
the state of a vibrating molecule since the molecular Hamiltonian (3.1) possesses now two forms of
interaction leading to off-diagonal terms. The first one, captured by Ĥch-vib, is due to the charge-
vibron coupling, as discussed in Sec. 2.5.1, whereas the second one, given in Eq. (3.2), arises from
the interaction between molecular vibrations and spin. Thus, we aim to apply two successive
canonical transformations to eliminate the threefold coupling between charge, spin and molecular
vibrations. The Lang-Firsov transformation, which eliminates the charge-vibron coupling, was
already discussed in Sec. 2.5.2. Consequently, the goal of the next section is to find a similar
transformation that decouples the new spin-vibron interaction term Ĥsp-vib.

Before proceeding to the diagonalization of the molecular Hamiltonian, it should be emphasized
that Ref. [59] discusses a similar system in which vibrations couple only to the uniaxial magnetic
anisotropy. However, the main limitation of that study is that it only addresses the case of a
molecular spin S = 1. Moreover, the discussed model in Ref. [59] does not take into consideration
the charge-vibron coupling.

3.1.1 Solution by canonical transformation

In order to eliminate the spin-vibron coupling in the molecular Hamiltonian (3.1), we wish to find
a transformation

Ĥ′
mol = Û Ĥmol Û

−1 = eŜĤmole−Ŝ , (3.3)

such that Ĥ′
mol is diagonal with respect to the charge, spin and vibronic operators. For this

purpose, we derived a transformation kernel Ŝ, based on a recipe given in Ref. [61], by pro-
jecting the spin-vibron interaction term Ĥsp-vib on the eigenstates of the Hamiltonian Ĥ0, defined
as Ĥ0 = Ĥmol − Ĥsp-vib, which is the original molecular Hamiltonian without the new coupling term
between spin and vibrations (the Hamiltonian Ĥ0 is referred to as the equilibrium Hamiltonian
throughout the present chapter). Accordingly, for the molecular Hamiltonian Ĥmol = Ĥ0 + Ĥsp-vib

given in Eq. (3.1), the transformation kernel Ŝ can be written as

Ŝ =
∑

χn ̸=χ′
n

1
E0

χn
− E0

χ′
n

|χn⟩ ⟨χn| Ĥsp-vib |χ′
n⟩ ⟨χ′

n| , (3.4)

where E0
χn

and E0
χ′

n
are the eigenvalues of the equilibrium Hamiltonian Ĥ0. One should recall

that Eq. (3.4) is primarily for diagonalizing the molecular Hamiltonian Ĥmol in the first order
to obtain a Schrieffer-Wolff-like transformation [61]. However, in the case of coupling between
molecular vibrations and the uniaxial component of the spin, we can obtain a transformation
kernel Ŝ that gives an exact solution. The reason for this can be understood as follows: In terms
of the spin operators, both the equilibrium Hamiltonian Ĥ0 and the interaction term Ĥsp-vib are
expressed in terms of the same spin projection operator, namely

(
Ŝz

n

)2. Now, since any operator
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commutes with itself, the commutator
[
Ĥspin, Ĥsp-vib

]
equals zero. This essentially means that

there exist common Sz states for both Hamiltonians. As for the vibronic operators, we note that
the commutators

[
(b̂†

i +b̂i), b̂†
i b̂i

]
and

[
(b̂†

i +b̂i), (b̂†
i +b̂i)

]
equal zero. As a result, the three terms Ĥvib,

Ĥsp-vib and Ĥch-vib commute with each other. In light of these vanishing commutators, we conclude
that the equilibrium Hamiltonian Ĥ0 commutes with the interaction term Ĥsp-vib. Consequently,
a transformation generator Ŝ can be acquired such that the molecular Hamiltonian Ĥmol becomes
diagonal in both Ĥ0 and Ĥsp-vib simultaneously.

Employing Eq. (3.4), the derived transformation kernel Ŝ is found to take the form

Ŝ = −
∑

i

∑
n

Λi
n

(
Ŝz

n

)2(
b̂i − b̂†

i

)
, (3.5)

with the details of the derivation given in App. A.2. It should be remembered that in order to
conserve the Hermiticity of the operators, the transformation must be unitary and, hence, Ŝ is
anti-Hermitian (Ŝ† = −Ŝ). Now, using the Baker-Hausdorff formula given in Eq. (2.37), we can
transform the operators of the molecule, electrode and vibrations. Due to the vanishing commu-
tations between charge and spin operators, the charge operators of the molecule and electrodes
remain intact upon this transformation. Thus, the tunneling Ĥtun and leads Ĥleads Hamiltonians
are untouched. Likewise, Ŝz

n commutes with Ŝ, and that is why it is unchanged as well. Regarding
the vibronic operators, we start by evaluating the first order commutator

[
Ŝ, b̂†

i′

]
=
[

−
∑

i

∑
n

Λi
n

(
Ŝz

n

)2(
b̂i − b̂†

i

)
, b̂†

i′

]
= −

∑
i

∑
n

Λi
n

(
Ŝz

n

)2
[(
b̂i − b̂†

i

)
, b̂†

i′

]
= −

∑
n

Λi′

n

(
Ŝz

n

)2
.

(3.6)

Equation (3.6) implies that only the first two terms of the expansion in Eq. (2.37) survives. Thus,
the transformed vibronic creation operator reads

ˆ̃b†
i = b̂†

i −
∑

n

Λi
n

(
Ŝz

n

)2
. (3.7)

Similarly, we can transform the annihilation operator as follows

ˆ̃bi = b̂i −
∑

n

Λi
n

(
Ŝz

n

)2
. (3.8)

Inserting Eq. (3.7) and (3.8) into Eq. (3.1), the transformed molecular Hamiltonian for a charge
state n can be written as

Ĥ′
mol,n = Ĥspin,n + (ε− eVg)n̂d +

∑
i

~ωi

(
b̂†

i − Λi
n

(
Ŝz

n

)2
)(
b̂i − Λi

n

(
Ŝz

n

)2
)

+
∑

i

λi~ωi

(
b̂†

i + b̂i − 2Λi
n

(
Ŝz

n

)2
)
n̂d +

∑
i

Λi
n~ωi

(
Ŝz

n

)2
(
b̂†

i + b̂i − 2Λi
n

(
Ŝz

n

)2
)
,

(3.9)

where the molecular Hamiltonian is defined as Ĥ′
mol =

∑
n Ĥ′

mol,n. Simplifying the expression, we
arrive at
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Ĥ′
mol,n = Ĥspin,n +

(
ε− eVg − 2

∑
i

λiΛi
n~ωi

(
Ŝz

n

)2
)
n̂d −

∑
i

(
Λi

n

)2~ωi

(
Ŝz

n

)4 + Ĥvib + Ĥch-vib.

(3.10)

Careful examination of the above Hamiltonian shows that the coupling between spin and vibronic
operators is now eliminated at the expense of modifying the magnetic properties of the molecule.
In particular, the uniaxial magnetic anisotropy of the molecule is renormalized via two new terms.
The first term simply modulates the uniaxial anisotropy constant Dn such that, in the presence of
spin-vibron coupling, it can be rewritten as

D′
n = Dn + 2

(∑
i

λiΛi
n~ωi

)
n̂d (3.11)

The renormalization in Eq. (3.11) is not solely due to the spin-vibron coupling, but rather arises
from the threefold coupling between charge, spin and molecular vibrations. That is to say, if the
charge-vibron coupling strength λi = 0, this term vanishes. In addition, it should be noted that
this term only affects the anisotropy constant of the charged state N + 1 of the molecule owning
to the number operator n̂d, which yields zero when acting on the neutral state N .

Moreover, the interaction between spin and vibrations results in a second renormalization term
which contains the quartic spin projection operator

(
Ŝz

n

)4. In contrast to Eq. (3.11), this term
modifies the uniaxial magnetic anisotropy of both the neutral N and the charged N + 1 states of
the molecule. Yet, it can be seen from Eq. (3.10) that such term depends quadratically on the
coupling strength Λi

n between spin and vibrations. Thus, in case of weak spin-vibron coupling
(Λi

n ≪ 1), it can be ignored and the anisotropy renormalization only affects the charged state as
indicated by Eq. (3.11). The typical values for the spin-vibron coupling strengths are discussed in
Sec. 3.1.2.

Although the coupling between spin and molecular vibrations is now eliminated, Hamilto-
nian (3.10) still includes an off-diagonal term due to the charge-vibron coupling. In a similar
manner to Sec. 2.5.2, the Lang-Firsov transformation is carried out next to eliminate this cou-
pling. The resulting Hamiltonian, then, reads as

Ĥ′
mol,n = Ĥspin,n +

(
ε− eVg − 2

∑
i

λiΛi
n~ωi

(
Ŝz

n

)2
)
n̂d −

∑
i

(
Λi

n

)2~ωi

(
Ŝz

n

)4 + Ĥvib, (3.12)

where the interaction between charge and molecular vibrations is transfered into the tunneling
Hamiltonian Ĥtun, as given in Eq. (2.41).

As indicated by the molecular Hamiltonian in Eq. (3.12), the presence of molecular vibrations
modulates the magnetic anisotropy of the molecule. Now, although it is possible, based on elec-
tronic transport measurements, to determine the effective anisotropy of the molecule such as in
Refs. [30, 31], it is not a straightforward task to detect the renormalization due to spin-vibron
coupling. This stems from the difficulty to distinguish between the equilibrium anisotropy of the
molecule in the absence of molecular vibrations and the spin-vibron induced anisotropy. Accord-
ingly, it would be desired to vary the anisotropy component resulting from the coupling between
spin and molecular vibrations to allow for a direct observation of this coupling in transport mea-
surement. Experimentally, this could be realized by bending or vibrating the substrate that the
molecule is lying on, so that the molecule can couple to a different vibrational mode, that is ~ω
is varied and, hence, the induced anisotropy changes. Now, from a theoretical perspective, we can

40



3. Spin-vibron interaction in magnetic molecules

imitate this effect by varying the spin-vibron coupling strength in our calculations. This explains
why for each of the examples discussed throughout the present chapter, we obtain the differential
conductance for different spin-vibron coupling strengths to gain insights on the renormalization of
magnetic anisotropy.

In summary, the threefold coupling between charge, spin and molecular vibrations is eliminated
via two successive canonical transformations. Importantly, the elimination of spin-vibron interac-
tion comes at the expense of modulating the uniaxial magnetic anisotropy of the molecule. In the
next section, we explore the consequences of this anisotropy renormalization by presenting two
examples of transport through an individual magnetic molecule embedded in a junction.

3.1.2 Examples of the renormalization of uniaxial magnetic anisotropy

In this section, two examples are given to illustrate the impact of the renormalization of uniaxial
magnetic anisotropy, induced by spin-vibron interaction, on transport through a single magnetic
molecule. For the sake of conceptual simplicity, only one vibrational mode is considered throughout
the present section and, hence, we drop the index i. As one can see from Eq. (3.12), this renor-
malization depends on the vibrational frequency ω, the coupling strengths λ and Λn and also the
equilibrium anisotropy parameter of the molecule Dn. Accordingly, based on the molecule under
consideration, the magnetic anisotropy renormalization can lead to diverse effects, as discussed
throughout this section.

For this purpose, two examples that lie on the opposite limits of the parameter space are discussed
to demonstrate how the presence of the spin-vibron coupling manifests in spectroscopic transport
measurements. In the first example, we assume a molecule with spin SN = 3/2 in the neutral
state and SN+1 = 2 in the charged state. Moreover, a positive anisotropy constant (Dn > 0) is
considered (the easy-axis type of magnetic anisotropy) along with a vibrational energy comparable
to the zero-field splitting in both the charged and neutral states (~ω ≈ ZFSn). By contrast, in the
second example, a similar molecule is discussed, yet the uniaxial anisotropy constant is assumed
to be negative (Dn < 0), that is, a molecule with the easy-plane type of magnetic anisotropy. In
addition, the vibrational energy is chosen to be significantly higher than the scale of all transitions
between the molecular spin states |χn⟩, which means ~ω ≫ ZFSn.

