
Time-dependent particle and
energy currents through
interacting quantum dots
Thesis for the degree of Erasmus Mundus Master of Science
in Nanoscience and Nanotechnology

JOREN VANHERCK

Promoter: Prof. Janine Splettstößer
Co-promoter: Prof. Michel Houssa

Department of Microtechnology and Nanoscience (MC2)
Applied Quantum Physics Laboratory
CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden 2016





THESIS FOR THE DEGREE OF ERASMUS MUNDUS MASTER OF SCIENCE IN
NANOSCIENCE AND NANOTECHNOLOGY

Specialisation Nanophysics

Time-dependent particle and energy currents through
interacting quantum dots

JOREN VANHERCK

Department of Microtechnology and Nanoscience (MC2)
Applied Quantum Physics Laboratory

CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2016



Time-dependent particle and energy currents through interacting quantum dots
JOREN VANHERCK

c© JOREN VANHERCK, 2016

Thesis for the degree of Erasmus Mundus Master of Science in Nanoscience and
Nanotechnology

This thesis was conducted in the framework of the Erasmus Mundus Master programme
in Nanoscience and Nanotechnology.

Promoter: Prof. Janine Splettstößer
Co-promoter: Prof. Michel Houssa
Daily supervisor: Jens Schulenborg
External referee: Prof. Ermin Malic

Applied Quantum Physics Laboratory
Department of Microtechnology and Nanoscience (MC2)
Chalmers University of Technology
SE-412 96 Göteborg
Sweden

Faculties of Engineering Science and Science
KU Leuven
3000 Leuven
Belgium

Cover
A sketch of a typical quantum dot, tunnel-coupled to two leads, as studied in this thesis.

Printed by Chalmers Reproservice
Göteborg, Sweden 2016



Time-dependent particle and energy currents through interacting quantum dots
Thesis for the degree of Erasmus Mundus Master of Science in Nanoscience and
Nanotechnology

JOREN VANHERCK

Department of Microtechnology and Nanoscience (MC2)
Applied Quantum Physics Laboratory
Chalmers University of Technology

Abstract
Recently, there has been a lot of interest in particle and energy currents through

nanoscale devices. Most of these studies focus on the stationary behaviour of these
devices, which can for example describe autonomous heat engines. However, for the
dynamical operation of such nanosystems, e.g. for cyclic gate driving or irradiation
of frequency-dependent electromagnetic fields, it is indispensable to be able to reliably
model the time-dependent currents during and after executing operations.
Here, we study the time-dependence of a single level quantum dot with a strong on-site

Coulomb interaction that is weakly tunnel-coupled to multiple non-interacting electronic
leads and subject to non-linear driving. The leads are characterised by different electro-
chemical potentials and temperatures. We analyse this system up to first order in the
tunnel-coupling strength, expressed in a Liouville superoperator formalism, yielding a
convenient formulation of the Born-Markov master equation. Both the density operators
of the open quantum dot system as well as the particle, energy and heat currents through
it are evaluated within this formalism and expressed in terms of decay modes in response
to the driving. We consider two important non-stationary regimes in which any of the
system’s parameters (dot energy level, on-site interaction, tunnel-coupling strength and
electrochemical potential of the leads) can be changed time-dependently: On the one
hand the currents are calculated after a sudden, instantaneous switch. On the other
hand they are found for moderately fast, but otherwise arbitrary driving schemes. For
both cases, fully analytical and physically insightful expressions for the time-dependent
particle, energy and heat currents are derived and discussed. This is done both in the
absence and presence of an externally applied magnetic field, leading to spin-dependent
energy levels and tunnelling. Finally, the broadly applicable, analytic results that we
obtained are employed in the study of two concrete cases. First their use is demonstrated
in the study of thermoelectric efficiencies when time-dependent driving signals are ap-
plied. Secondly, we investigate the fundamental nature and the practical experimental
consequences of a recently highlighted fermion-parity decay mode in the moderately fast
driving regime.

Keywords: quantum dot, Coulomb charging energy, particle current, energy current,
time-dependent, switch, arbitrary driving, master equation, tunnel-coupled, thermoelec-
tric, fermion-parity
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1 Introduction

1.1 General context
The finest feature size of transistors on a computer chip steadily decreases. This reduc-
tion by fifty percent about every eighteen months was already predicted by Moore in
1965 [1]. Up to now, the downscaling was anticipated to reach its limits already many
times. It however still continues today1, and is most probably not going to stop be-
cause of technological reasons, but rather due to economical limitations. The required
technological progress and continuous downscaling has some important consequences.
First of all, critical dimensions have decreased below 100 nm and will soon be reaching

the 10 nm threshold. This means that we are not just entering the realm of quantum
mechanics, we are already in it! Instead of fighting these quantum effects, such as
tunnelling, we should try to exploit them for new applications. This asks of course for
a lot of research. On the one hand, the advanced fabrication techniques open up an
enormous playground for experimental physicists. On the other hand, it also requires
a large effort theory-wise to be able to describe and understand the exact system’s
behaviour. In this thesis, an effort is done for a contribution on this theory side.
Another key consequence of the continuous downscaling is that one needs to adopt new

computational paradigms (e.g. spintronics, wave-logic . . . ) and new device architectures.
This is the contrast between two large movements in the field of nanoelectronics. “More
than Moore” is the branch that goes beyond charge based devices, while “More Moore”
tries to keep using charge-based technologies, but not just the classical planar transistors
[3]. Examples of the latter are gate-all-around field effect transistor architectures and
new device concepts such as single electron transistors. In this thesis, we study the
time-dependent dynamics of a quantum dot, which is coupled to multiple leads. This is
in essence a simple model of a single electron transistor.
Finally, miniaturisation goes hand in hand with increasing device speeds and heating

problems. The former implies that behaviour of nanostructures during switching oper-
ations grows in importance relative to its stationary state behaviour. The latter means
that keeping track of heat generation, transport and dissipations is unavoidable if we
want devices to perform as expected. In this thesis, we focus on both the particle and
heat currents through a quantum dot system in which all parameters - such as gate
voltages and magnetic fields - can have a general time-dependence.
To summarise, this thesis is focussed on the study of a specific, single level quantum

dot model with a local repulsive interaction with coupling to multiple leads. A more
exact definition is provided in Chapter 2. The quantum state of this dot, as well as the
(time-resolved) particle and heat current through it, are studied while any of its defining

1Although one of the largest chip manufacturers very recently announced a slowdown [2].
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Chapter 1. Introduction 2

Figure 1.1: Typical density of states as a function of energy for particles confined to (a)
three (bulk), (b) two (quantum well), (c) one (quantum wire) or (d) zero (quantum dot)
dimensions. Source: [8]

parameters can be varied in time. In this introductory chapter, we will first elaborate
on quantum dots and how they can be realised. In Sec. 1.3, we describe how single
electrons can be manipulated using quantum dots and possible motivations for doing
this. Although this thesis is self-contained, Sec. 1.4 provides a short overview of the
recent advances in the theory concerning the dynamics of interacting quantum dots, of
which this thesis is a continuation. Finally we outline the structure of the results part
of this thesis in Sec. 1.5.

1.2 Quantum dot
This section is meant to give a brief introduction on what quantum dots are, and how
they can be achieved practically. This is not a complete overview of the field, but rather
intended to give an essential background. More background information can be found
in the introductory solid state physics book by C. Kittel [4]. For a much more detailed
treatment, I refer to the book [5] by T. Ihn and to reviews by S.M. Reimann [6] and L.P.
Kouwenhoven [7]. Most information in this section is based on these sources.
Since quantum dots can in general appear in many forms, there is no clear-cut defini-

tion. They have however a characteristic that always stays the same: they are nanoscale
systems in which particles are confined in all spatial dimensions. To illustrate the conse-
quences of this confinement, we can consider the density of states D(E) of free electrons
in a Fermi gas for different dimensions, as shown in Fig. 1.1. The density of states (DOS)
is a measure for the number of states an electron can occupy in an infinitesimal energy
range centered on a specific energy E. For a bulk piece of material, Fig. 1.1(a), the
electrons are free to move in all three directions. No quantisation effects take place and
the DOS has the energy dependence D(E) ∝

√
E. Fig. 1.1(b) shows the situation for a

system where the electrons are confined (to nanometer scale) in one direction, while free
in the two other directions. This leads to a continuous two-dimensional density of states
D(E) ∝ const., with several subbands due to the quantisation of energy in the third
direction [9]. This subband quantisation is visible as steps in the DOS. An electronic
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system that is only free in two dimensions is often called a 2DEG (two-dimensional
electron gas), but sometimes also referred to as a quantum well. Confining the system
in one more dimension, Fig. 1.1(c), leads to quantisation in two dimensions, while the
DOS in the third direction is still continuous and behaves as D(E) ∝ E−

1
2 . Such a one-

dimensional system is called a quantum wire. Typical examples are carbon nanotubes,
conducting polymers or semiconducting nanowires. This brings us finally to the system
of interest: the quantum dot, Fig. 1.1(d). This system is confined to nanometer scale
in all three dimensions, such that the density of states is not continuous any more in
any directions. This means that the system is fully quantised, it has discrete energy
levels Ei. The density of states therefore consists of separated Dirac delta functions:
D(E) ∝ ∑

i δ(E − Ei). The exact quantisation (i.e. at which energy levels there are
states available) is strongly dependent on the confinement geometry. This means that
the energy spectrum can be tuned by changing the confining potential. A quantum dot
is sometimes also called an artificial atom since the discrete energy spectrum, resembling
that of an atom or molecule, can be realised with highly tunable electromagnetic fields.
The important difference between an atom and a quantum dot is the fact that certain
quantum dots (e.g. constructed in semiconducting material with electrostatic confine-
ment) can be contacted and that their energy level structure is highly tunable. At the
end of this section, we give a brief overview of different types of quantum dots that are
of interest for this thesis.
For the practical use of semiconductor based quantum dots, they are most often con-

nected to a source and drain electrode by a tunnelling contact. This allows for the
existence of a current from source to drain when a voltage is applied between them. An
additional condition for this to happen is that there has to be a dot energy level within
the bias window1. This requirement is illustrated in Fig. 1.2(a). In the upper part of the
figure, the energy level Ei is situated within the bias window (indicated in orange). This
means that there are electrons with sufficient energy available from the left electronic
lead (source) to transfer into the dot when the level Ei is empty. Similarly, when this
level is occupied, the occupying electron will have enough energy to transfer to one of
the empty states in the right lead. Electrons can thus flow from the left lead, through
the dot, into the right lead when there is a quantum dot level within the bias window.
The lower part of the figure shows how any current is inhibited when none of the levels
satisfies this requirement. The electron already occupying the dot at energy Ei−1, can
not go into any of the lead, since there are no empty states available at this low energy.
The level Ei can on its turn not get filled, since none of the lead’s electrons have suffi-
cient energy. This blockade regime is often referred to as a Coulomb blockade2 and is
most prominently present at low temperatures (since this reduces thermal broadening).
The Coulomb blockade was suggested by C.J. Gorter in 1951 [10] as a solution to some
anomalous conductance observations for metallic thin films (a decrease of conductance is
detected in this regime). Later experiments by T.A. Fulton and J.G. Dolan [11] showed
this exact effect in small-area tunnel junctions.

1At least in the sequential tunnelling regime and at sufficiently low temperature. We will elaborate
further on this condition in Sec. 2.1.

2Since the energy level separation in the dot is often due to the electrostatic charging energy of the
system. This will also be the case in the quantum dot that we study in this work.
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(a) (b)

Figure 1.2: (a) Illustration explaining the Coulomb blockade regime. In both figures,
the quantum dot and its energy levels are shown in the centre. The turquoise regions on
the left and right represent the electronic occupation (Fermi-distributions) of the leads.
Electrons can tunnel from the leads into the dot and vice versa when states are available,
i.e. when there is a dot energy level within the bias window (shaded in orange). (b) A
typical solid state quantum dot. The upper figure is a schematic drawing, while the lower
one is an actual electron micrograph. Purple regions represent the 2DEG formed at the
GaAs/AlGaAs interface. The yellow structures are the confining gate electrodes that deplete
the underlying 2DEG in the blue regions. Source and drain voltages can be tuned by the
contacts shown in dark purple at the left-hand side of the drawing. Source: [13]

Next to the source and drain, one often adds a third contact to the quantum dot, a
capacitively coupled gate electrode which allows to shift the energy spectrum as we did
in Fig. 1.2(a). This allows us to switch between the states in which a current can or can
not flow, which is basically what a transistor does. Indeed: this is the device concept for
a single electron transistor (SET) [11]! Already in 2001, controllable room-temperature
single electron transistors made from metallic single-wall carbon nanotubes were demon-
strated by a group lead by H. W. Ch. Postma at Delft University of Technology [12].
To conclude this section, it is instructive to briefly consider the practical realisation

of quantum dots. Typically, we can distinguish two large classes of quantum dots.
The first category are the solid state quantum dots [14]. In general, these artificial
atoms are a combination of semiconductors in different forms: in bulk, as thin layers
or as small gate electrodes. An example of such a system is shown in Fig. 1.2(b) [13].
First a two-dimensional electron gas is formed from a GaAs/AlGaAs heterostructure.
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Next, electrodes are fabricated on top of this to further confine the electrons in the
two remaining dimensions. By tuning the voltages and shapes of these electrodes, the
confining potential can be altered. These devices are typically fabricated top-down. This
means that one starts with a macroscopic material and uses lithography to define for
example the gate electrodes. The top-down fabrication is typically very successful down
to about 50 nm, although advanced lithography techniques allow to go far beyond this.
The second category are the nanoclusters and molecules [15]. This class spans a very
wide range. There are metallic or semiconducting nanoclusters that are highly tunable
by changing their size and adding different functional groups. But there are also highly
ordered structures such as nanotubes made from carbon or semiconducting materials.
The fabrication techniques for these kind of assemblies are typically bottom-up. This
means that larger structures are formed from smaller ones, by e.g. self-assembly. The
bottom-up approach has most advantages below about 50 nm. The study of the synthesis
and characterisation of these materials is a whole field of chemistry on its own, namely
nanochemistry. We refer the interested reader to the excellent books [16] and [17] on
the chemical synthesis of these types of nanostructures. The distinction between the
two classes of quantum dots and their fabrication techniques is often not as clear-cut as
it seems to be from the above explanation. The two strategies are often combined, for
example to fabricate nanotubes bottom-up, while the connecting electrodes are made
top-down.

1.3 Single electron dynamics
Understanding the dynamics of nanoscale systems at the single electron level is crucial
for many, very different applications. Here, we highlight two of them. A first example
is quantum information processing. The most advanced technologies in this field at the
moment, are based on controlling single photons, i.e. quantum optics [18]. However,
there is in theory nothing that inhibits the use of single electrons instead of photons.
Quantum electron optics would allow for on-chip or table-top experiments instead of
rather large photonic experiments. Using electrons could moreover offer additional op-
portunities over the use of photons, since it is easier to let electrons interact with each
other and they obey Fermi-Dirac instead of Bose-Einstein statistics. This is thus an
active field of research, and most of the papers cited in this section are related to this
research. A second application is the completion of the quantum metrology triangle
[19]. This triangle directly relates three of the most important metrological quantities in
electricity and magnetism (the electrical current, voltage and frequency) using only fun-
damental constants of nature. The relations between frequency and voltage respectively
voltage and current are well established due to the Josephson effect and the quantum
Hall effect. Indirectly, the frequency and current are thus related as well. However, to
check for consistency of the three quantum electrical effects, a direct relation has to be
made using single-electron currents. By investigating new single electron sources and
detectors, one tries to reduce the uncertainty on these single-electron current measure-
ments. In a new revision of the International System of Units (SI), that is scheduled for
2018, the Ampère will already be linked directly to the exact numerical values of the
charge of an electron.
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The three key elements that are necessary for doing quantum information processing
using electrons (i.e. quantum electron optics) are a single-electron source, a means of
propagation and a detector. The source can be made from a quantum dot, using many
different methodologies. Since this source is most closely related to the contents of this
thesis, we will focus more on a specific example later in this section. The propagation
of a single electron has to take place in a shielded environment from the other electrons
in order not to disturb the electron’s quantum state. One possibility to do this is to
use a combination of a 2DEG and surface acoustic waves [20–22]. The electrons are
then “surfing” on the moving potential that in turn is excited by the surface acoustic
wave. With this technique, single electrons can be transferred between two quantum
dots (a source and a detector) with a quantum efficiency above 90 %. To obtain such
high efficiencies, a good knowledge of the exact time-dependence of the emission and
propagation of electrons is absolutely necessary. The detector is typically based on the
charge measurement of a quantum dot.
The electron source has to reliably emit single electrons, and this preferably at a high

frequency1 if one wants to measure and effectively use them. Fève et al. [23] showed
experimentally that these requirements could be met in a system similar to the one in
Fig. 1.2(a), but with only one connected electrode. The device was fabricated in a 2DEG
and tunnel-coupled to a lead with a quantum point contact. By changing the height of
the gate switch, the electronic energy could be tuned. Frequencies in the gigahertz
regime were shown to be possible. The main restriction to the frequency was the finite
tunnel rate. When the tunnel rate gets too high, the electronic levels in the quantum
dot become effectively broadened due to virtual processes2, which in turn leads to dot
charge fluctuations. This is not desirable for a single electron source. The tunnelling
time is thus basically the limiting factor in this experimental setup.
Another approach that solves this problem was proposed and realised by Blumenthal

et al. [24], and is schematically shown in Fig. 1.3. In this experiment, the electrons
“surf” on the potential instead of tunnelling through barriers. Next to changing the
quantum dot energy level itself (here: M), also the two tunnel barriers (L and R) can
be tuned. This setup was realised in a 2DEG, with three surface finger gates to modify
the different parts of the potential surface. The voltage at the left electrode is changed
time-dependently in order to control the barrier height. However, this also has an effect
on the potential at M, and to lesser extend on R. The tunnel barriers can be lowered
such that there is no effective quantum dot any more. But they can also be raised up
to a point where no tunnelling through them is possible at all. Since there is always
one barrier at a very high point (barrier R), the current will always be independent
of the source-drain voltage. Moreover, the quantisation of this current can be precisely
controlled by the exact time-dependent tuning of the left barrier height. The elimination
of the limiting tunnelling time with respect to the experiment by Fève et al., was the
enabling factor to reach slightly higher frequencies.

1More single electrons emitted in a short time, leads to a higher accuracy.
2Remember Heisenberg’s uncertainty principle that relates the lifetime of an energy level to its uncer-
tainty in energy.
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Figure 1.3: Pictures showing changes in the potential surface that allow for quantised
charge pumping. The changes can be achieved by tuning the surface finger electrode at
position L, M and R. L and R tune the barriers of the quantum dot, while M tunes the
energy levels of the quantum dot itself. EF is the Fermi-level of the 2DEG in which the
quantum dot is embedded. By tuning the exact time-dependence of the electrode voltages
(specifically by driving L, which in turn also influences the voltage at M and to lesser
extend the barrier R), the number of electrons transferred during each pumping cycle can
be adjusted. Source: [24]

More recent experiments on gigahertz quantised charge pumping comprise pumping
through a graphene-based double quantum dot [25] and through a quantum dot made
from a semiconducting nanowire [26]. Note that especially the experiments by Blumen-
thal et al. [24] and d’Hollosy et al. [26] crucially depend on the exact time-dependent
control of the different system parameters. The transfer of single electrons using surface
acoustic waves on the other hand relied strongly on the exact emission times from the
quantum dot.
However, quantum transport has preliminarily only been studied using stationary, non-

equilibrium electron distributions. A good theoretical description and understanding of
the time-dependent currents of a dynamically driven quantum dot will thus certainly be
valuable in the design of new experiments in this field. It is crucial to understand the
currents flowing in and out of a quantum dot before quantum information processing
using electrons can catch up with the more advanced quantum optics.
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1.4 Relaxation rates of an interacting open system
This thesis work is inserted into an ongoing research effort in the domain of interacting
open quantum systems. It is therefore instructive to give a brief overview of the line of
research that will be continued in this thesis. Most of the concepts that are stated here
are also explained in more detail in the remainder of this thesis. For a more exhaustive
overview, both in depth and width, we refer to the papers cited in this section and the
references therein.
All these papers study the same basic system: a single level quantum dot with strong

Coulomb interaction in the Anderson model. This is also the system under investigation
in this thesis and it will be carefully explained in Sec. 2.1. In general this quantum dot
is (weakly) tunnel-coupled to a single electronic lead. It can be considered as the most
basic setup to study time-dependence in interacting open quantum systems.
First, Splettstoesser et al. [27] were interested in the response of this system to a fast

switch of the gate potential, or to the slow harmonic variation of this gate potential. They
used an expansion in the tunnel-coupling strength up to fourth order in the tunnelling
matrix elements. This allows not only to describe sequential tunnelling events, but
also cotunnelling effects and virtual tunnelling processes. For the harmonic variation
of the gate potential, they limit their approach however to first order in the driving
frequency, which means that the driving has to be very slow. They find that the Coulomb
interaction leads to two different time scales in the system, that both depend on the dot’s
energy level. These time scales can be related to charge and spin relaxation processes
respectively. On the contrary, without the Coulomb interaction, both spin and charge
relax by the same rate, which is independent of the energy level of the dot.
Contreras-Pulido et al. [28] identified a third time scale necessary to fully describe

this system. This additional time scale is independent of the level position and the
strength of the Coulomb interaction. Moreover, it only appears for the evolution of
physical quantities related to two-particle processes. There was however not yet a good
interpretation for this additional rate.
Finally, Schulenborg et al. [29] found very peculiar features in the heat current after

a gate voltage switch: there are signatures of electron-electron attraction, while the
system has a repulsive Coulomb interaction. These features, as well as the third rate
that was found earlier, turned out to be related to a very general duality relation. This
duality relation holds for a large class of open fermionic quantum systems, and can
be derived from the fermion parity superselection postulate1. Next to explaining the
peculiar features, it also helps to express the used equations in quantities with a physical
meaning (instead of complex combinations of Fermi function, which are often difficult to
interpret). To demonstrate the duality, the example of a simple gate switch in a quantum
dot connected to one electronic lead is worked out in detail.
In this thesis, we will now use the newly found duality relation under more general

conditions. We will exploit the duality to extend the example of a simple gate switch
in three major directions. At first, we extend the model to allow for fast switches
in any of the system parameters (e.g. dot energy level, on-site interaction, coupling

1This postulate basically tells that quantum states with even and odd fermion number cannot be
superposed.



9 1.5 Organisation of this thesis

strength to the leads . . . ), while the dot is connected to an arbitrary number of leads.
Secondly, we investigate the usefulness of the duality for the calculation of currents
through the quantum dot when there is an arbitrary (but rather slow) driving in any of
the parameters. In a third phase, we repeat the previous two points, but now when an
external magnetic field is applied, such that the spin-degeneracy is lifted.

