
Phase-Noise Compensation for Spatial-Division
Multiplexed Transmission

Arni F. Alfredsson1, Erik Agrell1, Henk Wymeersch1, Magnus Karlsson2

1Department of Signals and Systems, 2Department of Microtechnology and Nanoscience,
Chalmers University of Technology, Gothenburg, SE-412 96, Sweden.

arnia@chalmers.se

Abstract: The problem of correlated phase noise in spatial-division multiplexed transmission is
studied. To compensate for the phase noise, an algorithm for joint-core phase-noise estimation and
symbol detection is proposed, which outperforms conventional methods.
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1. Introduction

A promising technology to cope with the ever-increasing demands for data rate in a cost-scalable fashion is spatial-
division multiplexing (SDM). This can entail the utilization of, e.g., bundles of single-core fibers (SCFs), multicore
fibers (MCFs), or multimode fibers. Moreover, a key concept is the integration of system components, such as optical
hardware and digital signal processing. In order to further increase the throughput of these systems, the utilization of
advanced modulation formats, such as M -ary quadrature amplitude modulation (M -QAM), is desirable. However, as
the order of the modulation grows higher, its sensitivity to phase noise increases.

In the case that local oscillators (LOs) can be shared for all cores in transmission using an MCF or bundles of
SCFs, the laser phase noise will be common to the spatial channels. However, due to environmental effects and sys-
tem imperfections, this common phase noise may decorrelate between the cores over time [1, 2]. This motivates the
investigation of joint-core processing for phase-noise compensation. An example is self-homodyne coherent detection
(SHCD) [3], or a master–slave configuration in which a single channel is used to estimate the phase noise and the
resulting estimates are used for all channels [2]. This may save considerable DSP complexity, but does not improve
the phase-noise tolerance compared to processing each channel separately. Conversely, if data on all channels are used
jointly to compensate for the phase noise, a substantial improvement can be expected in its tolerance. However, the
associated DSP complexity in this case will likely not be as dramatically reduced as in SHCD or the master–slave
configuration. At any rate, the problem of joint DSP for phase-noise compensation, with an emphasis on minimizing
the bit error rate (BER), has not been addressed in the literature.

In this article, with a focus on minimizing the BER for transmission using an MCF or a bundle of SCFs in the
presence of correlated phase noise, we propose an algorithm that performs joint-core processing for phase-noise com-
pensation and symbol detection. The performance of the algorithm is compared to a conventional approach, where
each channel is treated separately, for polarization-multiplexed quadrature phase-shift keying (PM-QPSK), PM-16-
QAM, and PM-64-QAM multicore transmission, which includes amplified spontaneous emission (ASE) noise and
correlated phase noise.

2. System Model

Single-carrier PM transmission of uncoded complex symbols in Nc cores is considered, affected by additive white
Gaussian noise (AWGN) and phase noise. The transceiver LOs are assumed to be shared between all cores in an
MCF or a bundle of SCFs, giving rise to a common phase noise in all the spatial channels. Moreover, due to possible
environmental effects and rotations of the state of polarization, the presence of core- and polarization-dependent phase
drifts is assumed, which decorrelates the common laser phase noise between the channels. These drifts are assumed
to drift orders of magnitude slower than the laser phase noise [2, 4]. Other linear and nonlinear effects are assumed to
have been perfectly compensated for. Further assuming perfect symbol synchronization and one sample per symbol,
the discrete-time complex baseband model is written as

ri,w,k = si,w,ke
jγi,w,k + ni,w,k, (1)

for time index k = 0, . . . , N − 1, core index i = 1, . . . , Nc, and polarization index w ∈ {x, y}. The number of trans-
mitted symbols per spatial channel is denoted with N , whereas Nc is the number of cores, and x and y are polarization
components. The vectors rk = [r1,x,k, r1,y,k, . . . , rNc,x,k, rNc,y,k]T contain the received samples in all the channels
at times k = 0, . . . , N − 1, and form the matrix R = [r0, r1, . . . , rN−1] ∈ C2Nc×N . Similarly, the matrix S =



[s0, s1, . . . , sN−1] ∈ C2Nc×N contains all the transmitted symbols, where sk = [s1,x,k, s1,y,k, . . . , sNc,x,k, sNc,y,k]T .
Finally, the noise matrix N = [n0,n1, . . . ,nN−1] ∈ C2Nc×N , where nk = [n1,x,k, n1,y,k, . . . , nNc,x,k, nNc,y,k]T ,
contains independent and identically distributed, circularly symmetric complex Gaussian components, and models the
ASE in all the channels. The transmitted symbols are drawn uniformly from a complex constellation X ∈ C, which is
subject to an energy constraint such that the average symbol energy is Es. Pilot symbols are distributed with regular
intervals between the data symbols on each channel, with the x-polarization in core 1 having a greater pilot overhead
than the rest of the channels.