Before proceeding to the transport examples, it is instructive here to discuss the typical values
for the spin-vibron coupling strengths. First of all, we note that the reported values in literature,
such as Refs. [62–65], were obtained in the context of bare molecules where nuclear magnetic
resonance (NMR) spectroscopy was used to study the various vibrational modes and their coupling
strength. In addition, the model used in these studies is different from the model discussed in the
present work. However, we can still obtain the appropriate order of magnitude for the spin-vibron
coupling strengths to be used in our illustrative examples throughout Chap. 3. Accordingly, we
can conclude that the product Λn~ω is typically in the same order of magnitude as the anisotropy
constant |Dn| [23]. Now, since in the thesis at hand we usually assume the anisotropy constants
to be approximately 100 µeV, plus the considered vibrational energies (~ω) range from hundreds
of µeV to few meV, it is legitimate to presume that the spin-vibron coupling strength Λn varies
from 0.01 up to 1.

a) A molecule with the easy-axis type of magnetic anisotropy

In this example, a molecule identical to the one in Sec. 2.4 is considered along with a vibrational
energy ~ω = 800 µeV and charge-vibron coupling strength λ = 1.3. The calculations were carried
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Figure 3.1: Stability diagram and energy spectrum of a molecule with the easy-axis
type of magnetic anisotropy in the presence of spin-vibron coupling. (a) A differential
conductance plot for the molecule whose energy spectrum is given in Fig. 2.2 in the presence
of the threefold coupling between charge, spin and molecular vibrations. Since the energy of
the vibrational mode under consideration ~ω is comparable to the zero-field splitting (note ZFS
here denotes ZFSN for brevity), the shown transitions are due to both magnetic and vibrational
excitations. The discontinuity in the bottom-left corner is attributed to a blockade of transport due
to the presence of dark states. The dashed line represents a bias cut along a constant gate voltage,
which is used to generate the one-dimensional differential conductance plot in Fig. 3.3(a) (b) A
schematic energy spectrum at a gate voltage Vg = −2 ZFS/|e|, corresponding to the cross-section
along the dashed line in (a). Since electrons cannot tunnel out of the states | ± 1/2⟩, the transport
is blocked until a higher bias voltage is reached to enable the transition from | ± 1/2⟩ to | ± 1⟩. For
this reason, the states | ± 1/2⟩ are referred to as dark states.

out for a temperature T = 0.18 K (kBT = 16 µeV). The spin-vibron coupling strength of both
charge states is assumed to be equal (ΛN = ΛN+1 = Λ = 0.01).

For the molecule under consideration, the vibrational energy ~ω is comparable to the en-
ergy difference between the molecular states |χn⟩ (the zero-field splitting for the neutral state
equals 200 µeV, whereas for the charged state it is 300 µeV). Consequently, in contrast to the case
discussed in Sec. 2.5.3, the transitions between molecular spin states |χn⟩ involving ground and
excited vibrational states can be resolved simultaneously. Using the Fermi golden rule formalism,
presented in Sec. 2.3, coupled with the transition rates given in Eq. (2.42), the differential conduc-
tance dI/dV was calculated at a coupling strength Λ = 0.01, as shown in the stability diagram in
Fig. 3.1(a).

It is instructive here to recall the layout of this differential conductance plot. At large positive
gate voltages Vg ≫ 0, the molecule exists in the charged state N + 1, whereas for Vg ≪ 0, the
molecule becomes neutral, that is n = N . The region in between, bounded by the two black lines,
is referred to as the sequential tunneling region where the molecule alternates between both charge
states as electrons hop from the source to the drain via the molecule. The edges of the sequential
tunneling region represent the transitions between the ground state of both the neutral N and the
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Figure 3.2: Occupation probability for the molecular states | ± 1/2⟩ and | ± 3/2⟩.
A plot for the occupation probability as a function of the bias voltage V at a constant gate
voltage Vg = −2 ZFS/|e|, corresponding to the vertical cut along the dashed line in Fig. 3.1(a).
At low bias voltage, the molecule exists in the ground neutral state | ± 3/2⟩. As the bias voltage
increases, the molecule is expected to enter the sequential tunneling region where it alternates
between both the neutral and the charged states. However, the presence of dark states absorbs all
the probability leading to blockade of transport.

charged states N + 1. In particular, the edge in the bottom-left corner of Fig. 3.1(a) corresponds
to the transition from the two neutral molecular states |3/2, nq = 0⟩ and |−3/2, nq = 0⟩ to the
charged ones |2, nq = 0⟩ and |−2, nq = 0⟩, respectively, whereas the bottom-right edge corresponds
to the same transition but in the opposite direction, i.e., from the charged N + 1 to the neutral N
molecular states.1

Evidently, the first thing to observe in the stability diagram shown Fig. 3.1(a) is the discontinuity
in the edge of the sequential tunneling region [the bottom-left corner of Fig. 3.1(a)], which can be
attributed to a blockade of transport. The underlying mechanism for the transport blockade can
be understood by investigating the transition rates involving the two neutral molecular state |1/2⟩
and |−1/2⟩. Fig. 3.1(b) depicts the energy spectrum of the molecule at a constant gate voltage
Vg = −2 ZFS/|e|, where ZFS denotes the zero-field splitting of the neutral state, i.e., ZFS = ZFSN .
At the gate and bias voltages where the discontinuity takes place, transitions to the molecular
states |1/2⟩ and |−1/2⟩ are allowed, as indicated by the blue arrows. Nevertheless, the bias voltage
is not high enough to permit a transition out of these two states. As a result, these two states
act as dark states [cf. shaded states in (b)]. This basically means that the transition rates from
other molecular states to these two states are non-zero, whereas the transition rates out of them
are vanishing. These vanishing transition rates manifest in the occupation of the molecular states,
as shown in Fig. 3.2, where the sequential transport is blocked and the molecule exists solely in the
two states |1/2⟩ and |−1/2⟩ for the bias range from 3 − 5 ZFS/|e|. Finally, it is noteworthy that
even though transport blockade is not a direct consequence of spin-vibron coupling, it is enabled
by the energy spectrum reconstruction stemming from the magnetic anisotropy renormalization.

1Recall that an arbitrary molecular state can be defined as |χn, nq⟩ ≡ |χn⟩⊗|nq⟩, with |χn⟩ denoting the spin state
of the molecule, whereas nq denotes the number of vibrational energy quanta in the molecule. For instance |nq = 0⟩
stands for the vibrational ground state and |nq = 1⟩ represents the first excited state, and so on. For the sake of
brevity, vibrational ground states will be denoted only by the molecular spin state, i.e., |χn, nq = 0⟩ ≡ |χn⟩.
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Figure 3.3: Differential conductance plot of a molecule with the easy-axis type of
magnetic anisotropy. (a) The differential conductance is calculated at different spin-vibron
coupling strengths at a constant gate voltage Vg = −2 ZFS/|e|, corresponding to the vertical cut
along the dashed line in Fig. 3.1(a). (b) The energy spectrum is depicted at zero gate voltage Vg = 0
where the transitions corresponding to the three peaks are marked with blue arrows. The position
of the leftmost peak (1) in (a) shifts due to blockade of transport, whereas the rightmost peak (3)
in (a) is fixed since it only depends on the vibrational energy ~ω. The anisotropy renormalization
of the charged state N+1 of the molecule can be obtained based on the position shift of the middle
peak (2) in (a), as discussed in the text.

Now, in order to shed some light on how the magnetic anisotropy of the molecule is renormalized,
the differential conductance is calculated for different values of spin-vibron coupling Λ. Moreover,
we isolate three differential conductance peaks by taking a bias cut along a constant gate volt-
age Vg = −2 ZFS/|e|, as shown by the dashed line in Fig. 3.1(a). The resultant one-dimensional
differential conductance plot is shown in Fig. 3.3(a), where the three peaks correspond to the
transitions marked on the energy spectrum in Fig. 3.3(b). Particularly, the leftmost (1) and mid-
dle peaks (2) represent a transitions from the neutral molecular states | ± 3/2⟩ to the charged
states | ± 2⟩ and | ± 1⟩, respectively. On the other hand, the rightmost peak (3) is associated
with the transition within the first vibrationally excited states (|±3/2, nq = 1⟩ to |±2, nq = 1⟩).
It should be noted that the rightmost peak is not present in the bottom curve for Λ = 0, since
we assume the absence of molecular vibrations all-together in this case, that is the charge-vibron
coupling strength λ also equals zero. Our aim here is to gain insights into how the modulation
of magnetic anisotropy reconstructs the energy spectrum of the molecule by tracking the position
(the bias at which they occur) of the differential conductance peaks. Accordingly, whenever useful
a vertical dashed line is added to help resolve the position of the peaks, as shown for instance in
Fig. 3.3(a).

First, for the rightmost peak (3) in Fig. 3.3(a), we can see that its position is fixed regardless of
the coupling strength between spin and vibrations. This is because the position of the first excited
vibrational state is not affected by the magnetic anisotropy of the molecule, but rather depends
solely on the vibrational mode energy ~ω. Thus, for the molecule at hand, the position of this peak
is fixed at eV = 2~ω. Similarly, it is justified to expect that the position of the leftmost peak (1)
would also not shift as the spin-vibron coupling strength increases since it occurs at the degeneracy
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point between the neutral N and charged states N + 1, which we typically guarantee by adjusting
the gate voltage Vg. Nevertheless, Fig. 3.3(a) shows that the peak actually shifts which can be
attributed to the transport blockade discussed above.

Finally, the renormalization of magnetic anisotropy can be extrapolated from the position shift
of the middle peak (2) in Fig. 3.3(a). In this example, the coupling strength Λ ≪ 1. Consequently,
we can ignore any effects stemming from the penultimate term in Eq. (3.12) since it depends on the
coupling strength Λ quadratically. Thus, the dominant renormalization is captured by Eq. (3.11),
where the uniaxial anisotropy constant of the charged state DN+1 is modified. Accordingly, the
magnitude of the position shift between the bottom and topmost middle peaks can be given
by e∆V = 2λΛ~ω.

b) A molecule with the easy-plane type of magnetic anisotropy

In the example at hand, the same molecule is considered, yet with a negative magnetic anisotropy
constant Dn < 0. Consequently, the parabolic energy spectrum shown before is now inverted, as
illustrated in Fig. 3.4(b). Here, we consider only one mode with a vibrational energy ~ω = 2 meV.
As already explained, in order to encompass the diverse effects that arise from magnetic anisotropy
renormalization, we study two examples at the opposite limits of the parameter space. Unlike, the
previous example, the vibrational energy is assumed here significantly larger than the energy
difference between molecular spin states. Thus, we expect that on the stability diagram, we can
only resolve the transitions between molecular spin states. The calculations were conducted for a
temperature T = 0.08 K (the thermal energy kBT = 8 µeV). It should be noted that the zero-field
splitting energy units used here are based on the previous example for the sake of consistency, i.e.,
ZFS is equal to 200 µeV.

Analogously to the previous example, we wish to investigate the implications of spin-vibron
coupling and, hence, the coupling strength Λ is varied. However, before including the vibrational
degree of freedom, let us first attempt to understand the dynamics of the molecule in the absence
of the coupling between spin, charge and vibrations, i.e., λ and Λ equal zero. Figure. 3.4 shows the
differential conductance dI/dV in (a) along with the energy spectrum of the molecule in (b). The
three differential conductance lines on the lower-left corner of the stability diagram correspond to
transitions from the neutral state N to the charge state N + 1. In particular, the two bottom line
refer to transitions from the neutral molecular states |±1/2⟩ to the charged molecular states |0⟩
and |±1⟩, whereas the third line refers to a transition from the neutral molecular state |±3/2⟩ to
the charged one |±2⟩. By contrast, the two lines in the lower-right corner stand for transitions
from the charged molecular states |χN+1⟩ to the neural molecular states |χN ⟩, namely the two
transitions |0⟩ to |±1/2⟩ and |±1⟩ to |±3/2⟩. It can be seen from Fig. 3.4(a) that there exists a
negative differential conductance (NDR) region, indicated by the blue line segment. The presence
of this NDR indicates that the current I through the molecule decreases as the bias voltage V is
increased, leading to a dip (negative peak) in the differential conductance plot, which could be
thought of as a partial blockade of transport. For the molecule under discussion, the NDR occurs
because the transition from the charged molecular state |±1⟩ to the neutral one |±3/2⟩ occurs
before the bias voltage is high enough to allow for the transition out of the neutral state |±3/2⟩ to
the charged one |±2⟩. That is to say, once an electron tunnels off a charged molecule resulting in
a transition from |±1⟩ to |±3/2⟩, it is forbidden for another electron to tunnel into the molecule
until the bias voltage is further increased, which results in a decrease in the current that flows
through the molecule. It should be emphasized that this is not a complete transport blockade,

45



3. Spin-vibron interaction in magnetic molecules

but rather a decrease in the tunneling current since the molecule is also likely to exist in other
molecular states that give rise to current. Specifically, current through the molecule is still enabled
by the transitions between the states the two states |0⟩ and |±1/2⟩.