1.5 Organisation of this thesis
We now have a basic understanding of quantum dots and the relevance of single-electron
dynamics in nanosystems. The remainder of this thesis will focus on a continuation of
the research that we outlined in the last section. The structure of this work can be seen
as consisting of two parts: the first three chapters extend these works in the three major
directions just mentioned, while the two chapters thereafter present the first results of
ongoing research that makes use of the general formalism presented in the first three
chapters.
First, in chapter 2, we introduce the single level quantum dot with strong on-site

interaction weakly coupled to multiple electronic leads, which is the main system studied
in this thesis. We explain the Born-Markov master equation that is used to describe
this system and calculate its relevant eigenmodes. The general employed strategy is
the same as used by Schulenborg et al. [29, 30]. However, the quantum dot is now
coupled to multiple leads (instead of one). The chapter ends with the dynamics after a
sudden switch in any of the system parameters. This is a limiting case scenario of the
full description of the system dynamics for arbitrary (slow) driving in any parameter,
which is presented in chapter 3. This chapter comprises the main results of this thesis:
practical analytic equations that allow for a dynamical system description in terms of the
density operator and the different currents through the quantum dot. Chapter 4 then
lifts the spin-degeneracy of the system by introducing a magnetic field. We investigate to
which extend the results of chapters 2 and 3 translate to this more complicated system.
Interesting similarities and new phenomena are carefully analysed.
In chapter 5, we see how the expression for the currents through the quantum dot

system can be used in the description of thermoelectric devices. They can be used
to calculate Onsager coefficients and as such the thermoelectric efficiency when time-
dependent driving is present. Possibly they can help to better understand the presumed
increased efficiency under certain driving schemes [31]. Finally, in chapter 6 we initiate
further research concerning a time-averaged detection of, and a better understanding of,
the fermion-parity mode and the related inverted dot model, in continuation of [29, 32].





2 Strongly interacting quantum dot
Before any time-dependent currents can be calculated, we should get acquainted with the
precise system model that we are studying, some notation and the equations describing
the dynamics of the system. In Sec. 2.1 we explain the quantum dot model and some of
the assumptions that we make with respect to its parameters. Next, in Sec. 2.2, we intro-
duce the notation that will be used throughout this thesis. Also the Born-Markov master
equation, which fully describes the dynamics of the system, is introduced. Section 2.3
starts by stating the duality relation [29] that allows for physical interpretations of many
of the results in this thesis. It also paves the way to calculate the different eigenmodes of
the kernel of the Born-Markov master equation. The chapter is concluded in Sec. 2.4 by
calculating a first time-dependent result: the decay dynamics of the quantum dot after
a sudden switch in any of the system’s parameters. This is also the appropriate place to
extend on the different decay rates of the system.
Please note that the general strategy of this chapter is similar to calculations by

Schulenborg et al. [29, 30]. There are however two main differences. Firstly, the dot is
now connected to multiple leads instead of only one. Secondly, the switch at the end
of the chapter is generalised to incorporate changes in any of the system’s parameters,
instead of only the gate voltage.

2.1 Anderson quantum dot model
The system under consideration consists of a single level quantum dot which is weakly
tunnel-coupled to multiple non-interacting leads (see Fig. 2.1). The Anderson Hamilto-
nian [33]

HAnd = H +HLeads +HTun (2.1)

is used to describe the system. H, HLeads and HTun are the Hamiltonians of the dot, the
leads and the tunnel-coupling respectively.
The Hamiltonian of the quantum dot itself is given by

H =
∑
σ=↑,↓

εnσ + Un↑n↓, (2.2)

where the number operator is written as nσ = d†σdσ. The operators d†σ and dσ are
respectively the creation and annihilation operators for an electron with spin σ =↑, ↓ in
the dot. The quantum dot has one discrete energy level ε and can accommodate two
fermions with opposite spin. There is only one energy level ε because we consider the dot
without an external magnetic field, such that the level is spin degenerate. The single dot
level results in four possible physical states of the isolated dot system: unoccupied (|0〉),
singly occupied with a spin-up fermion (d†↑|0〉 = |↑〉), singly occupied with a spin-down

11
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Figure 2.1: Model of the strongly interacting quantum dot, tunnel-coupled to two leads.
There is one energy level ε in the dot. If the dot is doubly occupied, there is an additional
charging energy U . For simplicity, the dot is only coupled to two leads: left (α = L) and
right (α = R). The tunnel-coupling strengths are ΓL and ΓR. The leads are in the Grand-
Canonical ensemble with electrochemical potentials µL and µR and at temperature T . All
energies are measured with respect to the average chemical potential µ̄ = 0.

fermion (d†↓|0〉 = |↓〉) or doubly occupied (d†↑d
†
↓|0〉 = |2〉). These physical occupation

states span the four-dimensional Hilbert space of the dot. When two particles occupy
the dot, there is an on-site Coulomb repulsion, which increases the energy of the dot
system by U . The total energy of the dot occupied by two particles is thus 2ε+ U .
The Hamiltonian describing the non-interacting electrons in the leads is

HLeads =
∑
α

Hα =
∑
α,k

∑
σ=↑,↓

εαkσc
†
αkσcαkσ. (2.3)

The leads connected to the dot are labeled with an index α. Most often we will consider
the quantum dot coupled to two leads, in which case the leads are labeled by left (L) and
right (R). The creation (annihilation) operator for electrons with spin σ and momentum
k in lead α is c†αkσ (cαkσ). The leads are assumed to be in equilibrium and can be described
by the Grand-Canonical ensemble. They are furthermore seen as infinite reservoirs of
both spin-up and spin-down particles following a Fermi distribution function. These
Fermi-Dirac distributions are characterised by different electrochemical potentials µα
and a temperature1 T . All energies in the system are measured with respect to the
average electrochemical potential of the leads: µ̄ = ∑

α
µα
Z

= 0, where Z is the total
number of leads. It is also useful to introduce eV = µL − µR in the case of two leads,
or more general eVαα′ = µα − µα′ , where e is the absolute value of the unit electronic
charge and V is the potential difference between leads α = L and α′ = R. From now on,
we will also use the convention kB = ~ = e = 1 for notational simplicity (occasionally
we still use these symbols for clarity).

1Most often we assume all leads to have the same temperature, but in general this can also be a
different temperature Tα for every lead α.
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The Hamiltonian
HTun =

∑
α,k

∑
σ=↑,↓

(
Vαcαkσd

†
σ + H.c.

)
, (2.4)

where H.c. denotes the Hermitian conjugate, describes the tunnel-coupling between the
leads α and the dot. Vα is the spin- and momentum-independent tunnelling matrix
element which couples lead α to the dot. The tunnel-coupling strength can be charac-
terised by Γα = 2πρα |Vα|2, which is spin-independent since no magnetic field is assumed
to be present. ρα is the density of states of the lead. Both Vα and ρα are assumed to
be energy-independent. This important assumption guarantees that the tunnel-coupling
strengths Γα are also energy-independent. This is called the wide band limit. The total
coupling strength of the dot is defined as Γ = ∑

α Γα.
In describing the quantum dot model, we should also clearly define some of the as-

sumptions that we make. For now, these assumptions are related to two important parts
of the system: the energy structure of the dot and the tunnel-coupling strength to the
electronic leads.
As explained in Sec. 1.2, the energy structure of a quantum dot consists in general of

many discrete energy levels Ei. In this specific model, we assume that the energy spacing
∆E = Ei+1−Ei is very large compared to the thermal energy of the system kBT as well as
in comparison with the on-site interaction U and the applied potential difference between
the different leads. This allows to consider only the energy level Ei = ε that is closest
to µ̄ = 0. Indeed, all the lower energy levels will always be occupied, while the higher
energy levels will continue to be empty. Next, we also assume the Coulomb interaction
energy U , often called the charging energy, to be larger (but still of the same magnitude)
than the thermal energy: kBT . U . This charging energy is due to the close confinement
of multiple electrons and is inversely proportional to the total electrostatic capacitance
of the quantum dot. The exact magnitude of U depends on both the geometry (size,
shape . . . ) and the environment (e.g. metals or dielectrics in close proximity reduce U
due to screening effects) of the dot. We will treat U in this thesis as being one of the
parameters that has a time-dependence. This dependence can for example be introduced
when varying the energy level ε of the dot by changing the gate voltage (which indeed
typically changes the environment and geometry of the potential by which the dot is
formed). Notice that if we combine the two previous assumptions, we get the inequalities
∆E � U & kBT . Since both the energy spacing and interaction energy increase with
decreasing dot size, it is not a priori clear that this condition can be met. It turns
out however that there is typically a cross-over point where the relative importance of
∆E and U changes. Energy spacing is found to be dominant for the smaller dot sizes
in semiconductor quantum dots (typically ≈ 10 nm for a GaAs/AlGaAs quantum dot)
[5, 34, 35]. In metallic systems on the other hand are the scales typically inverted, i.e.
the level spacing ∆E stays much smaller (no quantum confinement effects, except when
dealing with few-atom systems) than the charging energy U [36, 37].
The tunnel-coupling strength with the electronic leads is assumed to be weak: Γα �

kBT for all leads α. Moreover, we assume in general that the tunnel-coupling is the
smallest energy scale present in the system. This has some important consequences. First
of all, it allows to assume that the electronic leads will be in equilibrium for all events
that happen. This is true because after each tunnelling event (in which the equilibrium
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Fermi distribution is shortly distorted) there is enough time to equilibrate before a new
event happens1. Another consequence is that we can assume that no two events will ever
happen at the same time (e.g. two electrons can not tunnel simultaneously into the dot).
In other words, we assume to be in the sequential tunnelling regime and we will only
take the lowest order in the tunnel-coupling Γ into account. Hereby, we neglect effects
such as cotunnelling and the Kondo effect [5]. The weak coupling assumption allows to
use the Born-Markov master equation for the description of the system and has a large
experimental relevance [38, 39].

2.2 Notation and Born-Markov master equation
Before introducing and discussing the Born-Markov master equation, it is useful to define
some notation that recurs regularly in this thesis. This notation concerns either the
description of the quantum dot itself (1.) or the electronic reservoirs (2.).
1. In general, the state of the quantum dot can be described by a density operator ρ(t).

The exact form of this density operator, depends on the basis of the Hilbert space
in which the quantum dot is described. Here, a representation in the orthonormal
basis of physical states i = {0, ↑, ↓, 2} is chosen. These states are all pure states.
Since we are studying an open quantum system (i.e. the quantum dot is coupled to an
environment represented by the leads), we will be using a description in Liouville space
[40]. From now on, an operator x will be denoted as |x) := |x〉〈x|. The covector of the
operator x acting on the argument • will be written as (x|• = (|x))† • := Tr

(
x†•

)
.

This is the same notation as used in [29]. The completeness relation for basis states
i in this notation reads ∑i |i)(i|/(i|i) = 1, where the denominator can account for
non-unit scalar products. For the chosen normalised basis (so with 〈i|i〉 = 1) however,
this is

(i|i) = Tr
[
(|i〉〈i|)† |i〉〈i|

]
= Tr [|i〉〈i|i〉〈i|] = Tr [|i〉〈i|] = (〈i|i〉)2 = 1.

For properly normalised basis states, the completeness relation hence simplifies to∑
i

|i)(i| = 1. (2.5)

Another property of the chosen basis states is that they have unit trace. For example,
for the basis state operator |↑), one can calculate the trace as:

(1| ↑) = (0| ↑) + (↑ | ↑) + (↓ | ↑) + (2| ↑) = (↑ | ↑) = 1.

Analogous calculations prove that this property also holds for the other basis states.
Using the completeness relation (2.5), the density operator may be written as

|ρ(t)) =
∑
i

|i)(i|ρ(t)) =
∑
i

Pi|i), with Pi = (i|ρ(t)). (2.6)

The factors Pi can be interpreted as the probabilities to find the dot in the physical
state i. These results also hold for more general (possibly time-dependent) orthonor-
mal basis sets i.

1The typical tunnelling time ∼ 1
Γ is much larger than the memory time of the leads ∼ 1

T .
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2. Since the environment is described by a grand-canonical ensemble, explicit results
often depend on Fermi functions. Hence, these functions also deserve some dedicated,
compact notation. A typical Fermi function is written as

f+ (E) = 1
exp (βE) + 1 , where β = 1

kBT
.

This gives the probability of finding a particle with energy E in a reservoir of fermions
at a temperature T and with chemical potential µα = 0. kB is the Boltzmann constant.
On the other hand, one can also introduce

f− (E) = 1− f+ (E) = f+ (−E) = 1
exp (−βE) + 1 ,

which gives the probability of finding an empty state at the energy E. With these
Fermi-functions, the following notation is established:

f+
ε =

∑
α

Γαf+ (ε− µα) f−ε =
∑
α

Γαf− (ε− µα)

f+
U =

∑
α

Γαf+ (ε+ U − µα) f−U =
∑
α

Γαf− (ε+ U − µα) ,

where the chemical potentials µα and tunnel-coupling strengths Γα can all be different
for different leads α.

With these conventions and notations in place, we are now ready to describe the
dynamics of the quantum dot. We make use of a master equation approach, in which
the state of the quantum dot is described in terms of occupation probabilities of basis
states. As explained at the end of Sec. 2.1, we describe the system for weak tunnel-
coupling, i.e. in the sequential tunnelling regime. In this weak-coupling regime, the
dynamics of the system can be described by the Born-Markov master equation

∂t|ρ(t)) = W |ρ(t)). (2.7)

The resulting solution |ρ(t)) to this equation is exact up to first order in the tunnel-
coupling Γ. For a detailed explanation on how to get to this Born-Markov master
equation, we refer to [30, 41, 42]. In Eq. (2.7), W is a kernel which in general describes
the transitions between all the elements of the density operator. In this work however,
only transitions between the populations are considered, such thatW has only 4×4 = 16
entries. This is allowed, since the dynamics of the diagonal and off-diagonal elements
decouple in first order in Γ. Using the completeness relation (2.5) on both the left- and
right-hand side of W , the kernel can be expressed in terms of state transition rates:

W =
∑
i, j

|i)(i|W |j)(j| =
∑
i, j

Wij|i)(j|, with Wij = (i|W |j). (2.8)

In this equation, Wij is the rate at which a transition from state j to state i happens.
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By substituting the relations for W , Eq. (2.8), and |ρ(t)), Eq. (2.6), into the Born-
Markov master equation (2.7), one finds

∂t|ρ(t)) = W |ρ(t))

=
∑
j, k

Wjk|j)(k|
(∑

i

Pi|i)
)

=
∑
i, j, k

WjkPi|j)(k|i) =
∑
i, j

WijPj|i)

= ∂t

(∑
i

Pi|i)
)

=
∑
i

∂tPi|i).

(2.9)

In the last equality we assumed the basis states |i) to be time-independent, which is
true for the physical basis states. For the equality to hold, the factor in front of each |i)
should be the same. So the eigenvalue relation

∂tPi =
∑
j

WijPj (2.10)

must be fulfilled for every i. The Born-Markov master equation thus reduces to the usual
Markov equation for probabilities when the chosen basis state are time-independent.
Now, let us find an explicit form for the kernelW . Because of probability conservation,

we know that ∑j Pj = 1 for all times t. This adds the extra condition ∑iWij = 0 to the
elements of the kernel. This additional condition can be combined with Fermi’s golden
rule to find an explicit form of the matrix Wij. This explicit form also depends on the
chosen basis. In the basis of physical states i = {0, ↑, ↓, 2}, Wij is given by

W =


−2f+

ε f−ε f−ε 0
f+
ε −f−ε − f+

U 0 f−U
f+
ε 0 −f−ε − f+

U f−U
0 f+

U f+
U −2f−U

 . (2.11)

As an example, the rate at which transitions from state |0) to state | ↑) happen, is
given by W↑0 = f+

ε . This rate is related to both the tunnel-coupling strengths Γα (a
strong coupling to lead α allows for a higher rate) and to the number of electron states
occupied in lead α at energy ε (the more spin-up electrons at this energy in lead α, the
more likely it is that an electron can get into the dot). Notice that since we consider
the spin degenerate case, we in principle do not need to make the distinction between
spin-up or -down electrons. We could just introduce a state for single occupation of the
dot. Indeed, this can also be seen in the symmetry ofW : interchanging the indices ↑ and
↓ does not change anything. We however chose to keep the four-dimensional notation in
order to have more similarity with the non-spin degenerate system that we will consider
in chapter 4.



17 2.3 Duality and eigenmodes

2.3 Duality and eigenmodes
Notice that the kernel W is in general not Hermitian, as it would usually be the case
in quantum mechanics of isolated systems. This is a consequence of the fact that we
only describe a part of the model (the quantum dot) by the reduced density operator
ρ(t) instead of the full system (quantum dot tunnel-coupled to leads). In other words:
we consider the quantum dot to be an open quantum system, which is coupled to an
environment (represented by electronic leads). Hermiticity is the property that allows
us in quantum mechanics to relate the left and right eigenvectors of an eigenmode by a
Hermitian conjugation. This in turn provides a way to interpret the time-evolution of
closed quantum systems: the amplitude at which a certain energy eigenmode contributes
in the time-evolution of some quantum state is given by the overlap of the energy eigen-
state with that quantum state. For open quantum systems however, the left and right
eigenvectors are in general very different, such that this simple interpretation is no longer
possible.
This is the point at which the duality relation that we hinted at in Sec. 1.4 becomes

very useful. Indeed, it was shown in [29] that for a large class of fermionic open quantum
systems another duality relation holds. This duality (cross-)links different left and right
eigenvectors of W . It is thus in a certain sense a superhermiticity relation. Here, we
will only show and explain the explicit form of the duality that is useful for our system.
We will call the right eigenvectors of the kernel W (decay) modes |x), while the left
eigenvectors are called amplitude covectors (x′|. The decay rates γx are the negated
eigenvalues of W : γx = −λx. Indeed, in contrast to closed quantum systems, open
systems exhibit a certain decay dynamics. This becomes apparent in the decay rates γx
that characterise the dynamics of the system. For a mode |x) = x which is known and
has a decay rate γx, application of the duality relation shows that (y′|• is an amplitude
covector (possibly of another eigenmode) with

y′ = (−1)NIx and rate γy = 2Γ− Iγx. (2.12)

The parity operator |(−1)N) = P = |0) − |↑) − |↓) + |2) adds a factor −1 for uneven
parity (occupations of the ↑ or ↓ states). I denotes a parameter substitution that
constructs a dual model:

µα → −µα, ε→ −ε and U → −U.

So I has the effect of inverting all the energies of the system, including the interaction
energy U within the dot. This means that the interaction within the dot becomes
attractive upon applying I. The effect of I is shown in figure 2.2. We will often call this
the inverted dot model or dual dot model.
Since the kernel W is four-dimensional, it will have a four-dimensional eigenspace and

the density operator |ρ) can be expanded in terms of the four eigenmodes of W . This
eigenbasis will often turn out to be more useful than the eigenbasis of physical states
that we always used up to now. Before we can exploit the eigenmodes of W , we first
need to determine them of course. We here follow [29] and employ the superhemitic-
ity relation (2.12), which is immediately a good opportunity to show how it can be
used. Importantly, this duality relation allows both for a more elegant derivation of the
eigenmodes as well as a better interpretation of them.
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Figure 2.2: The same system as in Fig. 2.1, but after the parameter substitution I, which
construct the dual model by inverting all the energies.

2.3.1 Stationary state
By construction, one of the eigenvalues of W is zero, as there should be probability
conservation at all times t:

Tr ρ(t) = (1|ρ(t)) = 1, which implies Tr ∂tρ(t) = (1|W |ρ(t)) = 0,

and hence that the kernel is traceless: (1|W = 0. So, the amplitude covector associated
with the zero eigenvalue is (z′| = (1|. By means of linear algebra, we can then infer that
there is also a trace-normalised mode, (1|z) = 1, with vanishing decay rate, W |z) =
0. It was argued, e.g., in [30] that for the system with a kernel as given in (2.11)
and temperatures T > 0, this mode is the unique stationary state |z) = limt→∞ |ρ(t))
that is assumed by ρ(t) in the long-time limit. By explicitly solving the eigenvalue
equation (2.10), one can obtain an explicit form for |z):

γz = 0
(z′| = (1|

|z) = 1
Γ
(
f+
ε + f−U

) [f−ε f−U |0) + f+
ε f
−
U (|↑) + |↓)) + f+

ε f
+
U |2)

] (2.13)

This stationary state, can also be rewritten without explicitly using Fermi functions:

|z) =
(3

4 −
1
2Nz + 1

4pz
)

|0) +
(1

4 −
1
4pz

)
[|↑) + |↓)] +

(
−1

4 + 1
2Nz + 1

4pz
)

|2)

=
(1

4 −
1
2∆Nz + 1

4pz
)

|0) +
(1

4 −
1
4pz

)
[|↑) + |↓)] +

(1
4 + 1

2∆Nz + 1
4pz

)
|2)

(2.14)

In the two last lines, some new notation was introduced. First we denote N the occupa-
tion operator, which is defined as |N) = |↑)+ |↓)+ 2|2). With this occupation operator
and the parity operator P , one can write

Nz = (N |z) = 2f+
ε

f+
ε + f−U

, pz = ((−1)N |z) = f−ε f
−
U + f+

ε f
+
U − 2f+

ε f
−
U

Γ
(
f+
ε + f−U

) . (2.15)
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These are respectively the stationary occupation number of the dot and the parity of
the stationary state. A quantity Xz will in general denote the expectation value of the
operator X for the dot in its stationary state: Xz = (X|z). In this way, we also define
∆Nz = (N−1|z) = −(0|z)+(2|z) = Nz−1 as the variable that represents the deviation
from having a single particle on the dot.
Especially the second line of Eq. (2.14) has an interesting structure. Inherently, all

states (i.e. empty, spin-up or -down and double occupation) have the same weight of
one in four. The stationary parity expectation value pz then introduces an asymmetry
between even and odd parity states by adding to their weights with opposite signs.
On top of this, ∆Nz changes the weight for the empty state and double occupation,
depending on the charge of the dot. If the charge expectation is higher then one, the
double occupation naturally gets a higher weight, in the other case this weight decreases.
The occupation numberNz is plotted as function of the dot energy level ε in Fig. 2.3(d).

For clarity of the figure, the quantum dot that was described in Sec. 2.1 is only coupled
to one lead, which then by definition has chemical potential µ = 0. The top row of figures
(a), (b) and (c) shows a schematic representation of the stationary state z in three typical
regimes. When ε < −U , both energy levels of the dot are lower then the Fermi level of
the coupled lead (Fig. 2.3(a)). As a result, the dot is mostly doubly occupied. When ε
approaches −U , more and more free electron states in the leads become accessible. The
occupation number Nz thus starts to decrease. As ε increases above ε = −U , the dot
level at ε+U of the doubly occupied dot becomes higher then µ = 0, such that the second
electron in the dot is more likely to tunnel into the lead, whereas the probability for a
second electron to tunnel from the lead into the dot decreases. The average stationary
occupation thus decreases from 2 to 1 (Fig. 2.3(b)). At ε ≥ 0, also the first electron in
the dot is more likely to tunnel out of the dot, such that the average stationary particle
number decreases further from 1 to 0 (Fig. 2.3(c)). It is however important to emphasise
that this is the average and stationary particle number. If the dot did not get enough
time to relax to its stationary state, the average occupation can be entirely different.
But even in its stationary state the number of electrons in the dot can be different at
every instant of time. This is because we are working at a finite temperature. It is only
the average over multiple measurements that will result in Fig. 2.3.