The total phase noise per spatial channel consists of a sum of the laser phase noise, a core-dependent phase drift,
and a polarization-dependent phase drift, which are all modelled as Gaussian random-walks with innovation variances
σ2
θ , σ2

δ , and σ2
ε , respectively. Specifically, the laser phase noise innovation variance is defined as σ2

θ = 2π∆νTs, where
∆ν is the total laser linewidth and Ts is the symbol duration. The total phase noise in all the channels at time k is
encapsulated in γk = [γ1,x,k, γ1,y,k, . . . , γNc,x,k, γNc,y,k]T . Further, Γ = [γ0,γ1, . . . ,γN−1] ∈ R2Nc×N describes a
2Nc-dimensional Gaussian random walk, i.e., γk = γk−1 + ∆k, with γ0 uniformly distributed on [0, 2π)2Nc . The
innovation is a correlated Gaussian random vector, ∆k ∼ N (0,Q), where Q ∈ R2Nc×2Nc is a known matrix and is
defined as
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The phase noise is statistically independent of the transmitted symbols and the AWGN. Furthermore, it is unknown to
both the transmitter and the receiver.

3. Proposed Algorithm

By using the factor graph framework and the sum–product algorithm [5], the detector that minimizes the BER, namely,
the maximum a posteriori detector, can be realized for the channel model in (1). However, the direct implementation
of the resulting equations is impractical since it requires many integrals to be carried out. Thus, approximations are
needed, and multiple solutions have been proposed in the literature. A particular approximation results in an excellent
performance–complexity tradeoff, namely to constrain the a posteriori phase-noise PDFs to be in a family of Tikhonov
distributions. This approach was originally proposed in [6], and recently extended for a polarization-multiplexed trans-
mission in a single-core fiber [7]. In this work we extend the method further to account for multicore fibers with core-
and polarization-dependent phase drifts and shared laser phase noise between the cores. The main difference from
[7] lies in the presence of these additional drifts that decorrelate the common laser phase noise between the spatial
channels, and hence impose difficulties in its estimation. Hereafter, this algorithm will be referred to as Tikhonov
Joint Estimator–Detector (TJED). For more details on the algorithm derivation for single-channel or polarization-
multiplexed transmission, the reader is referred to [6, 7].

4. Performance Analysis

The performance of the proposed algorithms is assessed through Monte Carlo simulations of PM-QPSK, PM-16-
QAM, and PM-64-QAM multicore transmission in the presence of correlated phase noise. Bits are Gray encoded prior
to bit-to-symbol mapping, and no forward error correction is used. 7- and 19-core transmission are assumed, resulting
in parallel transmission of 14 and 38 spatial channels, respectively. The number of transmitted symbols in each channel
is at most N = 200 000. For each result, blocks of symbols are repeatedly transmitted and bit errors are accumulated
until the total number of errors exceeds 1000. The average pilot overhead over all the channels is 5%, and every pilot
is normalized such that its energy is Es. The proposed algorithm, running 2 iterations, is compared to a conventional
phase-noise compensation scheme, namely, running the blind phase search (BPS) algorithm [8] separately on each
channel with differential encoding applied.

The comparison pertains to the phase-noise tolerance of the algorithms. To that end, the BER is computed as a
function of different amounts of laser linewidth and symbol duration products, ∆νTs. The signal-to-noise (SNR) per
information bit is fixed such that a BER of 10−3 is obtained for pilot-free transmission in the absence of phase noise.
Hence, BER penalty due to imperfect phase-noise compensation as well as pilot overhead will occur. In addition to
evaluating the algorithms for a range of ∆νTs, results are obtained for two different amounts of phase-noise decor-
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Fig. 1: Phase-noise tolerance of TJED for 7- and 19-core transmission at a fixed SNR per information bit and pilot overhead, with the core- and
polarization-dependent phase drifts 1000 times (top 3 plots) and 10 times (bottom 3 plots) slower than the laser phase noise.

relation between the spatial channels. This is controlled by the speed of the core- and polarization-dependent phase
drifts, relative to the laser phase noise.

Fig. 1 shows the results for σ2
δ = σ2

ε = σ2
θ/1000 (top) and σ2

δ = σ2
ε = σ2

θ/10 (bottom), where all plots include an
ideal curve that corresponds to no penalty due to phase noise. The proposed algorithm outperforms the conventional
approach in most cases. Furthermore, TJED attains similar or lower BER for all the tested laser linewidths when the
number of cores is increased, resulting in a higher linewidth tolerance. In general, the performance improvements are
more pronounced when σ2

δ = σ2
ε = σ2

θ/1000. This is to be expected since slower core- and polarization-dependent
drifts result in less decorrelation in the common laser phase noise, which allows for a more effective phase-noise
compensation. In particular, for 19-core transmission and σ2

δ = σ2
ε = σ2

θ/1000, TJED tolerates at least 45 times
higher linewidth compared to the conventional method before exceeding BER of 10−2.

Increasing the pilot overhead results in a higher linewidth tolerance but raises the required SNR per information
bit, whereas lowering the overhead has the opposite effect. Finally, it is worth noting that the estimated computational
complexity per channel of the proposed algorithm depends on the modulation format order and number of cores. More
specifically, it is higher than the estimated complexity of the algorithm in [7, Sec. IV-D] by a factor of approximately
3 for the tested modulation formats and number of cores, in terms of the number of real multiplications and additions.

5. Conclusion

A novel algorithm was proposed for joint-core phase-noise compensation, when the system is affected by laser phase
noise in addition to core- and polarization-dependent phase drifts. The performance analysis shows that the algorithm
outperforms a conventional approach, having tolerance for at least 45 times higher laser linewidth in certain scenarios.
This makes it an appealing option for spatial-division multiplexed fiber-optical communication systems, employing
LOs that are shared between cores.
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