Now, taking into consideration the interaction between charge, spin and molecular vibrations,
the differential conductance is acquired at a coupling strength Λ = 0.05, as shown in Fig. 3.5(a).
Evidently, the presence of molecular vibrations drastically impacts the transport properties of the
molecule. Importantly, we can see from Fig. 3.5(a) that the transport is blocked at low bias voltage.
Interestingly, the origin of this blockade can be traced back to the renormalization of magnetic
anisotropy of the molecule. As discussed in Sec. 3.1.1, if the coupling strength Λ ≪ 1, the second
order term in Eq. (3.12) can be neglected. Moreover, the anisotropy renormalization is dominated
by Eq. (3.11), which indicates that the uniaxial anisotropy parameter of the charged state DN+1

is modified due to the threefold coupling between spin, charge and molecular vibrations. Since the
induced anisotropy in Eq. (3.11) is positive, for vibrational modes with large energy such as the
one under consideration, the negative anisotropy parameter can change sign, that is D′

N+1 > 0. In
other words, the charged molecule switches from the easy-plane to the easy-axis type of magnetic
anisotropy (cf. Sec. 1.3). Figure 3.5(b) shows the reconstructed energy spectrum of the molecule
in the presence of molecular vibrations. It can be seen that the parabolic energy spectrum of
the charged state N + 1 becomes inverted, that is, the spin moments now prefer to orient along
the z-axis (easy-axis). In fact, it is now straightforward to understand the underlying reason for the
transport blockade. As already established, spin selection rules, imposed by the Clebsch Gordon
coefficients, forbid transitions between the neutral ground state |±1/2⟩ and the charged ground
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Figure 3.4: Differential conductance plot and energy spectrum of a molecule with the
easy-plane type of magnetic anisotropy in the absence of molecular vibrations. (a) A
stability diagram in the absence of molecular vibrations (λ and Λ = 0). The blue segment indicates
a negative differential conductance region where the current through the molecule drops due to a
partial blockade of transport. The vertical dashed line stands for a bias cut at a constant gate
voltage as plotted in Fig. 3.6. (b) An energy spectrum of the molecule under consideration. In
comparison to Fig. 3.3(b), the parabolic energy spectrum is inverted since for D < 0, the spin
moment prefers to orient in the plane perpendicular to the easy axis (easy-plane anisotropy).
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Figure 3.5: Differential conductance plot and energy spectrum of a molecule with
the easy-plane type of magnetic anisotropy in the presence of spin-vibron coupling.
(a) A stability diagram at a spin-vibron coupling strength Λ = 0.05 and a charge-vibron coupling
strength λ = 1.3. Spin selection rules leads to blockade of transport since there is no transitions
allowed between the neutral and charged ground states. The vertical dashed line stands for a bias
cut at a constant gate voltage as plotted in Fig. 3.6. (b) A reconstructed energy spectrum of
the molecule due to spin-vibron interaction. The energy spectrum of the molecule in the charged
state N + 1 becomes flipped because the effective anisotropy constant of the charged state changes
its sign.

state |±2⟩ since it would require changing the spin state of the molecule by an amount more than
the spin of the tunneling electron, that is, 1/2. Consequently, the transport is blocked until the
bias voltage is high enough to allow transitions between the two states |±2⟩ and |±3/2⟩, which
correspond to the two black lines in Fig. 3.5(a).

In order to investigate the sign change in the uniaxial anisotropy parameter of the charged
state N + 1, a bias cut at a constant gate voltage Vg = −0.5 ZFS/|e| is taken while varying the
spin-vibron coupling strength Λ, as plotted in Fig. 3.6. The bottom blue curve simply reflects the
bias cut in Fig. 3.4(a) where the differential conductance is plotted in the absence of molecular
vibrations. At a coupling strength Λ = 0.02, the three transitions in Fig. 3.4(a) merge into one,
which implies that all the charged molecular states |χN+1⟩ are now degenerate. That is to say,
the molecule is isotropic, i.e., D′

N+1 = 0 and, hence, there is no longer a preferential direction for
the spin moment to orient along. For spin-vibron coupling strength greater than 0.02, the energy
spectrum of the charged state becomes inverted and a blockade of transport takes place.

In conclusion, the spin-vibron induced anisotropy can result in suppression of the total magnetic
anisotropy of the molecule or even changing the ground state of the molecule. The later could lead
to spin-vibron induced blockade since transitions between the ground states are forbidden by the
conservation of spin momentum.
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Figure 3.6: Differential conductance plot for various spin-vibron couping strengths.
The differential conductance is plotted as a function of the bias voltage V at a constant gate
voltage Vg = −0.5 ZFS/|e|, indicated by the cut in the stability diagrams in Fig. 3.4(a) and
Fig. 3.5(a). The effective anisotropy constant of the molecule changes its sign from negative to
positive leading to a spin-vibron induced blockade. At a coupling strength Λ ≈ 0.02, the effective
anisotropy constant equals zero. Thus, the charged molecule becomes isotropic, which is indicated
by the disappearance of the peaks since the charged molecular stats |χN+1⟩ are, now, degenerate.

3.2 The coupling of molecular vibrations to the uniaxial
and transverse component of molecular spin

In Sec. 3.1, we have limited our discussion to molecules with only uniaxial magnetic anisotropy.
Our goal now is to address a more general case where the molecular vibrations couple to both
the uniaxial and transverse directions of magnetic anisotropy. Accordingly, this section starts
by extending the molecular Hamiltonian (3.1) to incorporate the spin-vibron coupling along the
transverse direction. Next, we explore the conditions under which this model is exactly solvable.
Finally, we present an illustrative example to explore the impact of the aforementioned coupling
on electronic transport through a single magnetic molecule.

By including an additional coupling term to the molecular Hamiltonian (3.1), the full Hamilto-
nian that captures the coupling of molecular vibrations to the uniaxial and the transverse magnetic
spin components, as well as charge-vibron coupling, can be written as

Ĥmol =
∑

n

Ĥspin,n + (ε− eVg)n̂d + Ĥvib + Ĥch-vib + Ĥsp-vib, (3.13)

where

Ĥsp-vib =
∑

n

~ω
(

Λu
n

(
Ŝz

n

)2 + Λt
n

[(
Ŝ+

n

)2 +
(
Ŝ−

n

)2
])

(b̂† + b̂), (3.14)

with Λu
n and Λt

n as the coupling strength of vibrations to the uniaxial and transverse components
of the magnetic anisotropy, respectively. It should be noted that, for the sake of brevity, the
summation over the various vibrational modes denoted by i is dropped. In other words, Eq. (3.13)
is written for a single vibrational mode. However, we should emphasize that this does not limit the
generality of the model Hamiltonian given in Eq. (3.13). In comparison to Eq. (3.1), the molecular
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Hamiltonian (3.13), in the Sz spin projection basis, also possesses two off-diagonal terms due to
the threefold interaction between charge, spin and vibrations. Thus, it would be ideal to follow the
same procedure as in Sec. 3.1.1, where a canonical transformation was derived in order to eliminate
the spin-vibron coupling. Unfortunately, there exists no general canonical transformation that
exactly eliminates the off-diagonal coupling. The reason is that, on the contrary to Sec. 3.1.1, the
interaction term Ĥsp-vib does not commute in the present case with the equilibrium Hamiltonian Ĥ0

since the commutator

[
Ĥsp-vib, Ĥspin

]
=
∑

n

~ω(b̂†+b̂)
[
Λu

n

(
Ŝz

n

)2+Λt
n

([
Ŝ+

n

]2+
[
Ŝ−

n

]2)
,−Dn

(
Ŝz

n

)2+En

2

([
Ŝ+

n

]2+
[
Ŝ−

n

]2)]
(3.15)

is not equal to zero owning to the fact that the squared ladder operators do not commute with the Ŝz

projection operator,
[(
Ŝz

n

)2
,
(
Ŝ+

n

)2 +
(
Ŝ−

n

)2] ̸= 0. This basically means that, both Hamiltonians do
not have common eigenstates. As a result, the molecular Hamiltonian Ĥmol in Eq. (3.13) cannot be
diagonal in the spin Hamiltonian Ĥspin and in the interaction term Ĥsp-vib terms simultaneously.
However, as we shall see in the next section, there are two scenarios for which Hamiltonian (3.13)
can be exactly diagonalized.

3.2.1 Exactly solvable models

As mentioned above, in order to eliminate the coupling between spin and molecular vibrations
exactly, the commutator

[
Ĥsp-vib, Ĥspin

]
has to vanish. In fact, there are two scenarios that allow

for a cancellation of this commutator. The first one ensures this by imposing a restriction on
the magnetic anisotropy parameters of the molecule, whereas the second scenario is based on
the fact that the commutator

[
Ĥsp-vib, Ĥspin

]
= 0 for a molecular spin S = 1.2 The latter is

of particular interest to the present work since, though limited to a molecular spin S = 1, the
solution is generally applicable without the need to impose further conditions on the properties of
the molecule. Accordingly, for the sake of completeness, we will briefly discuss the first scenario
below, while the rest of this section is devoted to discuss the second case.

a) Solution by parameter restriction

In order to eliminate the spin-vibron coupling, we assume a transformation generator Ŝ in the form

Ŝ = −
∑

n

[
Λu

n

(
Ŝz

n

)2 + Λt
n

((
Ŝ+

n

)2 +
(
Ŝ−

n

)2
)]

(b̂− b̂†). (3.16)

Now, we recall that the bottleneck for eliminating the spin-vibron coupling here is that the com-
mutator

[
Ĥsp-vib, Ĥspin

]
̸= 0. This means that if we devise a transformation generator Ŝ that

eliminates the spin-vibron coupling in the transformed interaction term Ĥ′
sp-vib, the coupling will

reappear in the Hamiltonian Ĥ′
spin. However, this complexity is circumvented by enforcing a con-

dition on the anisotropy constants of the molecule such that the spin-vibron coupling does not
appear in the transformed spin Hamiltonian Ĥ′

spin. To illustrate this in more detail, we carry out
the canonical transformation for Ĥspin using the Baker-Hausdorff formula, given in Eq. (2.37), as
follows

2It should be recalled that for a molecule with a spin S = 1/2, the molecular states consist of the degenerate
molecular states |1/2⟩ and |−1/2⟩ since both the uniaxial and transverse magnetic anisotropy play no role. As a
result, the commutator

[
Ĥsp-vib, Ĥspin

]
equals zero, too.
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Ĥ′
spin = eŜĤspine−Ŝ = Ĥspin +

[
Ŝ, Ĥspin

]
+ h.o. (3.17)

To make progress with this, we start by evaluating the first order commutation between the giant
spin Hamiltonian and the transformation generator Ŝ,

[
Ŝ, Ĥspin

]
=
∑

n

[
Ŝ,−Dn

(
Ŝz

n

)2 + En

2

((
Ŝ+

n

)2 +
(
Ŝ−

n

)2
)]

= −
∑

n

(
DnΛt

n + En

2
Λu

n

)[(
Ŝz

n

)2
,
(
Ŝ+

n

)2 +
(
Ŝ−

n

)2
]
(b̂− b̂†).

(3.18)

Now, by imposing the condition

DnΛt
n = −En

2
Λu

n, (3.19)

we ensure that the commutation in Eq. (3.17) vanishes. Accordingly, the transformed spin Hamil-
tonian Ĥ′

spin = Ĥspin which means that the spin-vibron coupling can be eliminated. We should,
however, remark that this condition is not of direct experimental relevance since for this partic-
ular model to work, we need to find a molecule with tailored magnetic anisotropy constants and
spin-vibron coupling strengths.

b) Solution for a molecular spin S ≤ 1

Now, we turn our attention to the second case for which the molecular Hamiltonian in Eq. (3.13)
is exactly solvable, that is, the case of a molecule with a spin SN = 1/2 in the neutral state and
a spin SN+1 = 1 in the charged state, or vice versa. For this case, we can use the transformation
generator Ŝ, given in Eq. (3.16), to eliminate the spin-vibron coupling since for the charged state
with SN+1 = 1, the commutator

[(
Ŝz

n

)2
,
(
Ŝ+

n

)2+
(
Ŝ−

n

)2] = 0. In other words, the mixed eigenstates
of S = 1, given in Eq. (2.29), are still eigenfunctions of the operator

(
Ŝz

n

)2. As for the neutral
state with S = 1/2, we already established that the above commutator also equals zero since the
transverse magnetic anisotropy does not influence the neutral molecular states. This is because the
ladder operators

(
Ŝ+

n

)2 and
(
Ŝ−

n

)2 mix every other state and, hence, their eigenvalues are zeros
for half-spin systems.

Accordingly, we can proceed to diagonalize the molecular Hamiltonian by carrying out two suc-
cessive canonical transformations; the first for eliminating the spin-vibron coupling using Eq. (3.16)
(cf. Sec. 3.1.1 for a similar transformation), whereas the second for the charge-vibron coupling
(cf. Lang-Firsov transformation in Sec. 2.5.2). Employing these two transformation, the trans-
formed molecular Hamiltonian3 reads

Ĥ′
mol,n = Ĥspin,n +

(
ε− eVg − 2~ωλγ

)
n̂d − ~ωγ2 + Ĥvib, (3.20)

where

γ = Λu
n

(
Ŝz

n

)2 + Λt
n

[(
Ŝ+

n

)2 +
(
Ŝ−

n

)2
]
. (3.21)

Using Eq. (3.20) and (3.21), we can write now the shifted eigenvalues for the neutral and charged
states of the molecule. For the neutral state with spin SN = 1/2, the energy of the spin dou-
blet |1/2⟩ and |−1/2⟩ is shifted by −(~ω/4)(Λu

N )2. However, as before, this constant energy
3Recall that the molecular Hamiltonian is defined as Ĥmol =

∑
n

Ĥmol,n
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normalization is typically left out in the calculation since it can be incorporated in the energy
shifts induced by the applied gate voltage Vg.