2.3.2 Fermion-parity mode
The next eigenmode of W can now be obtained without any effort by using the duality
relation (2.12). Applying this relation to the stationary mode equations for γz, |z) and
(z′| gives us the fermion-parity eigenmode:

γp = 2Γ
(p′| = [PI|z)]† = ((−1)Nzi|

= 1
Γ
(
f−ε + f+

U

) [f+
ε f

+
U (0|− f−ε f+

U [(↑ | + (↓ |] + f−ε f
−
U (2|

]
|p) = [(z′|IP ]† = |(−1)N)

= |0)− [|↑) + |↓)] + |2)

(2.16)
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Figure 2.3: The average stationary occupation of the dot model Nz = (N |z) and of the
inverted dot model Ni = (N |zi) as a function of the energy level ε in the case of a dot
with interaction energy U connected to a single lead. Above the plot, the situations of
the quantum dot corresponding to several values of ε are drawn schematically for both the
stationary state z and the inverted state zi. The average particle number Nz decreases from
2 to 1 at ε = −U and from 1 to 0 at ε = 0. These declines correspond to the crossing of
the upper, respectively the lower dot level with the chemical potential µ of the lead. The
average particle number of the inverted dot model Ni shows a steep increase for 0 to 2 at
ε = −U

2 . From the moment the dot is occupied by one particle, it immediately gets occupied
by a second electron due to the attractive interaction. In the plot the internal interaction is
strong, U = 10T . For an even stronger U or a smaller T , the slopes would become steeper.
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This fermion-parity mode is the third mode that we discussed in Sec. 1.4. These equations
contain zi = Iz = z (−ε, −U, −µ), the stationary state of the dual quantum dot model
with attractive interaction, obtained by the parameter substitution I, i.e. by inverting all
the energies. Therefore, |zi) is called the inverted stationary state. In the notation with
Fermi functions, the energy inversion is done by swapping f+ ↔ f− in the stationary
state |z):

|zi) = I|z) = 1
Γ
(
f−ε + f+

U

) [f+
ε f

+
U |0) + f−ε f

+
U [|↑) + |↓)] + f−ε f

−
U |2)

]
. (2.17)

From this, one can see that |zi) is a physical state with non-negative occupation prob-
abilities. The inverted stationary state can, just as was done with |z), also be written
without Fermi-functions:

|zi) =
(3

4 −
1
2Ni + 1

4pi
)

|0) +
(1

4 −
1
4pi

)
[|↑) + |↓)] +

(
−1

4 + 1
2Ni + 1

4pi
)

|2)

=
(1

4 −
1
2∆Ni + 1

4pi
)

|0) +
(1

4 −
1
4pi

)
[|↑) + |↓)] +

(1
4 + 1

2∆Ni + 1
4pi

)
|2).

(2.18)

In these equations, Ni = (N |zi) and pi = P|zi) were used. These are the occupation
number and parity of the inverted stationary state. A quantity Xi will again also in gen-
eral denote the expectation value of the operator X for the dot in its inverted stationary
state: Xi = (X|zi). We also define again ∆Ni = (N − 1|zi) = −(0|zi) + (2|zi) as the
deviation between the inverted stationary state and having a single particle on the dot.
Just as in Eq. (2.14), all physical states have an equal weight in the inverted stationary

state Eq. (2.18) when both ∆Ni = pi = 0. When these two expectation values are non-
zero, the symmetry is broken in a similar way as was the case for the normal stationary
state. The variables ∆Ni = Ni−1 and pi have however a completely different dependence
on the dot parameters (such as ε or U).
Ni as a function of ε is shown in Fig. 2.3(d) for the same system as Nz in the previous

section. For ε < −U
2 , the occupation of the inverted state zi is 0 (Fig. 2.3(a)). Notice

that nothing special happens when ε = −U . Indeed, the lowest dot level (with energy
ε−U) shown in Fig. 2.3(a) can only be occupied after the highest dot level (with energy
ε) is occupied, since its energy is lowered due to an attractive interaction within the
dot. The average inverted stationary particle number has a steep incline from 0 to 2
when ε passes −U

2 (Fig. 2.3(b)). This is the particle-hole symmetric point. When at this
point one particle occupies the dot with attractive interactions, it either immediately
attracts a second electron into the dot, or it leaves the dot again since its energy is
larger than µ = 0. The fact that Ni(−U

2 ) = 1, is due to the fact that this is again the
average inverted stationary particle number. At this point, the probabilities of finding
the inverted dot doubly occupied or empty are equal, as depicted in Fig. 2.3(b). The
dot will (almost) never be found singly occupied when in its inverted stationary state
with U � T . This statement is no longer true when the dot is connected to two leads
and a bias V > U is applied. That situation will be discussed in Sec. 6.3. Finally, when
ε > −U

2 , the inverted state zi is favourably doubly occupied as shown in Fig. 2.3(c).
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2.3.3 Charge decay
Next, there is the charge mode |c), its covector (c′| and the charge decay rate γc. These
are given by

γc = f+
ε + f−U

(c′| = (N |−Nz(1|

= 1
f+
ε + f−U

[
−2f+

ε (0| +
(
−f+

ε + f−U
)

[(↑ | + (↓ |] + 2f−U (2|
]

|c) = 1
2P [|N)−Ni|1)] = 1

2 (−1)N [|N)−Ni|1)]

= 1
f−ε + f+

U

[
−f−ε |0) + 1

2
(
−f+

ε + f−U
)

[|↑) + |↓)] + f+
U |2)

]
(2.19)

Notice that the charge-decay rate is self-dual, γc = 2Γ − Iγc, under the duality (2.12).
This means that its amplitude and mode are also connected by the duality, up to a nor-
malisation factor: |c) = 1

2 [(c′|IP ]†. The normalisation was chosen such that the overlap
of the charge amplitude covector with the density operator (c′|ρ(t)) gives the deviation
of the instantaneous occupation of the dot (N |ρ(t)) from the stationary occupation of
the dot Nz. The occupation of the dot is of course proportional to the charge on the
dot, hence the name charge mode. In Sec. 2.4 we will see that - when the dot has been
brought out of its stationary state - the overlap (c′|ρ(t)) determines how much the charge
mode |c) contributes to the decay dynamics of the system. It is thus the deviation of
the actual charge on the dot from its stationary charge that determines the importance
of the charge mode in the dynamics. The decay rate γc determines the rate at which its
amplitude decreases.

2.3.4 Spin mode
Finally, there is also a spin mode |s) with covector (s′| and decay rate γs:

γs = f−ε + f+
U

(s′| = (↑ |− (↓ |

|s) = 1
2 (|↑)− |↓))

(2.20)

This mode was not yet part of [29, 30]. Notice that also this spin-decay rate is self-
dual γs = 2Γ − Iγs, under the duality (2.12). Also its amplitude and mode are then
connected, namely by |s) = −1

2 [(s′|IP ]†. The normalisation was again chosen such that
the amplitude covector applied to the density operator (s′|ρ(t)) has a physical meaning.
It is the deviation of the total spin of the dot from its total spin when it is in the
stationary state σz = (s′|z). Since no magnetic field is applied to the dot1, there is a
symmetry between spin up and down particles. In this case, the average total spin of
the stationary state is zero. This mode can however still get excited when one wants to
describe the time evolution of a system that is initially prepared in a state that is not
spin-symmetric. The overlap (s′|ρ(t)) thus gives the net spin of the dot without applied
magnetic field, hence the name spin mode.

1We will relax this constraint in chapter 4.
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2.4 Sudden switch and decay rates
We are now in a position to study the evolution of the density operator after a sudden
switch at time t = 0. In [29], only a gate voltage switch (corresponding to an instan-
taneous change of the energy level in the dot from ε0 to ε) applied to a quantum dot
connected to a single lead was considered. Here, the switch can be in any (or multiple) of
the system parameters (ε, U, µα or Γα) and the dot can be connected to multiple leads
α. We will denote the set of parameters that change during the switch as G. A switch
corresponds to an instantaneous change of the parameters from G0 to G, where G0 are
the parameters just before t = 0 and G are the parameters after the switch. Immedi-
ately after t = 0, the occupation probabilities of the dot (and thus the density operator)
are the same as before the switch. This initial density operator will be denoted1 by
|ρ0(G0)) = |z(G0)) = |z0). Using the Born-Markov master equation (2.7), the problem
can easily be solved formally for times t > 0. The result is

|ρ(t)) = eWt|ρ0) = eWt|z0).

This can be further solved by expanding ρ(t) in the eigenmodes of W :

|ρ(t)) = |z)(z′|z0) + e−γpt|p)(p′|z0) + e−γct|c)(c′|z0) + e−γst|s)(s′|z0). (2.21)

There is no exponential decay of the first term, since e−γzt = 1. This equation tells us
that after a sudden switch, the different components of |ρ(t)) (which are the eigenmodes
of W ) decay with their corresponding decay rate γx. In the limit of t→∞, the density
operator will have relaxed to the new stationary state |z). The amplitudes of the different
decay modes are given by the overlap of their corresponding amplitude covector with the
initial state (x′|z0). Denoting the observables of the dot state at t = 0 with a subscript
z0 and observing that (z′|z0) = 1, one finally finds

|ρ(t)) = |z) + (zi|P|z0)e−γpt|p) + (Nz0 −Nz) e−γct|c) + σz0e
−γst|s). (2.22)

In the case without an applied magnetic field which we are considering here, σz0 is
typically zero. However, in principle nothing prevents us from preparing the quantum
dot in an initial state with non-vanishing spin.
It is interesting to have a look at the behaviour of the decay rates γp, γc and γs as

a function of the dot level position ε and for different applied voltages V between the
leads. This is shown in Fig. 2.4 for a quantum dot connected to two leads with the
same tunnel-coupling strength Γα = Γ

2 . The decay rates can in general be interpreted
as representing the number of possible decay channels. In this interpretation, every lead
can be seen as two channels: one for spin-up, and one for spin-down electrons.

1This notation seems to imply that the dot is in its stationary state just before the switch. Although
this is usually the case, it is not strictly necessary. The time evolution after the switch can always
be calculated, as long as the initial state |ρ0(G0)) is known.
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Figure 2.4: The decay rates of the fermion-parity mode γp, the charge mode γc and the
spin mode γs as a function of the dot energy level. The dot is connected to two leads,
with an equal tunnel-coupling strength Γα = Γ

2 , where Γ is the total tunnel-coupling. The
internal interaction strength is U = 10T . The rates are shown for the unbiased case V = 0
(solid line), a relatively small bias V = U

2 (dotted) and a large bias V = 3U
2 (dash-dotted)

between the leads.

Let us start with the unbiased case. This is equivalent to having only one lead with
double the tunnel-coupling strength, which was already discussed in [28, 29, 32]. Re-
markably, the fermion-parity rate (2.16) is always the highest possible1, and completely
independent of the level position, temperature or strength of the interaction U . However,
looking at Eq. (2.22), we see that the amplitude by which the parity mode is excited
is (zi|P|z0). Since the inverted stationary state zi is almost never singly occupied for
U � T,∆V , this can be approximated by (zi|z0). The parity mode is thus only excited
when there is a large overlap between the final inverted stationary state and the initial
“normal” stationary state. This typically only happens when the dot occupation has
to change from two to zero or vice versa. This tells us, as we also already mentioned
in Sec. 1.4, that the fermion-parity mode is related to two-particle processes. More ar-
guments to support this claim can be found in [30]. There, it is also noted that the
fermion-parity mode can be related to the first of several tunnelling processes. Since the
fermion-parity rate is related to a two-particle effect, it can only show up in multi-particle
observables [28, 30]. It can thus be observed for example in heat or energy currents of
interacting systems, which naturally contain the Un↑n↓ term in their Hamiltonian, but
not in particle currents.

1Namely 2Γ, which means that all decay channels are possible.
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The relaxation rates γc and γs do have a level dependence. In the region −U < ε < 0,
the charge rate is enhanced, while the spin rate is suppressed. The transition at these
boundaries is smeared out because we are working at finite temperatures. Inside this
region, there are two decay channels per lead open for charge relaxation and none for
spin relaxation. Indeed, the charge can decay using both spin up and down channels.
However, spin-flip processes are not possible1 in first order in Γ, such that no channels
for spin relaxation are open in this region. Outside the region −U < ε < 0, there is
always one decay channel open per lead for both spin and charge. See also [27, 28] for a
more detailed discussion.
Figure 2.4 also shows the results for both a relatively small (V = U

2 , dotted) and
large (b = 3U

2 , dash-dotted) applied bias. What happens can be understood using the
unbiased case (full line). The dot can be seen as being coupled to each lead, with its
own electrochemical potential µα and coupling strength Γα = Γ

2 separately. This results
for each lead in decay rates which are only half as high (reduced coupling strength)
and an energy dependence shifted by their electrochemical potential. Summing these
rates for the two leads gives indeed the results as presented in Fig. 2.4. This procedure
immediately allows us to know what the decay rates will be for an arbitrary number of
leads.

1Imagine the dot in a state with ε < µ and ε + U > µ, such as in Fig. 2.3(b). If an electron occupies
the level ε, it can not leave the dot since there are no free state in the leads. On the other hand,
none of the electrons in the lead have enough energy to enter the level ε+U . As a consequence, the
spin of the dot can not change.





3 Dynamics for arbitrary driving
schemes

At the end of the previous chapter, we found the evolution of the density operator after
a fast switch of any of the system parameters. However, we want to be able to describe
the dynamics of the quantum dot for an arbitrary driving scheme. To achieve this, we
describe two different techniques in this chapter. First we show how one can efficiently
obtain a numerical solution to the Born-Markov equation. This is useful for a quick
analysis and validation of results. Next, an analytical solution of the density operator
ρ(t) is presented, which is more insightful than a numerical solution. For the achievement
of this key result, the eigenmodes that we found in Sec. 2.3 play a crucial role.
In the second part of this chapter, we present formulas to calculate the time-resolved

particle, energy and heat currents through any lead coupled to the quantum dot. These
equations can directly be applied to the fast switch case, but we supplement them with
the analytical solution of the density operator for arbitrary driving schemes. Examples
for the instantaneous contribution and first adiabatic correction are worked out explicitly.
These first corrections are of interest because they show the first “real” time-dependence
and allow for adiabatic pumping [41, 42]. More specific examples for the use of these
equations and further analysis of these expressions will be given in chapters 5 and 6.

3.1 Density operator
In order to find the density operator |ρ(t)) for an arbitrary time-dependent driving,
we need to solve the Born-Markov master equation (2.7), which we repeat here for
convenience:

∂t|ρ(t)) = W (t)|ρ(t)).

For clarity, the time-dependence is stated explicitly. Notice that the kernel W (t) as well
as its eigenmodes are now dependent on time. Here, we intend to treat the problem
without a magnetic field, and thus we assume all variables to be spin-independent. An
extension to include possible spin-dependence is given in chapter 4. Solving the Born-
Markov equation exactly can be done in two ways. Either it is put in a form that allows
for a rapid numerical solution, which we will briefly discuss in the first part of this
section. To gain more insight in the system’s dynamics however, we obtain analytical
expressions for the density operator in the second part of this section. This analytical
solution is based on the good knowledge of the eigenmodes ofW and valid when the time-
dependence is sufficiently slow (which will be quantified later). It is the main result of
this thesis, and will result in applicable formulas to calculate currents through arbitrarily
driven quantum dot systems.

27
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3.1.1 Numerical solution
We start by expanding the density operator in the time-dependent eigenbasis of the
kernel W (t) as

|ρ(t)) = |z(t)) + ap(t)|p) + ac(t)|c(t)),
where ap(t) and ac(t) are the (yet unknown) expansion coefficients for the parity and
charge mode that we are looking for. Because of probability conservation, the expansion
coefficient of the stationary state has to be one. Moreover, because of the assumed
spin-independence, the spin-mode |s) is not present1. Substituting this expansion in the
Born-Markov master equation, we find

∂t|z(t)) + ∂tap(t)|p) + ∂tac(t)|c(t)) + ac(t)∂t|c(t)) = −γp(t)ap(t)|p)− γc(t)ac(t)|c(t)).

On the right-hand side, we used the fact that |c(t)) and |p) are eigenvectors of the
kernel W . We now use Eq. (3.5), that we will derive in the next subsection, to replace
∂t|z(t)). Furthermore we can calculate ∂t|c(t)) = −1

2P∂tNi|1) = −1
2∂tNi|p). The above

expression then becomes[1
2 (Ni(t)− 1) ∂tNz(t) + 1

4∂tpz(t) + ∂tap(t)−
1
2ac(t)∂tNi(t) + γp(t)ap(t)

]
|p)

+ [∂tNz(t) + ∂tac(t) + γc(t)ac(t)] |c(t)) = 0.

Since the basis vectors |p) and |c(t)) are orthogonal, both expressions in the square
brackets need to be zero. We thus find the set of equations (here written in matrix
notation)

∂t

[
ap(t)
ac(t)

]
=
[
−γp(t) 1

2∂tNi(t)
0 −γc(t)

] [
ap(t)
ac(t)

]
+
[
−1

2 (Ni(t)− 1) ∂tNz(t)− 1
4∂tpz(t)

−∂tNz(t)

]
.

This is a set of coupled ordinary differential equations that can be solved numerically.
Notice that this can even be done sequentially because the matrix that couples both
equations is an upper triangular matrix. To solve the set of equations, one also needs
to decide on the initial conditions. However, in systems with periodic driving, one is
often interested in the solution for t → ∞. In this limit, also called the periodic limit
or attractor, the solution is independent on the initial conditions. Typically, one reaches
this regime already after a few periods. Testing whether one has reached the periodic
limit can be done by comparing the calculated values for an observable of interest in
successive periods. The periodic limit is reached if the relative changes of the observable
between subsequent periods are small compared to the desired numerical accuracy.
Having found this set of equations to which the solution can easily be determined

numerically, we have in principle solved the problem under consideration. However, this
solution does not provide much insight in the mechanisms at play. Moreover, we would
like to learn more about the role of the fermion parity mode |p). This exact solution

1As in Sec. 2.4, the system could in principle be prepared in a state with definite initial spin. This
would add the relation ∂tas(t) = −γs(t)as(t) to the final matrix equation. Notice that this additional
equation is decoupled from the other equations, such that it does not influence the results for ap(t)
and ac(t).
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is however useful for two other reasons. First of all, in the view of the remainder of
this thesis, it is useful to have a reference to cross-check the results with. Secondly, by
comparing this exact solution with the instantaneous solution |z(t)) (which is just the
stationary eigenmode of the time-dependent kernel W (t)) we can get an idea how far
the time-dependence drives the system out of its steady-state. This gives a first idea of
how the rate of change of the driving compares to the typical decay rates of the system.

3.1.2 Analytical solution
In order to get more insight into the solution for the density operator and later the dif-
ferent currents through the quantum dot coupled to multiple leads, we will now solve the
Born-Markov master equation in a systematic way. From here on, the time-dependence
of the different parameters will be implicitly assumed for notational simplicity. We now
expand |ρ) in orders of Ω

Γ , where Ω is the ’driving frequency’ of the time-dependent
parameter (or the parameters). This follows the approach of [41, 42]. Although we will
always call Ω the driving frequency, periodicity is certainly not a requirement for the
solution. One should thus rather interpret Ω as a rate of change of the time-dependent
parameter. The expansion of |ρ) is allowed whenever this rate of change is small com-
pared to the characteristic decay rates of the system. As seen in chapter 2, these are
proportional to the tunnel-coupling strength Γ. The contribution of order n in Ω

Γ to
|ρ) is written as |ρ(n)). The kernel is always the instantaneous (time-dependent) kernel
W = W (0) that we used before. In doing this expansion, we find a set of equations to
solve: 0 = W |ρ(0)) with solution |ρ(0)) = |z)

∂t|ρ(n−1)) = W |ρ(n)) for n ≥ 1
(3.1)

Once all orders are found, the full density operator can be obtained as a summation
over all corrections |ρ) = ∑

n≥0 |ρ(n)). For more details on this expansion, we refer
to [41, 42]. This is strictly speaking only reasonable as long as δXΩ � ΓT , where
δX is the amplitude of driving parameter X [43]. However, if we in any case assume
the Born-Markov master equation (2.7) to be valid, we can always use the numerical
solution discussed in Sec. 3.1.1 to check whether the expansion in orders of Ω

Γ converges
to the correct solution of the Born-Markov master equation. This will typically be true
whenever the time-dependence drives the system not too far out of its steady-state, as
discussed at the end of that section.
The second expression in the set of equations can formally be solved as

|ρ(n)) = W̃−1∂t|ρ(n−1)), (3.2)

where W̃−1 represents the pseudo-inverse of the kernel and can be obtained by writing
|ρ(n)) and W in terms of their eigenvectors. W has no ’true’ inverse, since it has a zero
eigenvalue, corresponding to the stationary state. In general, the pseudo-inverse W̃−1

can be written as
W̃−1 =

3∑
j=1

1
λj

|vj)(v′j|,
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where λj are the nonzero eigenvalues of W, and |vj) and (v′j| the corresponding left and
right eigenvectors. Notice that, because γz = 0, the stationary mode is not present in
W̃−1. The trace of |ρ(0)) is (z′|ρ(0)) = (1|ρ(0)) = 1, so |ρ(n)) with n > 0 should be
traceless to guarantee probability conservation. The modes present in the expansion
of W̃−1 are then the parity, charge and spin mode. If we assume however that the
spin-degeneracy is preserved at any moment (remember that we are considering the
non-magnetic system), we find (s′|ρ(n)) = 0 for all n. Thus, the spin mode does not
need to be included in the expansion of W̃−1.
Using the formal expression for |ρ(n)) (3.2) and the first expression of the set of equa-

tions (3.1), it is possible to determine |ρ(n)) for all orders n recursively. The set of
equations to be solved becomes


|ρ(0)) = |z)

|ρ(n)) =
(
− 1
γp

|p)(p′|− 1
γc

|c)(c′|
)
∂t|ρ(n−1)) for n > 0.