As for the charged molecule with a spin SN+1 = 1, Eq. (3.20) can be rewritten in the form of the
spin Hamiltonian Ĥspin by replacing the anisotropy constants DN+1 and EN+1 with the effective
ones, namely Deff and Eeff, which include the effects of the threefold coupling between charge, spin
and molecular vibrations. Accordingly, Eq. (3.20) reduces to the following Hamiltonian

Ĥ′
mol,N+1 = −Deff

(
Ŝz

N+1
)2 + Eeff

2

[(
Ŝ+

N+1
)2 +

(
Ŝ−

N+1
)2
]

+ (ε− eVg)n̂d + Ĥvib, (3.22)

where

Deff = DN+1 + 2~ωλΛu
N+1 + ~ω(Λu

N+1)2 + 4~ω(Λt
N+1)2, (3.23)

and
Eeff = EN+1 − 4~ωλΛt

N+1 − 4~ωΛu
N+1Λt

N+1. (3.24)

In comparison to Eq. (2.29)-(2.31), the eigenvectors and energies of the molecular Hamiltonian for
the charged state take then the form

|χ0⟩ = |0⟩ → ε0 = 0, (3.25)

|χ+⟩ = 1√
2

|1⟩ + 1√
2

|−1⟩ → ε
′

+ = −Deff + Eeff. (3.26)

|χ−⟩ = 1√
2

|1⟩ − 1√
2

|−1⟩ → ε
′

− = −Deff − Eeff. (3.27)

Evidently, we obtain the same expression for energies as given in Eq. (2.29)-(2.31), only with
renormalized magnetic anisotropy constants. Now, to scrutinize how the energy spectrum of a
charged molecule with SN+1 is modified due to the spin-vibron coupling, we write an explicit
expression of the energies of the molecular states |χ−⟩ and |χ+⟩ in terms of the ratio between
coupling strengths along the uniaxial and transverse directions. Accordingly, for the ratio ζ defined
as ζ = Λt

N+1/Λu
N+1, Eq. (3.26) and (3.27) can be reformulated as

ε
′

+ = −Deff + Eeff = ε+ − 2~ωλΛu
N+1(2ζ + 1) − ~ω(Λu

N+1)2(2ζ + 1)2, (3.28)

ε
′

− = −Deff − Eeff = ε− + 2~ωλΛu
N+1(2ζ − 1) − ~ω(Λu

N+1)2(2ζ − 1)2. (3.29)

Equation (3.28) shows that the energy of the molecular state |χ+⟩ always decreases as the
coupling strength between spin and vibrations increases. By contrast, Eq. (3.29) indicates that
at ζ = 1/2, the energy of the state |χ−⟩ is independent of the coupling strength and equals the
eigenvalue in the absence of molecular vibrations, namely ε′

− = ε− = −DN+1 − EN+1. Moreover,
in case of weak spin-vibron coupling Λu

N+1 ≪ 14, the first-order terms of Λu
N+1 dominate. Thus,

the energy of the molecular state |χ−⟩ falls into three regimes, as illustrated in Fig. 3.7 . For
ζ < 1/2, ε′

− decreases as Λu
N+1 increases, whereas for ζ > 1/2, it increases as the coupling strength

increases.
4Note that we refer only to the uniaxial coupling strength since the coupling along the transverse direction is

directly related to it via the ratio ζ.
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Figure 3.7: Energy spectrum for the charged state with SN+1 = 1 as a function of
spin-vibron coupling strength Λu

N+1. Based on the ratio ζ between the coupling strength in
the uniaxial and transverse directions, one can distinguish three regimes, ζ < 0.5 (left), ζ = 0.5
(middle) and ζ > 0.5 (right), where ζ = Λt

N+1/Λu
N+1. For ζ = 0.5, the energy of the state |χ−⟩

is independent of the spin-vibron coupling strength. Moreover, for ζ > 0.5, ε′
− increases and

eventually it can cross the energy of the state |χ0⟩ which reverses the order of the eigenstates of the
system. The coupling strength at which the transverse magnetic anisotropy is suppressed, i.e., the
two states |χ−⟩ and |χ+⟩ become degenerate, is referred to as the critical coupling strength given
by Λu

crit = (λ/2) −
√

(λ2/4) − (EN+1/4~ωζ).

Interestingly, for modes with large vibrational energy quanta ~ω, the energy of the molecular
state |χ−⟩ can actually become higher than the state |χ0⟩, provided that ζ > 1/2. This scenario
is of particular relevance since it can allow for observing the effect of spin-vibron coupling in
transport measurements. Recalling the discussion on spin-polarized transport in Sec. 2.4.4, we
have illustrated that using ferromagnetic electrodes in the antiparallel magnetic configuration,
we can amplify the differential conductance peak corresponding to transitions to the state |χ0⟩
(cf. the rightmost peak in Fig. 2.13). This magnification can, in turn, facilitate keeping track of
that particular peak in electronic transport experiments. Accordingly, if we can observe that this
peak occurs at a bias voltage V lower than that required for the transition to the state |χ−⟩, it will
be a clear indication that the coupling of spin and molecular vibrations reconstructed the energy
spectrum so that the state |χ0⟩ lies within the tunnel splitting window of the two states |χ+⟩
and |χ−⟩.

In light of Eq. (3.23) and (3.24), it is evident that the interaction between spin and molecu-
lar vibrations results in renormalization of both the uniaxial and transverse magnetic anisotropy
constants. This renormalization depends on the coupling strength along both spin directions, the
interaction strength between charge and vibrations λ and the vibrational energy ~ω. Thus, the
manifestation of the anisotropy renormalization on transport properties can take various forms
based on the molecule and the coupling parameters. In the next section, we present one particular
example where it is shown that spin-vibron coupling can result in suppression of the transverse
magnetic anisotropy.
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(b)(a)

Figure 3.8: Two Differential conductance maps in the absence (a) and presence (b)
of spin-vibron coupling .(a) Stability diagram obtained in the absence of molecular vibrations,
that is, Λu = 0 and λ = 0. The anisotropy constants of the molecule, E and D, are marked
on the plot. (b) In the presence of molecular vibrations, Λu = 0.02 and λ = 1.3, a stability
diagram similar to (a) is obtained, but the magnetic anisotropy of the molecule is modulated. The
renormalized magnetic anisotropy constants, Deff and Eeff are illustrated on the diagram.

3.2.2 Example of the renormalization of uniaxial and transverse mag-
netic anisotropy

The example to be considered involves the same molecule as discussed above with SN = 1/2
and SN+1 = 1. Since the neutral state N of the molecule is neither affected by the magnetic
anisotropy nor by the spin-vibron coupling, in the present analysis, for the sake of notational clarity,
we drop the charge index of the anisotropy constants and the spin-vibron coupling strengths. That
is, the parameters D,E,Λu and Λt refer now to the charged state of the molecule N + 1. The
anisotropy constants and the thermal energy were chosen in accordance with the example discussed
in Sec. 2.4.2 to allow for comparing the cases in the presence and absence of molecular vibrations.
As before, for illustrative purposes, we account for a single vibrational mode with ~ω = 1 meV.
Similar to all previous examples, a charge-vibron coupling strength λ = 1.3 is used. Based on
Fig. 3.7, we established that, depending on the ratio ζ, the energy spectrum of the charged N + 1
state falls into three distinctive regimes. In the example under consideration, we set ζ to 3/4 to
focus on the rightmost case in Fig. 3.7 while varying the spin-vibron coupling strength along the
uniaxial direction Λu. The values of Λu were chosen to be in the same order as in Sec. 3.1.2.

Before addressing the implications of the spin-vibron coupling, let us first recall the details of
the stability diagram obtained for the molecule at hand in the absence of molecular vibrations,
as shown in Fig. 3.8(a). In particular, the three lines on the left corner of the plot, from bottom
to top, indicate the transitions from the neutral molecular states |±1/2⟩ to the charged molecu-
lar states |χ−⟩, |χ+⟩ and |χ0⟩, respectively. Accordingly, based on the energy spectrum given in
Fig. 2.4, the uniaxial and transverse magnetic anisotropy constants can be marked on the differen-
tial conductance plot as shown on Fig. 3.8(a). Now, accounting for the molecular vibrations, the
magnetic anisotropy constants become normalized as given by Eq. (3.23) and (3.24). Similarly, we
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Figure 3.9: Differential conductance plot and energy spectrum as a function of the
spin-vibron coupling strength. (a) Differential conductance dI/dV as a function of bias
voltage for different spin-vibron coupling strength. This plot is obtained at a fixed gate volt-
age Vg = −0.5 ZFS/|e|. At a coupling strength Λu ≈ 0.005, the transverse anisotropy of the
molecule is suppressed and, hence, the peaks (1) and (2) representing transitions to |χ−⟩ and |χ+⟩,
respectively, merge. At stronger coupling strengths, the effective transverse anisotropy becomes
positive and the ground state of the charged molecule changes from |χ−⟩ to |χ+⟩. (b) Energy spec-
trum of the charged molecule with spin SN+1 = 1 as a function of spin-vibron coupling strength.
The crossing between the lowest two energy states at a coupling strength Λu ≈ 0.005 is shown, indi-
cating a suppression of transverse anisotropy. The differential conductance peaks are superimposed
over the spectrum at Λu = 0, 0.005 and 0.02.

acquire the differential conductance plot, presented in Fig. 3.8(b), where we can see that the three
transitions mentioned above are also visible, but they occur at different bias voltages. Moreover,
we can obtain the effective anisotropy constants Eeff and Deff as shown on the stability diagram
in Fig. 3.8(b).

Although Fig. 3.8 shows, in the absence (a) and presence (b) of molecular vibrations, three lines
representing transitions from the neutral N to the charged state N + 1, the molecular states |χn⟩
involved in these transitions are, in fact, not the same. To examine these three lines and the
corresponding transitions in more detail, the spin-vibron coupling strength along the uniaxial
direction Λu is varied while keeping the ratio ζ fixed. Additionally, we take a cut through the two
stability diagrams in Fig. 3.8 at a constant gate voltage, so that we can compare the resultant
differential conductance peaks with the energy spectrum of the molecule at different spin-vibron
coupling strengths, as shown in Fig. 3.9. The three differential conductance peaks in Fig. 3.9(a),
plotted at a gate voltage Vg = −0.5 ZFS/|e|, correspond to the three lines in the stability diagrams
given in Fig. 3.8. From the energy spectrum in Fig. 3.9(b), we can see that as the coupling strength
increases, the tunnel-splitting ∆, defined as |ε′

− − ε′
+|, first decreases, which indicates that the

effective transverse magnetic anisotropy constant Eeff is lowered. Ultimately, at a coupling strength
of approximately 0.005, the splitting of the ground state doublet, |χ−⟩ and |χ+⟩, in the charged
state is suppressed. This, in turn, means that Eeff equals zero as evident by the merging of the first
two peaks, i.e., (1) and (2), representing transitions to the states |χ−⟩ and |χ+⟩. That is to say, the
renormalization of magnetic anisotropy, triggered by spin-vibron interaction, led to a suppression
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of the transverse magnetic anisotropy of the molecule. For coupling strengths greater than 0.005,
the ground state of the charged molecule changes from the state |χ−⟩ to the state |χ+⟩. For this
reason, while the bottom-left line in Fig. 3.8(a) stands for to a transition from |±1/2⟩ to |χ−⟩,
the corresponding line in Fig. 3.8(b) indicates a transition to |χ+⟩. The swap of the ground state
of the charged molecule is clearly demonstrated in the energy spectrum schematically depicted in
Fig. 3.9(b) along with the differential conductance peak overlaid on top of the energy spectrum.

Based on this example and the one given in Sec. 3.1.2, we come to the conclusion that the
interaction between the molecular vibrations and the spin results in renormalization of magnetic
anisotropy along the uniaxial and transverse directions. Moreover, depending on the molecule
under consideration, the vibrational energy and the coupling strengths, this interaction can result
in diverse effects ranging from a suppression of magnetic anisotropy to a blockade of transport.
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4
The role of quantum coherences in

transport through magnetic
molecules

The quantum state of a molecule embedded between two electrodes can be fully described by its
reduced density matrix (cf. Sec. 2.2). In particular, the diagonal elements represent the occupa-
tion probabilities of the molecular states |χn⟩, whereas the off-diagonal ones denote the coherent
superpositions between these states. In Chap. 2, we used Fermi golden rule to calculate the prob-
abilities of the molecular states, while neglecting their superpositions. In this chapter, however,
we aim for a full quantum mechanical treatment by using a technique that captures the dynamics
of the diagonal, as well as, the off-diagonal elements of the reduced density matrix. Accordingly,
the real-time diagrammatic technique, introduced in Ref. [66–68], is used to examine the role of
quantum coherences in transport through magnetic molecules.

This chapter is organized as follows: Section 4.1 presents an overview of the technical aspects
of the real-time diagrammatic technique, focusing on the generalized master equation, whereas, in
Sec. 4.2, it is employed to study first-order transport through a single magnetic molecule, taking
into consideration the full dynamics of the reduced density matrix. In Sec. 4.3, an illustrative
example is presented to show that the off-diagonal elements play no role in first-order transport
through a magnetic molecule embedded between nonmagnetic electrodes.

4.1 Real-time diagrammatic technique

The purpose of this section is to illustrate the use of the real-time diagrammatic technique to obtain
the charge current through a molecule coupled to two electrodes. The details of the technique can
be found in Ref. [66–69]. In the present section, however, we only focus on the central result of
this technique, namely a generalized master equation, and how to use it to calculate both the
diagonal and the off-diagonal elements of the reduced density matrix1. Within the framework
of the real-time diagrammatic technique, the time evolution of a matrix element of the reduced
density matrix Pχ1

χ2
≡ ⟨χ1| ρred |χ2⟩ can be written as

dPχ1
χ2

dt
= (εχ1 − εχ2)Pχ1

χ2
+
∑
χ

′
1χ

′
2

Σχ1χ
′
1

χ2χ
′
2
Pχ

′
1

χ
′
2
, (4.1)

1Recall from Sec. 2.2 that by taking a trace over the degrees of freedom in the leads, we can obtain the reduced
density matrix of the molecule where the occupations of the molecular states are on the diagonal elements, whereas
the off-diagonal terms represent superpositions between these states.
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χ1 χ1χ′
1

ωqσ

χ′
2 χ2χ′

2

Figure 4.1: Time evolution of the reduced density matrix. The time evolution of the
reduced density matrix is depicted by the Keyldysh contour where the upper and lower lines
represent the forward and backward propagators in time, respectively, as indicated by the arrows.
The dashed lines connecting different parts of the propagator correspond to tunneling events to the
left and right electrodes. The cross-section on the right-hand side represent one of the irreducible
diagrams for the self-energy Σχ1χ

′
1

χ2χ
′
2
. In particular, this diagram stands for a transition from a

matrix element Pχ′
1

χ′
2

to Pχ1
χ2

due to the tunneling of an electron with spin σ from an electrode with
an index q.

where εχ1 and εχ2 are the energies of the molecular states |χ1⟩ and |χ2⟩, respectively. The self-

energies Σχ1χ
′
1

χ2χ
′
2

describe the transitions between the elements of the reduced density matrix. Each
self-energy, also referred to as generalized transition rate, corresponds to the sum of all irreducible
diagrams that stand for transitions between two elements of the reduced density matrix. For in-
stance, the irreducible diagram obtained by taking a cross section of the Keldysh contour in Fig. 4.1
represents one of the possible transitions between the elements Pχ1

χ2
and Pχ′

1
χ′

2
. It is noteworthy that

the first term in Eq. (4.1) represents the intra-molecule dynamics, where only off-diagonal el-
ements (coherences) play a role since this term vanishes for diagonal elements (εχ1 − εχ1 = 0).
On the other hand, the second term signifies the evolution due to coupling to the left and right
electrodes.

Based on Eq. (4.1), it is evident that calculating the self-energies is a prerequisite to obtain the
elements of the reduced density matrix of the molecule. In the real-time diagrammatic technique,
the self-energies can be evaluated diagrammatically using the rules in App. B.1.1. With the
knowledge of the self-energies and the elements of the reduced density matrix, the tunneling current
through the molecule can be calculated as [67]

I = − ıe

2~
eT ΣIP , (4.2)

where ΣI is a matrix containing the current self-energies, evaluated diagrammatically in a similar
manner to the self-energies in Eq. (4.1). The main difference, however, is that, in the case of first-
order transport, the current self-energy carries an additional multiplicative factor that accounts
for the direction of the electron tunneling process corresponding to that self-energy. As a result
of this multiplicative factor, the current flowing into the left electrode IL acquires a negative
sign, whereas the current flowing into the right electrode IR is kept positive such that the total
current formula reads as I = (IR − IL)/2. The details of calculating the current self-energies are
summarized in App. B.1.3. The vector P contains the diagonal elements of the reduced density
matrix (probabilities) followed by the off-diagonal ones (coherences). Finally, The vector eT is
non-zero for the diagonal elements of the vector P and zero otherwise.
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To sum the technique up, the procedure for calculating the tunneling current through the
molecule starts by drawing the set of all irreducible diagrams which characterize the possible
transitions between the elements of the reduced density matrix. Next, for each diagram, a self-
energy is obtained based on the energy-space diagrammatic rules provided in App. B.1.1. Using
the generalized master equation, given in Eq. (4.1), the diagonal and off-diagonal elements of the
reduced density matrix can be acquired at the steady state. In turn, the tunneling current through
the molecule can be calculated with the help of Eq. (4.2).

4.2 First-order transport through a magnetic molecule

In this section, the formalism of the real-time diagrammatic technique is employed to study first-
order transport through a single magnetic molecule embedded in a junction, taking into account
quantum coherences. In the limit of first-order transport, the master equation, given in Eq. (4.1),
can be rewritten as

dPχ1
χ2

dt
= 0 = (εχ1 − εχ2)Pχ1

χ2
+
∑
χ

′
1χ

′
2

Σχ1χ
′
1

χ2χ
′
2

∣∣
εχ1 =εχ2

Pχ
′
1

χ
′
2
, (4.3)

where the self-energies in the second term are now evaluated at εχ1 = εχ2 in order to eliminate
the higher orders of the tunnel-coupling strength Γ in the perturbative expansion of the self-
energies [67, 70]. This can be justified as follows: For εχ1 − εχ2 ≫ the leading-order of Γ, Eq. (4.3)
reduces into

0 ≈ (εχ1 − εχ2)Pχ1
χ2
, (4.4)

and, hence, the off-diagonal term Pχ1
χ2

is now suppressed owning to the large energy difference
between the superimposed states, |χ1⟩ and |χ2⟩. This basically means that coherent superpositions
should not be neglected only if the absolute energy difference between the superimposed states is
relatively small compared to the tunnel-coupling strength Γ. Consequently, in this formalism, the
energy difference |εχ1 − εχ2 | must be smaller than or equal to the tunnel-coupling strength Γ [67,
70]. To put the magnitudes of Γ and |εχ1 −εχ2 | into perspective, one should remember that, in the
weak coupling regime considered throughout this thesis, the thermal energy kBT should be much
greater than Γ (kBT ≫ Γ). In other words, for the first-order transport discussed here, coherent
superpositions can play a role if there are molecular states whose energy difference satisfies the
following condition |εχ1 − εχ2 | . Γ ≪ kBT .

With the knowledge of self-energies, Eq. (4.3) can be used to calculate the elements of the
reduced density matrix. For first-order transport, there are eight irreducible diagrams that describe
the possible transitions between the elements of the reduced density matrix of a molecule with
two charge states (N and N + 1). A schematic illustration of these diagrams along with the
corresponding self-energies are given in App. B.2. For the sake of illustration, however, one example
of these self-energies is discussed here. For instance, the self-energy ΣχN+1χN

χ
′
N+1χ

′
N

represents the two

possible transitions from the density matrix element PχN

χ
′
N

to PχN+1

χ
′
N+1

, as demonstrated by the two
diagrams depicted in Fig. 4.2.
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χN χN+1 χN+1

ωqσ

χ
′

N
χ

′

N+1χ
′

N

+

χN χN χN+1
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χ
′

N+1
χ

′

N+1χ
′

N

Figure 4.2: Irreducible diagrams for the self-energy ΣχN+1χN

χ
′
N+1χ

′
N

. These diagrams represent

the two possibilities for a transition between the reduced density matrix elements PχN

χ
′
N

to PχN+1

χ
′
N+1

to
take place. The exact expression for each of the diagrams can be found in App. B.2. Importantly,
when |χ′

N ⟩ = |χN ⟩ and |χ′

N+1⟩ = |χN+1⟩, these two diagrams are mirror images. That is, their
corresponding self-energies are negative conjugate and, hence, their sum becomes proportional to
the imaginary part of either of them. In such a case, it is sufficient to evaluate only one of these
two diagrams.

Interestingly, for the case when |χ′

N ⟩ = |χN ⟩ and |χ′

N+1⟩ = |χN+1⟩, the self-energy ΣχN+1χN
2

stands for the transition rate from a neutral molecular state |χN ⟩ to a charged one |χN+1⟩ due to
the tunneling of an electron with a spin σ into the molecule from the qth electrode. In that case,
the two diagrams in Fig. 4.2 become mirror images and, hence, their sum is proportional to the
imaginary part of either of them (cf. the mirror rule in App. B.1.2). As a result, the expression of
the self-energy ΣχN+1χN

collapses to

ΣχN+1χN
= ı
∑
qσ

Γq
σf

q(εχN+1 − εχN
)
( ∑

MN+1,MN

aMN
b∗

MN+1
⟨SN ,MN ; 1/2, σ|SN+1,MN+1⟩

)
×
( ∑

MN+1,MN

a∗
MN

bMN+1 ⟨SN ,MN ; 1/2, σ|SN+1,MN+1⟩
)
.

(4.5)

It can be seen that the diagrammatically evaluated self-energy in Eq. (4.5) is identical3 to the
transition rate calculated with Fermi golden rule, given in Eq. (2.21), since it represents a transition
between two diagonal elements of the reduced density matrix, namely PχN

and PχN+1 . Signifi-
cantly, it should be emphasized that diagrams that involve transitions between the off-diagonal
elements are not captured by Fermi golden rule formalism. For that reason, the real-time diagram-
matic technique is exploited to capture the transitions that involve the coherent superpositions
between the states of the molecule.

Using the self-energies in App. B.2, the elements of the reduced density matrix can be acquired.
Importantly, depending on the quantum system under consideration, one can immediately see
that some of the coherences are either suppressed or irrelevant to first-order transport and, hence,
they can be eliminated a priori to simplify the problem. Accordingly, the rest of this section
is devoted to answering the fundamental question: which off-diagonal elements need to be taken
into consideration when characterizing first-order transport through a magnetic molecule described
by the spin Hamiltonian in Eq. (2.3)? On the one hand, in the absence of transverse magnetic
anisotropy (E = 0), the molecular states are composed of pure spin projections along the z-axis.

2Note that for the sake of notational brevity, the self-energy ΣχN+1χN
χN+1χN

is defined as ΣχN+1χN
χN+1χN

≡ ΣχN+1χN .
3Note that, unlike the transition rate given in Eq. (2.21), the above self-energy is a complex quantity, and that

is why the current in Eq. (4.2) is multiplied by −ı.
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Figure 4.3: Energy spectrum for a magnetic molecule in the neutral and charged
states. A molecule with a half-integer spin SN in the neutral state N and an integer spin SN+1 in
the charged state N + 1 is considered. The transverse magnetic anisotropy breaks the rotational
symmetry around the z-axis. Thus, the eigenstates of the system split into two uncoupled sets
of the Sz spin projections. According to Kramers theorem, the eigenstates of half-integer spin
systems are doubly degenerate as evident by the molecular states in the neutral state N . These
degenerate molecular states do not belong to the same time-reversed set, as indicated by the
different shades of red. Thus, only coherent superpositions between molecular states separated
by large energy difference can couple to the diagonal elements. Such coherences, in the limit of
first-order transport, are suppressed as seen from Eq. (4.4). On the other hand, for the integer
spin SN+1, states belonging to the same set are separated by an energy difference ∆, referred to as
the tunnel-splitting. For instance, the energy difference between the lowest two energy states in the
charged state is denoted by ∆0. Consequently, for the integer spin case, coherent superpositions
should, in general, be taken into consideration, whenever the energy difference ∆ is small compared
to the tunnel-coupling strength Γ.

Consequently, transitions between the diagonal and off-diagonal elements of the reduced density
matrix are forbidden, as such transitions would violate the conservation of spin momentum. In
other words, the dynamics of the diagonal and off-diagonal elements decouples and, hence, deriving
the diagonal elements using Fermi golden rule formalism, as explained in Sec. 2.3, is sufficient to
capture the full dynamics for the reduced density matrix.

On the other hand, as discussed in Chap. 1.3, the presence of transverse magnetic anisotropy
splits the molecular states |χn⟩ into two uncoupled sets. Each of these two sets consists of an
admixture of the Sz spin projections. Significantly, the dynamics of the diagonal and off-diagonal
elements can only couple for molecular states belonging to the same set of Sz spin projections. To
give an illustration, a generic example is considered for a molecule with a half-integer spin SN in
the neutral state N and an integer spin SN+1 in the charged state N+1, as depicted in Fig. 4.3. In
the case of the half-integer spin SN , the energy spectrum consists of doubly degenerate molecular
states belonging to opposing time-reversed sets4, as indicated by different shades of red on the
left-hand side of Fig. 4.3. Since coherent superpositions can only couple to the diagonal elements
for molecular states within the same set, the relevant superpositions in the half-integer spin case
are between molecular states separated by a large energy difference. This difference is of the order

4For a half-integer spin molecule, the degenerate molecular states, even in the presence of transverse magnetic
anisotropy, are time-reversed, that is, they only differ by the sign of the magnetic quantum number M .
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of the uniaxial anisotropy constant D, which, in the weak coupling regime under consideration, is
assumed to be significantly greater than the tunnel-coupling strength Γ. As a result, coherences
for the half-integer spin molecule are suppressed.