Here, we want to find a formula to directly calculate all orders n. We will thus solve
the recursion. Since ∂t|ρ(n−1)) is a linear combination of |c) and |p) (as can be inferred
from the second line of Eq. (3.1)), we can use the identity ∂t|ρ(n−1)) = (c′|∂t|ρ(n−1))|c) +
(p′|∂t|ρ(n−1))|p) to write the second, recursive relation of this set of equations for n > 0
as

|ρ(n)) = − 1
γp

(p′|∂t|ρ(n−1))|p)− 1
γc

(c′|∂t|ρ(n−1))|c) (3.3a)

= − 1
γc
∂t|ρ(n−1)) +

(
1
γc
− 1
γp

)
(p′|∂t|ρ(n−1))|p). (3.3b)

Especially the last of these formulations turns out to be very useful, because ∂t|p) = 0.
From here on, the equations in the derivation become rather long, so we choose to omit
them from the main text. The remainder of the derivation can however be found in
App. A.1. The final result, which expresses the nth order of |ρ) in the expansion in Ω

Γ in
terms of only the eigenmodes of W and their derivatives, reads (for n ≥ 1):

|ρ(n)) =
(
− 1
γc
∂t

)n
|z) +

 n∑
l=1

(
− 1
γp
∂t

)l−1 ( 1
γc
− 1
γp

)
(p′|∂t

(
− 1
γc
∂t

)n−l
|z)

 |p). (3.4)

This is the main result of this thesis. It gives the density operator |ρ) = ∑
n≥0 |ρ(n)) in a

generally applicable closed form for arbitrary time-dependently driven systems. We will
use this formula later in this chapter to evaluate the expressions for particle and energy
currents. In chapter 5 we will then use these to study thermoelectrics in time-dependent
systems and in chapter 6 we will study a specific driving in depth and use it to learn
more about the fermion-parity mode. In App. A.1, we prove an expression, Eq. (A.2)
that is even more general than Eq. (3.4): it relates |ρ(n)) not specifically to |ρ(0)) = |z)
as Eq. (3.4) does, but to |ρ(n−k)), with n ≥ k ≥ 1.



31 3.1 Density operator

3.1.3 Adiabatic correction
As an example of the use of Eq. (3.4), we will calculate the first adiabatic correction
|ρ(1)), which is the first order in the expansion of the density operator in Ω

Γ . It thus takes
into account all linear contributions in the driving rate. The zeroth order correction is
the time-dependent instantaneous density operator, given by |ρ(0)) = |z). This is the
solution that is obtained by fixing all parameters at each instant of time t, and solving
this as a stationary problem. In some sense, the first adiabatic correction |ρ(1)) is thus the
first “real” time-dependent effect. This adiabatic correction already allows to describe
for example situations in which adiabatic pumping takes place [41, 42].
Since we will calculate the first order (n = 1) correction, Eq. (3.4) is still equivalent to

Eq. (3.3b), which is in turn equal to Eq. (3.3a). It is this form of the general result (3.4)
that we will use here, since it immediately leads to a nice form of the final expression.
Direct usage Eq. (3.4) will of course give the same result in the end.
The only unknowns in Eq. (3.3a) are (p′|∂t|z) and (c′|∂t|z), where we already substi-

tuted |ρ(n−1)) = |z). First we calculate

∂t|z) =
(
−1

2∂tNz + 1
4∂tpz

)
|0)− 1

4∂tpz| ↑)−
1
4∂tpz| ↓) +

(1
2∂tNz + 1

4∂tpz
)

|2), (3.5)

where we used the alternative formula (2.14) of the stationary state |z). Combining this
with the equations (2.16) and (2.19), we can directly write the two unknowns (p′|∂t|z)
and (c′|∂t|z) in terms of physical quantities. We have then found the adiabatic correction
of the density operator to be

|ρ(1)) = − 1
2γp

(
(Ni − 1) ∂tNz + 1

2∂tpz
)

|p)− 1
γc
∂tNz|c). (3.6)

Notice that in principle nothing inhibits us from doing this calculation straight away
without the duality. The expression that would then be obtained, would however contain
complicated combinations of Fermi functions. These are typically very difficult to link
to physical variables. This physical link is what we get for free by using the duality
relation (2.12), the eigenmodes of W from Sec. 2.3 and our newly found expansion
relation (3.4). The physical meaning of the terms in Eq. (3.6) will also become more
clear when calculating physical observables, such as the current, which we will do in the
next section.
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3.2 Currents
3.2.1 Particle current
We will now find compact and insightful expressions for the time-dependent currents
through the system. We start with the particle current. We define the current INα as
the current of particles flowing from lead α into the dot. In the total system (dot and
leads), there is conservation of total particle number N tot = N + ∑

αN
leadα. The time-

dependent particle current out of lead α can then be expressed in terms of the change
of the expectation value of the number of particles in the dot due to lead α:

INα = −∂t
〈
N leadα

〉
= [∂t 〈N〉]α = [∂t Tr (Nρ)]α = (N | [∂t|ρ)]α = (N |Wα|ρ). (3.7)

This result follows from the fact that the tunnelling Hamiltonian that couples each lead
α to the dot conserves the total number of particles of each “lead α - dot subsystem”
separately. The quantity Wα|ρ) represents the change in the density operator solely due
to tunnelling to lead α.
Here, we introduced an important notation, which plays an essential role in the formu-

lation and calculation of the currents. Whenever1 a subscript α is added to a variable,
this means that we consider the same system as in section 2.1, but now with respect to
only one lead α. So one forgets for a moment all the other leads, and reintroduces for
the then obtained system all the notation from section 2.1 to section 2.3. The variables
which are defined in this way are denoted with a subscript α and will be called the “vari-
ables restricted to lead α”, “variables with respect to lead α” or simply “lead resolved”.
For Wα|ρ), we notice that the time-dependence of |ρ) is still given by the kernel W of
the entire system. When we then calculate Wα|ρ), we consider the part of the total
evolution that happens through the interaction with lead α.
Now notice that (1|Wα = 0 because (1| = (z′| = (z′α| is the left eigenvector of Wα

corresponding to the zero eigenvalue. This can be used to write

(N |Wα|ρ) = (N −Nzα1|Wα|ρ) = −γcα(N −Nzα1|ρ),

where the last equality is obtained by noticing that (N −Nzα1| = (c′α| is the left charge
eigenvector of Wα. The resulting particle current through lead α, for general |ρ), then
is

INα = γcα [Nzα − (N |ρ)] . (3.8)

This is a remarkably simple result: the particle current through lead α is proportional to
the difference between the stationary occupation2 of the dot Nzα with respect to that lead
and the actual occupation of the dot within the whole system (N |ρ). The proportionality
constant is the charge decay rate restricted to the lead α under consideration.
Since we have analytical expressions for |ρ(n)) for all n, we can calculate the contri-

butions of order n in Ω
Γ to the time-resolved particle current through lead α: I(n)

Nα(t).
Summing all these orders will then finally result again in the total particle current. The

1Except for the particle INα, energy IEα and heat IQα currents, for which the subscript simply means
that we are looking at the current through lead α, with all leads still connected.

2Notice here that, with respect to a single lead α, the stationary state is also the equilibrium state.
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first term of Eq. (3.8) derives from the instantaneous contribution (since this is the con-
tribution with unit trace), so it will only appear in the current expression for n = 0.
The instantaneous particle current can thus be found by substituting |ρ(0)) = |z) into
Eq. (3.8):

I
(0)
Nα = γcα (Nzα −Nz) . (3.9)

For the higher order contributions (n 6= 0), we only need to consider the second term of
Eq. (3.8). We write this as

I
(n)
Nα = −γcα(N |ρ(n)) = −γcα

[
(N |−Nz(1|

]
|ρ(n)) = −γcα(c′|ρ(n)),

where we made use of (1|ρ(n)) = 0 for n 6= 0. At this point, we can plug in the result
for |ρ(n)) that we found in Eq. (3.4), to express |ρ(n)) in terms of |ρ(0)) = |z). We then
finally find the contribution of order

(
Ω
Γ

)n
to the particle current trough lead α:

I
(n)
Nα

n 6=0= −γcα(c′|
(
− 1
γc
∂t

)n
|z). (3.10)

Together with Eq. (3.9), this gives a very practical and compact way of calculating the
particle current through a system with arbitrary driving schemes. The only thing one
needs to do is to calculate the eigenvectors of the kernels W and Wα (for which the
expressions where found already in Sec. 2.3) and take the necessary derivatives. In chap-
ter 5, we will show how this general result for the particle current can contribute in the
calculation of Onsager coefficients for the study of thermoelectrics in time-dependently
driven systems. Notice that only the stationary state and charge mode play a role for
the particle currents.
We will now make a specific example of how Eq. (3.10) can be used. As we did for the

density operator, we calculate the adiabatic correction (n = 1) of the particle current.
Using the result for |ρ(1)), Eq. (3.6), we immediately find

I
(1)
Nα = −γcα(c′|ρ(1)) = γcα

γc
∂tNz, (3.11)

where we made crucially use of the biorthonormality of the charge and parity modes.
Whereas the instantaneous contribution I(0)

Nα gives the particle current at every moment
as if the system is in a stationary state, this first adiabatic contribution I

(1)
Nα gives a

correction for the non-instantaneous response of the system to time-dependent variations.
The ratio of the charge relaxation rates γcα

γc
determines how large the correction is for

every lead. If there is no bias applied between different leads, the instantaneous current
vanishes and this adiabatic correction is the largest contribution to the particle current.
Introducing on top of this a time-varying asymmetry between the leads, results in the
phenomenon of adiabatic pumping, which we mentioned before.



3 Dynamics for arbitrary driving schemes 34

3.2.2 Energy and heat current
The energy current IEα through lead α (from the lead into the dot) can be obtained
completely similar to the particle current. The only, very important difference is that we
now have to count the variation in energy instead of the change of number of particles.
The tunnel-couplings between the leads and the dot do not store any energy since the
tunnel-coupling is assumed to be weak (the equations that we use are correct for first
order in Γ), such that the total energy in the dot and the leads is conserved [30]. The
obtained expression for the energy current through lead α is then

IEα = −∂t
〈
H leadα

〉
= (H|Wα|ρ), (3.12)

where the dot Hamiltonian H from Eq. (2.2) can be written as

(H| = ε(N | + U(2|. (3.13)

The heat current through lead α is directly related to the particle and energy currents
[43] by

IQα = IEα − µαINα. (3.14)
This heat current is positive when the heat flow is into the quantum dot. Since the heat
current can here always be obtained using this expression, we will focus on the energy
current in this section.
To calculate this energy current, we first use the completeness relation to expand

(2|Wα in terms of the orthonormal eigenbasis of Wα:

(2|Wα = (2|zα)(z′α|Wα + (2|pα)(p′α|Wα + (2|cα)(c′α|Wα + (2|sα)(s′α|Wα

= −γpα(p′α| + (2|cα)(c′α|Wα,

where we intensively used the properties of the eigenmodes to eliminate (z′α|Wα = 0
and (2|sα) = 0. We also used the identities (2|pα) = (2|P|2) = 1 and −γpα(p′α|. Now
notice that (N |Wα|ρ) = (c′α|Wα|ρ) = INα (see Sec. 3.2.1). The energy current for any
time-dependent ρ can thus be written as

IEα = (ε+ U(2|cα)) INα − γpαU(p′α|ρ) (3.15)

We can now continue using our analytical expressions for |ρ(n)). The result for n = 0
is obtained immediately, and we state it together with the result for n > 0 that we
calculate now. We can substitute the particle current in Eq. (3.15) to obtain

I
(n)
Eα = −γcα (ε+ U(2|cα)) (c′|ρ(n))− γpαU(p′α|ρ(n))

for n > 0, |ρ(n)) is a linear combination of |p) and |c). So we can expand (p′α|ρ(n)) =
(p′α|p)︸ ︷︷ ︸

=1

(p′|ρ(n)) + (p′α|c)(c′|ρ(n)) and find

I
(n)
Eα = [−γcα (ε+ U(2|cα))− γpαU(p′α|c)] (c′|ρ(n))− γpαU(p′|ρ(n))

= [−γcαε− (γcα(2|cα) + γpα(p′α|c))U ] (c′|ρ(n))− γpαU(p′|ρ(n)).
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We finally arrive at an expression for the energy current through lead α of order n in Ω
Γ

by using equations (3.4) and (3.10):

I
(n)
Eα

n=0= [ε+ (2|cα)U ] I(0)
Nα − γpαU(p′α|z)

n 6=0=
[
ε+

(
(2|cα) + γpα

γcα
(p′α|c)

)
U

]
I

(n)
Nα − γpαU(p′|ρ(n)),

(3.16)

where

(p′|ρ(n)) =(p′|
(
− 1
γc
∂t

)n
|z) +

n∑
l=1

(
− 1
γp
∂t

)l−1 ( 1
γc
− 1
γp

)
(p′|∂t

(
− 1
γc
∂t

)n−l
|z)

(2|cα) =1
2 (2−Niα)

(p′α|c) =(Pziα|1
2P

[
|N)−Ni|1)

]
= 1

2 (Niα −Ni) .

On evaluating this expression, it is often also useful to remember

∂t|z) =
(1

2 (Ni − 1) ∂tNz + 1
4∂tpz

)
|p) + ∂tNz|c),

which can be found from Eq. (3.6). The nth order contribution in Ω to the heat current
through lead α is of course immediately found as

I
(n)
Qα = I

(n)
Eα − µαI

(n)
Nα (3.17)

The expression Eq. (3.16) for the energy (and heat) current contributions of order n
in Ω is another useful expression that derives from the main result Eq. (3.4). Already in
its general form (without specifying a concrete time-dependence) it allows for interesting
interpretations. Equation (3.16) consists of one term that is proportional to the particle
current of the same order n. When the energy or heat current is simply proportional to
the particle current, one often says that the currents are tightly coupled. We will thus
refer to this term as the tight coupling term or contribution (TC). The proportionality
constant can be perceived as a certain renormalised energy that is transported per parti-
cle. It accounts for the additional charging energy carried by electrons when a transition
involving double occupation occurs. This becomes even more clear by looking at the
currents when an external magnetic field is applied, as we will do in chapter 4. Since
this first term is proportional to the particle current, we expect it to be transport related.
The second term in Eq. (3.16) will often be referred to as the non-tight coupling contri-
bution (NTC). This term is, except for the tunnel coupling Γα, independent of the lead
under consideration for n > 0. As such, no directionality is present in the NTC term.
The second term can therefore be assumed to be only related to the generated heat, and
not to the transported heat. Furthermore, since it contains the fermion-parity amplitude
covector (p′|, it might teach us something more about the fermion-parity mode and the
inverted state |zi). We will come back to this later in chapter 6. Just as for the particle
current, also the formula for the heat current can be used in the study of time-dependent
thermoelectrics, as we will see in chapter 5.
As an example for the use of Eq. (3.16), the instantaneous (n = 0) energy current and

the adiabatic correction (n = 1) are calculated in App. A.2.





4 Dynamics in the presence of a
magnetic field

In this chapter, we will consider the quantum dot model discussed in the previous chap-
ters, but in a more general case. Specifically, we now assume that the spin-degeneracy
in the quantum dot is lifted, and that the tunnel-coupling to the leads is also spin-
dependent. This situation can be achieved by applying a magnetic field. The spin-
dependence of the model can be exploited in emerging technologies such as spintronics.
Since the quantum dot is operating using individual spins, it can - together with its time-
dependence - be used for controlled single-spin currents. We will repeat in this chapter
several of the steps taken in chapters 2 and 3, while focussing on the changes compared
to the spin-degenerate model presented there. Several expressions and derivations in this
chapter are rather long and are given in App. B.

4.1 Model
The system under consideration is exactly the same as the one introduced in Sec. 2.1,
except for the presence of an externally applied magnetic field on the dot. This magnetic
field lifts the spin degeneracy of the energy levels (Zeeman effect) of the dot and it makes
the tunnel-couplings spin-dependent. The magnetic field is furthermore assumed to be
applied locally on the dot and barriers, such that the leads themselves remain spin-
independent. The model is shown in Fig. 4.1. If not indicated differently here, the
variables and assumptions from Sec. 2.1 are retained.
The Hamiltonian describing the system is the Anderson Hamiltonian [33], Eq. (2.1),

HAnd = H +HLeads +HTun. The Hamiltonian of the quantum dot itself, H, becomes

H =
∑
σ=↑,↓

εσnσ + Un↑n↓. (4.1)

Notice that the spin-degeneracy is lifted by making the dot energy level εσ spin-dependent.
With this Hamiltonian, the total energy of the dot occupied by two fermions is ε↑+ε↓+U .
We will also use ε = 1

2 (ε↑ + ε↓) to denote the average of the spin-up and -down dot level
energies. With this average dot level, we can write the spin-dependent dot levels as
ε↑ = ε + ∆ε and ε↓ = ε − ∆ε, where 2∆ε = ε↑ − ε↓ is the Zeeman splitting. Since the
magnetic field is applied locally on the dot, the Hamiltonian describing the leads HLeads
remains the same as before.

37
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Figure 4.1: Model of the strongly interacting quantum dot, tunnel-coupled to two leads
and in a locally applied magnetic field. Compared to Fig. 2.1, the magnetic field induces a
splitting of the spin-degenerate energy level ε into ε↑ and ε↓. Moreover, the tunnel-coupling
strengths Γα become spin-dependent. Since the magnetic field is applied locally, the leads
are unchanged compared to Fig. 2.1.

Finally, the tunnel-coupling between the leads α and the dot is now described by

HTun =
∑
α,k

∑
σ=↑,↓

(
Vσαcαkσd

†
σ +H.c.

)
. (4.2)

The tunnelling matrix element Vσα, which couples lead α to the dot, is still momentum-
independent, but the magnetic field induces a spin-dependence. This spin-dependence is
then also present in the tunnel-coupling strength Γσα = 2πρσα |Vσα|2. We still consider
the wide band limit, in which both Γσα and ρσα are energy-independent. Here, we have
2Γα = Γ↑α + Γ↓α, Γσ = ∑

α Γσα and Γ = ∑
α Γα.

The results from Sec. 2.2 remain valid, apart from some small adaptations that we
will discuss in this paragraph. The kernel W that was given in Eq. (2.11) becomes
spin-dependent. Based on Fermi’s Golden rule, we find the matrix elements Wij in the
orthonormal basis i = {0, ↑, ↓, 2} to be

W =


−f+

ε↑ − f+
ε↓ f−ε↑ f−ε↓ 0

f+
ε↑ −f−ε↑ − f+

U↓ 0 f−U↓
f+
ε↓ 0 −f−ε↓ − f+

U↑ f−U↑
0 f+

U↓ f+
U↑ −f−U↑ − f−U↓

 . (4.3)

Where the notation for the Fermi-functions is similar as before:

f±εσ =
∑
α

Γσαf± (εσ − µα) =
∑
α

f±εσα

f±Uσ =
∑
α

Γσαf± (εσ + U − µα) =
∑
α

f±Uσα.
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4.2 Eigenmodes
We will now calculate and discuss the different eigenmodes of the magnetic kernel (4.3).
The first two eigenmodes (stationary and fermion-parity mode) are very similar to the
ones in the non-magnetic case, Sec. 2.3. On the other hand, the charge and spin modes
get mixed into new modes. Where possible, we will give compact expression for the
quantities under consideration. Often however, other ways to express these quantities
(e.g. in terms of Fermi-functions) and explicit derivations can be found in App. B.

4.2.1 Stationary state and fermion-parity mode
Both the mode corresponding to the zero eigenvalue and the fermion-parity mode can
be obtained in exactly the same way as in section 2.3, namely by using the existence of
a stationary state, probability conservation and the duality relation (2.12).
The first eigenmode, corresponding to the zero eigenvalue of the magnetic kernel W

Eq. (4.3) is the stationary mode:

γz =0
(z′| =(1|

|z) =
(1

4 −
1
2∆Nz + 1

4pz
)

|0) +
(1

4 + 1
2σz −

1
4pz

)
|↑)

+
(1

4 −
1
2σz −

1
4pz

)
|↓) +

(1
4 + 1

2∆Nz + 1
4pz

)
|2).

(4.4)

Although, the expressions of these quantities in terms of Fermi-functions are different
now, they still simplify to the values discussed before when the external magnetic field
is turned off. Next to the total stationary particle number Nz = (N |z), it is now useful
to also introduce spin-resolved quantities such as the average number of spin-up and
spin-down electrons on the dot when in the stationary state. The spin-up and -down
occupation operators can be introduced as |N↑) = |↑) + |2) and |N↓) = |↓) + |2), with
|N) = |N↑) + |N↓). The expectation values of these occupation operators for the dot
in its stationary state are denoted by N↑z = (N↑|z) and N↓z = (N↓|z). In Eq. (4.4),
also the new quantity σz was introduced. It can be calculated as σz = (σ|z), the total
spin expectation value of the dot in its stationary state. The spin operator is defined
as |σ) = | ↑) − | ↓) = |N↑) − |N↓). The other quantities in equations (4.4) and (B.1),
namely pz and ∆Nz, were introduced before in section 2.3.
The dependence of the occupations Nz, N↑z and N↓z on the level position ε can be

seen in Fig. 4.2 for the cases without an applied bias V = 0 and with a large applied bias
V � U . In both cases, the total occupation Nz increases monotonically for a decreasing
energy level ε as expected. The exact way this happens is however rather different.
When no bias is applied, Fig. 4.2(a), a spin-down electron always occupies the dot first,
as soon as ε↓ crosses the resonance of the leads. A spin-up electron can only enter once
the Coulomb blockade can be overcome, i.e. when ε↑ + U crosses the resonance of the
leads. Between these two resonances, the dot occupation is completely due to spin-down
electrons, which have the lower energy. This changes when a bias is applied between the
leads, as shown in Fig. 4.2(b). For clarity, a very large bias V � U was chosen, and only
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Figure 4.2: The average full stationary occupation Nz and spin-resolved occupations N↑z
and N↓z for the quantum dot in a magnetic field as a function of energy level position ε.
The dot is coupled to two leads, with a spin- and lead-independent tunnel-coupling strength.
The ticks on the axis with +∆ε are the resonances for spin-down electrons, while the ticks
with −∆ε are the resonances for spin-up electrons. In (a), the bias between the leads is
zero, such that this is equivalent to having only one lead, as in Fig. 2.3. In (b), a large
bias V � U is applied symmetrically over the leads. This is the model as depicted in
Fig. 4.1, but with a much larger bias. Only the behaviour around µL = V

2 is shown for
clarity. Around µR the behaviour is similar.

the resonances with the left lead are shown. The maximum average occupation is thus
only 1 now, since all relevant energy levels are still far above the resonances with the
right lead. When ε↓ crosses the resonance with the left lead, it again almost reaches its
maximum occupation (in this interval around µL). This time however, when ε↑ reaches
its resonance with the left lead, it also gets some probability to be occupied. In spite
of this, the spin-up occupation is not translated in an equal increase of the total dot
occupation Nz. Indeed: when a spin-up electron occupies the dot in this region, the
spin-down electrons loose their potential for occupation, since they can not provide the
additional charging energy for double occupation. The increase of N↑z is thus partially
compensated by a decrease of N↓z. Similar mechanisms are at play around the other
resonances.
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Using the duality relation (2.12), it is now easy to find the second eigenmode of the
kernel W from the first eigenmode (4.4). This second eigenmode, which we call again
the (fermion-)parity mode, its corresponding rate and amplitude covector are given by

γp =2Γ = Γ↑ + Γ↓
(p′| = [PI|z)]† = ((−1)Nzi|

=
(1

4 −
1
2∆Ni + 1

4pi
)

|0) +
(1

4 + 1
2σi −

1
4pi

)
|↑)

+
(1

4 −
1
2σi −

1
4pi

)
|↓) +

(1
4 + 1

2∆Ni + 1
4pi

)
|2)

|p) =|P) = |(−1)N).