In contrast, for the integer spin SN+1, according to Kramers theorem, the transverse magnetic
anisotropy leads to an energy splitting between states belonging to the same set. For instance,
the ground states of the charged molecule in Fig. 4.3 are separated by an energy difference ∆0,
referred to as the tunnel-splitting. For spin S > 1, the tunnel splitting ∆0 is considerably smaller
than E (cf. E ≤ |D|/3). Consequently, unlike the half-integer spin, the coherent superpositions
between the two ground states of an integer spin molecule are not suppressed and, thus, they
should be taken into consideration. Similarly, the two states separated by ∆1 could also posses
off-diagonal interaction. However, since the energy difference between these states ∆1 is larger
than ∆0, their off-diagonal interaction is expected to be smaller, as seen from Eq. (4.3). Finally,
we remark that superpositions between molecular states |χn⟩ with a different charge n are also
irrelevant to first-order transport due to the conservation of charge.5

So far, we have generically discussed the formalism that can be used to calculate the elements
of the reduced density matrix in the sequential tunneling regime. Moreover, depending on the
molecule at hand, it was shown that not all of the coherences need to be included. In the next
section, an illustrative example is analyzed to explicitly show how the reduced density matrix is
constructed and how to determine which off-diagonal elements to take into account.

4.3 Example of transport through a magnetic molecule —
impact of coherent dynamics

In this section, an example of transport through a magnetic molecule, taking into consideration the
off-diagonal elements of its reduced density matrix, is discussed to illustrate the use of the real-time
diagrammatic technique. The molecule under scrutiny is shown in Fig. 4.4 with a spin SN+1 = 1
in the charged state N + 1 and SN = 1/2 in the neutral state N . The neutral molecular states
are |χ−1/2⟩ = | − 1/2⟩ and |χ1/2⟩ = |1/2⟩, whereas the charged molecular states are represented as
a linear combination of the Sz projections as follows

|χ0⟩ = |0⟩ ,

|χ+⟩ = 1√
2

|−1⟩ + 1√
2

|1⟩ ,

|χ−⟩ = 1√
2

|−1⟩ − 1√
2

|1⟩ .

(4.6)

As already explained, for the neutral state with spin SN = 1/2, there is no mixing between
the spin projections along the z-direction since the transverse magnetic anisotropy only mixes
every other state. As a result, the coherent superpositions between the neutral molecular states
are completely decoupled form the diagonal occupations and, hence, they play no role in the first-
order transport discussed here. By contrast, coherent superpositions between the lowest two energy
states in the charged states, namely |χ+⟩ and |χ−⟩, should be taken into consideration provided
that the energy difference ∆0 . Γ. Consequently, the reduced density matrix of the molecule reads
as

5This includes all off-diagonal elements Pχ1
χ2 , where the molecular states |χ1⟩ and |χ2⟩ do not belong to the same

charge states.
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Figure 4.4: Energy spectrum for a magnetic molecule in the neutral and charged
states. A molecule with spin SN = 1/2 in the neutral state and SN+1 = 1 in the charged state
is considered. The lowest two energy states, |χ+⟩ and |χ−⟩, in the charged molecule belong to
the same set of Sz spin projections. As a result, transitions between the coherent superpositions
of these two states and their diagonal elements are allowed. Thus, the off-diagonal elements Pχ+

χ−

and Pχ−
χ+ can affect the transport properties. By contrast, the neutral molecular states consist

of pure Sz spin projections and, hence, there is coupling between the diagonal and off-diagonal
elements of the reduced density matrix.

ρred =


Pχ−1/2 0 0 0 0

0 Pχ1/2 0 0 0
0 0 Pχ− 0 Pχ+

χ−

0 0 0 Pχ0 0
0 0 Pχ−

χ+ 0 Pχ+

 , (4.7)

where the diagonal elements represent the probabilities of the five molecular states schematically
depicted in Fig. 4.4. Moreover, only two off-diagonal elements, Pχ+

χ− and Pχ−
χ+ , are included in order

to account for the coherent superpositions between the two states |χ+⟩ and |χ−⟩.
Using the formalism explained in Sec. 4.1, the density matrix elements and the tunneling current

are calculated through the molecule whose energy spectrum is depicted in Fig. 4.4. Interestingly, for
a molecule inserted between non-polarized electrodes, we found out that the off-diagonal elements
are vanishing in the steady state and that the real-time diagrammatic technique collapses into
calculating the diagonal probabilities leading to exactly the same tunneling current as that obtained
with Fermi golden rule. In order to understand the reason why coherences vanish, in the next
section the master equation will be reformulated in terms of Bloch-like equations. This proves
useful in tracing the time evolution of coherent superpositions and the conditions under which
they play no role in transport. Above all, it should be emphasized that although we discuss a
molecule with a specific spin, this conclusion and the explanation that follows hold also for other
spin values. However, it is instructive to consider the molecule in Fig. 4.4 for the sake of conceptual
simplicity.

4.3.1 Time evolution of coherences using Bloch-like equations

In order to gain a more intuitive understanding of the coherent superpositions between the molecu-
lar states introduced in the previous example, here we express the master equation for the elements
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of the reduced density matrix of the molecule in the form of Bloch equations. For the lowest two
energy states of the charged molecule, namely |χ+⟩ and |χ−⟩, and their coherent superpositions,
we define a pseudospin vector S

S =

 Sx

Sy

Sz,g

 = 1
2


Pχ−

χ+ + Pχ+
χ−

i
(
Pχ−

χ+ − Pχ+
χ−

)
Pχ+ − Pχ−

 . (4.8)

Similarly for the neutral state N , we introduce Sz,N =
(
Pχ1/2 −Pχ−1/2

)
/2. In addition, we define

the probability to find the molecule in the neutral state as PN = Pχ1/2 + Pχ−1/2 . Likewise, the
probability to find the molecule in the charged ground states |χ+⟩ and |χ−⟩ reads Pg = Pχ+ + Pχ− .
As for the charged molecular state |χ0⟩, we note that its time evolution is not relevant for inves-
tigating the coherent superpositions between the two states |χ+⟩ and |χ−⟩ since the self-energies
between the diagonal element Pχ0 and the off-diagonal elements Pχ+

χ− and Pχ−
χ+ vanish because they

belong to a different set of Sz projections (cf. Fig. 4.4). However, the state |χ0⟩ still appears in
the transition rates with the neutral molecular states |χ1/2⟩ and |χ−1/2⟩.

Our aim now is to write the master equation in a Bloch-like form to track the various sources
and relaxation rates of the coherent superpositions embedded in the pseudospin S. Accordingly,
the generalized master equation can be divided into two parts; the first illustrating the time evo-
lution of the occupation probabilities, whereas the other one the time evolution of the pseudospin.
Employing the exact master equation, given in Eq. (4.3), the time evolution of the pseudospin S
can be written as

d

dt
S = −



1
τxy

Sx

1
τxy

Sy

1
τz,g

Sz,g


+ 1

2

Σ+
coh,N
0

∆+
g,N

PN + 1
2

Σ+
coh,g
0

∆g

Pg +

Σ−
coh,N
0

∆−
g,N

Sz,N + S × B, (4.9)

where the first term represents the relaxation of the x, y and z-components of the pseudospin
with the time constants τxy = −2/

(
Σχ−χ−

χ+χ+ + Σχ+χ+
χ−χ−

)
and τz,g = −2/

(
Σχ+χ+ + Σχ−χ−

)
. The three

terms involving PN , Pg and Sz,N act as sources that can give rise to the pseudospin where Σ±

and ∆± are composite self-energies arising from the addition and subtraction of the individual
master equations of the elements of the reduced density matrix of the molecule. The expressions
of these composite self-energies are given in App. B.3. The final term in Eq. (4.9) signifies the
rotation of the pseudospin around an effective magnetic field B and it takes the following form

B =

Bx

By

Bz

 =


i∆g,coh

0

i(ε+ − ε−) + i∆coh

 . (4.10)

Similarly, the time evolution of the pseudospin Sz,N reads as

d

dt
Sz,N = − 1

τz,N
Sz,N + ∆N

2
PN + ∆+

N ,cohSx +
∆+

N ,g

2
Pg + ∆−

N ,gSz,g + Σ−
N,χ0

Pχ0 , (4.11)
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where the relaxation time constant is given by τz,N = −2/
(
Σχ1/2χ1/2 + Σχ−1/2χ−1/2

)
. Finally, the

occupation probabilities of the neutral state and the charged ground states can be written as

d

dt

(
PN

Pg

)
= 2

(
Σ+

N ,coh 0 Σ−
N ,g

Σ+
g,coh 0 ∆g

) Sx

Sy

Sz,g

+ 2

(
∆N

Σ−
g,N

)
Sz,N

+


−1
τz,N

Σ+
N ,g

Σ+
g,N

−1
τz,g


(

PN

Pg

)
+ 2

(
Σ+

N,χ0

0

)
Pχ0 .

(4.12)

So far, Eq.(4.9), (4.11) and (4.12) have been written in the most general form, that is, without
making use of any symmetries between the molecular states. However, in order to make progress
with these cumbersome expressions, we analyze the case where a molecule is inserted between
nonmagnetic electrodes.

As discussed in Sec. 2.4.4, the density of states of spin-up and spin-down electrons near the
Fermi level are identical for nonmagnetic electrodes, i.e., spin polarization P = 0. Accordingly,
transitions that correspond to the tunneling of up and down electrons occur with equal weights
(since Γ↑ = Γ↓). As a result, transport through the molecule can be thought of as two iden-
tical channels of spin-up and spin-down electrons. On these grounds, for the molecule under
consideration, the transition rates between the charged molecular state |χ+⟩ and the two neutral
states |χ1/2⟩ and |χ−1/2⟩ are equal, i.e., Σχ+χ1/2 = Σχ+χ−1/2 and Σχ1/2χ+ = Σχ−1/2χ+ . Simi-
larly, for the state |χ−⟩, Σχ−χ1/2 = Σχ−χ−1/2 and Σχ1/2χ− = Σχ−1/2χ− . Moreover, the transitions
between the off-diagonal elements Pχ−

χ+ and Pχ+
χ− and the two states |χ1/2⟩ and |χ−1/2⟩ are also

symmetric. For instance, the self-energy Σχ+χ1/2
χ−χ1/2 = −Σχ+χ−1/2

χ−χ−1/2 . Employing these symmetries, the
time evolution of the pseudospin S can be rewritten as

d

dt
S = −



1
τxy

Sx

1
τxy

Sy

1
τz,g

Sz,g


+

Σ−
coh,N
0
0

Sz,N +

 Sx

Sy

Sz,g

×

 0
0
Bz

 , (4.13)

where Bz = i(ε+ − ε−). Likewise, the evolution of the pseudospin Sz,N reads

d

dt
Sz,N = − 1

τz,N
Sz,N . (4.14)

Equation (4.14) indicates that the pseudospin for the neutral state Sz,N is completely decou-
pled from all possible sources, yet it decays with a rate 1/τz,N . Therefore, in the stationary
state, Sz,N equals zero. That is to say, the probabilities of the states |χ1/2⟩ and |χ−1/2⟩ are equal,
as calculated before in Sec. 2.4.4 in the case of nonmagnetic electrodes. Furthermore, Eq. (4.13)
implies that there are no source terms for the z-component of the charged state pseudospin Sz,g,
in addition, it couples neither to Sx nor to Sy. Consequently, in the steady state Sz,g decays to
zero, i.e., Pχ+ = Pχ− , which is justified by the fact that the energy difference between the two
states |χ+⟩ and |χ−⟩ is negligibly small in comparison to the tunnel-coupling strength Γ and, in
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turn, the thermal energy kBT .6 Similarly, we can infer that due to the vanishing sources, the x
and y-components of the pseudospin also converge to zero in the stationary state. That is to say,
the off-diagonal elements of the reduced density matrix of the molecule, given in Eq. (4.7), vanish
in the steady state.

Interestingly, from Eq. (4.13) and (4.14) it is clear that the coherences would not vanish if we
could force the system to discriminate between the states |χ1/2⟩ and |χ−1/2⟩, which, in practice,
means that the probabilities Pχ1/2 and Pχ−1/2 would be unequal in the steady state. Based on
the discussion of spin-polarized transport in Sec. 2.4.4, we know that the symmetry introduced by
the states |χ1/2⟩ and |χ−1/2⟩ can be broken by inserting the molecule between two ferromagnetic
electrodes in the antiparallel magnetic configuration [cf. Fig. 2.9(b)]. In that case, the neutral state
pseudospin Sz,N does not vanish in the steady state (cf. Fig. 2.12) which, in turn, can give rise to
the x and y-components of the pseudospin S. Consequently, in the case of ferromagnetic electrodes,
coherences do not necessarily vanish. However, we should emphasize that the results presented in
Sec. 2.4.4 in the case of ferromagnetic electrodes are accurate since the tunnel-coupling strength Γ
was chosen to be smaller than the energy difference between the two molecular states |χ+⟩ and |χ−⟩.
Thus, it is legitimate to neglect the coherent superpositions without casting any doubts on the
obtained results.

To conclude this chapter, we stress that in the absence of the transverse magnetic anisotropy, the
dynamics of coherent superpositions is completely decoupled from the diagonal elements owning
to the conservation of spin momentum. Thus, coherences do not influence first-order transport.
By contrast, the presence of the transverse component of magnetic anisotropy mixes the pure Sz

states, which allows for transitions between the diagonal and off-diagonal elements of the reduced
density matrix, that is, coherences can impact the transport properties. However, using Bloch-like
equations to study the time evolution of the elements of the reduced density matrix, it was shown
that for a magnetic molecule embedded between two nonmagnetic electrodes (P = 0), coherent su-
perpositions between the molecular states vanish in the steady state. Consequently, calculating the
diagonal elements of the reduced density matrix, using Fermi golden rule, is sufficient to study first-
order transport through a magnetic molecule. On the contrary, the use of ferromagnetic electrodes
can give rise to non-vanishing coherences in the steady state, provided that the energy difference
between the considered states is much smaller than the tunnel-coupling strength Γ, i.e., ∆ε . Γ,
or otherwise coherences are suppressed owning to the energy difference as seen from Eq. (4.4).

6This is essentially the reason why the transition rates in Eq. (4.3) are evaluated on the assumption that the two
states |χ+⟩ and |χ−⟩ are degenerate, that is ε− = ε+.
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5.1 Summary

In this thesis, a theoretical model for transport through a single magnetic molecule in the weak
coupling regime has been presented. In particular, the subject of analysis is the effect of the
interplay between charge, spin and molecular vibrations on the magnetic properties of the molecule
and the resulting transport characteristics.

In the opening chapter (Chap. 1), the scientific context of the thesis at hand was motivated. This
included a description of the present interest in single-molecule devices along with the importance
of transport studies as a spectroscopic tool to examine the properties of individual molecules. In
addition, the most commonly employed techniques for fabricating these nanoscopic devices were
summarized. Next, the properties of bare magnetic molecules were discussed with the main focus
on two degrees of freedom, magnetic and vibrational excitations. Finally, we highlighted recent
experimental studies that indicate the significance of molecular vibrations on transport properties
of single molecules, in general, and magnetic ones, in particular.

Chapter 2 introduced a theoretical framework for transport through a magnetic molecule inserted
in a three-terminal junction. Using Fermi golden rule and classical rate equations, an expression for
the transition rate between molecular states was obtained and used to calculate the charge current
through single magnetic molecules with uniaxial and transverse magnetic anisotropy. The analysis
was taken one step further by examining two additional complexities arising from the presence
of electrodes, specifically asymmetric coupling and the use of ferromagnetic electrodes. First, it
was shown that asymmetric coupling modifies the charging and discharging rates of the molecule
and, hence, it changes the occupations of molecular states. In practice, this can be a valuable
experimental tool for magnifying magnetic transitions that occur at high bias voltages. As for
the use of ferromagnetic electrodes, this proves useful to discriminate between the spin-up and
spin-down electronic channels, which, in turn, can result in the amplification of certain magnetic
transitions. Finally, the charge-vibron coupling was incorporated in the transport model, bringing
about an additional term in the transition rates, namely the Franck-Condon factors. These factors
are the main consequence of the coupling between the charge and molecular vibrations and can
have drastic effects on transport properties, most notably the Franck-Condon blockade at low bias
voltage.

Having laid the theoretical foundation of the present thesis, its main contribution, namely the
effect of the spin-vibron coupling, was investigated in Chap. 3 in two steps. First, we studied a model
for a molecule with uniaxial magnetic anisotropy only. Analogously to the charge-vibron coupling,
the interaction between vibrations and the uniaxial component of the spin leads to off-diagonal
terms in the molecular Hamiltonian. Thus, in order to diagonalize this Hamiltonian, a canonical
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transformation was derived, which eliminates the spin-vibron coupling at the expense of modification
of the magnetic anisotropy of the molecule. Depending on the molecule under consideration and the
activated vibrational excitations, the impact of this anisotropy renormalization varies from simply
shifting the bias voltage required for magnetic transitions to complete transport blockade. Second,
the model was extended to account for molecules with both uniaxial and transverse magnetic
anisotropy. It was illustrated that, owning to the non-vanishing commutators, there is no exact
solution for such a model except for two special cases, either by imposing a restriction on the
anisotropy constants of the molecule and the spin-vibron coupling strength or if the total spin of
the molecule in both charge states is less than or equal to one. Based on the latter case, it was
demonstrated that the spin-vibron coupling also modulates the transverse magnetic anisotropy and
can even suppress it.

Chapter 4 was devoted to address the fundamental question whether the formalism of Fermi
golden rule with classical rate equations is sufficient for a correct treatment of first-order transport
through a single magnetic molecule. For this purpose, the real-time diagrammatic technique was
employed to study the effect of coherent superpositions between molecular states on transport
properties. For molecules with only uniaxial magnetic anisotropy, the molecular states consist
of pure Sz spin projections and, hence, the dynamics of coherences and the diagonal elements
of the reduced density matrix decouples owning to the conservation of spin. By contrast, in the
presence of transverse magnetic anisotropy, the molecular states are composed of an admixture
of spin projections along the z-axis. Thus, the time evolution of coherent superpositions between
these mixed molecular is expected to be non-trivial. Nevertheless, by expressing the coherences
and occupations in the form of a pseudospin and tracking its time evolution with the help of
Block-like equations, it was proved that coherences in a magnetic molecule embedded between two
nonmagnetic electrodes vanish in the stationary state. Consequently, accounting for the diagonal
elements of the reduced density matrix using Fermi golden rule is still appropriate for capturing the
quantum mechanical picture. However, for the case of ferromagnetic electrodes in the antiparallel
magnetic configuration, the effect of coherences does not vanish in the stationary state and, hence,
they can impact the transport properties.

5.2 Outlook

Based on the work conducted in the present thesis, there are two potential research directions,
which can be summarized as follows:

• As established in Chap. 3, for the interaction between spin and molecular vibrations along
both the transverse and uniaxial directions, the molecular Hamiltonian cannot be exactly
diagonalized for molecules with a spin greater than one. Accordingly, the goal here would be
to find an approximate solution for higher spin values.

• In Chap. 4, it was shown that coherent superpositions vanish for a magnetic molecule em-
bedded between nonmagnetic electrodes. However, for spin-valve structures where the ferro-
magnetic electrodes possess antiparallel magnetization, coherences are non-vanishing. Con-
sequently, it is of particular relevance in this case to investigate the effect of coherences on
transport observables, namely current and differential conductance and, in turn, compare
these findings with corresponding ones that are obtained by accounting for the diagonal
elements of the reduced density matrix using Fermi golden formalism.
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A
Appendix

A.1 Lang-Firsov transformation

The coupling between charge and molecular vibrations leads to off-diagonal interactions in the
molecular Hamiltonian in Eq. (2.35). Consequently, in order to diagonalize the molecular Hamil-
tonian, one applies the Lang-Firsov transformation as indicated in Sec. 2.5.2. In this appendix, we
discuss the details of this transformation starting by transforming the operators of the molecule,
electrodes and molecular vibrations using the Baker-Hausdorff formula given in Eq. (2.37) [57].
However, before attempting to transform the operators into the new basis, it should be remem-
bered that the Lang-Firsov transformation is described by

Ĥ′ = eŜĤe−Ŝ with Ŝ =
∑

i

λi

(
b̂†

i − b̂i

)
n̂d. (A.1)

Using the transformation generator Ŝ and the Baker-Hausdorff formula, the transformed creation
operator of the molecule reads

ˆ̃d†
lσ =eŜ d̂†

lσe−Ŝ

=
∞∑

n=0

1
n!

[∑
i

λi

(
b̂†

i − b̂i

)
n̂d, d̂

†
lσ

]
n

=
∞∑

n=0

1
n!

(∑
i

λi

(
b̂†

i − b̂i

))n

[n̂d, d̂
†
lσ]n

= e
∑

i
λi

(
b̂†

i
−b̂i

)
d̂†

lσ

= e−
∑

i
λi

(
b̂i−b̂†

i

)
d̂†

lσ

= X̂†d̂†
lσ.

(A.2)

where X̂† = exp
[

−
∑

i λi

(
b̂i − b̂†

i

)]1. Similarly, the annihilation operator for the molecule yields

ˆ̃dlσ = e
∑

i
λi

(
b̂i−b̂†

i

)
d̂lσ = X̂d̂lσ. (A.3)

As for the number operator of the molecule n̂d = d̂†
lσd̂lσ, we note that the commutator [n̂′

d, n̂d]
equals zero. Thus, the number operator remains unchanged upon this transformation. Similarly,
the electrode operators do not change due to the vanishing commutators with the transformation
generator Ŝ. Thus, the creation and annihilation electrode operators read

1Commutators with a subscript refer to nested commutators. For instance, the commutator [Â, B̂]2 =
[
Â, [Â, B̂]

]
.

I



A. Appendix

ˆ̃a†q
kσ = â†q

kσ and ˆ̃aq
kσ = âq

kσ. (A.4)

For the vibronic operators, we start by evaluating the commutator

[Ŝ, b̂†
i′ ] =

[∑
i

λi

(
b̂†

i − b̂i

)
n̂d, b̂

†
i′

]
= −λi′ n̂d. (A.5)

By plugging this commutator into the Hausdorff-Baker formula, the transformed creation operator
reads

ˆ̃b†
i′ =eŜ b̂†

i′e−Ŝ

= b̂†
i′ +

[∑
i

λi

(
b̂†

i − b̂i

)
n̂d, b̂

†
i′

]
+ 1

2

[∑
i

λi

(
b̂†

i − b̂i

)
n̂d, b̂

†
i′

]
2

+ . . . + . . .

= b̂†
i′ − λi′ n̂d.

(A.6)

In a similar manner, the annihilation operator for molecular vibration can be written as

ˆ̃bi′ = eŜ b̂i′e−Ŝ = b̂i′ − λi′ n̂d. (A.7)

In turn, the transformed molecular Hamiltonian can be obtained by substituting the aforemen-
tioned operators as follows

Ĥ′
mol = eŜĤmole−Ŝ

=
∑

n

Ĥspin,n + (ε− eVg) n̂d +
∑

i

~ωi

(
b̂†

i − λin̂d

)(
b̂i − λin̂d

)
+
∑

i

λi~ωi

(
b̂†

i + b̂i − 2λin̂d

)
n̂d

=
∑

n

Ĥspin,n +
(
ε− eVg

)
n̂d −

∑
i

~ωiλ
2
i n̂

2
d +

∑
i

~ωib̂
†
i b̂i

=
∑

n

Ĥspin,n +
(
ε− eVg

)
n̂d −

∑
i

~ωiλ
2
i n̂d(n̂d − 1) +

∑
i

~ωiλ
2
i n̂d +

∑
i

~ωib̂
†
i b̂i,

(A.8)

where the term
∑

i ~ωiλ
2
i n̂d(n̂d − 1) modifies the Coulomb energy which is assumed to be high

and, hence, can be ignored. Thus, the transformed molecular Hamiltonian, reads

Ĥ′
mol =

∑
n

Ĥspin,n +
(
ε− eVg +

∑
i

~ωiλ
2
i

)
n̂d +

∑
i

~ωib̂
†
i b̂i. (A.9)

Equation (A.9) tells us that the molecular Hamiltonian is now diagonal with respect to the
vibronic, charge and spin operators. Thus, the same Sz basis can be used to describe the molec-
ular states are described in Sec. 2.5.2. In a similar manner, the tunneling Hamiltonian Ĥtun is
transformed into

Ĥ′
tun =

∑
qlkσ

{
tqlσ

ˆ̃d†
lσâ

q
kσ + tqlσ â

†q
kσ

ˆ̃dlσ

}
=
∑
qlkσ

{
tqlσX̂

† d̂†
lσâ

q
kσ + tqlσX̂ â†q

kσd̂lσ

}
.

(A.10)

From Eq. (A.10), it can be seen that the charge-vibron coupling is transfered into the tunneling
Hamiltonian, as manifest in the factor X̂. The implications of this additional factor in the tunneling
Hamiltonian are discussed in Sec. 2.5.2.
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A.2 Derivation of a canonical transformation to eliminate
spin-vibron coupling

The interaction between molecular vibrations and the uniaxial component of the spin, discussed
in Sec. 3.1, resulted in off-diagonal terms in the molecular Hamiltonian (3.1). Thus, in order to
diagonalize the molecular Hamiltonian, we employed a canonical transformation in the form

Ĥ′
mol = Û Ĥmol Û

−1 = eŜ Ĥmol e−Ŝ , (A.11)

where

Ŝ = −
∑

i

∑
n

Λi
n

(
Ŝz

n

)2(
b̂i − b̂†

i

)
. (A.12)

In this appendix, our aim is to explain the methodology used to obtain this transformation
kernel. For a molecular Hamiltonian Ĥmol = Ĥ0 + Ĥsp-vib, a transformation generator Ŝ can be
obtained by projecting the spin-vibron interaction term Ĥsp-vib on the eigenstates of equilibrium
Hamiltonian Ĥ0 as follows [61]

Ŝ =
∑

χn ̸=χ′
n

1
E0

χn
− E0

χ′
n

|χn⟩ ⟨χn| Ĥsp-vib |χ′
n⟩ ⟨χ′

n| , (A.13)

where E0
χn

and E0
χ′

n
are the eigenvalues of the equilibrium Hamiltonian Ĥ0.