(4.5)

In these expressions, we again used the notation for the inverted stationary state, zi =
Iz = z (−ε↑,−ε↓,−U,−µ). We also defined the following additional expectation values
with respect to the inverted stationary state: the spin-resolved particle numbers N↑i =
(N↑|zi) and N↓i = (N↓|zi), and the total spin σi = (σ|zi).
As can be seen from all these expressions, there are no large changes in the stationary

and fermion-parity modes with respect to the system without an applied magnetic field.
All differences originate from the splitting of the spin-degeneracy, which allows for dif-
ferent energies for spin-up and -down levels. This introduces non-vanishing total spins
σz and σi. It also further complicates the expressions in terms of Fermi-functions, which
is why we omitted them from the main text. This demonstrates the powerful approach
of working with observables, amplitude covectors and operators as we do here. Without
the present approach the calculations (that follow) would be much more cumbersome
than they are now.

4.2.2 Mixed charge and spin modes
When an external magnetic field is applied, the charge and spin modes that were present
in the non-magnetic case are altered more drastically than the stationary and fermion-
parity modes. Most importantly, these modes couple such that we cannot speak any
longer about a charge and spin mode, but rather of combinations of both.
In order to find expressions for the third and fourth eigenvalues and eigenvectors, one

needs to consider that the matrix representation of W is always given with respect to a
certain basis as we have seen in Eq. (2.8):

W =
∑
i, j

Wij|i)(j|, with Wij = (i|W |j).

Until now, we have used two different basis sets. Either we used the basis of the physical
possible states of the dot {0, ↑, ↓, 2}, for which the kernel elements for the dot with an
applied magnetic field are given by Eq. (4.3). In the non-magnetic case, we also used the
eigenbasis {z, p, c, s} of the kernel W . In that basis the kernel was diagonal with the
eigenvalues on the diagonal. Although we will use another basis set for the quantum dot
in a magnetic field, the charge and spin operators and amplitude covectors will still be
very useful. We thus restate and redefine them here in the presence of a magnetic field,
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such that they retain their physical interpretation. Keep in mind however that they are
not any more the eigenvectors of the magnetic kernelW ! The charge amplitude covector
and operator remain unchanged with respect to the original definition Eq. (2.19):

(c′| = (N |−Nz(1|

|c) = 1
2 (−1)N [|N)−Ni|1)] .

(4.6)

The spin amplitude covector and operator on the other hand now have to take into
account the possibility of non-zero spin in the stationary state σz. In analogy to Eq. (4.6),
and to its original definition Eq. (2.20), we now define the spin amplitude covector and
operator as

(s′| = (σ|− σz(1|

|s) = 1
2
[
|σ) + σi| (−1)N)

]
= 1

2 (−1)N [−|σ) + σi|1)] .
(4.7)

This reduces to the old equation (2.20) when the system is spin-independent. Whenever
we use (c′|, (s′|, |c) or |s) in this chapter, we refer to these new definitions.
We will now use temporarily another basis set in order to find the two last eigenmodes

of the kernel with an applied magnetic field. Since the first two eigenmodes of W
(stationary and parity mode) are already known, we use these in our basis set. The
other two, yet to be introduced basis states will be denoted by x and y. The basis set is
then {z, p, x, y}. Notice that this is still not the eigenbasis of W , but rather a basis set
that will help us find that eigenbasis. The basis states x and y should be chosen such
that they are orthogonal to both the eigenstates z and p, as well as to each other. This
is important for two reasons. First, it makes sure that the kernel W is block-diagonal,
which makes it particularly easy to find its remaining eigenmodes. Second, it ensures
that these unknown eigenmodes can be expressed as a linear combination of only the
basis operators x and y. With these considerations in mind, we choose the amplitude
covectors and operators to be

(x′| = (N↑|−N↑(1| (4.8a)
(y′| = (N↓|−N↓(1| (4.8b)
|x) = |PN↓)−N↓i| (−1)N) (4.8c)
|y) = |PN↑)−N↑i| (−1)N). (4.8d)

It can be checked that these vectors indeed satisfy biorthogonality. In the basis spanned
by {z, p, x, y}, the kernel W now contains the elements

W =


−γz 0 0 0

0 −γp 0 0
0 0 (x′|W |x) (x′|W |y)
0 0 (y′|W |x) (y′|W |y)

 =


0 0 0 0
0 −2Γ 0 0
0 0 −Γ↑ −f+

ε↑ + f+
U↑

0 0 −f+
ε↓ + f+

U↓ −Γ↓

 . (4.9)
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From this expression for the magnetic kernel W , we deduce the two remaining eigen-
vectors. We will denote these by a and b, such that the orthogonal eigenbasis for the
magnetic kernel W becomes {z, p, a, b}. The rates γa and γb of the eigenmodes a and
b, which are the negated eigenvalues, are

γa = −λa = Γ +
√(

f+
ε↑ − f+

U↑

) (
f+
ε↓ − f+

U↓

)
+ 1

4 (Γ↑ − Γ↓)2

γb = −λb = Γ−
√(

f+
ε↑ − f+

U↑

) (
f+
ε↓ − f+

U↓

)
+ 1

4 (Γ↑ − Γ↓)2.

(4.10)

The eigenmodes |a) and |b), and amplitude covectors (a| and (b| are given in App. B.2.
They can be expressed in several (lengthy) ways, both in terms of x and y and in terms
of the charge c and s modes. Both of these forms will prove to be useful in specific cases.
These eigenvectors a and b are normalised in the sense that (a′|a) = (b′|b) = 1.

These normalisation conditions left us however for both the a and b mode with a relative
multiplication factor of the vectors that can be chosen freely. When we consider the
modes a and b in the limit without a magnetic field, i.e. B → 0, it is desirable that they
reduce to the modes in the absence of a magnetic field. This fixes the prefactors. One
can indeed check that in the limit B → 0, the modes a and b become

|a)→ 1
2 [|x) + |y)] = |c) |b)→ 1

2 [|x)− |y)] = |s) (4.11a)

(a′|→ (x′| + (y′| = (c′| (b|→ (x′|− (y′| = (s′|. (4.11b)

While in the case without a magnetic field the charge and spin eigenmodes are self-dual
in the sense of the duality relation (2.12), this same duality relation now cross-links the
a and b eigenmodes. Indeed, their rates, amplitude covectors and operators are related
as

γb = 2Γ− Iγa

|b) = −1
4

(γa − γb)
f+
ε↑ − f+

U↑
[(a′|IP ]†

|a) = 1
4

(γa − γb)
f+
ε↑ − f+

U↑
[(b′|IP ]† .

The extra factors in the last two of these equations arise from the specific normalisation
of a and b that we chose. The duality relation (2.12) can here thus again be used to find
one of the eigenmodes, once the other is known (apart from normalisation, which one
has to choose anyway). This extension of the results of [30] to include spin-dependence,
clearly shows that strategy presented there (and used in this thesis) is certainly not
restricted to a single specific system.
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4.3 Sudden switch: decay rates, charge and spin
In this section, we will briefly discuss the time-dependence of the expectation value of the
total charge and spin of the quantum dot after a sudden switch in any of the parameters
of the system. In contrast to the discussion in Sec. 2.4, we here fully take the spin-
dependence that is due to the external magnetic field into account. As we discussed in
the previous section, the charge c and spin s modes are now mixed into the new a and
b eigenmodes. This will significantly change the dynamics of the charge and spin in the
quantum dot system. Additional, explicit expressions that were omitted in the text can
once again be found in App. B.3.
The expectation values for the total charge and spin in the dot are initially 〈N〉 (0) =

(N |z0) = Nz0 and 〈σ〉 (0) = (σ|z0) = ((↑ |− (↓ |) |z0) = σz0. Expanding the time-
dependent density operator in eigenmodes ofW (the decay modes from after the switch),
we find for t > 0:

|ρ(t)) = eWt|ρ0) = eWt|z0)
= |z)(z′|z0) + e−γpt|p)(p′|z0) + e−γat|a)(a′|z0) + e−γbt|b)(b′|z0).

(4.12)

By having the time-dependence of the density operator, we have everything we need
to calculate the expectation values of the charge 〈N〉 (t) and spin 〈σ〉 (t). For the charge
we find

〈N〉 (t) = (N |ρ(t)) =
[
(↑ | + (↓ | + 2(2|

]
|ρ(t)),

while the spin expectation value can be calculated as

〈σ〉 (t) = (σ|ρ(t)) = ((↑ |− (↓ |) |ρ(t)).

The final results of these calculations can be written in a compact form as

〈N〉 (t) =
∑
k=a,b

∑
σ=↑,↓

(−1)δk,b
γa − γb

[
Nσz

(
1− e−γkt

)
+Nσz0e

−γkt
] [
γk −

(
f−εσ̄ + f+

Uσ̄

)]
(4.13)

〈σ〉 (t) =
∑
k=a,b

∑
σ=↑,↓

(−1)δk,b(−1)δσ,↓
γa − γb

[
Nσz

(
1− e−γkt

)
+Nσz0e

−γkt
] [
γk −

(
f+
εσ̄ + f−Uσ̄

)]
,

where
δk,b =

{
0 if k = a

1 if k = b
, δσ,↓ =

{
0 if σ =↑
1 if σ =↑

and σ̄ =
{
↑ if σ =↓
↓ if σ =↑

.

These expressions for the evolution of the charge and spin expectation values show
us clearly that there is not one specific relaxation rate related to either charge or spin.
They are mixed together in the a and b modes, which is why 〈N〉 (t) and 〈σ〉 (t) have two
characteristic rates: γa and γb. It is interesting to consider some limits to get a better
understanding of the behaviour of the expectation values.
When we turn off the magnetic field (i.e. the limit ε↑ = ε↓ = ε and Γ↑ = Γ↓ = Γ),
〈N〉 (t) and 〈σ〉 (t) indeed reduce to the results without an applied magnetic field. As
noted before, γa and γb are in this limit equal to γc and γs and the charge and spin
expectation values only contain their respective relaxation rates.
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Figure 4.3: The decay rates of the fermion-parity mode γp, the a mode γa and the b mode
γb as a function of the dot energy level. The dot is connected to one lead (or multiple leads
at the same electrochemical potential) with a spin-independent tunnel-coupling strength
Γ = Γ↑ = Γ↓. The on-site interaction is U = 10T . The different rates are shown without
a magnetic field (solid), with a weak magnetic field (dotted) and a stronger magnetic field
(dash-dotted). For these two last cases, we plot ∆ε = U

5 and ∆ε = U
3 respectively.

We now again consider a non-zero magnetic field, but we assume that there is no
on-site repulsion, i.e. U = 0. In this limit, γa = Γ↑ and γb = Γ↓. The charge and spin
expectation values become rather simple:

〈N〉 (t) = N↑z
(
1− e−Γ↑t

)
+N↑z0e

−Γ↑t +N↓z
(
1− e−Γ↓t

)
+N↓z0e

−Γ↓t

〈σ〉 (t) = N↑z
(
1− e−Γ↑t

)
+N↑z0e

−Γ↑t −N↓z
(
1− e−Γ↓t

)
−N↓z0e−Γ↓t.

This is indeed what one would expect. In the absence of local interaction, there is
no interaction at all between spin-up and spin-down particles. They thus behave as
independent, different entities with each their own decay rate Γ↑ and Γ↓.
To conclude this section, it is interesting to see the influence of the magnetic field on

the decay rates γp, γa and γb. This is shown in Fig. 4.3. The strength of the magnetic
field is here measured in terms of the Zeeman splitting 2∆ε = ε↑ − ε↓. The parity
rate stays constant as before. Without an applied magnetic field, the a and b rates are
simply the charge and spin rates that we saw in Fig. 2.4. The stronger the magnetic
field, the more the charge and spin rates mix. The difference between γa and γb becomes
smaller. For a Zeeman splitting much larger than the on-site interaction U , these rates
are indistinguishable and equal to Γ (not shown in figure). Similar to the limit U → 0,
the two spins behave as independent particles. Now this happens because always only
one of the energy levels ε↑ or ε↓ is close to the electrochemical potential of the lead. As
a result, only one spin-particle is of importance for the tunnelling at every ε. Moreover,
mathematically the on-site interaction U � ∆ε, such that it can be neglected.
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4.4 Dynamics for arbitrary driving

In this section, we calculate the particle, energy and heat currents through the system
when there is an external magnetic field applied. We apply a similar strategy as in chap-
ter 3. First, we find an expression for the density operator |ρ(t)). Since the complexity of
the expressions grows very quickly with increasing orders in the adiabatic expansion, we
will only proceed up to the first order in the driving frequency Ω

Γ (i.e. the first adiabatic
correction). Later, we find expressions for the different currents through the system for
general |ρ). Finally, we fill in the explicitly calculated density operator up to first order
in the driving frequency Ω

Γ , which gives us explicit expressions for the currents up to the
first adiabatic correction. Because of their lengthy nature, most of the derivations in
this section can be found in App. B.
We do not show any results for a specific type of driving here. However, the generality

of our results makes them applicable to simulations of a large variety of nanosystems
placed in a magnetic field, including spintronics devices or adiabatic spin pumps.

4.4.1 Density operator

We find the instantaneous and first adiabatic correction (n = 0 and n = 1) of the
expansion of the density operator |ρ(t)) = ∑

n |ρ(n)) in orders of Ω
Γ . The steps we employ

to do so are carefully explained in App. B.4, and are analogous to the ones in Sec. 3.1.2.
The final result is

|ρ) ≈|ρ(0)) + |ρ(1)) = |z) + P (1)
p |p) + P (1)

a |a) + P
(1)
b |b)

≈|z)− 1
2γp

[
(2N↓i − 1) ∂tN↑z + (2N↑i − 1) ∂tN↓z + 1

2∂tpz
]

|p)

− 1
γaγb

[(
f−ε↓ + f+

U↓

)
∂tN↑z +

(
f−ε↑ + f+

U↑

)
∂tN↓z

]
|c)

− 1
γaγb

[(
f+
ε↓ + f−U↓

)
∂tN↑z −

(
f+
ε↑ + f−U↑

)
∂tN↓z

]
|s).

(4.14)

This result has a similar shape as the result in the absence of a magnetic field1, Eq. (3.6).
There are two main alterations with respect to the zero magnetic field case. First of all,
the total occupation number is always separated into an occupation number for spin-up
and -down electrons respectively. This is the expected behaviour, since the magnetic field
alters the behaviour of the spin-up and -down electrons in a different way. We saw this
already in the switching case, Sec. 4.3. Secondly, we see that both the operators |c) and
|s) appear, with a prefactor that combines the rates γa and γb. The spin mode appears
because the magnetic field lifts the spin-independence in the system. The appearance
of both rates γa and γb in the prefactors can be seen as yet another consequence of the
mixing of the spin and charge mode. The result (4.14) is used in the next subsection to
calculate the instantaneous currents and their first adiabatic corrections.

1It also reduces to that result in the limit B → 0, as it should.



47 4.4 Dynamics for arbitrary driving

4.4.2 Particle current
We now calculate the particle current, in the same way as we did in chapter 3. The
calculation becomes more complicated however, since the charge mode is not longer an
eigenmode of the kernel. Nevertheless, starting from Eq. (3.7), we can still find a general
equation by splitting the amplitude covector (N | into a spin-up and -down component:

INα = (N |Wα|ρ(t)) = (N↑|Wα|ρ(t)) + (N↓|Wα|ρ(t)).

In this way, we find after some algebra the general result

INα = γc↑α (N↑zα − (N↑|ρ(t))) + γc↓α (N↓zα − (N↓|ρ(t))) , (4.15)

where we defined the new rates

γc↑α = −(c′α|Wα|xα) = Γ↑α + f+
ε↓α − f+

U↓α

γc↓α = −(c′α|Wα|yα) = Γ↓α + f+
ε↑α − f+

U↑α.

The details of this derivation can be found in App. B.5.
We now need to be careful with the interpretation of these rates. γc↑α denotes the

total charge decay rate restricted to lead α due to spin-up occupation of the dot. It is
thus not the charge decay rate of spin-up particles. Similarly, γc↓α is the total charge
decay rate restricted to lead α due to spin-down occupation of the dot.
Notice that the current equation (4.15) is written in the same structure as the corre-

sponding equation without a magnetic field, Eq. (3.8). The only important difference
lies in the separation into a term related to the spin-up and -down electrons. Be aware
however: because of the specific interpretation of γc↑α and γc↓α, these two terms do not
correspond to the spin-resolved currents. Rather, they are the currents as a result of the
occupation of the dot by respectively spin-up or -down electrons. By rearranging the
terms of the particle current expression, we can however also express it as the sum of
the spin-resolved currents:

INα = IN↑α + IN↓α.

Detailed expressions for the spin-resolved currents can again be found in the appendix B.5.
Each of these spin-resolved currents contain a part of both charge decay rates γc↑α and
γc↓α. This means that each spin-resolved current depends on the occupation of the dot
with the same spin, as well as the dot occupation with the opposite spin. This effect
arises due to the on-site interaction U between the two particles of opposite spin.
Now that we have a general form for the particle current through lead α, we can use

the explicit expression for the density operator up to first order in Ω
Γ , Eq. (4.14), to get

explicit results. The instantaneous particle current and its first adiabatic correction are

I
(0)
Nα = γc↑α (N↑zα −N↑z) + γc↓α (N↓zα −N↓z)

I
(1)
Nα = 1

γaγb

[
γc↑αΓ↓ − γc↓α

(
f+
ε↓ − f+

U↓

)]
∂tN↑ + 1

γaγb

[
γc↓αΓ↑ − γc↑α

(
f+
ε↑ − f+

U↑

)]
∂tN↓.

Spin-resolved equations are again given in the appendix. As expected, the first order
correction depends on the time derivatives of both the spin-up and -down occupation
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numbers, as well as the two rate γa and γb (since the previous charge related rate γc gets
mixed into these rates). Just as in the non-magnetic limit Eq. (3.11), the parity mode
does not appear yet, since it is related to many-particle effects that do not enter the
particle current as a single-particle quantity.

4.4.3 Energy and heat current
To conclude this chapter on the dynamics of a quantum dot when placed in an external
magnetic field, we present the energy and heat currents through such a system. We
focus on the energy current, since the heat current can simply be obtained from IQα =
IEα − µαINα. The energy current is given by Eq. (3.12):

IEα = (H|Wα|ρ).

Because of the lifted spin-degeneracy, the Hamiltonian is now different:

(H| = ε↑(N↑| + ε↓(N↓| + U(2|.

A calculation similar to the one that leads to Eq. (3.15) results in

IEα = (ε↑ + U (1−N↓iα)) IN↑α + (ε↓ + U (1−N↑iα)) IN↓α − Uγpα(p′α|ρ). (4.16)

Details of this calculation are given in App. B.6. From the fact that Nσ̄iα appears in the
prefactor of the particle current of the opposite spin INσα, we see that the dynamics of
spin-up and -down electrons are coupled through the interaction U . Also here we point
out the similarity of Eq. (4.16) with its spin-degenerate counterpart Eq. (3.15). The
tight-coupling contributions get split up in spin-resolved contributions. The prefactors
of the tight-coupling terms have now a particularly clear interpretation. Every electron
with spin σ carries an energy εσ. When the occupation of the level εσ̄ with opposite
spin with respect to lead α is high enough (so Nσ̄iα ≈ 0), the electron carries also
the additional charging energy U . This can be explained based on the model: double
occupation of the dot is necessary for the on-site repulsive interaction to be present. The
energy current equation (4.16) provides us with the analytical expression of this fact.
Expressions for the energy current in zeroth and first order in Ω

Γ are not discussed here
because of their lengthy nature. Nevertheless, they can be found (together with their
derivation) in App. B.6.



5 Increasing thermoelectric efficiency
by introducing time-dependence

The very general theoretical results that we obtained in the previous chapters can be
used to study a wide variety of electronic nanosystems. This is the first of two chapters
in which we use them to investigate a specific problem. The results in these chapters
are preliminary, since the research is still on-going. As such, they should be considered
as outlooks on a few of the many possibilities arising from the results obtained in this
thesis.

5.1 Thermoelectric performance of time-dependent
systems

The thermoelectric effect refers to the phenomenon in which an applied temperature
gradient over a (nanoscale) structure generates a voltage gradient. This voltage gradient
can then in turn be used to power an electrical device. The thermoelectric effect can
thus be used to convert (waste) heat into useful electrical power. This is especially
interesting for waste heat recovery in modern IC chips that must be cooled externally to
avoid overheating. A review of this effect, specifically for quantum dots, can be found
in [38]. The thermoelectric efficiency is defined as the ratio between the useful energy
that is delivered to the electrical device and the heat absorbed from the source of the
thermoelectric device. Optimising the thermoelectric efficiency is most often achieved
by changing the used materials while operating the device in the steady state. In this
stationary regime, the achieved efficiencies stay however insufficient for most practical
applications [44].
More recent theoretical studies focussed on thermoelectrics in time-dependently driven

nanosystems [31, 45–49]. They all study slightly different systems with varying assump-
tions on the exact time-dependence and other system parameters. Most of them use a
Green’s function formalism to calculate the thermoelectric quantities of interest. Here,
we will mainly connect to the paper by Zhou et al. [31], in which the authors study the
dynamic thermoelectric efficiency in a quantum dot system with time-dependent control1
over the gate. Interestingly, they find that in certain regimes a boost of the thermoelec-
tric efficiency is possible as a result of the induced time-dependence. The very general
formulas for particle and heat current that were derived in this thesis (Sec. 3.2) provide
an excellent and well-manageable alternative to the Green’s function formalism used in
[31]. While our approach is limited to weak tunnel coupling, Γ� T , it can account for

1This external input driving is not taken into account as an input energy when calculating the efficiency.
One can imagine it to be some waste force induced by a nearby system.

49
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Figure 5.1: The system under consideration in this chapter. The driving of the dot level
ε(t) is explicitly given by Vg(t). The applied voltage bias is small: µR = µL + ∆µ, with
∆µ � µL. In addition, a small temperature gradient is applied such that TR = TL + ∆T ,
with ∆T � TL.

a large on-site Coulomb interaction U � T which becomes a crucial ingredient of the
heat current in the case of time-dependent driving with sudden voltage switches [29]. In
this chapter, we give an outline on how the thermoelectric efficiency of a quantum dot
with strong on-site interaction can be calculated using the formulas that were presented
in this thesis. As in [31] and as detailed in the following, we assume small gradients in
chemical potential and temperature, allowing us to a employ a linear response theory
for which we need to determine the corresponding Onsager coefficients.