Before attempting to evaluate the matrix element ⟨χn| Ĥsp-vib |χ′
n⟩, it is instructive to recall

that an arbitrary molecular state can be expressed as |χn⟩ = |Sn,Mn, nq⟩, where Sn is the total
spin of the molecule in the charge state n, Mn is the magnetic quantum number and nq is the
number of vibrational energy quanta. For the sake of brevity, in the following derivation we will
write the state as |χn⟩ = |Mn, nq⟩, in addition, we consider only one vibrational mode and, hence,
the summation over i is dropped. Moreover, for notational clarity, the transformation generator is
derived assuming there is only one charge state for the molecule, that is, the neutral state n = N .
Thus, the summation over n can also be dropped. Accordingly, the matrix element, given in
Eq. (A.13), reads as

⟨χN | Ĥsp-vib |χ′
N ⟩ = ⟨MN , nq| ~ωΛN

(
Ŝz

N

)2(b̂† + b̂) |M ′
N , n

′
q⟩

= ~ωΛN ⟨nq| (b̂† + b̂) |n′
q⟩ ⟨MN |

(
Ŝz

N

)2 |M ′
N ⟩

= ~ωΛN

(√
n′

q + 1 δn′
q+1,nq +

√
n′

q δn′
q−1,nq

)
(MN )2δMN ,M ′

N

(A.14)

Next, we plug the above matrix element into Eq. (A.13) as follows
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where the energy of the molecular state E0
χN

is decomposed into the energy of the spin state E0
MN

and the vibrational energy quanta for the mode under consideration ~ω. Using completeness of
the |MN ⟩ basis

Ŝ =
∑
n′

q

ΛN

(
Ŝz

N

)2
(√

n′
q + 1 |n′

q + 1⟩ ⟨n′
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√
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q |n′
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q|
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=
∑
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(
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q| − b̂ |n′

q⟩ ⟨n′
q|
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= ΛN

(
Ŝz

N

)2(
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)
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Now, the resultant formula can be extended to incorporate n charge states, namely the neu-
tral n = N and the charged n = N +1 state, in addition to, the various vibrational modes denoted
by the subscript i. Accordingly, Eq. (A.16) can be rewritten in the form

Ŝ = −
∑

i

∑
n

Λi
n

(
Ŝz

n

)2(
b̂i − b̂†

i

)
(A.17)
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B.1 Summary of diagrammatic rules in energy space

B.1.1 Diagrammatic rules for self-energies

Here one finds the energy-space rules used to diagrammatically evaluate the self-energy correspond-
ing to an irreducible diagram of the Keldysh contour [68, 69]. The self-energy Σ can be generically
written as

Σ =
∫
dω
∑

σ

∑
q

⟨χ′|B |χ⟩ (−1)b (−1)c 1
∆E + ıη

γ±
q,σ (B.1)

where
• b is the number of internal vertices on the backward propagator. Internal vertices signify a

product of molecule and electrode operators. For instance, for a transition from a neutral
molecular state |χN ⟩ to a charged one |χN+1⟩, an electron is annihilated in the electrode
and is created in the molecule. Whereas, external vertices can refer to individual bosonic or
electrode operators.

• c is the number of crossings between tunnel lines

• ∆E is the energy difference between left going and right going energies, where the tunneling
line is assigned an energy ω

• γ+
q,σ is used if the tunneling line is pointing backward with respect to the closed time path

with γ+
q,σ = (1/2π) Γσ

q fq(ω)

• γ−
q,σ is used if the tunneling line is pointing forward with respect to the closed time path with
γ−

q,σ = (1/2π) Γσ
q (1 − fq(ω))

• Each vertex gives rise to a matrix element, ⟨χ′|B |χ⟩, where |χ′⟩ is the molecular state leaving
the vertex, |χ⟩ is the molecular state entering the internal vertex and B is the molecule charge
operator at that particular vertex.

B.1.2 Mirror rule

As mentioned in Sec. 4.2, there exist eight irreducible diagrams to characterize the sequential
transport through the molecule (or, more generically, a quantum dot). For calculating the diagonal
elements of the reduced density matrix, it is sufficient to evaluate only four diagrams. This is due
to the fact that each two diagrams are mirror images of each others, which means one diagram
equals to negative the complex conjugate of the other. Thus, their summation equals twice the
imaginary part of either. Fig. B.1 represents the two mirror images corresponding to a transition
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χN χN+1 χN+1

ωqσ

χN
χN+1χN

= −

∗χN χN χN+1

ωqσ

χN+1 χN+1χN

Figure B.1: The mirror rule. Irreducible diagrams for the two possible transitions between
the diagonal elements PχN

and PχN+1 . These two diagrams are mirror images and, hence, the
resultant self-energy from their summation ΣχN+1χN

equals to negative twice the imaginary part
of the self-energy of either (which can obtained from the rules in App. B.1.1).

from a neutral molecular sate |χN ⟩ to a charged molecular state |χN+1⟩. The corresponding self-
energy ΣχN χN+1 can be obtained by evaluating only one of these two diagrams, taking its imaginary
part and then multiplying it by two.

B.1.3 Current self-energies

In order to calculate the current self-energies, an additional multiplicative factor is added such
that the total current through the molecule reads I = (IR − IL)/2. Accordingly, ±1/2 factors will
be multiplied by the original self-energies calculated in App. B.2 to obtain the current self-energies
according to the following rules:

• +1/2 factor if the external vertex lies on the upper propagator and the tunneling line goes
out of the left electrode or if the vertex lies on lower propagator and tunneling line goes into
the left electrode

• +1/2 factor if the external vertex lies on the upper propagator and the tunneling line goes
into the right electrode or if the vertex lies on the lower propagator and the tunneling line
goes out of the right electrode

• −1/2 factor if the external vertex lies on the upper propagator and the tunneling line goes
into the left electrode or if the vertex lies on the lower propagator and the tunneling line
goes out of the left electrode

• −1/2 factor if the external vertex lies on the upper propagator and the tunneling line goes
out of the right electrode or if the vertex lies on the lower propagator and the tunneling line
goes into the right electrode

The effect of this multiplicative factor is twofold. First, it results in vanishing contributions of
the circular diagrams to the current (circular diagrams are like the 4 diagrams on the right-hand
side of Fig. B.2). Second, the current flowing into the left reservoir, IL acquires a negative sign
such that the total current formula corresponds to I =

(
IR − IL

)
/2.

B.2 Diagrams and self-energies for first-order transport through
a magnetic molecule

In the first-order tunneling regime, i.e., sequential tunneling, there exists eight irreducible self-
energy diagrams for the various tunneling process through the molecule. Figure B.2 shows all the
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Figure B.2: Irreducible diagrams. Eight irreducible diagrams for first-order transport through
a molecule. For calculating only the diagonal elements of the reduced density matrix (probabilities),
it is only sufficient to evaluate four diagrams since each two diagrams pair up as mirror images.
Thus, their summation equals negative twice the imaginary of either (cf. App. B.1.2).

eight diagrams. It should be noted that in the case of transitions between diagonal elements of the
density matrix, it is sufficient to evaluate only four diagrams (cf. App. B.1.2). The corresponding
self-energy expressions are given where each self-energy is the result of summing two diagrams
(bottom and top from Fig. B.2). In these expressions, the constants CMN ,σ,MN+1 are the Cleb-
sch Gordon Coefficients defined as CMN ,σ,MN+1 ≡

⟨
SN ,MN ; 1/2, σ

∣∣SN+1,MN+1
⟩
, Ψ refers to the

digamma function, β is the thermodynamic beta defined as 1/(kBT ) and Ec is a cut-off energy
arising from the Fermi-Dirac integral.

ΣχN+1χN
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′
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B.3 Self-energies expressions used in Sec. 4.3.1

The following are the definitions for the self-energies used in Sec. 4.3.1 for a magnetic molecule
with SN+1 = 1 in the charged state and SN = 1/2 in the neutral state.

∆N =
Σχ1/2χ1/2 − Σχ−1/2χ−1/2

2
. (B.6)
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2
. (B.7)
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2
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Appendix

C.1 Additional results for asymmetric tunnel-coupling

In Sec. 2.4.3, the issue of asymmetric coupling was discussed by analyzing an example in which
the coupling to the left electrode is stronger than to the right, i.e., ΓL > ΓR. Accordingly, for the
molecular junction in Fig. 2.6, the rate of charging the molecule was relatively lower than the rate
to discharge it and, hence, the molecule dominantly existed in the neutral state N as indicated by
the probability plot in Fig. 2.7.

In this appendix, however, we discuss an opposing scenario where the coupling to the right
electrode is stronger than to the left one, i.e., ΓL < ΓR. Unlike the aforementioned example, the
rate of charging the molecule, here, is high comparable to the discharging one. Thus, the molecule
is more likely to be in the charged state N + 1. This can be seen in Fig. C.1 where the probability
of the molecule to exist in the charged state is the dominant one even at high bias voltage at which
all transitions are allowed.

In order to gain an insight into the effect of the asymmetric coupling, we plot the total tunneling
current through the molecule in Fig. C.2. It can be seen that the magnitude of the first transition
between the neutral and charged state is amplified, as indicated by the left-most peak in the top

0 2 4 6
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0.5

1
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ro
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tie
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Figure C.1: Probabilities for an asymmetrically coupled molecule. For the calculations
performed here, ΓR = 9ΓL. The tunnel-coupling strengths are chosen such that the total coupling
strength ΓL + ΓR is consistent with the example in Sec. 2.4.2. The probability of the neutral
state N is denoted by PN = P1/2 = P−1/2. Although the bias voltage V is high enough for all
transitions to take place, the molecule prefers to be in the charged state N + 1. This plot was
obtained at a constant gate voltage Vg = −1 (ZFS/|e|).
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Figure C.2: Differential conductance (a) and current (b) of a molecule in the sym-
metric and asymmetric coupling cases. The asymmetric coupling magnifies the transition
from the neutral molecular states |±1/2⟩ to the charged molecular state |χ−⟩ represented by the
leftmost peak. Accordingly, the molecule is more likely to exist in the charged state N + 1. As
indicated on the plot, the current, and hence the differential conductance, is normalized by a
factor (e/~) ΓLΓR/(ΓL + ΓR) to allow for comparing the two coupling scenarios. This plot was
acquired by taking a bias cut at a constant gate voltage Vg = −1 (ZFS/|e|).

section of Fig. C.2(a). This amplification means that once the molecule is allowed to make a
transition from the neutral state N to the charged one N + 1, it predominantly prefers to be in
the charged state, as indicated by the sharp rise in the occupation probability of the state |χ−⟩ in
Fig. C.1. In turn, transitions from the neutral to the charged state occurring at higher bias voltages
are suppressed since the probability of the molecule to exist in the neutral state at high bias is
negligible (cf. PN in Fig. C.1). Consequently, the total current through the molecule primarily
comes from the transition |±1/2⟩ to |χ−⟩, as manifest in the first high step in the current plot in
Fig. C.2(b).

Interestingly, comparing the saturation current through the molecule for ΓL > ΓR and ΓL < ΓR,
we find that the current in the former is higher even though the total coupling is the same in
both cases, i.e., Γ = ΓR + ΓL. This anomaly can be understood with a back-of-the-envelope
calculation as follows: For ΓL < ΓR, at high bias the molecule predominantly exists in the charged
state N + 1, each with a probability of approximately 0.3 (cf. Fig. C.1). Accordingly, based on
Eq. (2.10), the total current can be attributed to the transitions from the three charged molecular
states |χ−⟩, |χ+⟩ and |χ0⟩ to the two neutral ones |1/2⟩ and |−1/2⟩. Thus, the total current can
be thought of as 2 × 3 × 0.3 = 1.8 units. By contrast, for ΓL > ΓR, the current mainly comes from
the transitions from the two neutral states to the three charged states. Consequently, the total
current reads 3 × 2 × 0.5 = 3 units. Accordingly, it can be seen that the total current in the case
where ΓL > ΓR is higher, as apparent by comparing Fig. 2.8(b) and Fig. C.2(b). Finally, it should
be noted that this is not a general conclusion, but rather depends on the molecular states |χn⟩.
For instance, if we assume a molecule with spin SN = 1 in the neutral state and SN+1 = 1/2 in
the charged state, the current will be higher in the case ΓL < ΓR in contrast to the earlier case.
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