5.2 Linear response theory and Onsager reciprocal
relation

We consider a quantum dot, such as shown in Fig. 5.1. The dot level ε is driven by a
gate potential Vg(t). The system is subject to a small bias in electrochemical potential
∆µ � µ as well as a small temperature bias1 ∆T � T , such that µR = µL + ∆µ and
TR = TL + ∆T . We also denote TL = T and µL = µ. In this regime with small biases,
linear response theory allows for a characterisation of the electrothermal properties of
the electronic system [50]. Indeed, a linear expansion in ∆µ and ∆T of the charge and
heat currents INα and IQα through the lead α gives

[
INα
IQα

]
=
[
IDNα
IDQα

]
+
[
Gα Lα
Mα Kα

] [
∆µ
∆T

]
. (5.1)

1Notice that we never had a temperature bias before in this thesis, but all theory remains equally
valid.
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Here we used matrix notation to make the structure more clear. The first vector on the
right-hand side represents the displacement currents

IDNα = INα|∆µ=∆T=0 IDQα = IQα|∆µ=∆T=0 .

These currents account for the transport of charge and heat that is exclusively due to
the time-dependent driving Vg(t), even in the absence of electrochemical or thermal
gradients, and hence do not appear in a usual, time-independent linear response theory.
The effect of the small biases on the system is given by the last term of Eq. (5.1).

In a time-independent theory, the matrix that appears here is the so-called the Onsager
matrix; here, we extend the definition of its elements – the Onsager or kinetic coefficients
that characterise the thermal and electric response of the quantum dot in the linear
regime – to the time-dependent regime. More precisely, the coefficients are defined as
the low-bias limit of the derivatives of the time-dependent charge and heat currents with
respect to both temperature and electrochemical potential biases:

Gα = ∂INα
∂∆µ

∣∣∣∣∣
∆µ=∆T=0

Lα = ∂INα
∂∆T

∣∣∣∣∣
∆µ=∆T=0

Mα = ∂IQα
∂∆µ

∣∣∣∣∣
∆µ=∆T=0

Kα = ∂IQα
∂∆T

∣∣∣∣∣
∆µ=∆T=0

.

(5.2)

The diagonal coefficients Gα and Kα are the electrical and thermal conductances, re-
spectively. The off-diagonal ones, Lα and Mα, are the thermoelectric and electrothermal
conductances. The latter quantify heat to charge current conversion (Seebeck effect)
and charge current to heat conversion (Peltier effect). The larger Lα (Mα), the larger is
the electrical (heat) current produced by a temperature gradient ∆T (voltage bias ∆µ)
between the leads. Importantly, whenever micro-reversibility (time-reversal symmetry)
is fulfilled by the system, Lα and Mα are not independent. They satisfy the so-called
Onsager reciprocal relation [50, 51]

Mα = T Lα. (5.3)

As soon as time-reversal symmetry is broken, this relation does not always hold any
more, implying in particular that it does not any more restrict the achievable efficiencies
in the same way. This breaking of time-reversal symmetry is exactly what we introduce
by having a time-dependent driving scheme!

5.3 Onsager coefficients in stationary limit
We now show the results for the Onsager coefficients through the system of Fig. 5.1 in
the stationary, time-independent limit. Already in this stationary regime, the notation
in terms of modes and observables introduced in this thesis is very insightful. Results
for a switch case, such as described in Sec. 2.4 have also been obtained already. These
expressions still need some further investigation however, and are not shown here. In
the limit t→∞ they reduce to the stationary Onsager coefficients that we discuss now.
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The stationary currents I(0)
Nα and I(0)

Qα are given by formulas (3.9), (3.17) and (A.4)1.
By calculating the derivatives of these currents with respect to the voltage bias and
temperature gradient according to Eq. (5.2), we find all elements of the Onsager matrix
in Eq. (5.1). All derivatives can be expressed in terms of known variables.
For the electrical conductance we find

G(0)
α = Γᾱ

Γ γc
∂Nz

∂∆µ

∣∣∣∣∣
∆µ=∆T=0

= ΓαΓᾱ
2TΓ3γc(2Γ− γc)Nz (2−Nz) ,

where ᾱ is the opposite of α. The electrical conductance thus is proportional to the
charge relaxation rate γc and to the variation of the average electron occupation number
in the dot, Nz, due to a variation of the voltage bias ∆µ.
The thermoelectric and electrothermal conductances are

L(0)
α = 1

T
G(0)
α

[
ε− µ+ U

2 (2−Ni)
]

and
M (0)

α = G(0)
α

[
ε− µ+ U

2 (2−Ni)
]
,

which satisfy the reciprocal relation Eq. (5.3), i.e. M (0)
α = T L(0)

α . A direct consequence
of this reciprocal relation is that only the charge mode enters M (0)

α [28–30], since L(0)
α

determines the charge current which in general is not affected by the parity mode. This
is interesting, as the heat current from which M (0)

α derives in principle also depends on
the parity mode. Besides G(0)

α , we see that the average effective energy 〈Eα〉 of every
tunnelling electron (the renormalised energy in the square bracket, as we discussed in
Sec. 3.2.2) gives the magnitude of the heat to charge current conversion and vice versa
in this stationary state regime. In particular, the Seebeck coefficient or thermopower,
which sets the voltage drop per Kelvin generated by a temperature gradient across the
two leads, is

S(0)
α = L(0)

α

G
(0)
α

= 1
T

[
ε− µ+ U

2 (2−Ni)
]

= 〈Eα〉
T

.

This result is in agreement with Mott and Matveev relations valid for a generic diffusive
conductor [52, 53]. The larger 〈Eα〉, the higher the electric current produced by ∆T
and the larger the efficiency of this process. Moreover, because this Seebeck coefficient
contains the inverted dot occupation Ni, this linear response regime quantity can provide
us with a nice way to access Ni experimentally.
Finally, the thermal conductance is

K(0)
α = 1

T
G(0)
α

{[
ε− µ+ U

2 (2−Ni)
]2

+
(
U

2

)2
Ni (2−Ni)

}
.

From this equation, we see that the heat produced by the temperature gradient is again
proportional to G(0)

α and the renormalised average energy squared 〈Eα〉2. The additional
1Indeed, if there is no time-dependence, there are only instantaneous contributions to the currents.
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renormalisation factor U
2Ni(2−Ni) originates from the fermion-parity mode. As discussed

in Sec. 2.3, Ni is typically 0 or 2. This means that this additional renormalisation factor
has typically a very small contribution, with the exception of a small region around the
particle-hole symmetric point.

5.4 Outlook
As mentioned before, the Onsager coefficients for a fast switch case have also been
calculated. These results are still work in progress and we are cross-checking them with
the corresponding data from [31] in the limit U → 0. It is remarkable that our formalism
allows to write down analytical expressions for the quantities involved, whereas the final
results in [31] had to be obtained numerically. These analytical expressions can hopefully
tell us something more about the origin of the increase in efficiency. The system studied
in [31] does not take into account an on-site interaction U . We want to see which effect
this additional interaction has on the thermoelectric efficiency, and more generally on
the Onsager coefficients.





6 Signatures of fermion-parity mode
and inverted dot model

In chapters 2 to 4, we have shown the theoretical approach of this thesis to be a very
useful tool in the study of the dynamics of a quantum dot with a general time-dependent
driving. However, several recent works [27–30, 32] have pointed out that the main
concepts of this approach – the fermion-parity mode [28, 54, 55] and the inverted dot
model [29, 30] – also have important practical consequences for experiments measuring
the energy emitted via electron tunnelling from a quantum dot after a fast level switch.
One possible example is already approached in chapter 5. With the core result of this
thesis at hand, we have been able to extend this analysis of the experimental relevance
to moderately fast, but otherwise completely arbitrary time-dependent driving schemes.
Our main finding, as discussed and explained in detail in the following sections, is that
the average heat current flowing from the dot per driving cycle typically does not exhibit
features that can unambiguously be related to the fermion-parity mode or the inverted
model. On the one hand, this shows that the study of time-resolved currents after
sudden level shifts seem more suitable to find experimental evidence for the underlying
fundamental fermion-parity duality relation [29]. On the other hand, it also yields a more
concrete picture for the specific elements in experiments and applications for which the
physical implications of the parity mode have to be taken into account. As already noted
in the previously mentioned works, a minimum requirement for the fermion-parity mode
to play a role is that two-particle effects are at play. The following treatment thus mainly
focusses on the energy (heat) current which directly contains the Coulomb interaction
energy as a two-particle contribution.

6.1 Stationary features
Since even the instantaneous (stationary) energy current I(0)

Eα as written in Eq. (A.4)
contains variables that are directly related to the inverted dot model, it is already worth
studying whether this stationary limit exhibits any clearly visible features. This is of
particular interest for experiments, as the measurement of a stationary current is more
feasible than the measurement of time-resolved currents. In this section, we therefore
focus on a system that is not time-dependently driven. To be able to study the contribu-
tions of different quantities of the inverted dot model (Niα and piα) in I(0)

Eα, we separate
the latter into different terms:

I
(0)
Eα = (ε+ U) I(0)

Nα −
U

2 γpα
(
pz
2 −Nz + 1

)
− U

2 [γcα (Nzα −Nz) + γpα (Nz − 1)]Niα −
U

4 γpαpiα.
(6.1)
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Here, the terms on the first line do not contain any inverted dot model quantities, while
on the second line two terms containing Niα and piα are separated. Figure 6.1 shows all
relevant variables appearing in this equation as a function of ε for one of the two leads
(left) to which the dot is coupled. It was already discussed in connection to Fig. 2.3
that NiL only shows a (strong) ε-dependence around ε = µL − U

2 ≡ εs (the particle-hole
symmetric point). Also piL has its only feature around this same εs. From Fig. 6.1 it
is immediately clear that in none of the considered cases a sudden increase/decrease
(signature of NiL, second row) nor a local minimum/maximum (signature of piL, third
row) can be seen in I(0)

EL around ε = εs (top row). As argued in the following, this holds
more generally for all the situations in which our dot model is valid.
To this, let us estimate the terms in the second line of Eq. (6.1), which could in principle

contain signatures of the inverted model. We start with the contribution proportional
to Niα. Expressing all terms explicitly in terms of Fermi-functions, one can show that
for a level position set to the signature point εs, the prefactor is bounded as∣∣∣∣U2 [γcα (Nzα −Nz) + γpα (Nz − 1)]

∣∣∣∣ ≤ Γα |U | exp
(
− U

2T

)
.

The factor in front of Niα is algebraically suppressed for U � T , and even exponentially
suppressed when U � T . Since Niα itself is bounded by the maximal dot occupation 2,
the term can only become relevant in the regime U ≈ T in which any possible signature
of the inverted model at εs is already too smeared to be clearly distinguishable (see also
Fig. 6.1).
The observable piα is almost always 1, as the attractive interaction in the inverted dot

model prohibits a stable single occupation. At the point ε = εs, piα reaches a global
minimum. Its deviation from 1 at this point can be shown to be limited by

|1− piα| ≤ 2 exp
(
− U

2T

)
. (6.2)

This confirms again Fig. 6.1, showing that the deviation from unity is exponentially sup-
pressed when U � T . For higher temperatures, the signature becomes larger, but again
also more smeared out due to thermal broadening. It can again not be distinguished.
Our first main conclusion is thus that the contributions related to the parity mode and

the inverted dot model are either very small or indistinguishable from other features, and
hence do not play any role for experiments or applications which rely on the stationary
energy current in the absence of time-dependent driving. On the one hand, this result
is consistent with the fact that the time scales of the charge mode, γc, and the parity
mode, γp, do not play a role in the stationary long-time limit, since this limit is time-
independent. On the other hand, recalling that the effect of the parity mode on the
transient heat current in the highly non-stationary situation after a sudden level switch
is substantially different from that of the charge mode, our finding immediately gives rise
to the question how the transition from the completely stationary case to the transient
behaviour in the switch case takes place. With the main result of this thesis at hand, we
can now analytically explore this transitional regime of moderately fast time-dependent
driving. This enables us, in the following, to narrow down the conditions under which
the parity mode becomes essential for the physical description.
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Variables contributing to the instantaneous energy current I
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U ≈ T , ΓL > ΓR

Figure 6.1: All non-constant variables that appear in equation (6.1) as a function of ε. The
plots are for the case of a dot coupled to only two leads (α = L, R), with µL > µR. The on-
site interaction U is such that µL−µR � U . All plots are made in two temperature regimes:
one in which T � U (blue curves) and one in which T ≈ U (red curves) was chosen such
that the factor in front of Niα in Eq. (6.1) would be maximal. Next to different temperature
regimes, the dependence is also plotted for varying coupling strength to the different leads.
For the solid lines, the coupling strength to both leads is the same (ΓL = ΓR). The dashed
lines show the situation for a much (ten times) stronger coupling to the left lead than to
the right lead (ΓL > ΓR). In case there is no dashed line drawn, the values for asymmetric
coupling coincide with those of the symmetric coupling. The variables are plotted for the
left lead (α = L). We are interested in signatures of NiL or piL. These signatures are
expected to be seen around εs = µL − U

2 , so only a limited interval centred on this ε is
shown.
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6.2 Tight coupling in small bias regime
To introduce non-stationary conditions into the system, we consider a driven quantum
dot for which it is sufficient to study the time evolution only up to a finite non-vanishing
order n in the adiabatic expansion parameter Ω

Γ . The non-instantaneous energy current
contributions are then given by Eq. (3.16):

I
(n)
Qα

n6=0=
[
ε− µα +

(
(2|cα) + γpα

γcα
(p′α|c)

)
U

]
I

(n)
Nα︸ ︷︷ ︸

TC

−γpαU(p′|ρ(n))︸ ︷︷ ︸
NTC

, (6.3)

where (N)TC is the (non-)tight coupling contribution to this current, as we discussed
in Sec. 3.2.2. In this equation, the fermion-parity mode is clearly present in the last,
non-tight coupling term. We know that the fermion-parity mode is only expected to play
a role when two-particle effects are present. Such two-particle effects can be expected
when the driving frequency is sufficiently high. The parity-related NTC term is shown
time-resolved in Fig. 6.2(a), where no bias is applied across the leads and only the dot
level is driven as ε(t) = ε̄+ δε sin(Ωt) with driving amplitude δε = 0.1U . As can be seen
in the figure, this term shows a clear time-dependent pattern. Performing these kind of
time-resolved measurements on the energy or heat current is infeasible in an experimental
setting. Experimentally, there are typically two relevant types of measurements possible.
Either one filters out specific components, which corresponds to measuring the Fourier

spectrum of the signal. The frequency spectrum of the non-tight coupling term is dif-
ferent from the other terms in Eq. (6.3). The main distinction of the NTC term with
respect to other contributions is namely that it is made up of less frequency components.
Nevertheless, we could show (not specifically discussed here), that it is not possible to
detect these differences in an experiment.
Alternatively, one can average the results over one driving cycle. The average current

per period is defined as

ĪXα = 1
T

t+T∫
t

dt′IXα(t′),

where T = 2π
Ω is the driving period, t any time during the periodic driving and X

can represent either the particle, energy or heat current. Fig. 6.2(b) shows the exact
numerically calculated average heat current ĪQα (see Sec. 3.1.1) for all orders in Ω

Γ as
a function of the average energy level ε̄. The plots are in the absence of an applied
bias over the leads. As such, no stationary current is present. Moreover, since this is a
single-parameter periodic driving, the lowest order non-vanishing contribution in Ω

Γ will
be n = 2 [56]. This second order contribution to the average heat current Ī(2)

Qα is shown
in Fig. 6.2(b). This same figure also shows the NTC contribution to this current.
Importantly, the lowest order contribution Ī(2)

Qα is already very close to ĪQα. It is more
generally true that a few low order corrections give already a very good approximation
of the full currents. This is in favour of the formalism presented in this thesis, since it
means that even with a very limited number of contributions in

(
Ω
Γ

)n
a good convergence

can be achieved.
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Figure 6.2: Plots for quantum dot coupled to two leads, without an applied bias. The
on-site interaction is U = 10T and the coupling strengths are ΓL = ΓR = 0.1T . The dot
level is driven as ε(t) = ε̄ + δε sin(Ωt), with driving amplitude δε = 0.1U and frequency
f = Ω

2π = 0.01. Different quantities of Eq. (6.3) and ĪQα are shown (a) time-resolved
at the particle-hole symmetric point ε̄ = −U

2 and (b) averaged over a driving period as
function of average dot level ε̄.

Notice that the signature related to the parity mode (i.e. the signature of the NTC
term at the particle-hole symmetric point ε̄ = −U

2 ) can not be distinguished in the heat
current Ī(2)

Qα. It turns out that the two terms of the heat current Eq. (6.3) plotted in a
time-resolved way in Fig. 6.2(a) exactly cancel in the time-average at the particle-hole
symmetric point, such that the signature can not be seen in Fig. 6.2(b). This means that,
while there is a non-tight coupling contribution for the time-resolved heat current, it is
not present any more in the averaged heat current. This is remarkable, since electrons
can have either an energy ε or ε+U and therefore no tight coupling between the particle
and heat current is in general expected.
In the case without applied voltage bias between the leads, the cancellation of the

NTC term can be understood from the fact that the same charging energy U (which is
itself time-independent) is both emitted and absorbed again during each driving period.
This adds up to a zero operation in the average over a driving period. To show this in
a mathematically more rigorous way, we start from Eq. (3.12):

IEα(t) = ε(N |Wα|ρ(t)) + U(2|Wα|ρ(t)). (6.4)

The second term of Eq. (6.3) that we are interested in originates from the last term in
this equation. However, without a bias and without an asymmetry in the couplings Γα,
all leads are equivalent for the system. Considering that there are two leads, we can thus
write Wα = 1

2W . The last term in Eq. (6.4) can thus be calculated as

U(2|Wα|ρ(t)) = U

2 (2|W |ρ(t)) = U

2 (2| d
dt |ρ(t)) = d

dt

(
U

2 (2|ρ(t))
)
,

where we used the Born-Markov master equation (2.7) in the second equality and the
crucial fact that we assume the local interaction U to be time-independent in the third
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equality. The long-time limit of the Born-Markov solution |ρ(t)) is periodic in time
(since the driving parameter is periodic). This implies in particular that any order in
the expansion in Ω

Γ is periodic in time. Moreover, as a consequence U
2 (2|ρ(t)) has the

same periodicity. Hence, taking the time-integral over a period T gives

t+T∫
t

dt d
dt

(
U

2 (2|ρ(t))
)

=
[
U

2 (2|ρ(t))
]t+T
t

= 0 =
t+T∫
t

dtU(2|Wα|ρ(t)).

From this we thus conclude that the second term of Eq. (6.3) cancels with other contri-
butions to the energy or heat current in any order of Ω

Γ when no bias is applied. When
there is a small applied bias V � U , this cancellation is not exact any more in the aver-
age over a period, but the remainder is still orders of magnitude smaller than Ī(2)

Qα. This
can again be understood from the fact that the difference in electrochemical potential
between the leads is small, such that effectively the heat dissipation due to the charging
energy U that is being emitted and absorbed again during each driving period is still
the same.
The important conclusion with respect to experiments that we should draw is that the

time-averaged currents, under single-parameter driving when only a small bias is applied,
appear as if they are tightly coupled. For experiments of this type, the parity mode is
thus still not essential for a physical description of the currents. In the mathematical
analysis in this section, some conditions were posed on the system’s parameters. These
give an essential guideline on how to proceed to find characteristic features of the parity
mode and the NTC term. First, in Sec. 6.3 we explore the characteristics of this term
when a larger bias V is applied over the dot. This breaks the symmetry between the
different leads. Secondly, in Sec. 6.4 we investigate the influence of a time-dependent on-
site interaction U , which breaks the argument that the same constant U is both emitted
and absorbed during each cycle. In this last section we also explore the possibility to
break the directional symmetry by specific multi-parameter driving schemes.

6.3 Signatures under large bias
The mathematical cancellation argument made in the previous section can be broken
upon the introduction of an asymmetry between the left and the right lead such that
Wα 6= 1

2W . In this section, we break this directional symmetry by applying a large
voltage bias over the attached leads. Because of the large bias, the charging energy is
most often provided by the lead with the highest electrochemical potential, while it is
emitted in the other lead, which might give a more interesting way of seeing the NTC
term. In Fig. 6.3, the NTC term of Eq. (6.3) in lowest order contribution (apart from the
instantaneous one) is shown under the same conditions as those in the previous section,
but now with applied voltage biases ranging from V = 0.4U up to V = 1.6U (where the
bias V is positive when µL > µR).



61 6.3 Signatures under large bias

-14

-12

-10

-8

-6

-4

-2

0

−U −U
2

0

ε̄

NTC term of Ī
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Figure 6.3: Averages over a cycle period of the NTC term in Eq. (6.3), for different applied
biases V between the left and right lead. Other parameters are the same as described in
Fig. 6.2. The ticks on the horizontal axis show the resonances with the leads ε̄ = µR and
ε̄ = µL − U for V ≥ U . The two outermost unlabelled ticks are for the case V = 1.6U .

For a bias V < U , which means that not both ε and ε + U can be within the bias
window at the same time, the signature of the NTC term stays the same as before. This
means that it is located at the particle-hole symmetric point. Moreover, the magnitude
of the NTC term grows with increasing bias. As demonstrated in Sec. 6.2 however, it
cancels with other terms in Ī(2)

Qα.
The nature of the NTC term changes for a large bias V > U , which is the situation

shown in Fig. 2.1. In this case, the NTC term has two features, one at both the resonances
ε̄ = µR and ε̄ = µL − U . These are exactly the boundaries for the range in which both
dot levels ε and ε + U are located within the bias window. These locations can be
explained by looking more closely at the overlap (p′|ρ(2)) that is present in the NTC
term. In between the aforementioned resonances, all physical dot states (empty, spin-
up/down or doubly occupied) are equally well possible because the dot levels are within
the bias window. This also holds for the inverted stationary state (zi| that determines
(p′|. Outside the bias window, the inverted dot model is again always empty or doubly
occupied, as discussed in Sec. 2.3. This occupation outside the bias window is such that
the overlap with |z), and more importantly |ρ(2)), is always vanishing. On the other
hand, the correction |ρ(2)) is only non-zero at the resonances with the leads themselves1.
This leads us to conclude that the overlap (p′|ρ(2)), and thus also the NTC term in
Eq. (6.3), can only have contributions at the resonances ε̄ = µR and ε̄ = µL − U , as can
be seen in Fig. 6.3. Moreover, apart from the decay rate γpα, this term is completely
lead-independent, such that this observation is equally well valid in all leads.

1Since this is where the dot occupation changes, and thus where corrections are needed
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We have thus seen that the place of the time-averaged contribution of the NTC term is
inherently different in the regimes V < U (as studied in the previous section) and V > U .
In the former they occur at the particle-hole symmetric point, while in the latter they
occur exactly at the resonances with the leads and do not cancel any more with other
terms in Eq. (6.3). Despite the fact that no cancellation takes place in this large bias
regime, the NTC contributions can not be distinguished from other contributions to
the energy and heat current that also occur at these resonances. From this, we obtain
the important insight that the time-averaged relevance of the fermion-parity mode does
not substantially depend on the presence of a bias. This insight is important for two
reasons. Theoretically, it suggests that the parity mode is more likely related to a
collective effect that involves all leads equally (remember also that the NTC term is
apart from the tunnel-coupling strength lead-independent). Heating can be an example
of such a collective, non-directional effect. For experimentalists, it means that one should
not expect any behaviour that is substantially different from the tight coupling picture.
With this, we mean that one should not expect signatures at places different from those
expected in a tight coupled model for the moderately fast driving considered here.

6.4 Driving multiple system parameters
We now investigate the other method proposed at the end of Sec. 6.2. This proposal
was to look at more elaborate driving schemes, in which multiple system parameters are
driven.
An important example of such a scheme is the situation in which both the energy

level ε and the on-site interaction U are driven in (counter)phase. This is physically
very reasonable, since a change in ε can lead to a different confinement of the electrons
in the system, and thus to a different Coulombic repulsion. Moreover, it can break the
argument from Sec. 6.2 that the same charging energy U is both emitted and absorbed
again during one cycle. In this case, the peak of the NTC term in Fig. 6.2(b) gets skewed,
and the peak of Ī(2)

Qα at the resonance ε̄ = µα−U increases (or decreases when the driving
is in counterphase). This can be understood because the effective amplitude of the dot
energy level ε + U changes when driving both ε and U with respect to the case where
only ε is driven.
Other examples of multi-parameter driving schemes include (adiabatic) particle and

energy pumping by time-dependently breaking the directional symmetry of the system.
This can be done by driving both the left coupling strength ΓL and ε out of phase.
Another possibility is to drive ΓL, ε as well as ΓR, each with a π

2 phase difference. These
schemes mimic the experiment shown in Fig. 1.3.
Even though all the simulations described in this section (of which the results are not

shown here) do break the mathematical and intuitive argument given in Sec. 6.2, they
still do not exhibit a clear distinguishable feature that can be attributed solely to the
fermion-parity mode or the inverted dot model. The final conclusion that we should
draw from all the simulations discussed in this chapter is twofold. On the one hand
can the fermion-parity mode not straightforwardly be detected in an experiment using
simple, moderately fast periodic driving, either because it cancels with other terms or
because its features are not clearly distinguishable from the resonant behaviour typical
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Figure 6.4: Cyclic electron pumping scheme, in which the dot energy levels are kept con-
stant, while the strength of the tunnel-coupling with the barriers is changed (dark (high) bar-
rier represents weak tunnel-coupling, light (low) barrier represents strong tunnel-coupling).
The scheme starts with a doubly occupied dot and two high barriers, such that the state of
the dot stays fixed (top). Then the right barrier is lowered and the two electrons are given
time to leave the dot (right). Next the right barrier is raised again (bottom), after which
the left barrier is lowered (left). Electrons from the left are given time to enter the dot,
after which the left barrier is raised again.
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for the charge mode. On the other hand however, plays the fermion-parity mode an
essential role in the general description of the system dynamics presented in this thesis.
This both in the derivation of the formulas, as well as in the final expressions. An
important remark on this conclusion is that all driving schemes shown and studied here
have one common characteristic. In all of them, the interaction of the dot with the lead
involves only a single electron (even though two-particle effects are expected when the
driving frequency is high enough). With this, we mean that the expected occupation
of the dot differs at most by one from the instantaneous stationary occupation at every
time1. This is important, since we know that the fermion-parity mode is associated with
two-particle phenomena [28]. When real two-particle processes are involved in a periodic
driving scheme, one might thus expect to find better distinguishable features related to
this parity mode.
As mentioned before, the research related to this chapter is still ongoing, such that this

conclusion is certainly not an endpoint. One of the possible interesting driving schemes
is shown and described in Fig. 6.4. It is a driving scheme in which only the tunnel
barriers are changed in strength, while the dot levels are kept both at a resonance. This
periodic scheme mimics at two stages the switch case, for which it was shown in [29]
that a characteristic of the parity mode can be detected. As discussed in the previous
paragraph, the important point is that there are two-particle processes at play, whereas
in the other schemes it was always a single level that was exchanging electrons with the
leads.

1With the exception of the large bias case V > U , in which all physical states are equally probable in
the stationary state.



7 Conclusion

7.1 Summary
In this thesis we have studied the dynamics of a single-level quantum dot with strong
on-site interaction, weakly tunnel-coupled to multiple electronic leads. More specifically
we studied the time-dependent evolution of the density operator and currents through
the system for arbitrary, moderately fast driving schemes and found practical analytical
solutions.
In chapter 1 we sketched the general context in which this thesis is situated. This

included a description of quantum dots and their practical realisation, as well as the use-
fulness of studying single electron dynamics for, among others, metrology and quantum
electron optics. The most important and relevant findings from the on-going research
on interacting open quantum systems, in which this thesis fits, were also highlighted.
Especially the newly found duality relation for a large class of fermionic open quantum
systems [29] plays a key role in obtaining the results of this thesis.
In chapter 2, the general model of the quantum dot studied in this thesis was in-

troduced, as well as some assumptions concerning this model. Next we presented the
Born-Markov master equation based on a superoperator approach in Liouville space that
governs the system dynamics. The eigenmodes of the system were found, based on the
duality relation presented in [29]. A sudden switch case was treated, which allowed for
a discussion on the different existing decay rates.
The main result of this thesis, Eq. (3.4), was then derived and discussed in chapter 3.

An expansion in driving rate allowed for an analytical solution of the Born-Markov
master equation for arbitrary, not necessarily periodic, driving schemes in any of the
system’s parameters. Together with these very general time-dependences, this main
result covers a very wide range of situations. These include quantum dots with a finite
local interaction U , coupled to multiple leads and with different voltage biases applied
between these leads. From this main result, important analytical expressions for the
currents through the system were derived. These equations are very practical in their
use and have a virtually unlimited potential for studying new interesting driving schemes
and understanding specific features in currents.
The quantum dot model under consideration was further extended to include the

influence of an external magnetic field in chapter 4. This magnetic field lifts the spin-
degeneracy of the dot energy level and introduces a spin-dependence in the tunnel-
coupling strengths. We studied how the eigenmodes and decay rates of the system
change under these conditions. Furthermore, we generalised the results for the density
operator and currents to incorporate the spin-dependence. Expressions up to the first
adiabatic correction in Ω

Γ were obtained and discussed in relation to their spin-degenerate
analogues.

65
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In chapter 5 we presented a first of two ongoing research projects enabled by the gen-
eral formulas obtained in chapter 3. It concerns thermoelectrics in driven nanosystems,
since recently an increased efficiency was predicted when a specific time-dependence is
introduced [31]. We showed how the main results of this thesis can be used in prac-
tice to calculate Onsager coefficients, which are inherently related to the thermoelectric
efficiency.
The second ongoing research project is related to the detection and a better under-

standing of the fermion-parity mode. In chapter 6, we discussed this and showed some
specific uses of the main results of this thesis. Although we could show that the fermion-
parity mode is of absolute importance for the description and derivations in this work,
so far, no concrete signatures related to this mode could be distinguished in periodic
driving schemes.

7.2 Open questions
Since the last two chapters of this thesis are part of ongoing research efforts, there are
still many open question related to them. Concerning chapter 5, our interest is in seeing
which factors contribute to the increased thermoelectric efficiency. This will enable us
to narrow down the conditions for such an increased efficiency and in that way guide
the study for driving schemes that provide the largest enhancement. Furthermore, it
will be interesting to see whether a strong on-site interaction has an important effect
on the thermoelectric behaviour, and if so, whether this effect is positive or negative for
the efficiency of these nanoscale devices. In chapter 6 we already narrowed down the
conditions under which the parity mode becomes essential for the physical description
and experimental observations. This enabled us to propose a new driving scheme at the
end of that chapter, which mimics a switch case. In that way, two-particle processes and
thus the fermion-parity mode, play an enhanced role and are possibly experimentally
detectable.
Further applications and questions concerning the results can be found both in the

experimental reality as well as on the theory side. When in an experiment the dot
energy level ε is being driven, it is very reasonable to assume that also other system
parameters change unintentionally. This can be the on-site interaction U , but also the
tunnel-coupling strength can be altered by this. It is therefore important to see how
much influence this has in general on the results of an experiment and whether this has
to be taken into account by an experimentalist. If these unintentional time-dependences
turn out to have a substantial influence, we need to predict where and in what form they
should be expected to appear in the results. Theory-wise, it is of interest to see how
the main result of this thesis, Eq. (3.4), could be extended. This could be either to find
a formula that is as general as this one for the spin-dependent dot model presented in
chapter 4. But one can also ask the question whether a similar, general result would still
be possible taking into account higher orders in the tunnel-coupling strength Γ. This
would allow to describe, among others, cotunnelling and the Kondo effect.
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Appendix A

Expressions and derivations for a
time-dependent, spin-degenerate
quantum dot

A.1 Derivation formula |ρ(n))
Here, we derive the general formula for |ρ(n)) as described in the main text in Sec. 3.1.2.
We start where we left in that section, namely Eq. (3.3b). To be able to do the recursion,
we first take the derivative of this expression:

∂t|ρ(n)) = ∂t

(
− 1
γc
∂t|ρ(n−1))

)
+ ∂t

[(
1
γc
− 1
γp

)
(p′|∂t|ρ(n−1))

]
|p). (A.1)

Repeatedly plugging this equation back into Eq. (3.3b), allows us to express |ρ(n)) in
terms of |ρ(j)), with n > j ≥ 0. After one iteration, we find

|ρ(n)) =− 1
γc
∂t

(
− 1
γc

|ρ(n−2))
)
− 1
γc
∂t

[(
1
γc
− 1
γp

)
(p′|∂t|ρ(n−2))

]
|p)

+
(

1
γc
− 1
γp

)
(p′|∂t

(
− 1
γc
∂t|ρ(n−2))

)
|p)

+
(

1
γc
− 1
γp

)
∂t

[(
1
γc
− 1
γp

)
(p′|∂t|ρ(n−2))

]
|p)

=− 1
γc
∂t

(
− 1
γc

|ρ(n−2))
)
− 1
γp
∂t

[(
1
γc
− 1
γp

)
(p′|∂t|ρ(n−2))

]
|p)

+
(

1
γc
− 1
γp

)
(p′|∂t

(
− 1
γc
∂t|ρ(n−2))

)
|p).

One can repeat the process by substituting Eq. (A.1) into this equation. The very general
relation to express |ρ(n)) in terms of |ρ(n−k)) with n ≥ k ≥ 1 is then found to be:

|ρ(n)) =
(
− 1
γc
∂t
)k

|ρ(n−k)) +
k∑
l=1

(
− 1
γp
∂t
)l−1 ( 1

γc
− 1

γp

)
(p′|∂t

(
− 1
γc
∂t
)k−l

|ρ(n−k))|p). (A.2)

The special case n = k gives Eq. (3.4) from the main text.
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We now prove Eq. (A.2) by induction. As can be seen in Eq.(3.3b) and the subsequent
calculation, the result holds for both k = 1 and k = 2. Now assume that the result holds
for k = k′. We will show that it also holds for k = k′ + 1, assuming n ≥ k′ + 1.
Substituting the derivative equation (A.1) into equation (A.2) results in

|ρ(n)) =
(
− 1
γc
∂t

)k′+1

|ρ(n−k′−1)) +
(
− 1
γc
∂t

)k′ (
1
γc
− 1
γp

)
(p′|∂t|ρ(n−k′−1))|p)

+
k′∑
l=1

(
− 1
γp
∂t

)l−1 ( 1
γc
− 1
γp

)
(p′|∂t

(
− 1
γc
∂t

)k′+1−l

|ρ(n−k′−1))|p)

+
k′∑
l=1

(
− 1
γp
∂t

)l−1 ( 1
γc
− 1
γp

)
∂t

(
− 1
γc
∂t

)k′−l ( 1
γc
− 1
γp

)
(p′|∂t|ρ(n−k′−1))|p),

where we made crucially use of ∂t|p) = 0 to be able to shift |p) through the derivatives
in the second and the last terms. Now we can sum the second term with the first term
in the summation of the last term. The second term in the equation is then gone, while
the last term becomes(

− 1
γp
∂t

)(
− 1
γc
∂t

)k′−1 ( 1
γc
− 1
γp

)
(p′|∂t|ρ(n−k′−1))|p)

+
k′∑
l=2

(
− 1
γp
∂t

)l−1 ( 1
γc
− 1
γp

)
∂t

(
− 1
γc
∂t

)k′−l ( 1
γc
− 1
γp

)
(p′|∂t|ρ(n−k′−1))|p).

In this expression, the term on the first line, can again be combined with the first term of
the summation. This effect keeps appearing, until we are left with only one term. After
having performed this telescoping summation, the result can be added as an extra term
to the other summation (on the second line) that appears in the expression of |ρ(n)).
The result is then

|ρ(n)) =
(
− 1
γc
∂t

)k′+1

|ρ(n−(k′+1)))

+
k′+1∑
l=1

(
− 1
γp
∂t

)l−1 ( 1
γc
− 1
γp

)
(p′|∂t

(
− 1
γc
∂t

)k′+1−l

|ρ(n−(k′+1)))|p).

Equation (A.2) thus also holds for k = k′ + 1 when it holds for k = k′. This concludes
the proof.



71 A.2 Instantaneous energy current in first adiabatic correction

A.2 Instantaneous energy current in first adiabatic
correction

To demonstrate the use of Eq. (3.16), we calculate again the instantaneous (n = 0)
energy current and the adiabatic correction (n = 1). We did this before for the density
operator and particle current in respectively sections 3.1.3 and 3.2.1 Since we already
have expressions for the particle currents, we only need to consider the last term of
Eq. (3.16). For the instantaneous energy current, we need to evaluate (p′α|z). This
becomes easy by using the orthogonal operators 1, N − 1 = ∆N and (−1)N . The
orthogonality of these operators can be checked explicitly. They are not normalised,
but their scalar products are (1|1) = ((−1)N |(−1)N) = 4 and (N − 1|N − 1) = 2.
Using these operators, the stationary state (2.14) and inverted stationary state (2.18)
with respect to lead α can be written as

|z) = 1
4 |1) + 1

2 (Nz − 1) |N − 1) + 1
4pz|(−1)N)

|ziα) = 1
4 |1) + 1

2 (Niα − 1) |N − 1) + 1
4piα|(−1)N).

Acting with P = (−1)N on either |z) or |ziα) interchanges in both cases the coefficients
of |1) and |(−1)N). With this observation, one immediately finds

(ziα|P|ρ) = 1
4 (pz + piα) + 1

2 (Nz − 1) (Niα − 1) . (A.3)

The instantaneous energy current through lead α is thus

I
(0)
Eα =

(
ε+ U

2 (2−Niα)
)
I

(0)
Nα − γpαU

[1
4 (pz + piα) + 1

2 (Nz − 1) (Niα − 1)
]
, (A.4)

with I(0)
Nα given by Eq. (3.9). The last term of Eq. (A.4) still looks rather complicated.

We will further discuss it in chapter 6.
Finally, we also calculate the adiabatic correction to the energy current. For the first

term, one just has to substitute the adiabatic correction to the particle current I(1)
Nα (3.11).

For the second term of Eq. (3.16), we now use the expression for |ρ(1)) (Eq. (3.6)) and
further evaluate

(ziα|(−1)N |p) = (ziα|1) = 1

(ziα|(−1)N |c) = 1
2(ziα|N −Ni1) = 1

2 (Niα −Ni) .

The adiabatic correction to the energy current through lead α is then

I
(1)
Eα =

(
ε+ U

2 (2−Niα)
)
I

(1)
Nα + U

2
γpα
γc

(Niα −Ni) ∂tNz + U
2
γpα
γp

(
(Ni − 1) ∂tNz + 1

2∂tpz
)
. (A.5)





Appendix B

Expressions quantum dot in magnetic
field
This appendix has two goals. On the one hand we use it to give long explicit expression
that were omitted in chapter 4. On the other hand it gives some additional steps for
derivations of certain results from the main text.

B.1 Stationary state and fermion-parity mode
The stationary mode |z) can be written in two additional useful ways:

|z) = 2
(Γ↑ + Γ↓)

[(
f+
ε↑ + f−U↑

) (
f−ε↓ + f+

U↓

)
+
(
f−ε↑ + f+

U↑

) (
f+
ε↓ + f−U↓

)]×
{[
f−ε↑f

−
U↓

(
f−ε↓ + f+

U↑

)
+ f−ε↓f

−
U↑

(
f−ε↑ + f+

U↓

)]
|0)

+
[
f+
ε↑f
−
ε↓

(
f−U↓ + f−U↑

)
+ f+

U↑f
−
U↓

(
f+
ε↓ + f+

ε↑

)]
| ↑)

+
[
f+
ε↓f
−
ε↑

(
f−U↑ + f−U↓

)
+ f+

U↓f
−
U↑

(
f+
ε↑ + f+

ε↓

)]
| ↓)

+
[
f+
ε↑f

+
U↓

(
f+
U↑ + f−ε↓

)
+ f+

ε↓f
+
U↑

(
f+
U↓ + f−ε↑

)]
|2)
}

=
(3

4 −
1
2Nz + 1

4pz
)

|0) +
(1

4 + 1
2σz −

1
4pz

)
| ↑)

+
(1

4 −
1
2σz −

1
4pz

)
| ↓) +

(
−1

4 + 1
2Nz + 1

4pz
)

|2).

(B.1)

The particle number in the stationary state is now

Nz = (N |z) =
2
[
f+
ε↑

(
f+
U↓ + f−ε↓

)
+ f+

ε↓

(
f+
U↑ + f−ε↑

)]
(
f+
ε↑ + f−U↑

) (
f−ε↓ + f+

U↓

)
+
(
f−ε↑ + f+

U↑

) (
f+
ε↓ + f−U↓

) .
The spin-resolved particle numbers on the other hand are given by

N↑z = (N↑|z) =
2
(
f+
ε↓f

+
U↑ + f+

ε↑f
−
ε↓

)
(
f+
ε↑ + f−U↑

) (
f−ε↓ + f+

U↓

)
+
(
f−ε↑ + f+

U↑

) (
f+
ε↓ + f−U↓

)
N↓z = (N↓|z) =

2
(
f+
ε↑f

+
U↓ + f−ε↑f

+
ε↓

)
(
f+
ε↑ + f−U↑

) (
f−ε↓ + f+

U↓

)
+
(
f−ε↑ + f+

U↑

) (
f+
ε↓ + f−U↓

) .
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The spin expectation value in terms of Fermi functions is

σz = (σ|z) =
2
(
f+
ε↑f
−
U↓ − f+

ε↓f
−
U↑

)
(
f+
ε↑ + f−U↑

) (
f−ε↓ + f+

U↓

)
+
(
f−ε↑ + f+

U↑

) (
f+
ε↓ + f−U↓

) .
An important identity that was used in rewriting the stationary state in the forms of
Eq. (4.4) and Eq. (B.1) is

|2) = 1
2 |N) + 1

4 |p)− 1
4 |1), such that (2|z) = 1

2Nz + 1
4pz −

1
4 .

This relation can easily be checked explicitly.

Alternative expression for the inverted stationary state |zi) are

|zi) = 2
(Γ↑ + Γ↓)

[(
f+
ε↑ + f−U↑

) (
f−ε↓ + f+

U↓

)
+
(
f−ε↑ + f+

U↑

) (
f+
ε↓ + f−U↓

)]×
{[
f+
ε↑f

+
U↓

(
f+
ε↓ + f−U↑

)
+ f+

ε↓f
+
U↑

(
f+
ε↑ + f−U↓

)]
|0)

+
[
f−ε↑f

+
ε↓

(
f+
U↓ + f+

U↑

)
+ f−U↑f

+
U↓

(
f−ε↓ + f−ε↑

)]
| ↑)

+
[
f−ε↓f

+
ε↑

(
f+
U↑ + f+

U↓

)
+ f−U↓f

+
U↑

(
f−ε↑ + f−ε↓

)]
| ↓)

+
[
f−ε↑f

−
U↓

(
f−U↑ + f+

ε↓

)
+ f−ε↓f

−
U↑

(
f−U↓ + f+

ε↑

)]
|2)
}

=
(3

4 −
1
2Ni + 1

4pi
)

|0) +
(1

4 + 1
2σi −

1
4pi

)
| ↑)

+
(1

4 −
1
2σi −

1
4pi

)
| ↓) +

(
−1

4 + 1
2Ni + 1

4pi
)

|2).

(B.2)

As a reminder, in the notation of Fermi-functions, the energy inversion is done by swap-
ping f+ ↔ f−. This makes it easy to find the particle number in the inverted stationary
state Ni, by starting from the particle number in the normal stationary state Nz. We
find

Ni = (N |zi) =
2
[
f−ε↑

(
f−U↓ + f+

ε↓

)
+ f−ε↓

(
f−U↑ + f+

ε↑

)]
(
f+
ε↑ + f−U↑

) (
f−ε↓ + f+

U↓

)
+
(
f−ε↑ + f+

U↑

) (
f+
ε↓ + f−U↓

) .
Notice that the denominator stays unchanged under the swapping operation. The other
inverted quantities can be obtained in exactly the same way.

B.2 Mixed charge and spin modes
The amplitude covectors and modes x and y that are introduced in the main text, can
be written more explicitly as

(x′| = −N↑(0| + (1−N↑) (↑ |−N↑(↓ | + (1−N↑) (2|
(y′| = −N↓(0|−N↓(↑ | + (1−N↓) (↓ | + (1−N↓) (2|
|x) = −N↓i|0) +N↓i| ↑) + (N↓i − 1) (↓) + (1−N↓i) |2)
|y) = −N↑i|0) + (N↑i − 1) | ↑) +N↑i| ↓) + (1−N↑i) |2).
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The eigenvectors a and b (modes and amplitude covectors) of the magnetic kernel W
(4.9) are, when expressed in terms of x and y, given by

|a) = 1
2 |x) +

f+
ε↓ − f+

U↓

(γa − γb) + (Γ↑ − Γ↓)
|y)

|b) = 1
2 |x)−

f+
ε↓ − f+

U↓

(γa − γb)− (Γ↑ − Γ↓)
|y)

(a′| = (γa − γb) + (Γ↑ − Γ↓)
(γa − γb)

(x′| + 2
f+
ε↑ − f+

U↑

(γa − γb)
(y′|

(b′| = (γa − γb)− (Γ↑ − Γ↓)
(γa − γb)

(x′|− 2
f+
ε↑ − f+

U↑

(γa − γb)
(y′|.

(B.3)

To understand the eigenmodes a and b better, they can be rewritten in several different
ways. First of all, we rewrite |a) and |b) in terms of the charge mode |c) and spin mode
|s) of the system without applied magnetic field. For this, we make use of the relations
in Eq. (4.11).

|a) = 1
(γa − γb) + (Γ↑ − Γ↓)

{[
(γa − γb)

2 + (Γ↑ − Γ↓)
2 +

(
f+
ε↓ − f+

U↓

)]
|c)

+
[

(γa − γb)
2 + (Γ↑ − Γ↓)

2 −
(
f+
ε↓ − f+

U↓

)]
|s)
} (B.4a)

=
[

1
2 +

f+
ε↓ − f+

U↓

(γa − γb) + (Γ↑ − Γ↓)

]
|c) +

[
1
2 −

f+
ε↓ − f+

U↓

(γa − γb) + (Γ↑ − Γ↓)

]
|s) (B.4b)

|b) = 1
(γa − γb)− (Γ↑ − Γ↓)

{[
(γa − γb)

2 − (Γ↑ − Γ↓)
2 −

(
f+
ε↓ − f+

U↓

)]
|c)

+
[

(γa − γb)
2 − (Γ↑ − Γ↓)

2 +
(
f+
ε↓ − f+

U↓

)]
|s)
} (B.4c)

=
[

1
2 −

f+
ε↓ − f+

U↓

(γa − γb) + (Γ↑ − Γ↓)

]
|c) +

[
1
2 +

f+
ε↓ − f+

U↓

(γa − γb) + (Γ↑ − Γ↓)

]
|s) (B.4d)

Similarly, (a′| and (b′| can be rewritten in terms of (c′| and (s′|:

(a′| = 1
γa − γb

{[
(γa − γb)

2 + (Γ↑ − Γ↓)
2 +

(
f+
ε↑ − f+

U↑

)]
(c′|

+
[

(γa − γb)
2 + (Γ↑ − Γ↓)

2 −
(
f+
ε↑ − f+

U↑

)]
(s′|

} (B.4e)

(b′| = 1
γa − γb

{[
(γa − γb)

2 − (Γ↑ − Γ↓)
2 −

(
f+
ε↑ − f+

U↑

)]
(c′|

+
[

(γa − γb)
2 − (Γ↑ − Γ↓)

2 +
(
f+
ε↑ − f+

U↑

)]
(s′|

}
.

(B.4f)

Using some relations between the different variables, these expressions can be further
rewritten. Two of the most used relations are

Γ + (γa − γb)
2 = γa and Γ− (γa − γb)

2 = γb. (B.5)
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We then find the following final expressions for |a) and |b) in terms of c and s:

|a) = 1
(γa − γb) + (Γ↑ − Γ↓)

{[
γa −

(
f−ε↓ + f+

U↓

)]
|c) +

[
γa −

(
f+
ε↓ + f−U↓

)]
|s)
}

|b) = −1
(γa − γb)− (Γ↑ − Γ↓)

{[
γb −

(
f−ε↓ + f+

U↓

)]
|c) +

[
γb −

(
f+
ε↓ + f−U↓

)]
|s)
}

(a′| = −1
γa − γb

{[
γb −

(
f+
ε↑ + f−U↑

)]
(c′| +

[
γb −

(
f−ε↑ + f+

U↑

)]
(s′|

}
(b′| = 1

γa − γb

{[
γa −

(
f+
ε↑ + f−U↑

)]
(c′| +

[
γa −

(
f−ε↑ + f+

U↑

)]
(s′|

}
.

(B.6)

We will stop here in rewriting the eigenmodes a and b, since these are about the most
elegant ways to write them. Notice however that they can be written in many more
forms by using the relations

γa − Γ↓ = 1
2 [(Γ↑ − Γ↓) + (γa − γb)] = Γ↑ − γb

γb − Γ↓ = 1
2 [(Γ↑ − Γ↓)− (γa − γb)] = Γ↑ − γa

γa − γb = 2γa − 2Γ = 2Γ− 2γb.

B.3 Sudden switch: decay rates, charge and spin
The time-dependence of the density operator after the switch as given in the main text
is

|ρ(t)) = |z)(z′|z0) + e−γpt|p)(p′|z0) + e−γat|a)(a′|z0) + e−γbt|b)(b′|z0).

The overlaps in this expression are

(z′|z0) = 1 (conservation of probability)

(p′|z0) = 1
4 (pz0 − pi) + 1

2∆Nz0∆Ni −
1
2σz0σi

(a′|z0) =
(

Γ↑ − Γ↓
γa − γb

+ 1
)

(N↑z0 −N↑z) + 2
f+
ε↑ − f+

U↑

γa − γb
(N↓z0 −N↓z)

(b′|z0) =
(

1− Γ↑ − Γ↓
γa − γb

)
(N↑z0 −N↑z)− 2

f+
ε↑ − f+

U↑

γa − γb
(N↓z0 −N↓z) .

An important identity that was used several times to simplify things in the calculations
of the charge and spin expectation values is

1
4

(γa − γb) + (Γ↑ − Γ↓)
f+
ε↑ − f+

U↑
=

f+
ε↓ − f+

U↓

(γa − γb)− (Γ↑ − Γ↓)
.

The charge and spin expectation values were calculated using the expressions for |ρ(t))
and the expressions in Eq. (B.4) for modes |a) and |b) in terms of |c) and |s) (which



77 B.4 Density operator

give much nicer results then the expressions in terms of |x) and |y), (B.3)) The solutions
that are less compact than Eq. (4.13), but easier to read and understand are

〈N〉 (t) = 1
γa − γb

{
N↑z

[
γa −

(
f−ε↓ + f+

U↓

)]
+N↓z

[
γa −

(
f−ε↑ + f+

U↑

)]} (
1− e−γat

)
+ 1
γa − γb

{
N↑z0

[
γa −

(
f−ε↓ + f+

U↓

)]
+N↓z0

[
γa −

(
f−ε↑ + f+

U↑

)]}
e−γat

+ −1
γa − γb

{
N↑z

[
γb −

(
f−ε↓ + f+

U↓

)]
+N↓z

[
γb −

(
f−ε↑ + f+

U↑

)]} (
1− e−γbt

)
+ −1
γa − γb

{
N↑z0

[
γb −

(
f−ε↓ + f+

U↓

)]
+N↓z0

[
γb −

(
f−ε↑ + f+

U↑

)]}
e−γbt

and

〈σ〉 (t) = 1
γa − γb

{
N↑z

[
γa −

(
f+
ε↓ + f−U↓

)]
−N↓z

[
γa −

(
f+
ε↑ + f−U↑

)]} (
1− e−γat

)
+ 1
γa − γb

{
N↑z0

[
γa −

(
f+
ε↓ + f−U↓

)]
−N↓z0

[
γa −

(
f+
ε↑ + f−U↑

)]}
e−γat

+ −1
γa − γb

{
N↑z

[
γb −

(
f+
ε↓ + f−U↓

)]
−N↓z

[
γb −

(
f+
ε↑ + f−U↑

)]} (
1− e−γbt

)
+ −1
γa − γb

{
N↑z0

[
γb −

(
f+
ε↓ + f−U↓

)]
−N↓z0

[
γb −

(
f+
ε↑ + f−U↑

)]}
e−γbt.

B.4 Density operator
Here we derive the expressions for the instantaneous density operator and its first adia-
batic correction (zeroth and first order in Ω

Γ ). We start from the second line of Eq. (2.9),
where the chosen basis states are still allowed to be time-dependent. Choosing the
eigenmodes of the magnetic kernel Wij as the orthonormal basis, Wij is diagonal such
that ∑

i

(∂tPi) |i) + Pi∂t|i) =
∑
i

WiiPi|i).

We now need to calculate the coefficients P (0)
i and P

(1)
i for the zeroth and first order

contributions in Ω
Γ of the eigenmode |i). These expansion factors can be found as the

solution for the set of equations

0 = WiiP
(0)
i |i)∑

i

(
∂tP

(0)
i

)
|i) + P

(0)
i ∂t|i) =

∑
i

WiiP
(1)
i |i).

The first equation is the stationary Born-Markov equation with solution P (0)
z = 1, while

P (0)
p = P (0)

a = P
(0)
b = 0. Plugging this into the next equation, we find ∂tP (0)

i = 0 for all i.
Because of probability conservation, we also know that P (1)

z = 0. The second equation
is then reduced to

∂t|z) = −γpP (1)
p |p)− γaP (1)

a |a)− γbP (1)
b |b).
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From this, we can obtain P (1)
p , P (1)

a and P (1)
b as

P (1)
p = − 1

γp
(p′|∂t|z)

P (1)
a = − 1

γa
(a′|∂t|z)

P
(1)
b = − 1

γb
(b′|∂t|z).

The expression for ∂t|z) in these equation can immediately be found by taking the time
derivative of Eq. (4.4):

∂t|z) =
(
−1

2∂tNz + 1
4∂tpz

)
|0) +

(1
2∂tσz −

1
4∂tpz

)
| ↑)

+
(
−1

2∂tσz −
1
4∂tpz

)
| ↓) +

(1
2∂tNz + 1

4∂tpz
)

|2).

Using this, and the expressions for (p′|, (a′| and (b′|, all the adiabatic expansion coeffi-
cients can be found. For the parity mode, we obtain

P (1)
p = − 1

−γp
(p′|∂t|z) = − 1

γp
(zi| (−1)N ∂t|z)

= 1
2γp

[
(1−Ni) ∂tNz + σi∂tσz −

1
2∂tpz

]
.

And using N = N↑ +N↓ and σ = N↑ −N↓,

= 1
2γp

[
(1− 2N↓i) ∂tN↑z + (1− 2N↑i) ∂tN↓z −

1
2∂tpz

]
.

To calculate the adiabatic correction coefficients P (1)
a and P

(1)
b , we make use of the

expressions of (a′| and (b′| in terms of (c′| and (s′|, as given in Eq. (B.6). For the a
mode, we find

P (1)
a = 1

γa (γa − γb)
{[
γb −

(
f+
ε↑ + f−U↑

)]
(c′|∂t|z) +

[
γb −

(
f−ε↑ + f+

U↑

)]
(s′|∂t|z)

}
.

Filling in the relations for (c′| and (s′|, Eq. (4.6) and (4.7), and using several relations
between the different quantities, this finally becomes

P (1)
a = − 1

γa (γa − γb)
{

[(γa − γb) + (Γ↑ − Γ↓)] ∂tN↑z + 2
[
f+
ε↑ − f+

U↑

]
∂tN↓z

}
.

For the b mode, we have similarly

P
(1)
b = − 1

γb (γa − γb)
{[
γa −

(
f+
ε↑ + f−U↑

)]
(c′|∂t|z) +

[
γa −

(
f−ε↑ + f+

U↑

)]
(s′|∂t|z)

}
.

After analogous operations as for the a mode, this results in

P
(1)
b = − 1

γb (γa − γb)
{

[(γa − γb)− (Γ↑ − Γ↓)] ∂tN↑z + 2
[
−f+

ε↑ + f+
U↑

]
∂tN↓z

}
.
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With these expressions, we are in principle able to write down |ρ(t)) up to first order in
Ω
Γ .
It is however useful to consider the combination P (1)

a |a) + P
(1)
b |b) that is present in

that expression. We will write this combination in a more insightful way. By inserting
the expressions for |a) and |b) in terms of |c) and |s), as given in Eq. (B.6), in the
combination, we find after a lot of algebra

P (1)
a |a) + P

(1)
b |b) =∂tN↑z

−1
γaγb

[(
f−ε↓ + f+

U↓

)
|c) +

(
f+
ε↓ + f−U↓

)
|s)
]

+ ∂tN↓z
−1
γaγb

γaγb − Γ↑
(
f−ε↓ + f+

U↓

)
f+
ε↓ − f+

U↓
|c) +

γaγb − Γ↑
(
f+
ε↓ + f−U↓

)
f+
ε↓ − f+

U↓
|s)

 .
We would expect some more symmetry between the terms that contain the derivatives of
N↑z and N↓z. Since there is nothing fundamentally different between spin-up and -down
electrons, the quantities related to them should be interchangeable with the exception
of some sign changes. The factor in the term containing ∂tN↓z can be rewritten by using
the relation

γaγb = Γ↑Γ↓ −
(
f+
ε↑ − f+

U↑

) (
f+
ε↓ − f+

U↓

)
.

We then have

P (1)
a |a) + P

(1)
b |b) = −1

γaγb

{[(
f−ε↓ + f+

U↓

)
∂tN↑z +

(
f−ε↑ + f+

U↑

)
∂tN↓z

]
|c)

+
[(
f+
ε↓ + f−U↓

)
∂tN↑z −

(
f+
ε↑ + f−U↑

)
∂tN↓z

]
|s)
}
.

And using Eq. (4.11), this can also be written as

P (1)
a |a) + P

(1)
b |b) = −1

γaγb

{[
Γ↓∂tN↑z −

(
f+
ε↑ − f+

U↑

)
∂tN↓z

]
|x)

+
[
−
(
f+
ε↓ − f+

U↓

)
∂tN↑z + Γ↑∂tN↓z

]
|y)
}
.

(B.7)

We are now finally in a position to write an expression for the density operator |ρ(t))
up to first order in Ω

Γ , as we did in Eq. (4.14).

B.5 Particle current
Here we calculate the general particle current through the quantum dot in an external
magnetic field. Later we also show the calculation for the instantaneous particle current
and its adiabatic correction. Some additional useful expressions are also given.
We start our calculations from Eq. (3.7):

INα = (N |Wα|ρ(t)),

where Wα is the magnetic kernel for lead α. However, since the charge mode is not an
eigenmode of the kernel any more, we need to proceed differently. First we write the
particle number as the sum of spin-up and -down particle numbers:

INα = (N↑|Wα|ρ(t)) + (N↓|Wα|ρ(t)).
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Next, we use the fact that (1| is still an eigenvector of the kernel Wα, which corresponds
to the eigenvalue 0:

INα = ((N↑|−N↑zα(1|)Wα|ρ(t)) + ((N↓|−N↓zα(1|)Wα|ρ(t)).

The quantities between the brackets, can be recognised as the modes (x′α| and (y′α|:

INα = (x′α|Wα|ρ(t)) + (y′α|Wα|ρ(t)).

Even though (x′α| and (y′α| are not eigenvectors of Wα, they do allow us to employ the
block-diagonalised form of the kernel Eq. (4.9). Using that expression, we can get rid of
the kernel in our equation and arrive at

INα =
(
−Γ↑α − f+

ε↓α + f+
U↓α

)
(x′α|ρ(t)) +

(
−Γ↓α − f+

ε↑α + f+
U↑α

)
(y′α|ρ(t)).

Now we use probability conservation, i.e. (1|ρ(t)) = 1, and the definitions of (x′α| and
(y′α| to find

INα =
(
Γ↑α + f+

ε↓α − f+
U↓α

)
(N↑zα − (N↑|ρ(t))) +

(
Γ↓α + f+

ε↑α − f+
U↑α

)
(N↓zα − (N↓|ρ(t))) .

We can define two new quantities to better understand the prefactors in this equation:

γc↑α = −(c′α|Wα|xα) = Γ↑α + f+
ε↓α − f+

U↓α

γc↓α = −(c′α|Wα|yα) = Γ↓α + f+
ε↑α − f+

U↑α.

The interpretation of these rates is given in the main text. With these definitions, we
end up at Eq. (4.15):

INα = γc↑α (N↑zα − (N↑|ρ(t))) + γc↓α (N↓zα − (N↓|ρ(t))) .

This particle current, separated in spin-resolved currents is

INα = IN↑α + IN↓α,

where

IN↑α = Γ↑α (N↑zα − (N↑|ρ(t))) +
(
f+
ε↑α − f+

U↑α

)
(N↓zα − (N↓|ρ(t)))

= (x′α|Wα|ρ(t))
IN↓α = Γ↓α (N↓zα − (N↓|ρ(t))) +

(
f+
ε↓α − f+

U↓α

)
(N↑zα − (N↑|ρ(t)))

= (y′α|Wα|ρ(t)).

Now we substitute the density operator (4.14) to find the particle current up to
first order in Ω

Γ . For the instantaneous particle current (so zeroth order in Ω
Γ ), we use

(Nσ|ρ(0)(t)) = (Nσ|z) = Nσz. This immediately gives us

I
(0)
Nα = γc↑α (N↑zα −N↑z) + γc↓α (N↓zα −N↓z) ,
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which is also the sum of the two spin-resolved currents

I
(0)
N↑α = Γ↑α (N↑zα −N↑z) +

(
f+
ε↑α − f+

U↑α

)
(N↓zα −N↓z)

I
(0)
N↓α = Γ↓α (N↓zα −N↓z) +

(
f+
ε↓α − f+

U↓α

)
(N↑zα −N↑z) .

Next we calculate the first order correction in Ω
Γ by substituting |ρ(1)) (the terms that

do not contain |ρ(t)) in Eq. (4.15) were already taken into account by the instantaneous
current, so we drop them for the corrections). We then have

I
(1)
Nα = −γc↑α (N↑|ρ(1)(t))︸ ︷︷ ︸

=(x′|ρ(1)(t))

−γc↓α (N↓|ρ(1)(t))︸ ︷︷ ︸
=(y′|ρ(1)(t))

,

where the two additional equalities are true because (1|ρ(1)(t)) = 0. Finally we fill in
|ρ(1)) from Eq. (4.14), but now with alternative form Eq. (B.7). After the rearrangement
of some terms, we get

I
(1)
Nα = 1

γaγb

[
γc↑αΓ↓ − γc↓α

(
f+
ε↓ − f+

U↓

)]
∂tN↑ + 1

γaγb

[
γc↓αΓ↑ − γc↑α

(
f+
ε↑ − f+

U↑

)]
∂tN↓.

For completeness (ans because we need them for the energy and heat current), we also
give the expressions for the first order correction in Ω

Γ of the spin-resolved currents:

I
(1)
N↑α = 1

γaγb

{[
Γ↑αΓ↓ −

(
f+
ε↑α − f+

U↑α

) (
f+
ε↓ − f+

U↓

)]
∂tN↑z

+
[
−Γ↑α

(
f+
ε↑ − f+

U↑

)
+
(
f+
ε↑α − f+

U↑α

)
Γ↑
]
∂tN↓z

}
I

(1)
N↓α =

{[
−Γ↓α

(
f+
ε↓ − f+

U↓

)
+
(
f+
ε↓α − f+

U↓α

)
Γ↓
]
∂tN↑z

+ 1
γaγb

[
Γ↓αΓ↑ −

(
f+
ε↓α − f+

U↓α

) (
f+
ε↑ − f+

U↑

)]
∂tN↓z

}
.

B.6 Energy current
The energy current is calculated from Eq. (3.12)

IEα = (H|Wα|ρ),

with
(H| = ε↑(N↑| + ε↓(N↓| + U(2|.

To proceed, we can first rewrite (2|Wα as

(2|Wα = (2|zα)(z′α|Wα + (2|pα)(p′α|Wα + (2|xα)(x′α|Wα + (2|yα)(y′α|Wα,

which we are allowed to do since the set {z, p, x, y} forms a biorthonormal basis. We
can calculate several quantities in this equation, such that it becomes

(2|Wα = −γpα(p′α| + (1−N↓iα) (x′α|Wα + (1−N↑iα) (y′α|Wα.
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Furthermore, we also realise that (N↑|Wα = (x′α|Wα and (N↓|Wα = (y′α|Wα, since
(1|Wα = 0. Combining all these results, we can write the expression (4.16) for the
energy current through lead α, given the time-dependence of the density operator |ρ):

IEα = (ε↑ + U (1−N↓iα)) IN↑α + (ε↓ + U (1−N↑iα)) IN↓α − Uγpα(p′α|ρ).

With the expression for the energy current with general |ρ) in place, we can now
calculate the zeroth and first order terms in Ω

Γ by plugging in the corresponding density
operator Eq. (4.14). Since we already have the expression for the particle currents in these
two orders, we only need to calculate the last term. First we consider the instantaneous
case (zeroth order in Ω

Γ ). To start, notice that
{
|1), |N − 1), | (−1)N), |σ)

}
forms an

orthogonal basis, which is however not normalised since (1|1) = ((−1)N | (−1)N) = 4
and (N − 1|N − 1) = (σ|σ) = 2. Both |z) and |zi), respectively Eq. (4.4) and (4.5),
can be expressed in this basis as

|z) = 1
4 |1) + 1

2 (Nz − 1) |N − 1) + 1
4pz| (−1)N) + 1

2σz|σ)

|ziα) = 1
4 |1) + 1

2 (Niα − 1) |N − 1) + 1
4piα| (−1)N) + 1

2σiα|σ).

The advantage of writing these state in this basis, is that acting with P on either |z) or
|ziα) will just switch the coefficients of |1) and | (−1)N). We can then easily calculate

(p′α|ρ(0)) = (ziα| (−1)N |z) = 1
4 (piα + pz) + 1

2 (Nz − 1) (Niα − 1) + 1
2σzσiα.

Notice that this equation is the same as Eq. (A.3) for the non-magnetic case, except for
an additional term that only depends on the spins in the dot. The final instantaneous
energy current is then

I
(0)
Eα = (ε↑ + U (1−N↓iα)) I(0)

N↑α + (ε↓ + U (1−N↑iα)) I(0)
N↓α

− U

2 γpα
[1
2 (piα + pz) + (Nz − 1) (Niα − 1) + σzσiα

]
.

Next, for calculating the first order correction in Ω
Γ , we again only need to calculate the

last term of Eq. (4.16), since we already have expressions for the first order corrections of
the spin-resolved particle currents. We can calculate the necessary overlaps separately:

(p′α|p) = (ziα|1) = 1 (normalised)

(p′α|c) = (ziα|PP2 (−|N)−Ni|1)) = 1
2 (Niα −Ni)

(p′α|s) = (ziα|PP2 (−|σ) + σi|1)) = 1
2 (σi − σiα) .

Combining these with the expression for |ρ(1)), Eq. (4.14), we find the first order correc-



tion to the energy current:

I
(1)
Eα = (ε↑ + U (1−N↓iα)) I(1)

N↑α + (ε↓ + U (1−N↑iα)) I(1)
N↓α

− Uγpα
2

{
− 1

4γp
∂tpz

+
{

1− 2N↓i
2γp

+ 1
γaγb

[(
f+
ε↓ − f+

U↓

)
(N↑iα −N↑i) + Γ↓ (N↓i −N↓iα)

]}
∂tN↓z

+
{

1− 2N↑i
2γp

+ 1
γaγb

[(
f+
ε↑ − f+

U↑

)
(N↓iα −N↓i) + Γ↑ (N↑i −N↑iα)

]}
∂tN↓z

}
.

We took the freedom here to immediately group the terms based on their proportionality
to the time derivatives of either pz, N↑z and N↓z. Having found this, the energy (and
heat) current is now fully determined up to first order in the driving frequency.
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